JP2006170140A - Displacement control valve for variable displacement type compressor - Google Patents

Displacement control valve for variable displacement type compressor Download PDF

Info

Publication number
JP2006170140A
JP2006170140A JP2004366558A JP2004366558A JP2006170140A JP 2006170140 A JP2006170140 A JP 2006170140A JP 2004366558 A JP2004366558 A JP 2004366558A JP 2004366558 A JP2004366558 A JP 2004366558A JP 2006170140 A JP2006170140 A JP 2006170140A
Authority
JP
Japan
Prior art keywords
pressure
valve hole
valve
sectional area
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004366558A
Other languages
Japanese (ja)
Inventor
Satoshi Umemura
聡 梅村
Tatsuya Hirose
達也 廣瀬
Tomoji Hashimoto
友次 橋本
Kazutaka Oda
和孝 小田
Shiyousuu Tanigami
将崇 谷上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2004366558A priority Critical patent/JP2006170140A/en
Priority to US11/293,019 priority patent/US20060165534A1/en
Priority to DE102005060307A priority patent/DE102005060307A1/en
Publication of JP2006170140A publication Critical patent/JP2006170140A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1822Valve-controlled fluid connection
    • F04B2027/1827Valve-controlled fluid connection between crankcase and discharge chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/185Discharge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1854External parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/05Pressure after the pump outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2205/00Fluid parameters
    • F04B2205/08Pressure difference over a throttle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a displacement control valve contributing improvement of controllability of displacement in a variable displacement type compressor. <P>SOLUTION: A valve element 44 is formed on a transmission rod 38 driven by a solenoid 34 as one unit. The valve element 44 consists of a cylinder part 441 and a tapered part 442. The tapered part 442 has a shape of which diameter is reduced as it goes from a chamber 42 side toward a valve hole 41 side. The maximum diameter part 443 of the tapered part 442 exists on a boundary of the taper parted 442 and the cylinder part 441, and the minimum diameter part 444 of the tapered part 442 exists on a boundary of the tapered part 442 and a cylinder shape small diameter part 381 of a transmission rod 38. The tapered part 442 as a section area change part includes the minimum diameter part 444 as the minimum section area part and the maximum diameter part 443 as the maximum section area part, and has a shape of which section area increases as it goes from the minimum diameter part 444 toward the maximum diameter part 443. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、吐出圧領域の冷媒を制御圧室に供給すると共に、前記制御圧室の冷媒を吸入圧領域に排出して前記制御圧室内の調圧を行い、前記制御圧室内の調圧によって吐出容量を制御する可変容量型圧縮機における容量制御弁に関する。   The present invention supplies the refrigerant in the discharge pressure region to the control pressure chamber, discharges the refrigerant in the control pressure chamber to the suction pressure region, regulates the pressure in the control pressure chamber, and adjusts the pressure in the control pressure chamber. The present invention relates to a capacity control valve in a variable capacity compressor that controls a discharge capacity.

傾角可変に斜板を収容する制御圧室を備えた可変容量型圧縮機においては、制御圧室の圧力が高くなると斜板の傾角が小さくなり、制御圧室の圧力が低くなると斜板の傾角が大きくなる。斜板の傾角が小さくなると、ピストンのストロークが小さくなって吐出容量が小さくなり、斜板の傾角が大きくなると、ピストンのストロークが大きくなって吐出容量が大きくなる。   In a variable capacity compressor having a control pressure chamber that accommodates a swash plate with a variable tilt angle, the tilt angle of the swash plate decreases as the control pressure chamber pressure increases, and the swash plate tilt angle decreases as the control pressure chamber pressure decreases. Becomes larger. When the inclination angle of the swash plate decreases, the stroke of the piston decreases and the discharge capacity decreases. When the inclination angle of the swash plate increases, the stroke of the piston increases and the discharge capacity increases.

特許文献1には、吐出圧領域からクランク室(制御圧室)へ冷媒を供給する供給通路を開閉するための弁体を備えた容量制御弁が開示されている。弁体は、テーパ部を有しており、テーパ部が弁座に接すると弁孔が閉じられる。弁体が弁孔を開く方向へ変位されると、吐出圧領域からクランク室へ流入する冷媒量が増え、クランク室内の圧力が上昇して吐出容量が減る。逆に、弁体が弁孔を閉じる方向へ変位されると、吐出圧領域からクランク室へ流入する冷媒量が減り、クランク室内の圧力が下がって吐出容量が増える。
特開2001−349278号公報
Patent Document 1 discloses a capacity control valve including a valve body for opening and closing a supply passage for supplying a refrigerant from a discharge pressure region to a crank chamber (control pressure chamber). The valve body has a tapered portion, and when the tapered portion contacts the valve seat, the valve hole is closed. When the valve body is displaced in the direction of opening the valve hole, the amount of refrigerant flowing from the discharge pressure region into the crank chamber increases, the pressure in the crank chamber increases, and the discharge capacity decreases. Conversely, when the valve body is displaced in the direction of closing the valve hole, the amount of refrigerant flowing into the crank chamber from the discharge pressure region decreases, the pressure in the crank chamber decreases, and the discharge capacity increases.
JP 2001-349278 A

弁体のテーパ部は、最小径の側から弁孔に入り込み、テーパ部の最小径の部分と最大径の部分との間の中間部分が弁孔の開口縁である弁座に接する。つまり、テーパ部の最大径は、弁孔の径よりも大きくなっており、弁孔の径よりも大きい径のテーパ部の部分は、弁孔に入り込み不能である。弁孔が開いているときには、吐出圧領域の冷媒は、テーパ部の最小径の部分側から最大径の部分側へ流れ、テーパ部には吐出圧に近い圧力が掛かる。テーパ部に掛かる圧力は、弁開度を増大する方向へ弁体を付勢する。又、クランク室内の圧力(制御圧)は、弁体に波及し、テーパ部に掛かる圧力とクランク室から弁体に波及する圧力とが弁体を介して対抗する。   The tapered portion of the valve body enters the valve hole from the smallest diameter side, and an intermediate portion between the smallest diameter portion and the largest diameter portion of the tapered portion is in contact with the valve seat which is the opening edge of the valve hole. That is, the maximum diameter of the tapered portion is larger than the diameter of the valve hole, and the portion of the tapered portion having a diameter larger than the diameter of the valve hole cannot enter the valve hole. When the valve hole is opened, the refrigerant in the discharge pressure region flows from the smallest diameter portion side of the tapered portion to the largest diameter portion side, and a pressure close to the discharge pressure is applied to the tapered portion. The pressure applied to the tapered portion urges the valve body in the direction of increasing the valve opening. Further, the pressure (control pressure) in the crank chamber is applied to the valve body, and the pressure applied to the tapered portion and the pressure applied to the valve body from the crank chamber are opposed to each other through the valve body.

弁体の移動方向に見た場合に弁孔の周壁面から弁孔の径方向にはみ出すテーパ部の部分(弁孔の径よりも大きい部分)の付近の圧力状態は、弁孔が開いているときには弁開度の大きさに応じて変わる。つまり、弁体の移動方向に見た場合に弁孔の周壁面から弁孔の径方向にはみ出すテーパ部の部分に掛かる圧力は、弁開度の大きさに応じて変わる。弁開度に応じた圧力の変動は、テーパ部に掛かる圧力とクランク室から弁体に波及する圧力との差を変動させるが、このような差圧の変動は、容量制御性を悪くする。   When viewed in the moving direction of the valve body, the pressure hole is open in the vicinity of the taper portion (the portion larger than the diameter of the valve hole) that protrudes from the peripheral wall surface of the valve hole in the radial direction of the valve hole. Sometimes it depends on the size of the valve opening. That is, when viewed in the moving direction of the valve body, the pressure applied to the tapered portion protruding from the peripheral wall surface of the valve hole in the radial direction of the valve hole varies depending on the magnitude of the valve opening. The fluctuation of the pressure according to the valve opening degree fluctuates the difference between the pressure applied to the tapered portion and the pressure spreading from the crank chamber to the valve body. Such fluctuation of the differential pressure deteriorates the capacity controllability.

本発明は、可変容量型圧縮機における容量制御性の向上に寄与する容量制御弁を提供することを目的とする。   An object of the present invention is to provide a capacity control valve that contributes to an improvement in capacity controllability in a variable capacity compressor.

本発明は、供給通路を介して吐出圧領域の冷媒を制御圧室に供給すると共に、排出通路を介して前記制御圧室の冷媒を吸入圧領域に排出して前記制御圧室内の調圧を行い、前記制御圧室内の調圧によって吐出容量を制御する可変容量型圧縮機における容量制御機構を対象とし、請求項1の発明は、前記供給通路又は前記排出通路の一部となる弁孔と、前記弁孔に出入りする横断面積変化部を有する弁体とを備え、前記横断面積変化部は、最小横断面積部と最大横断面積部とを有し、かつ前記最小横断面積部側から前記最大横断面積部側へ向かうにつれて横断面積が増大してゆく形状であり、前記横断面積変化部は、前記最小横断面積部側から前記弁孔に入り込み、前記最大横断面積部は、前記弁孔に入り込み可能であり、前記最大横断面積部が前記弁孔に入り込んだ状態では前記弁孔が閉じられることを特徴とする。   The present invention supplies the refrigerant in the discharge pressure region to the control pressure chamber via the supply passage, and discharges the refrigerant in the control pressure chamber to the suction pressure region via the discharge passage to regulate the pressure in the control pressure chamber. The invention of claim 1 is directed to a capacity control mechanism in a variable capacity compressor that controls the discharge capacity by regulating the pressure in the control pressure chamber, and the invention of claim 1 comprises a valve hole that is a part of the supply passage or the discharge passage. And a valve body having a cross-sectional area changing portion that enters and exits the valve hole, and the cross-sectional area changing portion has a minimum cross-sectional area portion and a maximum cross-sectional area portion, and the maximum cross-sectional area portion from the maximum cross-sectional area portion side. The shape is such that the cross-sectional area increases toward the cross-sectional area part side, the cross-sectional area changing part enters the valve hole from the minimum cross-sectional area part side, and the maximum cross-sectional area part enters the valve hole. The maximum cross-sectional area portion is possible In a state that has entered into the valve hole, wherein the valve hole is closed.

横断面積変化部の最大横断面積部が弁孔から抜け出た状態では、弁孔が開き、横断面積変化部は、弁体の移動方向に見た場合に弁孔の径方向へ弁孔からはみ出さない。このようなはみ出しのない構成は、テーパ部に掛かる圧力と、反対側から弁体に掛かる圧力との差圧が弁開度の違いによって大きく変動することを抑制する。   When the maximum cross-sectional area portion of the cross-sectional area changing portion is pulled out from the valve hole, the valve hole is opened, and the cross-sectional area changing portion protrudes from the valve hole in the radial direction of the valve hole when viewed in the moving direction of the valve body. Absent. Such a configuration without protrusion prevents the pressure difference between the pressure applied to the tapered portion and the pressure applied to the valve body from the opposite side from greatly fluctuating due to the difference in valve opening.

好適な例では、前記横断面積変化部の周面は、円錐面である。
円錐面は、横断面積変化部の周面として好適である。
好適な例では、前記最大横断面積部が前記弁孔に入り込んだ状態において冷媒が前記弁孔を流通可能な微小クリアランスが前記最大横断面積部と前記弁孔の周壁面との間に存在する。
In a preferred example, the peripheral surface of the cross-sectional area changing portion is a conical surface.
The conical surface is suitable as the peripheral surface of the cross-sectional area changing portion.
In a preferred example, there is a small clearance between the maximum cross-sectional area part and the peripheral wall surface of the valve hole in which the refrigerant can flow through the valve hole in a state where the maximum cross-sectional area part enters the valve hole.

このような微小クリアランスの存在は、最大横断面積部が弁孔から抜け出たときの前記差圧(テーパ部に掛かる圧力と、反対側から弁体に掛かる圧力との差圧)の変動を少なくする。   The existence of such a small clearance reduces fluctuations in the differential pressure (the differential pressure between the pressure applied to the taper portion and the pressure applied to the valve body from the opposite side) when the maximum cross-sectional area portion has escaped from the valve hole. .

好適な例では、前記弁孔は、前記供給通路の一部であり、前記容量制御弁は、前記可変容量型圧縮機の最小容量時には、前記弁孔が常に開いている常開型である。
圧縮機の運転が行われていないとき、もしくは圧縮機が最小容量状態で運転されているときには、横断面積変化部の最大横断面積部が弁孔から抜け出ており、供給通路の一部である弁孔は開いている。
In a preferred example, the valve hole is a part of the supply passage, and the capacity control valve is a normally open type in which the valve hole is always open at the minimum capacity of the variable capacity compressor.
When the compressor is not operating, or when the compressor is operating in the minimum capacity state, the maximum cross-sectional area portion of the cross-sectional area changing portion has escaped from the valve hole and is a part of the supply passage. The hole is open.

好適な例では、前記弁孔は、前記排出通路の一部であり、前記容量制御弁は、前記可変容量型圧縮機の最小容量時には、前記弁孔が常に閉じている常閉型である。
圧縮機の運転が行われていないとき、もしくは圧縮機が最小容量状態で運転されているときには、横断面積変化部の最大横断面積部が弁孔に入り込んでおり、排出通路の一部である弁孔は閉じている。
In a preferred example, the valve hole is a part of the discharge passage, and the capacity control valve is a normally closed type in which the valve hole is always closed when the variable capacity compressor has a minimum capacity.
When the compressor is not operating or when the compressor is operating at the minimum capacity, the maximum cross-sectional area portion of the cross-sectional area changing portion enters the valve hole and is a part of the discharge passage. The hole is closed.

本発明は、可変容量型圧縮機における容量制御性の向上に寄与する容量制御弁を提供できるという優れた効果を奏する。   The present invention has an excellent effect of providing a capacity control valve that contributes to an improvement in capacity controllability in a variable capacity compressor.

以下、本発明を具体化した第1の実施形態を図1〜図4に基づいて説明する。
図1(a)に示すように、シリンダブロック11の前端にはフロントハウジング12が連結されている。シリンダブロック11の後端にはリヤハウジング13がバルブプレート14、弁形成プレート15,16及びリテーナ形成プレート17を介して連結されている。シリンダブロック11、フロントハウジング12及びリヤハウジング13は、可変容量型圧縮機10の全体ハウジングを構成する。
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1A, a front housing 12 is connected to the front end of the cylinder block 11. A rear housing 13 is connected to the rear end of the cylinder block 11 via a valve plate 14, valve forming plates 15 and 16, and a retainer forming plate 17. The cylinder block 11, the front housing 12, and the rear housing 13 constitute an entire housing of the variable displacement compressor 10.

制御圧室121を形成するフロントハウジング12とシリンダブロック11とには回転軸18がラジアルベアリング19,20を介して回転可能に支持されている。制御圧室121から外部へ突出する回転軸18は、電磁クラッチ(図示略)を介して外部駆動源である車両エンジンEから駆動力を得る。   A rotary shaft 18 is rotatably supported via radial bearings 19 and 20 on the front housing 12 and the cylinder block 11 forming the control pressure chamber 121. The rotating shaft 18 that protrudes outside from the control pressure chamber 121 obtains driving force from the vehicle engine E that is an external driving source via an electromagnetic clutch (not shown).

回転軸18には回転支持体21が止着されていると共に、斜板22が回転軸18の軸方向へスライド可能かつ傾動可能に支持されている。
図1(b)に示すように、回転支持体21には一対のアーム212,213が斜板22に向けて突設されており、斜板22には一対の突起221,222が回転支持体21に向けて突設されている。突起221,222は、一対のアーム212,213間に形成された凹部214に挿入されている。突起221,222は、一対のアーム212,213に挟まれた状態で凹部214内を移動可能である。凹部214の底部は、カム面211に形成されており、突起221,222の先端部がカム面211を摺接可能である。斜板22は、一対のアーム212,213に挟まれた突起221,222と、カム面211との連係により回転軸18の軸方向へ傾動可能かつ回転軸18と一体的に回転可能である。斜板22の傾動は、カム面211と突起221,222とのスライドガイド関係、及び回転軸18のスライド支持作用により案内される。一対のアーム212,213及び突起221,222は、斜板22と回転支持体21との間に設けられ、回転支持体21に対して斜板22を傾動可能、かつ回転軸18から斜板22へトルク伝達可能に連結するヒンジ機構23を構成する。
A rotary support 21 is fixed to the rotary shaft 18, and a swash plate 22 is supported so as to be slidable and tiltable in the axial direction of the rotary shaft 18.
As shown in FIG. 1B, a pair of arms 212 and 213 project from the rotary support 21 toward the swash plate 22, and a pair of protrusions 221 and 222 are provided on the rotary support 21. It protrudes toward 21. The protrusions 221 and 222 are inserted into a recess 214 formed between the pair of arms 212 and 213. The protrusions 221 and 222 can move in the recess 214 while being sandwiched between the pair of arms 212 and 213. The bottom of the recess 214 is formed on the cam surface 211, and the tip portions of the protrusions 221 and 222 can slidably contact the cam surface 211. The swash plate 22 can be tilted in the axial direction of the rotary shaft 18 and can rotate integrally with the rotary shaft 18 by linking the projections 221 and 222 sandwiched between the pair of arms 212 and 213 and the cam surface 211. Tilt of the swash plate 22 is guided by the slide guide relationship between the cam surface 211 and the protrusions 221 and 222 and the slide support action of the rotating shaft 18. The pair of arms 212, 213 and the protrusions 221, 222 are provided between the swash plate 22 and the rotary support 21, can tilt the swash plate 22 with respect to the rotary support 21, and swash plate 22 from the rotary shaft 18. The hinge mechanism 23 is connected so as to be able to transmit torque.

斜板22の径中心部が回転支持体21側へ移動すると、斜板22の傾角が増大する。斜板22の最大傾角は回転支持体21と斜板22との当接によって規制される。図1(a)に実線で示す斜板22は、最大傾角状態にあり、鎖線で示す斜板22は、最小傾角状態にある。   If the diameter center part of the swash plate 22 moves to the rotation support body 21 side, the inclination angle of the swash plate 22 increases. The maximum inclination angle of the swash plate 22 is regulated by the contact between the rotary support 21 and the swash plate 22. The swash plate 22 shown by the solid line in FIG. 1A is in the maximum tilt state, and the swash plate 22 shown by the chain line is in the minimum tilt state.

シリンダブロック11に貫設された複数のシリンダボア111内にはピストン24が収容されている。斜板22の回転運動は、シュー25を介してピストン24の前後往復運動に変換され、ピストン24がシリンダボア111内を往復動する。   Pistons 24 are accommodated in a plurality of cylinder bores 111 penetrating the cylinder block 11. The rotational movement of the swash plate 22 is converted into the back-and-forth reciprocating movement of the piston 24 via the shoe 25, and the piston 24 reciprocates in the cylinder bore 111.

リヤハウジング13内には吸入室131及び吐出室132が区画形成されている。バルブプレート14、弁形成プレート16及びリテーナ形成プレート17には吸入ポート141が形成されている。バルブプレート14及び弁形成プレート15には吐出ポート142が形成されている。弁形成プレート15には吸入弁151が形成されており、弁形成プレート16には吐出弁161が形成されている。吸入圧領域である吸入室131内の冷媒は、ピストン24の復動動作〔図1(a)において右側から左側への移動〕により吸入ポート141から吸入弁151を押し退けてシリンダボア111内へ流入する。シリンダボア111内へ流入したガス状の冷媒は、ピストン24の往動動作〔図1(a)において左側から右側への移動〕により吐出ポート142から吐出弁161を押し退けて吐出圧領域である吐出室132へ吐出される。吐出弁161は、リテーナ形成プレート17上のリテーナ171に当接して開度規制される。   A suction chamber 131 and a discharge chamber 132 are defined in the rear housing 13. A suction port 141 is formed in the valve plate 14, the valve forming plate 16 and the retainer forming plate 17. A discharge port 142 is formed in the valve plate 14 and the valve forming plate 15. A suction valve 151 is formed on the valve forming plate 15, and a discharge valve 161 is formed on the valve forming plate 16. The refrigerant in the suction chamber 131 which is the suction pressure region flows into the cylinder bore 111 by pushing the suction valve 151 away from the suction port 141 by the backward movement of the piston 24 (movement from the right side to the left side in FIG. 1A). . The gaseous refrigerant flowing into the cylinder bore 111 pushes the discharge valve 161 away from the discharge port 142 by the forward movement of the piston 24 (movement from the left side to the right side in FIG. 1A), and is a discharge chamber that is a discharge pressure region. It is discharged to 132. The discharge valve 161 abuts on the retainer 171 on the retainer forming plate 17 and the opening degree is regulated.

吸入室131へ冷媒を導入する吸入通路26と、吐出室132から冷媒を排出する吐出通路27とは、外部冷媒回路28で接続されている。外部冷媒回路28上には、冷媒から熱を奪うための熱交換器29、膨張弁30、及び周囲の熱を冷媒に移すための熱交換器31が介在されている。膨張弁30は、熱交換器31の出口側のガス温度の変動に応じて冷媒流量を制御する。吐出通路27より下流、かつ熱交換器29よりも上流の外部冷媒回路(以下、外部冷媒回路28A,28Bと記す)の途中には絞り281が設けられている。外部冷媒回路28Aは、絞り281の上流にあり、外部冷媒回路28Bは、絞り281の下流にある。   The suction passage 26 for introducing the refrigerant into the suction chamber 131 and the discharge passage 27 for discharging the refrigerant from the discharge chamber 132 are connected by an external refrigerant circuit 28. On the external refrigerant circuit 28, a heat exchanger 29 for removing heat from the refrigerant, an expansion valve 30, and a heat exchanger 31 for transferring ambient heat to the refrigerant are interposed. The expansion valve 30 controls the flow rate of the refrigerant according to the change in the gas temperature on the outlet side of the heat exchanger 31. A throttle 281 is provided in the middle of an external refrigerant circuit (hereinafter referred to as external refrigerant circuits 28A and 28B) downstream of the discharge passage 27 and upstream of the heat exchanger 29. The external refrigerant circuit 28A is upstream of the throttle 281 and the external refrigerant circuit 28B is downstream of the throttle 281.

リヤハウジング13には電磁式の容量制御弁32が組み付けられている。
図2(a)に示すように、容量制御弁32のソレノイド34を構成する固定鉄心35は、コイル36への電流供給による励磁に基づいて可動鉄心37を引き付ける。ソレノイド34は、制御コンピュータC〔図1(a)に図示〕の電流供給制御(本実施形態ではデューティ比制御)を受ける。可動鉄心37には伝達ロッド38が止着されている。
An electromagnetic capacity control valve 32 is assembled in the rear housing 13.
As shown in FIG. 2A, the fixed iron core 35 constituting the solenoid 34 of the capacity control valve 32 attracts the movable iron core 37 based on excitation by supplying current to the coil 36. The solenoid 34 receives current supply control (duty ratio control in the present embodiment) of the control computer C (shown in FIG. 1A). A transmission rod 38 is fixed to the movable iron core 37.

容量制御弁32を構成するバルブハウジング39には弁孔形成壁40が設けられており、弁孔形成壁40には弁孔41が形成されている。弁孔41の周壁面411は、径変化のない円周面である。弁孔形成壁40と固定鉄心35との間には室42が形成されている。弁孔41は、室42に接続されており、室42は、通路43を介して制御圧室121に連通している。   The valve housing 39 constituting the capacity control valve 32 is provided with a valve hole forming wall 40, and the valve hole forming wall 40 is formed with a valve hole 41. The peripheral wall surface 411 of the valve hole 41 is a circumferential surface with no diameter change. A chamber 42 is formed between the valve hole forming wall 40 and the fixed iron core 35. The valve hole 41 is connected to the chamber 42, and the chamber 42 communicates with the control pressure chamber 121 through the passage 43.

室42は、通路351を介して可動鉄心37と固定鉄心35との間の空隙59に連通している。又、室42は、通路351及び通路371を介して可動鉄心37の背面の背圧空間60に連通している。つまり、制御圧室121内の圧力(制御圧)が室42及び通路351,371を介して背圧空間60に波及している。   The chamber 42 communicates with a gap 59 between the movable iron core 37 and the fixed iron core 35 through a passage 351. Further, the chamber 42 communicates with the back pressure space 60 on the back surface of the movable iron core 37 via the passage 351 and the passage 371. That is, the pressure (control pressure) in the control pressure chamber 121 is spread to the back pressure space 60 via the chamber 42 and the passages 351 and 371.

図2(b)に示すように、伝達ロッド38には弁体44が一体形成されている。弁体44は、円柱部441とテーパ部442とからなる。テーパ部442は、室42側から弁孔41側へ向かうにつれて縮径してゆく形状である。テーパ部442の最大径部443は、テーパ部442と円柱部441との境であり、テーパ部442の最小径部444は、テーパ部442と伝達ロッド38の円柱形状の小径部381との境である。横断面積変化部としてのテーパ部442は、最小横断面積部としての最小径部444と最大横断面積部としての最大径部443とを有し、かつ最小径部444側から最大径部443側へ向かうにつれて横断面積が増大してゆく形状である。   As shown in FIG. 2B, a valve body 44 is formed integrally with the transmission rod 38. As shown in FIG. The valve body 44 includes a cylindrical portion 441 and a tapered portion 442. The tapered portion 442 has a shape that decreases in diameter from the chamber 42 side toward the valve hole 41 side. The maximum diameter portion 443 of the taper portion 442 is a boundary between the taper portion 442 and the cylindrical portion 441, and the minimum diameter portion 444 of the taper portion 442 is a boundary between the taper portion 442 and the cylindrical small diameter portion 381 of the transmission rod 38. It is. The tapered portion 442 as the cross-sectional area changing portion has a minimum diameter portion 444 as a minimum cross-sectional area portion and a maximum diameter portion 443 as a maximum cross-sectional area portion, and from the minimum diameter portion 444 side to the maximum diameter portion 443 side. The cross-sectional area increases as it goes.

弁体44の円柱部441は、弁孔41内でスライド可能であり、円柱部441(最大径部443)が弁孔41内に入り込んだ状態では弁孔41が閉鎖される。円柱部441が弁孔41内に入り込んでいる状態においても、弁孔41の周壁面411と円柱部441との間には微小クリアランスが存在する。円柱部441が弁孔41内でスライド可能であるのは、周壁面411と円柱部441との間の微小クリアランスの存在による。この微小クリアランスの存在は、円柱部441(最大径部443)が弁孔41内に入り込んでいるときにおける弁孔41内での冷媒の僅かな流通を許容する。つまり、円柱部441(最大径部443)が弁孔41内に入り込んでいる状態では、弁孔41は、完全に閉じられているのではなく、僅かな流通を許容するルーズな閉状態にある。   The cylindrical portion 441 of the valve body 44 can slide within the valve hole 41, and the valve hole 41 is closed when the cylindrical portion 441 (maximum diameter portion 443) enters the valve hole 41. Even in a state where the cylindrical portion 441 enters the valve hole 41, a minute clearance exists between the peripheral wall surface 411 of the valve hole 41 and the cylindrical portion 441. The cylindrical portion 441 is slidable within the valve hole 41 due to the presence of a minute clearance between the peripheral wall surface 411 and the cylindrical portion 441. The presence of this minute clearance allows a slight circulation of the refrigerant in the valve hole 41 when the cylindrical portion 441 (maximum diameter portion 443) enters the valve hole 41. That is, in a state where the cylindrical portion 441 (maximum diameter portion 443) enters the valve hole 41, the valve hole 41 is not completely closed but is in a loosely closed state that allows a slight flow. .

図2(a)に示すように、室42内の伝達ロッド38の部位にはばね受け52が設けられており、ばね受け52と弁孔形成壁40との間には付勢ばね53が介在されている。伝達ロッド38は、付勢ばね53のばね力によって可動鉄心37を固定鉄心35から遠ざける方向へ付勢されている。   As shown in FIG. 2A, a spring receiver 52 is provided at a portion of the transmission rod 38 in the chamber 42, and a biasing spring 53 is interposed between the spring receiver 52 and the valve hole forming wall 40. Has been. The transmission rod 38 is biased in a direction to move the movable iron core 37 away from the fixed iron core 35 by the spring force of the biasing spring 53.

容量制御弁32内には第1感圧室45と第2感圧室46とが区画されている。第1感圧室45と第2感圧室46とを区画するベローズ47の不動端は、バルブハウジング39を構成する端壁48に連結されており、ベローズ47の可動端には伝達ロッド38の小径部381が接合されている。伝達ロッド38は、ベローズ47に連動する。   A first pressure sensing chamber 45 and a second pressure sensing chamber 46 are partitioned in the capacity control valve 32. The stationary end of the bellows 47 that partitions the first pressure sensing chamber 45 and the second pressure sensing chamber 46 is connected to an end wall 48 that constitutes the valve housing 39, and the movable end of the bellows 47 is connected to the transmission rod 38. The small diameter portion 381 is joined. The transmission rod 38 is interlocked with the bellows 47.

第1感圧室45は、圧力導入通路49を介して絞り281よりも上流の外部冷媒回路28Aに連通されており、第2感圧室46は、圧力導入通路50を介して絞り281よりも下流の外部冷媒回路28Bに連通されている。つまり、第1感圧室45内は、絞り281よりも上流の外部冷媒回路28Aの圧力となる領域であり、第2感圧室46内は、絞り281よりも下流、かつ熱交換器29よりも上流の外部冷媒回路28Bの圧力となる領域である。第1感圧室45内の圧力と、第2感圧室46内の圧力とは、ベローズ47を介して対抗している。   The first pressure sensing chamber 45 is communicated with the external refrigerant circuit 28A upstream of the throttle 281 via the pressure introduction passage 49, and the second pressure sensing chamber 46 is located more than the throttle 281 via the pressure introduction passage 50. It communicates with the downstream external refrigerant circuit 28B. That is, the inside of the first pressure sensing chamber 45 is a region that becomes the pressure of the external refrigerant circuit 28A upstream from the throttle 281, and the inside of the second pressure sensing chamber 46 is downstream from the throttle 281 and from the heat exchanger 29. Is also a region that becomes the pressure of the upstream external refrigerant circuit 28B. The pressure in the first pressure sensing chamber 45 and the pressure in the second pressure sensing chamber 46 are opposed via a bellows 47.

外部冷媒回路28A,28Bに冷媒流が生じていれば、絞り281よりも上流の外部冷媒回路28Aの圧力は、絞り281より下流、かつ熱交換器29よりも上流の外部冷媒回路28Bの圧力よりも大きくなる。外部冷媒回路28A,28B(吐出圧領域)における冷媒流量が増大すると、絞り281の前後の圧力の差が増大し、外部冷媒回路28A,28B(吐出圧領域)における冷媒流量が減少すると、絞り281の前後の圧力の差が減少する。絞り281の前後の圧力差が増大すると、感圧室45,46間の差圧が増大し、絞り281の前後の圧力差が減少すると、感圧室45,46間の差圧が減少する。感圧室45,46間の差圧は、弁孔41側から室42側に向けて伝達ロッド38を付勢する力となる。   If refrigerant flows are generated in the external refrigerant circuits 28A and 28B, the pressure of the external refrigerant circuit 28A upstream of the throttle 281 is lower than the pressure of the external refrigerant circuit 28B downstream of the throttle 281 and upstream of the heat exchanger 29. Also grows. When the refrigerant flow rate in the external refrigerant circuits 28A and 28B (discharge pressure region) increases, the difference in pressure before and after the throttle 281 increases, and when the refrigerant flow rate in the external refrigerant circuits 28A and 28B (discharge pressure region) decreases, the throttle 281. The difference in pressure before and after is reduced. When the pressure difference before and after the restriction 281 increases, the pressure difference between the pressure sensitive chambers 45 and 46 increases, and when the pressure difference before and after the restriction 281 decreases, the pressure difference between the pressure sensitive chambers 45 and 46 decreases. The differential pressure between the pressure sensitive chambers 45 and 46 becomes a force for urging the transmission rod 38 from the valve hole 41 side toward the chamber 42 side.

感圧室45,46及びベローズ47は、絞り281よりも上流の外部冷媒回路28Aの圧力と、絞り281より下流、かつ熱交換器29よりも上流の外部冷媒回路28Bの圧力との差圧に感応する感圧手段51を構成する。弁孔41における開閉具合は、ソレノイド34で生じる電磁力、背圧空間60内の圧力(制御圧)が弁孔41を閉じる方向へ伝達ロッド38を付勢する付勢力、付勢ばね53のばね力、感圧手段51の付勢力のバランスによって決まる。   The pressure sensitive chambers 45 and 46 and the bellows 47 have a differential pressure between the pressure of the external refrigerant circuit 28A upstream of the throttle 281 and the pressure of the external refrigerant circuit 28B downstream of the throttle 281 and upstream of the heat exchanger 29. A sensitive pressure sensing means 51 is configured. The opening and closing of the valve hole 41 includes the electromagnetic force generated by the solenoid 34, the biasing force that biases the transmission rod 38 in the direction in which the pressure (control pressure) in the back pressure space 60 closes the valve hole 41, and the spring of the biasing spring 53. It depends on the balance between the force and the urging force of the pressure sensing means 51.

感圧手段51は、吐出圧領域(外部冷媒回路28A,28B)内の第1地点(外部冷媒回路28A)の圧力と第2地点(外部冷媒回路28B)の圧力とを拾い、前記第1地点の圧力と前記第2地点の圧力との圧力差に応じて伝達ロッド38の位置、つまり弁体44の位置を規制する。   The pressure sensing means 51 picks up the pressure at the first point (external refrigerant circuit 28A) and the pressure at the second point (external refrigerant circuit 28B) in the discharge pressure region (external refrigerant circuit 28A, 28B), and the first point. The position of the transmission rod 38, that is, the position of the valve body 44 is regulated according to the pressure difference between the pressure at the second point and the pressure at the second point.

図1(a)に示すように、容量制御弁32のソレノイド34に対して電流供給制御(デューティ比制御)を行なう制御コンピュータCは、空調装置作動スイッチ54のONによってソレノイド34に電流を供給し、空調装置作動スイッチ54のOFFによって電流供給を停止する。制御コンピュータCには室温設定器55及び室温検出器56が信号接続されている。空調装置作動スイッチ54がON状態にある場合、制御コンピュータCは、室温設定器55によって設定された目標室温と、室温検出器56によって検出された検出室温との温度差に基づいて、ソレノイド34に対する電流供給を制御する。デューティ比を大きくすると、伝達ロッド38(弁体44)は、室42側から弁孔41側へ変位する。   As shown in FIG. 1A, the control computer C that performs current supply control (duty ratio control) on the solenoid 34 of the capacity control valve 32 supplies current to the solenoid 34 when the air conditioner operation switch 54 is turned on. The current supply is stopped by turning off the air conditioner operation switch 54. A room temperature setter 55 and a room temperature detector 56 are signal-connected to the control computer C. When the air conditioner operation switch 54 is in the ON state, the control computer C controls the solenoid 34 based on the temperature difference between the target room temperature set by the room temperature setter 55 and the detected room temperature detected by the room temperature detector 56. Control the current supply. When the duty ratio is increased, the transmission rod 38 (valve element 44) is displaced from the chamber 42 side to the valve hole 41 side.

図3及び図4に示すように、弁体44の最大径部443が弁孔41から抜け出て弁孔41が開状態にあるときには、外部冷媒回路28B内の冷媒は、圧力導入通路50、第2感圧室46、弁孔41、室42及び通路43という供給通路57を経由して制御圧室121へ送られる。図2(b)に示すように、弁体44の最大径部443が弁孔41に入り込んで弁孔41が閉状態にあるときには、外部冷媒回路28B内の冷媒が供給通路57を経由して制御圧室121へ送られることが阻止される。   As shown in FIGS. 3 and 4, when the maximum diameter portion 443 of the valve body 44 is pulled out from the valve hole 41 and the valve hole 41 is in the open state, the refrigerant in the external refrigerant circuit 28B flows into the pressure introduction passage 50, the first 2 is sent to the control pressure chamber 121 through a supply passage 57 called a pressure sensing chamber 46, a valve hole 41, a chamber 42 and a passage 43. As shown in FIG. 2B, when the maximum diameter portion 443 of the valve body 44 enters the valve hole 41 and the valve hole 41 is in the closed state, the refrigerant in the external refrigerant circuit 28B passes through the supply passage 57. It is blocked from being sent to the control pressure chamber 121.

図1(a)に示すように、制御圧室121と吸入室131とは、排出通路58を介して連通している。制御圧室121内の冷媒は、排出通路58を経由して吸入室131へ流出可能である。制御圧室121内の圧力は、外部冷媒回路28Bから供給通路57を経由した制御圧室121への冷媒供給と、制御圧室121から排出通路58を経由した吸入室131への冷媒排出とによって調圧される。   As shown in FIG. 1A, the control pressure chamber 121 and the suction chamber 131 communicate with each other via the discharge passage 58. The refrigerant in the control pressure chamber 121 can flow out to the suction chamber 131 via the discharge passage 58. The pressure in the control pressure chamber 121 is determined by the refrigerant supply from the external refrigerant circuit 28B to the control pressure chamber 121 via the supply passage 57 and the refrigerant discharge from the control pressure chamber 121 to the suction chamber 131 via the discharge passage 58. It is regulated.

図2(a)ではソレノイド34に対して最大の電流供給が行われており、弁孔41は閉状態にある。この状態では、外部冷媒回路28Bから供給通路57を経由して制御圧室121へ供給される冷媒量が実質的に零であり、制御圧室121内の冷媒は、排出通路58を経由して吸入室131へ流出する。そのため、制御圧室121内の圧力が低く、斜板22の傾角は、最大傾角となる。この状態では、ピストン24のストロークが最大となり、吐出容量は最大となる。   In FIG. 2A, the maximum current is supplied to the solenoid 34, and the valve hole 41 is in a closed state. In this state, the amount of refrigerant supplied from the external refrigerant circuit 28B to the control pressure chamber 121 via the supply passage 57 is substantially zero, and the refrigerant in the control pressure chamber 121 passes through the discharge passage 58. It flows out to the suction chamber 131. Therefore, the pressure in the control pressure chamber 121 is low, and the inclination angle of the swash plate 22 is the maximum inclination angle. In this state, the stroke of the piston 24 is maximized and the discharge capacity is maximized.

図3ではソレノイド34に対して最大未満の電流供給が行われており、弁孔41は開状態にある。この状態では、外部冷媒回路28Bから供給通路57を経由して制御圧室121へ冷媒が供給されており、斜板22の傾角は、最大傾角よりも小さい傾角となる。   In FIG. 3, less than the maximum current is supplied to the solenoid 34, and the valve hole 41 is in an open state. In this state, the refrigerant is supplied from the external refrigerant circuit 28B to the control pressure chamber 121 via the supply passage 57, and the inclination angle of the swash plate 22 is smaller than the maximum inclination angle.

図4の状態では、ソレノイド34に対する電流供給が停止されており、弁孔41は全開状態にある。この状態では、外部冷媒回路28Bから供給通路57を経由して制御圧室121へ供給される冷媒が多く、斜板22の傾角は、最小傾角となる。容量制御弁32は、ソレノイド34に対する電流供給が停止されている状態では弁孔41が開いている常開型の容量制御弁である。   In the state of FIG. 4, the current supply to the solenoid 34 is stopped, and the valve hole 41 is fully open. In this state, a large amount of refrigerant is supplied from the external refrigerant circuit 28B to the control pressure chamber 121 via the supply passage 57, and the inclination angle of the swash plate 22 becomes the minimum inclination angle. The capacity control valve 32 is a normally open capacity control valve in which the valve hole 41 is open when the current supply to the solenoid 34 is stopped.

第1の実施形態では以下の効果が得られる。
(1−1)テーパ部442の最大径部443が弁孔41から抜け出た状態では、弁孔41が開き、テーパ部442は、弁体44の移動方向に見た場合に弁孔41の径方向へ弁孔41からはみ出さない。
In the first embodiment, the following effects can be obtained.
(1-1) In a state where the maximum diameter portion 443 of the tapered portion 442 is pulled out from the valve hole 41, the valve hole 41 is opened, and the tapered portion 442 has a diameter of the valve hole 41 when viewed in the moving direction of the valve body 44. It does not protrude from the valve hole 41 in the direction.

仮に、弁体44の移動方向に見た場合に弁孔41の周壁面411から弁孔41の径方向にテーパ部442がはみ出している(つまり、最大径部443の径が弁孔41の径よりも大きい)とする。このはみ出すテーパ部442の部分(弁孔の径よりも大きい部分)の付近の圧力状態は、弁孔41が開いているときには弁開度の大きさに応じて変わるため、弁孔41の径方向にはみ出すテーパ部442の部分に掛かる圧力は、弁開度の大きさに応じて変わる。弁開度に応じたこのような圧力変動は、テーパ部442に掛かる圧力(吐出圧相当)と背圧空間60から弁体44に波及する圧力(制御圧)との差を変動させるが、このような差圧の変動は、弁体44(伝達ロッド38)の挙動を不安定にして容量制御性を悪くする。又、弁孔41が閉状態から開状態へ切り替わったときには、弁孔41内から室42へ流出しようとする冷媒の圧力がテーパ部442のはみ出し部分に急激に掛かるため、伝達ロッド38が余分に移動してしまうおそれがある。つまり、弁孔41内から室42へ流出しようとする冷媒の圧力を受けるテーパ部442における受圧面積が急激に増加するため、弁体44が余分に移動してしまうおそれがある。これも容量制御弁32における容量制御性を悪くする。   If the valve body 44 is viewed in the moving direction, the tapered portion 442 protrudes from the peripheral wall surface 411 of the valve hole 41 in the radial direction of the valve hole 41 (that is, the diameter of the maximum diameter portion 443 is the diameter of the valve hole 41). Larger). Since the pressure state in the vicinity of the protruding taper portion 442 (the portion larger than the diameter of the valve hole) changes depending on the valve opening when the valve hole 41 is open, the radial direction of the valve hole 41 The pressure applied to the protruding taper portion 442 varies depending on the valve opening. Such pressure fluctuation according to the valve opening degree fluctuates the difference between the pressure applied to the tapered portion 442 (equivalent to the discharge pressure) and the pressure (control pressure) spreading from the back pressure space 60 to the valve body 44. Such a variation in the differential pressure makes the behavior of the valve body 44 (transmission rod 38) unstable and makes the capacity controllability worse. Further, when the valve hole 41 is switched from the closed state to the open state, the pressure of the refrigerant that flows out from the inside of the valve hole 41 to the chamber 42 is suddenly applied to the protruding portion of the tapered portion 442. There is a risk of moving. That is, the pressure receiving area in the tapered portion 442 that receives the pressure of the refrigerant that is about to flow out of the valve hole 41 into the chamber 42 increases abruptly, so that the valve body 44 may move excessively. This also deteriorates the capacity controllability in the capacity control valve 32.

弁体44の移動方向に見た場合に弁孔41の径方向へテーパ部442が弁孔41からはみ出さない構成は、テーパ部442に掛かる圧力(吐出圧相当)と、反対側から弁体44に掛かる圧力(制御圧)との差圧が弁開度の違いによって大きく変動することを抑制する。その結果、可変容量型圧縮機10〔図1(a)参照〕における容量制御性が向上する。   The configuration in which the tapered portion 442 does not protrude from the valve hole 41 in the radial direction of the valve hole 41 when viewed in the moving direction of the valve body 44 is the pressure applied to the tapered portion 442 (equivalent to the discharge pressure) and the valve body from the opposite side. It is suppressed that the differential pressure with respect to the pressure (control pressure) applied to 44 greatly fluctuates due to the difference in valve opening. As a result, the capacity controllability in the variable capacity compressor 10 (see FIG. 1A) is improved.

(1−2)供給通路57の一部である弁孔41における通路断面積をきめ細かく変更すれば、きめ細かな容量制御が行える。円錐面の周面を有するテーパ部442は、弁孔41に入り込んだ弁体44の位置に応じて弁孔41における通路断面積をきめ細かに変更する上で好適な構成である。   (1-2) If the passage cross-sectional area in the valve hole 41 which is a part of the supply passage 57 is finely changed, fine capacity control can be performed. The tapered portion 442 having a conical circumferential surface is a suitable configuration for finely changing the passage cross-sectional area in the valve hole 41 in accordance with the position of the valve body 44 that has entered the valve hole 41.

(1−3)円柱部441(最大径部443)が弁孔41内に入り込んでいる状態においても、弁孔41の周壁面411と円柱部441との間には微小クリアランスが存在する。この微小クリアランスの存在により、第2感圧室46内の冷媒が僅かずつ弁孔41を経由して室42へ流通する。そのため、室42内における弁孔41の近傍の圧力は、特許文献1に開示の弁体によって弁孔を完全に閉じている状態(僅かな冷媒の流通も不能な状態)の場合に比べて、高くなる。つまり、弁孔41の周壁面411と円柱部441との間に微小クリアランスが存在することにより、最大径部443が弁孔41から抜け出たときの差圧(テーパ部442に掛かる圧力と、反対側から弁体44に掛かる圧力との差圧)の変動が少なくなる。   (1-3) Even when the cylindrical portion 441 (maximum diameter portion 443) enters the valve hole 41, a minute clearance exists between the peripheral wall surface 411 of the valve hole 41 and the cylindrical portion 441. Due to the presence of this minute clearance, the refrigerant in the second pressure sensing chamber 46 flows little by little through the valve hole 41 to the chamber 42. Therefore, the pressure in the vicinity of the valve hole 41 in the chamber 42 is compared with a case where the valve hole is completely closed by the valve body disclosed in Patent Document 1 (a state where a small amount of refrigerant cannot be circulated), Get higher. In other words, since there is a minute clearance between the peripheral wall surface 411 of the valve hole 41 and the cylindrical portion 441, the differential pressure when the maximum diameter portion 443 comes out of the valve hole 41 (opposite to the pressure applied to the tapered portion 442). Fluctuation in pressure difference from the pressure applied to the valve body 44 from the side is reduced.

次に、図5の第2の実施形態を説明する。第1の実施形態と同じ構成部には同じ符合が用いてある。
容量制御弁32Aを構成するバルブハウジング39内には吐出圧導入室61が形成されている。吐出圧導入室61は、通路62を介して吐出室132と熱交換器29との間の外部冷媒回路28Cに連通している。吐出圧導入室61内にはばね受け63及び付勢ばね64が収容されている。ばね受け63と端壁48との間には付勢ばね64が介在されており、ばね受け63には伝達ロッド38の小径部381が接合している。付勢ばね64は、伝達ロッド38を弁孔41側から室42側へ付勢している。又、伝達ロッド38は、付勢ばね53によって弁孔41側から室42側へ付勢されている。
Next, a second embodiment of FIG. 5 will be described. The same reference numerals are used for the same components as those in the first embodiment.
A discharge pressure introducing chamber 61 is formed in the valve housing 39 constituting the capacity control valve 32A. The discharge pressure introduction chamber 61 communicates with an external refrigerant circuit 28 </ b> C between the discharge chamber 132 and the heat exchanger 29 via a passage 62. A spring receiver 63 and an urging spring 64 are accommodated in the discharge pressure introducing chamber 61. A biasing spring 64 is interposed between the spring receiver 63 and the end wall 48, and a small diameter portion 381 of the transmission rod 38 is joined to the spring receiver 63. The urging spring 64 urges the transmission rod 38 from the valve hole 41 side to the chamber 42 side. The transmission rod 38 is urged from the valve hole 41 side to the chamber 42 side by the urging spring 53.

吐出圧導入室61内の圧力は、吐出圧領域である外部冷媒回路28C内の圧力(吐出圧)と同等であり、室42内及び背圧空間60内の圧力は、制御圧室121内の圧力(制御圧)相当である。伝達ロッド38の一端側(小径部381側)は、吐出圧導入室61の圧力を受けており、伝達ロッド38の他端側は、背圧空間60の圧力(制御圧)を受けている。伝達ロッド38は、背圧空間60内の制御圧によって弁体44の円柱部441における断面積と該制御圧との積の荷重F1を室42側から弁孔41側へ受ける。又、伝達ロッド38は、吐出圧導入室61内の吐出圧によって円柱部441における断面積と該吐出圧との積の荷重F2を弁孔41側から室42側へ受ける。つまり、荷重F1と荷重F2とは、伝達ロッド38を介して対抗している。従って、伝達ロッド38は、荷重差(F2−F1)によって弁孔41側から室42側へ付勢される。つまり、荷重差(F2−F1)は、ソレノイド34の電磁力に対抗する。   The pressure in the discharge pressure introduction chamber 61 is equivalent to the pressure (discharge pressure) in the external refrigerant circuit 28C which is a discharge pressure region, and the pressure in the chamber 42 and the back pressure space 60 is in the control pressure chamber 121. It corresponds to pressure (control pressure). One end side (small diameter portion 381 side) of the transmission rod 38 receives the pressure of the discharge pressure introduction chamber 61, and the other end side of the transmission rod 38 receives the pressure (control pressure) of the back pressure space 60. The transmission rod 38 receives a load F1 of the product of the cross-sectional area of the cylindrical portion 441 of the valve body 44 and the control pressure by the control pressure in the back pressure space 60 from the chamber 42 side to the valve hole 41 side. Further, the transmission rod 38 receives the load F2 of the product of the cross-sectional area of the cylindrical portion 441 and the discharge pressure from the valve hole 41 side to the chamber 42 side by the discharge pressure in the discharge pressure introduction chamber 61. That is, the load F1 and the load F2 are opposed via the transmission rod 38. Accordingly, the transmission rod 38 is urged from the valve hole 41 side to the chamber 42 side by the load difference (F2-F1). That is, the load difference (F2-F1) opposes the electromagnetic force of the solenoid 34.

弁孔41における開閉具合は、ソレノイド34で生じる電磁力、付勢ばね53,64のばね力、荷重差(F2−F1)による付勢力のバランスによって決まる。吐出圧と制御圧との差圧が増大すると、荷重差(F2−F1)が大きくなり、吐出圧と制御圧との差圧が低減すると、荷重差(F2−F1)が小さくなる。荷重差(F2−F1)が増大すると、伝達ロッド38が弁孔41側から室42側へ変位し、荷重差(F2−F1)が低減すると、伝達ロッド38が室42側から弁孔41側へ変位する。   The degree of opening and closing in the valve hole 41 is determined by the balance of the electromagnetic force generated by the solenoid 34, the spring force of the biasing springs 53 and 64, and the biasing force due to the load difference (F2-F1). When the differential pressure between the discharge pressure and the control pressure increases, the load difference (F2-F1) increases. When the differential pressure between the discharge pressure and the control pressure decreases, the load difference (F2-F1) decreases. When the load difference (F2-F1) increases, the transmission rod 38 is displaced from the valve hole 41 side to the chamber 42 side, and when the load difference (F2-F1) decreases, the transmission rod 38 moves from the chamber 42 side to the valve hole 41 side. Displace to

第2の実施形態では、第1の実施形態と同様の効果が得られる上、以下の効果が得られる。
(2−1)伝達ロッド38を介して吐出圧導入室61の圧力と、背圧空間60の圧力(制御圧)とを対抗させた構成の容量制御弁32Aは、吐出圧と制御圧との差圧のみを制御対象とする。つまり、容量制御弁32Aは、吐出圧と制御圧との差圧がソレノイド34における電磁力とバランスするように制御される。容量制御弁32Aでは、第1の実施形態におけるようなベローズ47を利用した感圧手段51を用いないので、本実施形態の常開型の容量制御弁32Aは、感圧手段51を組み込んだ容量制御弁32に比べて、機構が簡素になる。
In the second embodiment, the same effects as in the first embodiment can be obtained, and the following effects can be obtained.
(2-1) The capacity control valve 32A having a configuration in which the pressure in the discharge pressure introduction chamber 61 and the pressure (control pressure) in the back pressure space 60 are opposed to each other via the transmission rod 38 is Only differential pressure is controlled. That is, the capacity control valve 32 </ b> A is controlled so that the differential pressure between the discharge pressure and the control pressure is balanced with the electromagnetic force in the solenoid 34. Since the capacity control valve 32A does not use the pressure-sensitive means 51 using the bellows 47 as in the first embodiment, the normally-open capacity control valve 32A of the present embodiment has a capacity incorporating the pressure-sensitive means 51. Compared to the control valve 32, the mechanism is simplified.

次に、図6の第3の実施形態を説明する。第2の実施形態と同じ構成部には同じ符合が用いてある。
容量制御弁32Bを構成する室形成ハウジング65内には吸入圧導入室651が形成されている。吸入圧導入室651に収容された付勢ばね53は、伝達ロッド38を弁孔41側から室42側へ付勢する。吸入圧導入室651は、通路66を介して吸入室131に連通している。又、吸入圧導入室651は、通路351,371を介して背圧空間60に連通している。吸入室131の圧力(吸入圧)は、通路66,吸入圧導入室651及び通路351,371を介して背圧空間60に波及する。つまり、背圧空間60は、吸入圧領域となる。
Next, a third embodiment of FIG. 6 will be described. The same reference numerals are used for the same components as those in the second embodiment.
A suction pressure introduction chamber 651 is formed in the chamber forming housing 65 constituting the capacity control valve 32B. The urging spring 53 accommodated in the suction pressure introducing chamber 651 urges the transmission rod 38 from the valve hole 41 side to the chamber 42 side. The suction pressure introduction chamber 651 communicates with the suction chamber 131 through the passage 66. The suction pressure introduction chamber 651 communicates with the back pressure space 60 through passages 351 and 371. The pressure (suction pressure) in the suction chamber 131 is transmitted to the back pressure space 60 via the passage 66, the suction pressure introduction chamber 651, and the passages 351 and 371. That is, the back pressure space 60 becomes a suction pressure region.

伝達ロッド38は、背圧空間60内の吸入圧によって弁体44の円柱部441における断面積と該吸入圧との積の荷重F3を室42側から弁孔41側へ受ける。又、伝達ロッド38は、吐出圧導入室61内の吐出圧によって円柱部441における断面積と該吐出圧との積の荷重F2を弁孔41側から室42側へ受ける。つまり、荷重F3と荷重F2とは、伝達ロッド38を介して対抗している。従って、伝達ロッド38は、荷重差(F2−F3)によって弁孔41側から室42側へ付勢される。つまり、荷重差(F2−F3)は、ソレノイド34の電磁力に対抗する。   The transmission rod 38 receives the load F3 of the product of the cross-sectional area of the cylindrical portion 441 of the valve body 44 and the suction pressure from the chamber 42 side to the valve hole 41 side by the suction pressure in the back pressure space 60. Further, the transmission rod 38 receives the load F2 of the product of the cross-sectional area of the cylindrical portion 441 and the discharge pressure from the valve hole 41 side to the chamber 42 side by the discharge pressure in the discharge pressure introduction chamber 61. That is, the load F3 and the load F2 are opposed via the transmission rod 38. Therefore, the transmission rod 38 is urged from the valve hole 41 side to the chamber 42 side by the load difference (F2-F3). That is, the load difference (F2-F3) opposes the electromagnetic force of the solenoid 34.

弁孔41における開閉具合は、ソレノイド34で生じる電磁力、付勢ばね53,64のばね力、荷重差(F2−F3)による付勢力のバランスによって決まる。吐出圧と吸入圧との差圧が増大すると、荷重差(F2−F3)が大きくなり、吐出圧と吸入圧との差圧が低減すると、荷重差(F2−F3)が小さくなる。荷重差(F2−F3)が増大すると、伝達ロッド38が弁孔41側から室42側へ変位し、荷重差(F2−F3)が低減すると、伝達ロッド38が室42側から弁孔41側へ変位する。   The degree of opening and closing in the valve hole 41 is determined by the balance of the electromagnetic force generated by the solenoid 34, the spring force of the biasing springs 53 and 64, and the biasing force due to the load difference (F2-F3). When the differential pressure between the discharge pressure and the suction pressure increases, the load difference (F2-F3) increases. When the differential pressure between the discharge pressure and the suction pressure decreases, the load difference (F2-F3) decreases. When the load difference (F2-F3) increases, the transmission rod 38 is displaced from the valve hole 41 side to the chamber 42 side, and when the load difference (F2-F3) decreases, the transmission rod 38 moves from the chamber 42 side to the valve hole 41 side. Displace to

第3の実施形態では、第1の実施形態と同様の効果が得られる上、以下の効果が得られる。
(3−1)伝達ロッド38を介して吐出圧導入室61の圧力と、背圧空間60の圧力(吸入圧)とを対抗させた構成の容量制御弁32Bは、吐出圧と吸入圧との差圧のみを制御対象とする。つまり、容量制御弁32Bは、吐出圧と吸入圧との差圧がソレノイド34における電磁力とバランスするように制御される。容量制御弁32Bでは、第1の実施形態におけるようなベローズ47を利用した感圧手段51を用いないので、本実施形態の常開型の容量制御弁32Bは、感圧手段51を組み込んだ容量制御弁32に比べて、機構が簡素になる。
In the third embodiment, the same effects as in the first embodiment can be obtained, and the following effects can be obtained.
(3-1) The capacity control valve 32B having a configuration in which the pressure of the discharge pressure introduction chamber 61 and the pressure (suction pressure) of the back pressure space 60 are opposed to each other via the transmission rod 38 is configured to reduce the discharge pressure and the suction pressure. Only differential pressure is controlled. That is, the capacity control valve 32B is controlled so that the differential pressure between the discharge pressure and the suction pressure is balanced with the electromagnetic force in the solenoid 34. Since the capacity control valve 32B does not use the pressure sensitive means 51 using the bellows 47 as in the first embodiment, the normally open capacity control valve 32B of the present embodiment has a capacity incorporating the pressure sensitive means 51. Compared to the control valve 32, the mechanism is simplified.

次に、図7の第4の実施形態を説明する。第1の実施形態と同じ構成部には同じ符合が用いてある。
容量制御弁32Cを構成する室形成ハウジング67には制御圧導入室671、吸入圧導入室672及び弁孔673が形成されている。制御圧導入室671と吸入圧導入室672とは、弁孔673を介して接続されている。
Next, a fourth embodiment of FIG. 7 will be described. The same reference numerals are used for the same components as those in the first embodiment.
A control pressure introduction chamber 671, a suction pressure introduction chamber 672, and a valve hole 673 are formed in the chamber forming housing 67 constituting the capacity control valve 32C. The control pressure introduction chamber 671 and the suction pressure introduction chamber 672 are connected via a valve hole 673.

ハウジング69に収容されたベローズ47には補助ロッド68が連結されている。補助ロッド68は、ハウジング69の隔壁691を貫通して吸入圧導入室672に突出しており、補助ロッド68の円柱形状の小径部681が弁孔673を通って制御圧導入室671に突出している。小径部681は、伝達ロッド38に接合しており、補助ロッド68は、伝達ロッド38と連動する。   An auxiliary rod 68 is connected to the bellows 47 accommodated in the housing 69. The auxiliary rod 68 passes through the partition wall 691 of the housing 69 and protrudes into the suction pressure introduction chamber 672, and the cylindrical small diameter portion 681 of the auxiliary rod 68 protrudes through the valve hole 673 into the control pressure introduction chamber 671. . The small diameter portion 681 is joined to the transmission rod 38, and the auxiliary rod 68 is interlocked with the transmission rod 38.

補助ロッド68には弁体70が一体形成されている。弁体70は、円柱部701とテーパ部702とからなる。テーパ部702は、吸入圧導入室672側から弁孔673側へ向かうにつれて縮径してゆく形状である。テーパ部702の最大径部703は、テーパ部702と円柱部701との境であり、テーパ部702の最小径部704は、テーパ部702と補助ロッド68の小径部681との境である。横断面積変化部としてのテーパ部702は、最小横断面積部としての最小径部704と最大横断面積部としての最大径部703とを有し、かつ最小径部704側から最大径部703側へ向かうにつれて横断面積が増大してゆく形状である。   A valve body 70 is integrally formed with the auxiliary rod 68. The valve body 70 includes a cylindrical portion 701 and a tapered portion 702. The tapered portion 702 has a shape that decreases in diameter from the suction pressure introduction chamber 672 side toward the valve hole 673 side. The maximum diameter portion 703 of the taper portion 702 is a boundary between the taper portion 702 and the cylindrical portion 701, and the minimum diameter portion 704 of the taper portion 702 is a boundary between the taper portion 702 and the small diameter portion 681 of the auxiliary rod 68. The tapered portion 702 as the cross-sectional area changing portion has a minimum diameter portion 704 as the minimum cross-sectional area portion and a maximum diameter portion 703 as the maximum cross-sectional area portion, and from the minimum diameter portion 704 side to the maximum diameter portion 703 side. The cross-sectional area increases as it goes.

弁体70の円柱部701は、弁孔673内でスライド可能であり、円柱部701(最大径部703)が弁孔673内に入り込んだ状態では弁孔673が閉鎖される。円柱部701が弁孔673内に入り込んでいる状態においても、弁孔673の周壁面と円柱部701との間には微小クリアランスが存在する。円柱部701が弁孔673内でスライド可能であるのは、弁孔673の周壁面と円柱部701との間の微小クリアランスの存在による。この微小クリアランスの存在は、円柱部701(最大径部703)が弁孔673内に入り込んでいるときにおける弁孔673内での冷媒の僅かな流通を許容する。つまり、円柱部701(最大径部703)が弁孔673内に入り込んでいる状態では、弁孔673は、完全に閉じられているのではなく、僅かな流通を許容するルーズな閉状態にある。   The cylindrical portion 701 of the valve body 70 can slide in the valve hole 673, and the valve hole 673 is closed in a state where the cylindrical portion 701 (maximum diameter portion 703) enters the valve hole 673. Even in a state in which the cylindrical portion 701 enters the valve hole 673, a minute clearance exists between the peripheral wall surface of the valve hole 673 and the cylindrical portion 701. The cylindrical part 701 is slidable in the valve hole 673 due to the presence of a minute clearance between the peripheral wall surface of the valve hole 673 and the cylindrical part 701. The presence of this minute clearance allows a slight circulation of the refrigerant in the valve hole 673 when the cylindrical portion 701 (maximum diameter portion 703) enters the valve hole 673. That is, in a state where the cylindrical portion 701 (maximum diameter portion 703) enters the valve hole 673, the valve hole 673 is not completely closed but is in a loosely closed state that allows a slight flow. .

制御圧導入室671は、通路71を介して制御圧室121に連通しており、吸入圧導入室672は、通路72を介して吸入室131に連通している。通路71、制御圧導入室671、弁孔673、吸入圧導入室672及び通路72は、制御圧室121内の冷媒を吸入室131へ排出する排出通路73を構成する。吐出室132と制御圧室121とは、供給通路74を介して連通している。   The control pressure introduction chamber 671 communicates with the control pressure chamber 121 via the passage 71, and the suction pressure introduction chamber 672 communicates with the suction chamber 131 via the passage 72. The passage 71, the control pressure introduction chamber 671, the valve hole 673, the suction pressure introduction chamber 672, and the passage 72 constitute a discharge passage 73 that discharges the refrigerant in the control pressure chamber 121 to the suction chamber 131. The discharge chamber 132 and the control pressure chamber 121 communicate with each other via the supply passage 74.

制御圧導入室671は、通路351,371を介して背圧空間60に連通しており、背圧空間60は、制御圧領域となる。弁孔673における開閉具合は、ソレノイド34で生じる電磁力、背圧空間60内の圧力(制御圧)が弁孔41を閉じる方向へ伝達ロッド38を付勢する付勢力、制御圧導入室671内の付勢ばね53のばね力、感圧手段51の付勢力のバランスによって決まる。   The control pressure introduction chamber 671 communicates with the back pressure space 60 via the passages 351 and 371, and the back pressure space 60 becomes a control pressure region. The valve hole 673 is opened / closed by the electromagnetic force generated by the solenoid 34, the urging force that urges the transmission rod 38 in the direction in which the pressure (control pressure) in the back pressure space 60 closes the valve hole 41, and the inside of the control pressure introduction chamber 671. This is determined by the balance between the spring force of the biasing spring 53 and the biasing force of the pressure-sensitive means 51.

制御コンピュータCは、室温設定器55によって設定された目標室温と、室温検出器56によって検出された検出室温との温度差に基づいて、ソレノイド34に対する電流供給を制御(デューティ比制御)する。デューティ比を大きくすると、伝達ロッド38及び補助ロッド68(弁体70)は、制御圧導入室671側から弁孔673側へ変位する。   The control computer C controls current supply to the solenoid 34 (duty ratio control) based on the temperature difference between the target room temperature set by the room temperature setter 55 and the detected room temperature detected by the room temperature detector 56. When the duty ratio is increased, the transmission rod 38 and the auxiliary rod 68 (valve element 70) are displaced from the control pressure introduction chamber 671 side to the valve hole 673 side.

図7の状態では、容量制御弁32Cの弁孔673が最大に開いており(最小径部704が弁孔673から抜け出ており)、制御圧室121内の冷媒が排出通路73を経由して吸入室131へ流出している。吐出室132内の冷媒は、供給通路74を経由して制御圧室121へ送られているが、弁孔673が最大に開いている状態では制御圧室121内の圧力が低く、斜板22〔図1(a)参照〕の傾角は、最大傾角となる。この状態では、ピストン24〔図1(a)参照〕のストロークが最大となり、吐出容量は最大となる。   In the state of FIG. 7, the valve hole 673 of the capacity control valve 32 </ b> C is opened to the maximum (the minimum diameter portion 704 has escaped from the valve hole 673), and the refrigerant in the control pressure chamber 121 passes through the discharge passage 73. It flows out to the suction chamber 131. The refrigerant in the discharge chamber 132 is sent to the control pressure chamber 121 via the supply passage 74, but the pressure in the control pressure chamber 121 is low when the valve hole 673 is opened to the maximum, and the swash plate 22. The tilt angle shown in FIG. 1A is the maximum tilt angle. In this state, the stroke of the piston 24 (see FIG. 1A) is maximized and the discharge capacity is maximized.

ソレノイド34に対する電流供給が停止された状態では、最大径部703が弁孔673に入り込んで弁孔673が閉じられる。弁孔673が閉じている状態では、制御圧室121内の冷媒が排出通路73を経由して吸入室131へ流出することはない。吐出室132内の冷媒が供給通路74を経由して制御圧室121へ送られているため、弁孔673が閉じている状態では制御圧室121内の圧力が高く、斜板22〔図1(a)参照〕の傾角は、最小傾角となる。容量制御弁32Cは、ソレノイド34に対する電流供給が停止されている状態では弁孔673が閉じている常閉型の容量制御弁である。   When the current supply to the solenoid 34 is stopped, the maximum diameter portion 703 enters the valve hole 673 and the valve hole 673 is closed. In a state where the valve hole 673 is closed, the refrigerant in the control pressure chamber 121 does not flow out to the suction chamber 131 via the discharge passage 73. Since the refrigerant in the discharge chamber 132 is sent to the control pressure chamber 121 through the supply passage 74, the pressure in the control pressure chamber 121 is high when the valve hole 673 is closed, and the swash plate 22 [FIG. The tilt angle (see (a)) is the minimum tilt angle. The capacity control valve 32C is a normally closed capacity control valve in which the valve hole 673 is closed when the current supply to the solenoid 34 is stopped.

第4の実施形態では、第1の実施形態における(1−2)項及び(1−3)項と同様の効果が得られる上に、以下の効果が得られる。
(4−1)弁体70の移動方向に見た場合に弁孔673の径方向へ弁孔673からテーパ部702がはみ出さない構成は、テーパ部702に掛かる圧力(制御圧相当)と、反対側から弁体70に掛かる圧力(感圧手段51の付勢力)との差圧が弁開度の違いによって大きく変動することを抑制する。その結果、可変容量型圧縮機10〔図1(a)参照〕における容量制御性が向上する。
In the fourth embodiment, the same effects as the items (1-2) and (1-3) in the first embodiment are obtained, and the following effects are obtained.
(4-1) The configuration in which the tapered portion 702 does not protrude from the valve hole 673 in the radial direction of the valve hole 673 when viewed in the moving direction of the valve body 70 is the pressure applied to the tapered portion 702 (equivalent to control pressure), The pressure difference from the pressure applied to the valve body 70 from the opposite side (the urging force of the pressure-sensitive means 51) is prevented from greatly fluctuating due to the difference in valve opening. As a result, the capacity controllability in the variable capacity compressor 10 (see FIG. 1A) is improved.

本発明では以下のような実施形態も可能である。
(1)横断面積変化部の周面をテーパとした構成では、テーパ部の最大径部から最小径部に向かうにつれてテーパ部の径が線形に変化するが、横断面積変化部の最大径部から最小径部に向かうにつれて非線形に変化する構成としてもよい。
In the present invention, the following embodiments are also possible.
(1) In the configuration in which the circumferential surface of the cross-sectional area changing portion is tapered, the diameter of the taper portion changes linearly from the maximum diameter portion of the taper portion toward the minimum diameter portion. It is good also as a structure which changes nonlinearly as it goes to the minimum diameter part.

(2)弁孔の周壁面をテーパとしてもよい。この場合、横断面積変化部を有する弁体は、テーパ形状の弁孔の最小径部側で出入りする。
(3)第1,4の実施形態において、ベローズの代わりに、ダイヤフラムあるいはピストンを用いた感圧手段を用いてもよい。
(2) The peripheral wall surface of the valve hole may be tapered. In this case, the valve body having the cross-sectional area changing portion enters and exits on the minimum diameter portion side of the tapered valve hole.
(3) In the first and fourth embodiments, a pressure sensitive means using a diaphragm or a piston may be used instead of the bellows.

第1の実施形態を示し、(a)は圧縮機全体の側断面図。(b)はヒンジ機構の断面図。1 shows a first embodiment, (a) is a side sectional view of the whole compressor. (B) is sectional drawing of a hinge mechanism. (a)は容量制御弁の断面図。(b)は容量制御弁の部分断面図。(A) is sectional drawing of a capacity control valve. (B) is a fragmentary sectional view of a capacity control valve. 容量制御弁の部分断面図。The fragmentary sectional view of a capacity control valve. 容量制御弁の部分断面図。The fragmentary sectional view of a capacity control valve. 第2の実施形態を示す容量制御弁の断面図。Sectional drawing of the capacity | capacitance control valve which shows 2nd Embodiment. 第3の実施形態を示す容量制御弁の断面図。Sectional drawing of the capacity | capacitance control valve which shows 3rd Embodiment. 第4の実施形態を示す容量制御弁の断面図。Sectional drawing of the capacity | capacitance control valve which shows 4th Embodiment.

符号の説明Explanation of symbols

10…可変容量型圧縮機。121…制御圧室。131…吸入圧領域としての吸入室。132…吐出圧領域としての吐出室。28A,28B,28C…吐出圧領域としての外部冷媒回路。32,32A,32B,32C…容量制御弁。44,70…弁体。41,673…弁孔。411…周壁面。442,702…横断面積変化部としてのテーパ部。443,703…最大横断面積部としての最大径部。444,704…最小横断面積部としての最小径部。57,74…供給通路。58,73…排出通路。   10: Variable capacity compressor. 121: Control pressure chamber. 131: A suction chamber as a suction pressure region. 132: A discharge chamber as a discharge pressure region. 28A, 28B, 28C ... External refrigerant circuit as a discharge pressure region. 32, 32A, 32B, 32C ... capacity control valves. 44, 70 ... Valve body. 41,673 ... Valve holes. 411 ... A peripheral wall surface. 442, 702... Tapered portion as a cross-sectional area changing portion. 443, 703 ... The maximum diameter portion as the maximum cross-sectional area portion. 444, 704 ... Minimum diameter portion as a minimum cross-sectional area portion. 57, 74 ... supply passage. 58, 73 ... discharge passage.

Claims (5)

供給通路を介して吐出圧領域の冷媒を制御圧室に供給すると共に、排出通路を介して前記制御圧室の冷媒を吸入圧領域に排出して前記制御圧室内の調圧を行い、前記制御圧室内の調圧によって吐出容量を制御する可変容量型圧縮機における容量制御弁において、
前記供給通路又は前記排出通路の一部となる弁孔と、
前記弁孔に出入りする横断面積変化部を有する弁体とを備え、
前記横断面積変化部は、最小横断面積部と最大横断面積部とを有し、かつ前記最小横断面積部側から前記最大横断面積部側へ向かうにつれて横断面積が増大してゆく形状であり、前記横断面積変化部は、前記最小横断面積部側から前記弁孔に入り込み、前記最大横断面積部は、前記弁孔に入り込み可能であり、前記最大横断面積部が前記弁孔に入り込んだ状態では前記弁孔が閉じられる可変容量型圧縮機における容量制御弁。
The refrigerant in the discharge pressure region is supplied to the control pressure chamber through the supply passage, and the refrigerant in the control pressure chamber is discharged to the suction pressure region through the discharge passage to adjust the pressure in the control pressure chamber. In the capacity control valve in the variable capacity compressor that controls the discharge capacity by regulating the pressure in the pressure chamber,
A valve hole serving as a part of the supply passage or the discharge passage;
A valve body having a cross-sectional area changing portion that enters and exits the valve hole,
The cross-sectional area changing part has a minimum cross-sectional area part and a maximum cross-sectional area part, and the cross-sectional area increases from the minimum cross-sectional area part side toward the maximum cross-sectional area part side, The cross-sectional area changing part enters the valve hole from the minimum cross-sectional area part side, the maximum cross-sectional area part can enter the valve hole, and the maximum cross-sectional area part enters the valve hole in the state described above. A capacity control valve in a variable capacity compressor in which the valve hole is closed.
前記横断面積変化部の周面は、円錐面である請求項1に記載の可変容量型圧縮機における容量制御弁。   The capacity control valve in the variable capacity compressor according to claim 1, wherein a circumferential surface of the cross-sectional area changing portion is a conical surface. 前記最大横断面積部が前記弁孔に入り込んだ状態において冷媒が前記弁孔を流通可能な微小クリアランスが前記最大横断面積部と前記弁孔の周壁面との間に存在する請求項1及び請求項2のいずれか1項に記載の可変容量型圧縮機における容量制御弁。   The micro clearance which a refrigerant | coolant can distribute | circulate through the said valve hole in the state which the said largest cross-sectional area part entered into the said valve hole exists between the said maximum cross-sectional area part and the surrounding wall surface of the said valve hole. 3. A displacement control valve in the variable displacement compressor according to any one of 2 above. 前記弁孔は、前記供給通路の一部であり、前記容量制御弁は、前記可変容量型圧縮機の最小容量時には、前記弁孔が常に開いている常開型である請求項1乃至請求項3のいずれか1項に記載の可変容量型圧縮機における容量制御弁。   The valve hole is a part of the supply passage, and the capacity control valve is a normally open type in which the valve hole is always open at the minimum capacity of the variable capacity compressor. 4. A capacity control valve in the variable capacity compressor according to any one of 3 above. 前記弁孔は、前記排出通路の一部であり、前記容量制御弁は、前記可変容量型圧縮機の最小容量時には、前記弁孔が常に閉じている常閉型である請求項1乃至請求項3のいずれか1項に記載の可変容量型圧縮機における容量制御弁。   The valve hole is a part of the discharge passage, and the capacity control valve is a normally closed type in which the valve hole is always closed when the variable capacity compressor has a minimum capacity. 4. A capacity control valve in the variable capacity compressor according to any one of 3 above.
JP2004366558A 2004-12-17 2004-12-17 Displacement control valve for variable displacement type compressor Pending JP2006170140A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004366558A JP2006170140A (en) 2004-12-17 2004-12-17 Displacement control valve for variable displacement type compressor
US11/293,019 US20060165534A1 (en) 2004-12-17 2005-12-02 Displacement control valve for variable displacement compressor
DE102005060307A DE102005060307A1 (en) 2004-12-17 2005-12-16 Displacement control valve for compressor has hole partly forming input or output channel, and valve body of varying cross section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004366558A JP2006170140A (en) 2004-12-17 2004-12-17 Displacement control valve for variable displacement type compressor

Publications (1)

Publication Number Publication Date
JP2006170140A true JP2006170140A (en) 2006-06-29

Family

ID=36580368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004366558A Pending JP2006170140A (en) 2004-12-17 2004-12-17 Displacement control valve for variable displacement type compressor

Country Status (3)

Country Link
US (1) US20060165534A1 (en)
JP (1) JP2006170140A (en)
DE (1) DE102005060307A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883294B1 (en) 2006-12-20 2009-02-11 가부시키가이샤 도요다 지도숏키 Electromagnetic displacement control valve in clutchless type variable displacement compressor
JPWO2021085318A1 (en) * 2019-10-28 2021-05-06
US11802552B2 (en) 2019-07-12 2023-10-31 Eagle Industry Co., Ltd. Capacity control valve
US12025237B2 (en) 2020-05-25 2024-07-02 Eagle Industry Co., Ltd. Capacity control valve
US12110882B2 (en) 2020-05-25 2024-10-08 Eagle Industry Co., Ltd. Capacity control valve
US12129840B2 (en) 2019-10-28 2024-10-29 Eagle Industry Co., Ltd. Capacity control valve

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4118181B2 (en) * 2003-03-28 2008-07-16 サンデン株式会社 Control valve for variable displacement swash plate compressor
JP2006177300A (en) * 2004-12-24 2006-07-06 Toyota Industries Corp Capacity control mechanism in variable displacement compressor
JP2008038856A (en) * 2006-08-10 2008-02-21 Toyota Industries Corp Control valve for variable displacement compressor
JP5424397B2 (en) * 2009-12-04 2014-02-26 サンデン株式会社 Control valve and swash plate type variable capacity compressor with control valve
WO2014148367A1 (en) * 2013-03-22 2014-09-25 サンデン株式会社 Control valve and variable capacity compressor provided with said control valve
JP5983539B2 (en) * 2013-06-13 2016-08-31 株式会社豊田自動織機 Double-head piston type swash plate compressor
JP7051238B2 (en) * 2017-02-18 2022-04-11 イーグル工業株式会社 Capacity control valve

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591234B2 (en) * 1997-08-27 2004-11-17 株式会社豊田自動織機 Control valve for variable displacement compressor
JP3728387B2 (en) * 1998-04-27 2005-12-21 株式会社豊田自動織機 Control valve
JP2001073939A (en) * 1999-08-31 2001-03-21 Toyota Autom Loom Works Ltd Control valve for variable displacement compressor and variable displacement compressor
DE10318626A1 (en) * 2002-04-25 2003-11-13 Sanden Corp Variable capacity compressor
JP2004278511A (en) * 2002-10-23 2004-10-07 Tgk Co Ltd Control valve for variable displacement compressor
US7063511B2 (en) * 2003-07-28 2006-06-20 Delphi Technologies, Inc. Integrated control valve for a variable capacity compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100883294B1 (en) 2006-12-20 2009-02-11 가부시키가이샤 도요다 지도숏키 Electromagnetic displacement control valve in clutchless type variable displacement compressor
US11802552B2 (en) 2019-07-12 2023-10-31 Eagle Industry Co., Ltd. Capacity control valve
JPWO2021085318A1 (en) * 2019-10-28 2021-05-06
WO2021085318A1 (en) * 2019-10-28 2021-05-06 イーグル工業株式会社 Capacity control valve
JP7467494B2 (en) 2019-10-28 2024-04-15 イーグル工業株式会社 Capacity Control Valve
US12129840B2 (en) 2019-10-28 2024-10-29 Eagle Industry Co., Ltd. Capacity control valve
US12025237B2 (en) 2020-05-25 2024-07-02 Eagle Industry Co., Ltd. Capacity control valve
US12110882B2 (en) 2020-05-25 2024-10-08 Eagle Industry Co., Ltd. Capacity control valve

Also Published As

Publication number Publication date
US20060165534A1 (en) 2006-07-27
DE102005060307A1 (en) 2006-06-29

Similar Documents

Publication Publication Date Title
JP6495634B2 (en) Variable capacity compressor
JP5458965B2 (en) Capacity control mechanism in variable capacity compressor
CN103122845B (en) displacement control valve
JP5181808B2 (en) Capacity control mechanism in variable capacity compressor
US7559208B2 (en) Displacement control mechanism for variable displacement compressor
JP5182393B2 (en) Variable capacity compressor
US7523620B2 (en) Displacement control mechanism for variable displacement compressor
US20060165534A1 (en) Displacement control valve for variable displacement compressor
JP2008157031A (en) Electromagnetic displacement control valve in clutchless variable displacement type compressor
JP2009103074A (en) Capacity control valve of variable displacement compressor
JP2006097665A (en) Capacity control valve in variable displacement compressor
CN107002649B (en) Variable displacement compressor
JP4626808B2 (en) Capacity control valve for variable capacity clutchless compressor
JP2008202572A (en) Capacity control valve of variable displacement compressor
WO2016088735A1 (en) Variable capacity compressor
JP2008038856A (en) Control valve for variable displacement compressor
JP2009275550A (en) Capacity control valve of variable displacement compressor
JP2000009045A (en) Control valve for variable displacement type compressor, variable displacement type compressor, and variable setting method for set suction pressure
JPH06346843A (en) Clutchless one-sided piston type variable displacement compressor and its displacement control method
JP2006144580A (en) Displacement control valve for variable displacement compressor
JP5053740B2 (en) Volume control valve for variable capacity compressor
JP2006132446A (en) Variable displacement compressor
JP5260906B2 (en) Volume control valve for variable capacity compressor
JP2007315189A (en) Capacity control valve of variable displacement compressor
JP2007315187A (en) Variable displacement compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707