JP2006172887A - Manufacturing method for electrode for battery - Google Patents

Manufacturing method for electrode for battery Download PDF

Info

Publication number
JP2006172887A
JP2006172887A JP2004363362A JP2004363362A JP2006172887A JP 2006172887 A JP2006172887 A JP 2006172887A JP 2004363362 A JP2004363362 A JP 2004363362A JP 2004363362 A JP2004363362 A JP 2004363362A JP 2006172887 A JP2006172887 A JP 2006172887A
Authority
JP
Japan
Prior art keywords
electrode
slurry
battery
manufacturing
battery electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004363362A
Other languages
Japanese (ja)
Inventor
Tamaki Miura
環 三浦
Junji Katamura
淳二 片村
Mikio Kawai
幹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004363362A priority Critical patent/JP2006172887A/en
Publication of JP2006172887A publication Critical patent/JP2006172887A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method for an electrode for a battery realizing atomization of an electrode structure and obtaining a good electrode composition while simplifying handling of the electrode structure. <P>SOLUTION: In this manufacturing method for the electrode for the battery used for a secondary battery, a solution in which a binder material is dissolved in a polar organic solvent is manufactured, another electrode structure is added to the solution, then slurry is produced by a wet-grinding method, and then, the slurry is applied on a metal foil and dried. Atomization and uniform decentralization of the electrode structure and adjustment of viscosity of the slurry are realized simultaneously. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば電気自動車などに搭載する二次電池(非水二次電池)に用いられる電池用電極の製造方法に関するものである。   The present invention relates to a method for producing a battery electrode used in, for example, a secondary battery (non-aqueous secondary battery) mounted on an electric vehicle or the like.

一般的に、自動車用の二次電池には、より高出力の特性が求められており、高出力化を図るものとしては、例えば特開平7−97216号公報に記載されているように、BET比表面積が3m/g以上のスピネル型構造マンガン複合酸化物を正極に使用したものや、特開平7−122262号公報に記載されているように、比表面積が4m/g以上である電極を用いたものが提案されていた。 In general, secondary batteries for automobiles are required to have higher output characteristics. For example, as described in JP-A-7-97216, BET those having a specific surface area were used 3m 2 / g or more spinel structure manganese oxide in the positive electrode and, as described in JP-a-7-122262, is a specific surface area of 4m 2 / g or more electrodes The one using was proposed.

上記従来の二次電池は、主として電極の比表面積を大きくして高出力化を図るものであるが、その一方では、電極構成物の粒子サイズを極めて小さくすることで単位体積あたりの面積を増大させるとともに抵抗を減少させ、これにより二次電池の高出力化を実現することが期待されていた。
特開平7−97216号公報 特開平7−122262号公報
The conventional secondary battery mainly increases the specific surface area of the electrode to increase the output, but on the other hand, the area per unit volume is increased by extremely reducing the particle size of the electrode component. In addition, the resistance was reduced, and this was expected to realize a high output of the secondary battery.
JP-A-7-97216 JP-A-7-122262

しかしながら、電池用電極を製造するに際して、粒子サイズが極めて小さい電極構成物を用いる場合、とくに粒子サイズがサブミクロンである微粒子の電極構成物を用いる場合には、その集塵性や爆発性などを考慮する必要がある。このため、微粒子である電極構成物(微粒子)の取扱いが厄介であると共に、良好な電極組成を有する電池用電極を製造することが難しいという問題点があり、このような問題点を解決することが課題であった。   However, when manufacturing an electrode for a battery, when using an electrode composition having a very small particle size, particularly when using a fine particle electrode composition having a particle size of submicron, its dust collection property and explosiveness are reduced. It is necessary to consider. For this reason, there are problems that it is difficult to handle electrode components (fine particles) that are fine particles, and that it is difficult to produce a battery electrode having a good electrode composition, and to solve such problems. Was an issue.

本発明は、上記従来の課題に着目して成されたもので、電極構成物の取扱いを容易にしつつ、電極構成物の微粒子化を実現することができると共に、良好な電極組成を得ることができる電池用電極の製造方法を提供することを目的としている。   The present invention has been made by paying attention to the above-described conventional problems, and can facilitate the handling of the electrode composition while realizing fine particle formation of the electrode composition and obtaining a good electrode composition. It aims at providing the manufacturing method of the battery electrode which can be performed.

本発明の電池用電極の製造方法は、二次電池に使用する電池用電極を製造するに際し、予め極性有機溶媒にバインダー材料を溶解させた溶液を作製し、この溶液に活物質や導電付与材などの他の電極構成物を投入した後に、湿式粉砕法によりスラリーを作製する。その後、作製したスラリーを金属箔上に塗布し、これを乾燥させる工程を経て電池用電極を得ることを特徴としている。   The method for producing a battery electrode according to the present invention comprises preparing a solution in which a binder material is previously dissolved in a polar organic solvent when producing a battery electrode to be used in a secondary battery, and an active material or a conductivity-imparting material in the solution. After charging other electrode components such as, a slurry is prepared by a wet pulverization method. Then, the produced slurry is applied on a metal foil, and a battery electrode is obtained through a process of drying the slurry.

本発明の電池用電極の製造方法によれば、予め作製した溶液とこれに投入する他の電極構成物に対して湿式粉砕法を導入したことから、電極構成物の微粒子化と均一分散化、並びにスラリーの粘度の調整を同時に実現することができ、予め微粒子とした電極構成物の使用を廃止することで集塵性や爆発性といった取扱い上の問題を回避して、電極構成物の取扱いを容易にし得ると共に、上記スラリーを金属箔上に塗布して乾燥させる工程を経ることで、良好な電極組成を有する電池用電極を得ることができる。   According to the method for manufacturing a battery electrode of the present invention, since the wet pulverization method was introduced to the solution prepared in advance and other electrode components to be added thereto, the electrode components were finely divided and uniformly dispersed. In addition, it is possible to adjust the viscosity of the slurry at the same time, and avoid the problem of handling such as dust collection and explosiveness by abolishing the use of the electrode composition that has been finely divided in advance. A battery electrode having a good electrode composition can be obtained through a process of applying the slurry onto a metal foil and drying it.

本発明の電池用電極の製造方法では、二次電池に使用する電池用電極を製造するに際して、極性有機溶媒にバインダー材料を溶解させた溶液を作製し、この溶液に他の電極構成物を投入した後に、湿式粉砕法を用いてスラリーを作製する。   In the battery electrode manufacturing method of the present invention, when manufacturing a battery electrode for use in a secondary battery, a solution in which a binder material is dissolved in a polar organic solvent is prepared, and another electrode component is added to this solution. Then, a slurry is prepared using a wet pulverization method.

このように、湿式粉砕法によりスラリーを作製することで、電極構成物が極めて小さい微粒子となり、例えば粒子サイズが1μm以下の微粒子になると共に、電極構成物が均一に分散したものとなり、スラリーの粘度調整も容易に行い得る。これにより、予め微粒子化した電極構成物を使用する必要がなくなるので、微粒子の集塵性や爆発性といった取扱い上の問題が回避され、電極構成物の取扱いも容易になる。また、溶媒の使用を極力抑えることができるので、環境負荷も低減し得るものとなる。   Thus, by preparing the slurry by the wet pulverization method, the electrode composition becomes very small particles, for example, the particle size becomes 1 μm or less and the electrode composition is uniformly dispersed, and the viscosity of the slurry Adjustments can also be made easily. This eliminates the need to use an electrode composition that has been finely divided in advance, thereby avoiding problems in handling such as dust collection and explosiveness of the fine particles and facilitating the handling of the electrode structure. Moreover, since the use of the solvent can be suppressed as much as possible, the environmental load can be reduced.

さらに、当該電池用電極の製造方法では、上記のスラリーを金属箔上に塗布し、これを乾燥させる工程を経ることで電池用電極が得られることとなり、このようにして得た電池用電極は、電極組成も非常に良好であると共に、電極構成物の微粒子化によって二次電池の高出力化を実現し得るものとなる。   Furthermore, in the manufacturing method of the battery electrode, the battery electrode is obtained by applying the slurry on the metal foil and drying it, and the battery electrode thus obtained is The electrode composition is also very good, and high output of the secondary battery can be realized by making the electrode composition fine.

ここで、本発明の電池用電極の製造方法では、より好ましい実施形態として、湿式粉砕法により電極構成物の平均粒径を10μm以下にするようにし、より望ましくは電極構成物の平均粒径を5μm以下にするようにし、より一層望ましくは電極構成物の平均粒径を1μm以下にするようにしている。これにより、より緻密な充填性を有する電極が得られることとなり、二次電池の出力特性のさらなる向上を実現する。   Here, in the method for producing a battery electrode of the present invention, as a more preferred embodiment, the average particle size of the electrode composition is set to 10 μm or less by a wet pulverization method, and more preferably the average particle size of the electrode composition is set to be smaller. More preferably, the average particle size of the electrode components is 1 μm or less. As a result, an electrode having a denser filling property can be obtained, and the output characteristics of the secondary battery can be further improved.

また、本発明の電池用電極の製造方法では、より好ましい実施形態として、スラリーの粘度を300〜3000cpsとしている。スラリーは、粒子サイズがサブミクロンの微粒子を含むと粘度が下がり易く、粘度が300cpsよりも小さいと、金属箔上への塗布が困難になり、粘度が3000cpsよりも大きいと、湿式粉砕装置の内部で詰るといった不具合が生じる。そこで、スラリーの粘度を上記範囲にすれば、金属箔上への確実な塗布が可能になると共に、湿式粉砕装置で生じる可能性がある不具合も解消し得る。   Moreover, in the manufacturing method of the battery electrode of the present invention, as a more preferred embodiment, the slurry has a viscosity of 300 to 3000 cps. When the slurry contains fine particles having a particle size of submicron, the viscosity tends to decrease. When the viscosity is less than 300 cps, it becomes difficult to apply on the metal foil, and when the viscosity is greater than 3000 cps, The problem of clogging occurs. Therefore, when the viscosity of the slurry is within the above range, reliable application onto the metal foil is possible, and problems that may occur in the wet pulverization apparatus can be eliminated.

さらに、本発明の電池用電極の製造方法では、極性有機溶媒としてNMP(N−メチル−2−ピロリドン)を用いることができる。このように、湿式粉砕の段階から電池用電極のスラリーに必要な極性有機溶媒であるNMPを用いることにより、予め微粒子化した粉末を溶媒に投入してスラリー化する工程を省くことができる。   Furthermore, in the manufacturing method of the battery electrode of the present invention, NMP (N-methyl-2-pyrrolidone) can be used as the polar organic solvent. In this way, by using NMP, which is a polar organic solvent necessary for the slurry for the battery electrode, from the wet pulverization stage, it is possible to omit the step of slurrying the finely divided powder into the solvent.

さらに、本発明の電池用電極の製造方法では、バインダー材料としてPVDF(Polyvinylidene Fluoride)を主成分とする有機物を用いることができる。このように、バインダー材料としてPVDFを用いれば、湿式粉砕装置を用いた製造方法において、電極構成物の充分な均一分散が可能であると共に、スラリーの粘度を調整することができる。   Furthermore, in the method for manufacturing a battery electrode of the present invention, an organic material mainly composed of PVDF (Polyvinylidene Fluoride) can be used as a binder material. As described above, when PVDF is used as the binder material, the electrode composition can be sufficiently uniformly dispersed and the viscosity of the slurry can be adjusted in the production method using the wet pulverizer.

さらに、本発明の電池用電極の製造方法では、電極構成物としてマンガン複合酸化物、ニッケル複合酸化物、コバルト複合酸化物、鉄複合酸化物及び炭素材料のいずれかを含むものとすることができる。すなわち、市販のリチウム二次電池用の電極活物質で用いられている4V級酸化物であるマンガン複合酸化物、ニッケル複合酸化物、コバルト複合酸化物、又はその可能性のある鉄複合酸化物若しくは炭素材料を用いることで、湿式粉砕装置を用いた製造方法においてスラリーの粘度を調整することができる。   Furthermore, in the method for manufacturing a battery electrode of the present invention, the electrode component may include any of manganese composite oxide, nickel composite oxide, cobalt composite oxide, iron composite oxide, and carbon material. That is, manganese composite oxide, nickel composite oxide, cobalt composite oxide, or iron composite oxide with the possibility of being a 4V class oxide used in commercially available electrode active materials for lithium secondary batteries By using the carbon material, the viscosity of the slurry can be adjusted in the production method using the wet pulverizer.

さらに、本発明の電池用電極の製造方法では、炭素材料として黒鉛、非晶質炭素及び無定形炭素のいずれかを用いることができる。すなわち、正極における導電付与剤や負極における活物質及び導電付与剤のように、リチウムイオン二次電池用正極及び負極で用いる炭素材料を黒鉛、非晶質炭素及び無定形炭素のいずれかとしてこれらを湿式粉砕処理すると、電池電極用のスラリーの粘度を調整することが可能となる。   Furthermore, in the battery electrode manufacturing method of the present invention, any of graphite, amorphous carbon, and amorphous carbon can be used as the carbon material. That is, the carbon material used in the positive electrode and the negative electrode for lithium ion secondary batteries, such as the conductive agent in the positive electrode and the active material and the conductive agent in the negative electrode, is any of graphite, amorphous carbon, and amorphous carbon. When the wet pulverization treatment is performed, the viscosity of the slurry for the battery electrode can be adjusted.

さらに、本発明の電池用電極の製造方法では、金属箔として、アルミニウム、銅、ステンレス及びこれらを主成分とする合金のいずれかを用いることができる。すなわち、湿式粉砕法により粘度調整したスラリーをリチウムイオン二次電池電極用集電体とし、このスラリーをアルミニウム、銅、ステンレス及びこれらを主成分とする合金のいずれかから成る金属箔上に塗布して乾燥させることで、良好な電池用電極を得ることができる。   Furthermore, in the method for manufacturing a battery electrode according to the present invention, any of aluminum, copper, stainless steel, and an alloy containing these as a main component can be used as the metal foil. That is, a slurry whose viscosity is adjusted by a wet pulverization method is used as a current collector for a lithium ion secondary battery electrode, and this slurry is applied onto a metal foil made of aluminum, copper, stainless steel, or an alloy containing these as a main component. A good battery electrode can be obtained by drying.

そして、上記の製造方法により得られた電池用電極は、現行の材料を基準としながら湿式粉砕法を利用した製造方法により、高出力特性を発現するものとなり、これを用いた二次電池(非水二次電池)の高出力化を実現する。   The battery electrode obtained by the above manufacturing method exhibits high output characteristics by a manufacturing method using a wet pulverization method based on the current material, and a secondary battery (non- High output of water secondary battery).

以下に述べる実施例1は、湿式粉砕法によって電極構成物を微粒子化した場合の効果を示し、実施例2は、湿式粉砕法を用いてリチウムイオン二次電池の正極用スラリーを作製した場合を示す。また、比較例1及び2は、実施例2に対する比較を示す。   Example 1 described below shows the effect when the electrode composition is microparticulated by the wet pulverization method, and Example 2 shows the case where the slurry for the positive electrode of the lithium ion secondary battery is prepared using the wet pulverization method. Show. Comparative Examples 1 and 2 show a comparison with Example 2.

(実施例1)
極性有機溶媒としてNMPを用い、電極構成物である正極活物質として平均粒径D50が1μm程度のマンガン複合酸化物を用いた。また、湿式粉砕処理は、容器に、φ0.5mmのジルコニア製ビーズを容積率で70%充填し、この容器を所定時間回転させることで行った。なお、平均粒径D50が1μm程度とは、全体量の50%の粒子が1μm以下であることを示す。
Example 1
NMP was used as a polar organic solvent, and a manganese composite oxide having an average particle diameter D50 of about 1 μm was used as a positive electrode active material as an electrode component. Further, the wet pulverization treatment was performed by filling a container with 70% by volume of φ0.5 mm zirconia beads and rotating the container for a predetermined time. The average particle size D50 of about 1 μm indicates that 50% of the total amount of particles is 1 μm or less.

まず、湿式粉砕装置の投入口、循環タンク、ホース及びベッセル内にNMPを充分に循環させて、これらの洗浄及び置換を行った。次に、装置内のNMPを除去した後、装置内に電池電極スラリー作製用の高純度無水NMP(溶媒)を投入し、さらにマンガン複合酸化物(活物質)を投入し、湿式粉砕処理を2時間行ってスラリーを作製した。その後、作製したスラリーを溶媒で希釈し、さらに超音波で分散した後、粒度分布測定を行った。その結果、平均粒径D50は0.3μm程度であり、平均粒径D90は1μm程度であった。   First, NMP was sufficiently circulated in the inlet of the wet pulverizer, the circulation tank, the hose and the vessel, and these were washed and replaced. Next, after removing NMP in the apparatus, high-purity anhydrous NMP (solvent) for producing battery electrode slurry is introduced into the apparatus, manganese composite oxide (active material) is further introduced, and wet grinding treatment 2 Slurry was made after a period of time. Thereafter, the prepared slurry was diluted with a solvent and further dispersed with ultrasonic waves, and then the particle size distribution was measured. As a result, the average particle diameter D50 was about 0.3 μm, and the average particle diameter D90 was about 1 μm.

(実施例2)
極性有機溶媒としてNMPを用い、バインダーとしてPVDFを用い、他の電極構成物である正極活物質として平均粒径D50が1μm程度のマンガン複合酸化物を用い、同じく他の電極構成物である導電付与剤としてカーボンブラックを用いた。このとき、電極構成物の組成は、活物質:導電付与剤:バインダーを80:10:10とした。湿式粉砕処理は、容器に、φ0.5mmのジルコニア製ビーズを容積率で70%充填し、この容器を所定時間回転させることで行った。
(Example 2)
NMP is used as a polar organic solvent, PVDF is used as a binder, a manganese composite oxide having an average particle size D50 of about 1 μm is used as a positive electrode active material as another electrode component, and conductivity is imparted as another electrode component. Carbon black was used as an agent. At this time, the composition of the electrode composition was 80:10:10 active material: conductivity imparting agent: binder. The wet pulverization treatment was performed by filling a container with 70% by volume of φ0.5 mm zirconia beads and rotating the container for a predetermined time.

まず、湿式粉砕装置の投入口、循環タンク、ホース及びベッセル内にNMPを充分に循環させて、これらの洗浄及び置換を行った。次に、装置内のNMPを除去した後、装置内に電池電極スラリー作製用の高純度無水NMP(溶媒)を投入し、さらに、予めNMP(溶媒)で溶解したPVDF(バインダー)を投入し、この溶液をベッセル以外で循環させて、同溶液と装置内のNMP(溶媒)とを充分になじませた。   First, NMP was sufficiently circulated in the inlet of the wet pulverizer, the circulation tank, the hose and the vessel, and these were washed and replaced. Next, after removing NMP in the device, high-purity anhydrous NMP (solvent) for battery electrode slurry preparation is charged into the device, and PVDF (binder) previously dissolved in NMP (solvent) is charged, This solution was circulated in a place other than the vessel, so that the solution and the NMP (solvent) in the apparatus were sufficiently combined.

その後、装置内にマンガン複合酸化物(活物質)を少しずつ投入しながら循環させることで、このマンガン複合酸化物(活物質)をNMP(溶媒)及びPVDF(バインダー)から成る溶液になじませた。そして、マンガン複合酸化物(活物質)をすべて投入した段階でNMP(溶媒)量を調節し、ベッセル内の循環を開始した。このときの粘度は300cps程度であった。   Thereafter, the manganese composite oxide (active material) was circulated while being gradually added to the apparatus, so that the manganese composite oxide (active material) was adapted to the solution composed of NMP (solvent) and PVDF (binder). . Then, the amount of NMP (solvent) was adjusted at the stage when all of the manganese composite oxide (active material) was added, and circulation in the vessel was started. The viscosity at this time was about 300 cps.

そして、初期の湿式粉砕処理を行った後、カーボンブラック(導電付与剤)を少しずつ投入した。この固形分の投入が終了したのち、NMP(溶媒)を追加して固形分濃度が50%程度になるように粘度調整を行い、ベッセル内の循環すなわち湿式粉砕処理を2時間程度行ってスラリーを作製した。   And after performing the initial wet grinding process, carbon black (conductivity imparting agent) was added little by little. After the solid content is finished, NMP (solvent) is added to adjust the viscosity so that the solid content concentration is about 50%, and circulation in the vessel, that is, wet pulverization treatment is performed for about 2 hours to obtain the slurry. Produced.

上記の如く作製したスラリーの粒度分布を測定したところ、平均粒子径D50は0.6μm程度、平均粒径D90は1μm程度であった。また、作製したスラリーをアルミニウム箔上に塗布し、厚さ25μmのドクターブレードを用いて膜厚を調整し、ホットスターラー上で乾燥させて電極を得た。この電極は、電極構成物の分散性や密着性を含めて非常に良好な電極状態であった。   When the particle size distribution of the slurry produced as described above was measured, the average particle size D50 was about 0.6 μm, and the average particle size D90 was about 1 μm. Moreover, the produced slurry was apply | coated on aluminum foil, the film thickness was adjusted using a 25-micrometer-thick doctor blade, and it dried on the hot stirrer, and obtained the electrode. This electrode was in a very good electrode state including dispersibility and adhesion of the electrode composition.

(比較例1)
極性有機溶媒としてNMPを用い、バインダーとしてPVDFを用い、他の電極構成物である正極活物質として平均粒径D50が1μm程度のマンガン複合酸化物を用い、同じく他の電極構成物である導電付与剤としてカーボンブラックを用いた。このとき、電極構成物の組成は、活物質:導電付与剤:バインダーを80:10:10とした。湿式粉砕処理は、容器に、φ0.5mmのジルコニア製ビーズを容積率で70%充填し、この容器を所定時間回転させることで行った。
(Comparative Example 1)
NMP is used as a polar organic solvent, PVDF is used as a binder, a manganese composite oxide having an average particle size D50 of about 1 μm is used as a positive electrode active material as another electrode component, and conductivity is imparted as another electrode component. Carbon black was used as an agent. At this time, the composition of the electrode composition was 80:10:10 active material: conductivity imparting agent: binder. The wet pulverization treatment was performed by filling a container with 70% by volume of φ0.5 mm zirconia beads and rotating the container for a predetermined time.

まず、湿式粉砕装置の投入口、循環タンク、ホース及びベッセル内にNMPを充分に循環させて、これらの洗浄及び置換を行った。次に、装置内のNMPを除去した後、装置内に電池電極スラリー作製用の高純度無水NMP(溶媒)を投入し、PVDF(バインダー)、マンガン複合酸化物(活物質)、及びカーボンブラック(導電付与剤)を同時に投入した。   First, NMP was sufficiently circulated in the inlet of the wet pulverizer, the circulation tank, the hose and the vessel, and these were washed and replaced. Next, after removing NMP in the apparatus, high-purity anhydrous NMP (solvent) for battery electrode slurry preparation is put into the apparatus, PVDF (binder), manganese composite oxide (active material), and carbon black ( The conductivity-imparting agent) was added at the same time.

そして、ベッセル以外でなじむ程度の循環を行い、固形分濃度が50%程度になるようにNMP(溶媒)量を調節した後、ベッセル内への循環すなわち湿式粉砕処理を2時間程度行ってスラリーを作製した。このように作製したスラリーには、ゲル状の凝集物が多数存在しており、金属箔上への塗布及び乾燥による電極化は困難であった。   Then, circulate as much as possible except for the vessel, adjust the amount of NMP (solvent) so that the solid content concentration is about 50%, and then circulate into the vessel, that is, perform a wet pulverization treatment for about 2 hours. Produced. In the slurry thus produced, a large number of gel-like aggregates existed, and it was difficult to form an electrode by coating on a metal foil and drying.

(比較例2)
極性有機溶媒としてNMPを用い、バインダーとしてPVDFを用い、他の電極構成物である正極活物質として平均粒径D50が1μm程度のマンガン複合酸化物を用い、同じく他の電極構成物である導電付与剤としてカーボンブラックを用いた。このとき、電極構成物の組成は、活物質:導電付与剤:バインダーを80:10:10とした。湿式粉砕処理は、容器に、φ0.5mmのジルコニア製ビーズを容積率で70%充填し、この容器を所定時間回転させることで行った。
(Comparative Example 2)
NMP is used as a polar organic solvent, PVDF is used as a binder, a manganese composite oxide having an average particle size D50 of about 1 μm is used as a positive electrode active material as another electrode component, and conductivity is imparted as another electrode component. Carbon black was used as an agent. At this time, the composition of the electrode composition was 80:10:10 active material: conductivity imparting agent: binder. The wet pulverization treatment was performed by filling a container with 70% by volume of φ0.5 mm zirconia beads and rotating the container for a predetermined time.

まず、湿式粉砕装置の投入口、循環タンク、ホース及びベッセル内にNMPを充分に循環させて、これらの洗浄及び置換を行った。次に、装置内のNMPを除去した後、装置内に電池電極スラリー作製用の高純度無水NMP(溶媒)を投入し、さらに、予めNMP(溶媒)で溶解したPVDF(バインダー)を投入し、この溶液をベッセル以外で循環させて、同溶液と装置内のNMP(溶媒)とを充分になじませた。   First, NMP was sufficiently circulated in the inlet of the wet pulverizer, the circulation tank, the hose and the vessel, and these were washed and replaced. Next, after removing NMP in the device, high-purity anhydrous NMP (solvent) for battery electrode slurry preparation is charged into the device, and PVDF (binder) previously dissolved in NMP (solvent) is charged, This solution was circulated in a place other than the vessel, so that the solution and the NMP (solvent) in the apparatus were sufficiently combined.

その後、装置内にマンガン複合酸化物(活物質)を少しずつ投入しながら循環させることで、このマンガン複合酸化物(活物質)をNMP(溶媒)及びPVDF(バインダー)から成る溶液になじませた。こののち、ベッセル内への循環すなわち湿式粉砕処理を2時間程度行ってスラリーを作製した。また、比較例2では、作製したスラリーを攪拌槽に移し替え、攪拌中のスラリーの中にカーボンブラック(導電付与剤)とNMP(溶媒)を少しずつ投入し、固形分濃度50%程度にまで調整した。   Thereafter, the manganese composite oxide (active material) was circulated while being gradually added to the apparatus, so that the manganese composite oxide (active material) was adapted to the solution composed of NMP (solvent) and PVDF (binder). . After that, circulation into the vessel, that is, wet pulverization was performed for about 2 hours to prepare a slurry. In Comparative Example 2, the prepared slurry was transferred to a stirring tank, and carbon black (conducting agent) and NMP (solvent) were added little by little into the stirring slurry until the solid content concentration reached about 50%. It was adjusted.

上記のスラリーをアルミニウム箔上に塗布し、厚さ25μmのドクターブレードを用いて膜厚を調整し、ホットスターラー上で乾燥させて電極を得た。この電極中には、所々に金属箔が確認され、カーボンブラック(導電付与剤)と思われる凝集体が確認された。   The slurry was applied on an aluminum foil, the film thickness was adjusted using a doctor blade having a thickness of 25 μm, and dried on a hot stirrer to obtain an electrode. In this electrode, metal foil was confirmed in some places, and aggregates that were considered to be carbon black (conductivity imparting agent) were confirmed.

実施例1で得た粒子と出発材料との粒度分布の違いを図1に示す。実施例1においてNMP溶媒下で処理された粒子(粉末粉砕後)は、図示の如く粒径が1μm以下に揃っている。出発材料(粉末粉砕前)は、平均粒径D50が1μm程度であり、粒径が10μm以下であったことと比較すると、粒子サイズの変化は明らかである。この現象はSEM(走査電子顕微鏡)による直接観察法でも確認できる。   The difference in particle size distribution between the particles obtained in Example 1 and the starting material is shown in FIG. The particles (after powder pulverization) treated in the NMP solvent in Example 1 have a particle size of 1 μm or less as shown in the figure. The starting material (before powder pulverization) has an average particle size D50 of about 1 μm, and the change in particle size is obvious when compared with the particle size of 10 μm or less. This phenomenon can also be confirmed by direct observation using an SEM (scanning electron microscope).

また、実施例2で示したスラリー、すなわち活物質材料(マンガン複合酸化物)、バインダー材料(PVDF)、及び導電付与剤(カーボンブラック)を混合したスラリーの場合は、図1に示すように、単独処理よりも平均粒径が大きいものの、粉砕効果を確認することができた。すなわち、複数の構成物があるにも関わらずシャープな分布であることから、均一な凝集体が分散しているスラリーを製造することができた。なお、粒径の大きさは導電付与剤も含まれた凝集体であることによると思われる。   Moreover, in the case of the slurry shown in Example 2, that is, the slurry in which the active material (manganese composite oxide), the binder material (PVDF), and the conductivity imparting agent (carbon black) are mixed, as shown in FIG. Although the average particle size was larger than that of the single treatment, the pulverization effect could be confirmed. That is, although there is a plurality of components, the distribution is sharp, and thus a slurry in which uniform aggregates are dispersed can be produced. In addition, it seems that the magnitude | size of a particle size is based on the aggregate containing the electroconductivity imparting agent.

さらに、実施例2は、比較例1及び2に対して、電極構成物の投入方法に最適手段があることを示している。   Furthermore, Example 2 shows that there is an optimum means for the method of charging the electrode components, as compared with Comparative Examples 1 and 2.

つまり、比較例1では、装置内にNMP(溶媒)、PVDF(バインダー)、マンガン複合酸化物(活物質)、及びカーボンブラック(導電付与剤)をほぼ同時に投入したため、PVDF(バインダー)の粒子が充分に溶解し切れずにゲル状になった。PVDFは簡単な攪拌では完全に溶解せず、溶けきらないゲル状粒子が出現しやすい。この現象が生じると、湿式粉砕装置におけるビーズ内の循環が滞り、これが装置内詰りの原因になる。このような不具合を解消するには、実施例2で示したように、予めNMP(溶媒)にPVDF(バインダー)を充分に溶解させた溶液を用いることが重要となる。   That is, in Comparative Example 1, since NMP (solvent), PVDF (binder), manganese composite oxide (active material), and carbon black (conductivity imparting agent) were charged almost simultaneously into the apparatus, PVDF (binder) particles It did not dissolve completely and became a gel. PVDF is not completely dissolved by simple stirring, and gel-like particles that do not completely dissolve tend to appear. When this phenomenon occurs, the circulation in the beads in the wet pulverization apparatus is delayed, which causes clogging in the apparatus. In order to eliminate such problems, as shown in Example 2, it is important to use a solution in which PVDF (binder) is sufficiently dissolved in NMP (solvent) in advance.

また、実施例2で示したように、カーボンブラック(導電付与剤)を湿式粉砕装置に投入することも、電極構成物の均一分散に効果がある。すなわち、カーボンブラック(導電付与剤)をNMP(溶媒)及びPVDF(バインダー)から成る溶液に充分になじませて、粉砕処理により細かくなった材料間に均一に存在させるには、凝集体であるカーボンブラックを充分にほぐして細かくしながら分散させていくことが必要であり、湿式粉砕装置への投入によりカーボンブラック(導電付与剤)の均一分散が成されている。   Further, as shown in Example 2, it is also effective to uniformly disperse the electrode components by introducing carbon black (conductivity imparting agent) into a wet pulverizer. That is, in order to allow carbon black (conductivity-imparting agent) to fully blend into a solution composed of NMP (solvent) and PVDF (binder) and to uniformly exist between the finely divided materials, carbon that is an aggregate is used. The black needs to be sufficiently loosened and dispersed while being finely divided, and the carbon black (conducting agent) is uniformly dispersed by being put into a wet pulverizer.

これに対して、比較例2の場合には、半ば出来上がったスラリーにカーボンブラック(導電付与剤)を投入しているので、カーボンブラック(導電付与剤)が充分になじみ切れずに分離し、NMP(溶媒)を吸って局所的な存在になったものと考えられる。   On the other hand, in the case of Comparative Example 2, since carbon black (conductivity imparting agent) is added to the half-finished slurry, the carbon black (conductivity imparting agent) is sufficiently unseparated and separated. It is thought that it became a local existence by sucking (solvent).

粉砕前後及びスラリー化後の電極構成粉末の平均粒径を説明するグラフである。It is a graph explaining the average particle diameter of the electrode constituent powder before and after grinding and after slurrying.

Claims (9)

二次電池に使用する電池用電極を製造するに際し、極性有機溶媒にバインダー材料を溶解させた溶液を作製し、この溶液に他の電極構成物を投入した後に湿式粉砕法を用いてスラリーを作製し、その後、スラリーを金属箔上に塗布して乾燥させる工程を経ることを特徴とする電池用電極の製造方法。   When manufacturing a battery electrode for use in a secondary battery, a solution is prepared by dissolving a binder material in a polar organic solvent, and another electrode component is added to this solution, and then a slurry is prepared using a wet pulverization method. Then, the manufacturing method of the battery electrode characterized by passing through the process of apply | coating a slurry on metal foil and drying. 湿式粉砕法により電極構成物の平均粒径を1μm以下にすることを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the average particle size of the electrode composition is 1 μm or less by a wet pulverization method. スラリーの粘度が300〜3000cpsであることを特徴とする請求項1又は2に記載の電池用電極の製造方法。   The method for producing a battery electrode according to claim 1 or 2, wherein the slurry has a viscosity of 300 to 3000 cps. 極性有機溶媒としてNMPを用いることを特徴とする請求項1〜3のいずれかに記載の電池用電極の製造方法。   The method for producing a battery electrode according to any one of claims 1 to 3, wherein NMP is used as the polar organic solvent. バインダー材料としてPVDFを主成分とする有機物を用いることを特徴とする請求項1〜4のいずれかに記載の電池用電極の製造方法。   The method for producing an electrode for a battery according to any one of claims 1 to 4, wherein an organic substance mainly composed of PVDF is used as a binder material. 電極構成物としてマンガン複合酸化物、ニッケル複合酸化物、コバルト複合酸化物、鉄複合酸化物及び炭素材料のいずれかを含むことを特徴とする請求項1〜4のいずれかに記載の電池用電極の製造方法。   5. The battery electrode according to claim 1, comprising any one of manganese composite oxide, nickel composite oxide, cobalt composite oxide, iron composite oxide, and carbon material as an electrode component. Manufacturing method. 炭素材料として黒鉛、非晶質炭素及び無定形炭素のいずれかを用いることを特徴とする請求項6に記載の電池用電極の製造方法。   The method for producing a battery electrode according to claim 6, wherein any of graphite, amorphous carbon, and amorphous carbon is used as the carbon material. 金属箔として、アルミニウム、銅、ステンレス及びこれらを主成分とする合金のいずれかを用いることを特徴とする請求項1〜7のいずれかに記載の電池用電極の製造方法。   The method for producing a battery electrode according to any one of claims 1 to 7, wherein any one of aluminum, copper, stainless steel, and an alloy containing these as a main component is used as the metal foil. 請求項1〜8のいずれかに記載の電池用電極の製造方法によって製造したことを特徴とする電池用電極。   A battery electrode manufactured by the method for manufacturing a battery electrode according to claim 1.
JP2004363362A 2004-12-15 2004-12-15 Manufacturing method for electrode for battery Withdrawn JP2006172887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004363362A JP2006172887A (en) 2004-12-15 2004-12-15 Manufacturing method for electrode for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004363362A JP2006172887A (en) 2004-12-15 2004-12-15 Manufacturing method for electrode for battery

Publications (1)

Publication Number Publication Date
JP2006172887A true JP2006172887A (en) 2006-06-29

Family

ID=36673403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004363362A Withdrawn JP2006172887A (en) 2004-12-15 2004-12-15 Manufacturing method for electrode for battery

Country Status (1)

Country Link
JP (1) JP2006172887A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123343A (en) * 2007-11-09 2009-06-04 Ntt Facilities Inc Positive electrode active material for lithium cell, its manufacturing method and lithium cell using the same
WO2011037201A1 (en) * 2009-09-28 2011-03-31 住友化学株式会社 Positive electrode mixture, positive electrode, and nonaqueous electrolyte secondary battery
WO2012124582A1 (en) * 2011-03-15 2012-09-20 三洋電機株式会社 Method for producing positive electrode for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2013073749A (en) * 2011-09-27 2013-04-22 Toyota Motor Corp Manufacturing method of electrode for power storage device
JP2013084397A (en) * 2011-10-06 2013-05-09 Toyota Motor Corp Lithium secondary battery manufacturing method
KR20140087322A (en) * 2012-12-28 2014-07-09 주식회사 에코프로 Manufacturing method of composite of lithium nickel oxide and lithium managanese oxide and composite of lithium nickel oxide and lithium managanese oxide made by the same
KR101450336B1 (en) * 2007-04-24 2014-10-15 삼성에스디아이 주식회사 Keeping device for viscosity about slury of secondary battery and a method using the same
CN104733181A (en) * 2015-02-16 2015-06-24 广西贺州桂海铝业科技有限公司 Method and device for depositing disperse tin and zinc crystal nucleuses on surface of highly pure aluminum foil for medium and high voltage anodes in mist spraying mode

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101450336B1 (en) * 2007-04-24 2014-10-15 삼성에스디아이 주식회사 Keeping device for viscosity about slury of secondary battery and a method using the same
JP2009123343A (en) * 2007-11-09 2009-06-04 Ntt Facilities Inc Positive electrode active material for lithium cell, its manufacturing method and lithium cell using the same
WO2011037201A1 (en) * 2009-09-28 2011-03-31 住友化学株式会社 Positive electrode mixture, positive electrode, and nonaqueous electrolyte secondary battery
JP2011070994A (en) * 2009-09-28 2011-04-07 Sumitomo Chemical Co Ltd Positive electrode mixture, positive electrode, and nonaqueous electrolyte secondary battery
WO2012124582A1 (en) * 2011-03-15 2012-09-20 三洋電機株式会社 Method for producing positive electrode for nonaqueous electrolyte secondary batteries, positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2013073749A (en) * 2011-09-27 2013-04-22 Toyota Motor Corp Manufacturing method of electrode for power storage device
JP2013084397A (en) * 2011-10-06 2013-05-09 Toyota Motor Corp Lithium secondary battery manufacturing method
KR20140087322A (en) * 2012-12-28 2014-07-09 주식회사 에코프로 Manufacturing method of composite of lithium nickel oxide and lithium managanese oxide and composite of lithium nickel oxide and lithium managanese oxide made by the same
KR101952167B1 (en) 2012-12-28 2019-02-27 주식회사 에코프로비엠 Manufacturing method of composite of lithium nickel oxide and lithium managanese oxide and composite of lithium nickel oxide and lithium managanese oxide made by the same
CN104733181A (en) * 2015-02-16 2015-06-24 广西贺州桂海铝业科技有限公司 Method and device for depositing disperse tin and zinc crystal nucleuses on surface of highly pure aluminum foil for medium and high voltage anodes in mist spraying mode

Similar Documents

Publication Publication Date Title
CN109923705B (en) Method for preparing battery anode slurry
JP5918289B2 (en) Silicon slurry for cathode active material, carbon-silicon composite, and production method thereof
JP6497972B2 (en) Electrode, method for producing this electrode, electricity storage device equipped with this electrode, and conductive carbon mixture for electricity storage device electrode
JP6761928B2 (en) Solid electrolyte glass and its manufacturing method, precursor for solid electrolyte glass, suspension, electrode for lithium ion battery, and lithium ion battery
TW201711960A (en) Graphene dispersion, process for producing same, process for producing particles of graphene/active material composite, and process for producing electrode paste
CN102971891A (en) Preparation method of transition metal oxide and carbon nanotube composite, and composite thereof
JP6621664B2 (en) Method for producing conductive carbon, method for producing electrode material containing carbon, method for producing electrode using this electrode material, and method for producing electricity storage device provided with this electrode
KR101612603B1 (en) Carbon-silicon complex, negative active material for secondary battery including the same and method for preparing the same
KR102421959B1 (en) Electrode for secondary battery
JP2017528868A (en) Method for producing silicon-based active material particles for secondary battery, and silicon-based active material particles
WO2018047454A1 (en) Conductive composition for electrodes, and electrode and battery using same
JP6863099B2 (en) Graphene / Organic Solvent Dispersion, Graphene-Active Material Complex Particle Production Method and Electrode Paste Production Method
JP6096101B2 (en) Method for producing positive electrode for lithium secondary battery
WO2015133586A1 (en) Conductive carbon, electrode material including said conductive carbon, and electrode using said electrode material
WO2019013034A1 (en) Conductive carbon mixture and method for manufacturing same, electrode using conductive carbon mixture and method for manufacturing same, and electricity storage device provided with electrode
JP2018174134A (en) Electrode for secondary battery and method for manufacturing the same
JP6760097B2 (en) Positive electrode for lithium secondary battery and its manufacturing method
JP2006172887A (en) Manufacturing method for electrode for battery
JP6931185B2 (en) A conductive carbon mixture, an electrode using this mixture, and a power storage device equipped with this electrode.
JP6319741B2 (en) Electrode manufacturing method
WO2020054615A1 (en) Electrode for secondary battery and secondary battery
CN113871615B (en) Fluorinated graphene electrode active material and preparation method and application thereof
JP2019021427A (en) Carbon slurry and active material slurry arranged by use thereof
JP6621586B2 (en) Method for producing conductive carbon, method for producing electrode material containing conductive carbon, and method for producing electrode using this electrode material
Chang et al. Effects of chemical dispersant and wet mechanical milling methods on conductive carbon dispersion and rate capabilities of LiFePO4 batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090901