JP2006169747A - Vibration control stud - Google Patents

Vibration control stud Download PDF

Info

Publication number
JP2006169747A
JP2006169747A JP2004360661A JP2004360661A JP2006169747A JP 2006169747 A JP2006169747 A JP 2006169747A JP 2004360661 A JP2004360661 A JP 2004360661A JP 2004360661 A JP2004360661 A JP 2004360661A JP 2006169747 A JP2006169747 A JP 2006169747A
Authority
JP
Japan
Prior art keywords
damper
lead
viscoelastic
damping
stud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004360661A
Other languages
Japanese (ja)
Other versions
JP4683909B2 (en
Inventor
Makoto Masuda
誠 増田
Masafumi Yamamoto
雅史 山本
Shigeo Minewaki
重雄 嶺脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2004360661A priority Critical patent/JP4683909B2/en
Publication of JP2006169747A publication Critical patent/JP2006169747A/en
Application granted granted Critical
Publication of JP4683909B2 publication Critical patent/JP4683909B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration control stud installed between upper and lower beams in a column/beam frame of a building structure. <P>SOLUTION: The vibration control stud is constituted by installing a steel-based damper between stud members provided at the upper and lower beams, through a viscoelastic damper or a lead damper, wherein the viscoelastic damper or lead damper can exhibit a vibration control function in horizontal deformation in an in-plane direction and follow horizontal deformation in an out-of-plane direction. The stud member is provided with stopper members with a predetermined clearance in both side positions of the viscoelastic damper or lead damper, and the clearance is sized to allow the viscoelastic damper or lead damper to collide with the stopper member at the occurrence of medium/large amplitude exceeding small amplitude such as a wind shake. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、建築構造物の柱・梁架構における上下の梁間に設置される制振間柱の技術分野に属し、更に云うと、風揺れなどの小振幅に対して粘弾性ダンパー又は鉛ダンパーが制振機能を発揮し、地震時の中・大振幅に対して鋼材系ダンパーが制振機能を発揮し、広い振幅領域で制振機能を発揮する制振間柱に関する。   The present invention belongs to the technical field of vibration control studs installed between upper and lower beams in a pillar / beam frame of a building structure, and more specifically, viscoelastic dampers or lead dampers control small amplitudes such as wind fluctuations. The present invention relates to a damping stud that exhibits a vibration function, with steel dampers exhibiting a damping function for medium and large amplitudes during an earthquake, and exhibiting a damping function in a wide amplitude range.

従来から低降伏点鋼などの鋼材系ダンパーを採用した制振装置が公知であり、種々工夫された構成とされている。例えば、   Conventionally, a vibration damping device that employs a steel material damper such as a low yield point steel is known, and variously devised. For example,

(i)特許文献1、2の制振装置は、鋼材系ダンパーに小振幅用ダンパーを直列に繋いだ構成とされており、鋼材系ダンパーが制振機能を良好に発揮する中・大振幅領域だけでなく、風揺れなどの小振幅領域でも良好な制振機能を発揮することができるように工夫されている。 (I) The vibration damping devices of Patent Documents 1 and 2 are configured such that a small-amplitude damper is connected in series to a steel damper, and a medium-large amplitude region in which the steel damper exhibits a damping function well. In addition, it has been devised so that it can exhibit a good damping function even in a small amplitude region such as wind fluctuation.

(ii)特許文献3、4の制振装置は、鋼材系ダンパーに鉛直荷重が伝達されない構成とされており、制振機能の低下を防ぐことができるように工夫されている。 (Ii) The vibration damping devices of Patent Documents 3 and 4 are configured such that a vertical load is not transmitted to the steel damper, and are devised so as to prevent the vibration damping function from being lowered.

(iii)特許文献5、6の制振装置は、面外方向への水平変形に追従可能な構成とされており、制振装置の破損を防ぐことができるように工夫されている。 (Iii) The vibration damping devices of Patent Documents 5 and 6 are configured to follow horizontal deformation in the out-of-plane direction, and are devised to prevent damage to the vibration damping device.

上記特許文献1〜6の制振装置は個々の問題を解決しているが、全ての問題点を同時に満足できるものではない。   Although the vibration damping devices of Patent Documents 1 to 6 solve individual problems, they cannot satisfy all the problems at the same time.

そこで、本出願人は、上記全ての問題点を解決できる制振装置を開発し、特許出願するに至っている。
(iv)特許文献7の制振装置は、鋼材系ダンパーと、壁型粘性体ダンパーと、面外変形追従部材とから成る。粘性体容器内の粘性体に浸漬された抵抗板と同粘性体容器との間には所定のクリアランスが設けられており、風揺れなどの小振幅に対しては、前記クリアランス内で抵抗板が移動することで粘性体ダンパーが制振機能を発揮する。一方、地震時の大振幅に対しては、抵抗板が粘性体容器に衝突して水平力を鋼材系ダンパーに伝達し、同鋼材系ダンパーが制振機能を発揮する構成とされている。そして、鋼材系ダンパーは面内方向にくの字に湾曲させた形状とされており、鉛直荷重を吸収して制振機能の低下を防ぐ構成とされている。更には、面外方向への水平変形に対しては、面外変形追従部材の働きによって追従可能な構成とされている。
Therefore, the present applicant has developed a vibration damping device that can solve all the above problems and has filed a patent application.
(Iv) The vibration damping device of Patent Document 7 includes a steel material damper, a wall-type viscous material damper, and an out-of-plane deformation follow-up member. A predetermined clearance is provided between the resistance plate immersed in the viscous body in the viscous body container and the viscous body container, and the resistance plate is within the clearance for small amplitudes such as wind fluctuations. By moving, the viscous damper exhibits a damping function. On the other hand, with respect to a large amplitude during an earthquake, the resistance plate collides with the viscous material container and transmits a horizontal force to the steel material damper, and the steel material damper exhibits a damping function. And the steel material damper is made into the shape curved in the in-plane direction in the shape of a letter, and is set as the structure which absorbs a vertical load and prevents the damping function from falling. Further, the horizontal deformation in the out-of-plane direction can be followed by the action of the out-of-plane deformation following member.

特開平10−280727号公報Japanese Patent Laid-Open No. 10-280727 特開平10−299284号公報Japanese Patent Laid-Open No. 10-299284 特開平11−241525号公報Japanese Patent Laid-Open No. 11-241525 特開平11−303450号公報JP-A-11-303450 特開平11−200662号公報JP-A-11-200662 特開2000−213203号公報JP 2000-213203 A 特開2002−242478号公報JP 2002-242478 A

上記特許文献7の制振装置は、個々の構成部材に発揮させる機能が分散化されており、必ずしも合理的な構成とは云えず、部材数が多くて構造が複雑で、施工性が悪く、コストも嵩む。そのため、比較的簡易な構造であることが求められる制振間柱として用いることは困難である。   The damping device of the above-mentioned Patent Document 7 has functions distributed to individual component members, and is not necessarily a rational configuration, has a large number of members, a complicated structure, and poor workability, Costs also increase. For this reason, it is difficult to use as a vibration suppression stud that is required to have a relatively simple structure.

面外変形追従部材は追従機能のみを備えた部材であり、面外方向への水平変形に対しては制振機能を発揮しない。   The out-of-plane deformation follow-up member is a member having only a follow-up function, and does not exhibit a damping function for horizontal deformation in the out-of-plane direction.

本発明の目的は、粘弾性ダンパー又は鉛ダンパーを介して上下の梁間に鋼材系ダンパーを設置し、風揺れなどの小振幅に対して粘弾性ダンパー又は鉛ダンパーの制振機能を発揮させ、地震時の中・大振幅に対して鋼材系ダンパーの制振機能を発揮させることにより、広い振幅領域で制振機能を発揮させる制振間柱であって、また、粘弾性ダンパー又は鉛ダンパーが面外方向への追従機能と風揺れなどの小振幅に対する制振機能、及び鉛直荷重の吸収機能を発揮する合理的な構成とし、部材数が少なく、構造が簡単で、施工性が良く、コストの削減にも寄与できる、制振間柱を提供することである。   The purpose of the present invention is to install a steel damper between the upper and lower beams via a viscoelastic damper or a lead damper, to exhibit the damping function of the viscoelastic damper or the lead damper against a small amplitude such as wind fluctuation, It is a vibration control pillar that demonstrates the damping function in a wide amplitude range by demonstrating the damping function of steel dampers for medium and large amplitudes, and viscoelastic dampers or lead dampers are out of plane. A rational structure that exhibits a function to follow the direction, a vibration suppression function for small amplitudes such as wind fluctuations, and a function to absorb a vertical load, with a small number of members, a simple structure, good workability, and cost reduction It is to provide a vibration control pillar that can contribute to

本発明の次の目的は、粘弾性ダンパー又は鉛ダンパーが面外方向への追従機能を発揮した際に、同粘弾性ダンパーの粘弾性体又は鉛ダンパーの鉛を変形させ、制振機能を発揮させる、制振間柱を提供することである。   The next object of the present invention is to exhibit a damping function by deforming the viscoelastic body of the viscoelastic damper or lead of the lead damper when the viscoelastic damper or lead damper exhibits a follow-up function in the out-of-plane direction. It is to provide a damping pillar.

上述した従来技術の課題を解決するための手段として、請求項1に記載した発明に係る制振間柱は、
建築構造物の柱・梁架構における上下の梁間に設置される制振間柱であって、
制振間柱は、上下の梁に設けられた間柱部材の間に鋼材系ダンパーが粘弾性ダンパー又は鉛ダンパーを介して設置され、面内方向への水平変形時に前記粘弾性ダンパー又は鉛ダンパーが制振機能を発揮し、面外方向への水平変形に追従可能な構成とされていること、
間柱部材には、前記粘弾性ダンパー又は鉛ダンパーの両側位置に所定のクリアランスを開けてストッパー部材が設けられており、前記クリアランスは、風揺れなどの小振幅を超える中・大振幅が生じた際に粘弾性ダンパー又は鉛ダンパーが前記ストッパー部材に衝突する大きさとされていることを特徴とする。
As means for solving the above-mentioned problems of the prior art, the vibration damping stud according to the invention described in claim 1 is:
A vibration-damping pillar installed between the upper and lower beams in a pillar / beam frame of a building structure,
In the damping stud, a steel damper is installed between the stud members provided on the upper and lower beams via a viscoelastic damper or lead damper, and the viscoelastic damper or lead damper controls the horizontal damper in the in-plane direction. It has a vibration function and can follow horizontal deformation in the out-of-plane direction.
The spacer member is provided with a stopper member by opening a predetermined clearance at both side positions of the viscoelastic damper or lead damper, and the clearance is generated when a medium or large amplitude exceeding a small amplitude such as wind fluctuation occurs. The viscoelastic damper or the lead damper is sized to collide with the stopper member.

請求項2に記載した発明に係る制振間柱は、
建築構造物の柱・梁架構における上下の梁間に設置される制振間柱であって、
制振間柱は、上下の梁間に鋼材系ダンパーが壁型粘弾性ダンパーを介して設置され、面内方向への水平変形時に前記壁型粘弾性ダンパーが制振機能を発揮する構成とされていること、
壁型粘弾性ダンパーは、梁又は鋼材系ダンパーに形成された抵抗板が粘弾性体容器内に挿入され、前記抵抗板の外周面と粘弾性体容器の内周面との間に粘弾性体が設置された構成とされ、面内方向における前記抵抗板と粘弾性体容器との間隔は、風揺れなどの小振幅を超える中・大振幅が生じた際に略全ての水平力を鋼材系ダンパーへ伝達する大きさとされていることを特徴とする。
The vibration damping stud according to the invention described in claim 2 is:
A vibration-damping pillar installed between the upper and lower beams in a pillar / beam frame of a building structure,
In the damping pillar, a steel damper is installed between the upper and lower beams via a wall-type viscoelastic damper, and the wall-type viscoelastic damper exhibits a damping function during horizontal deformation in the in-plane direction. thing,
The wall-type viscoelastic damper is a viscoelastic body in which a resistance plate formed on a beam or a steel damper is inserted into a viscoelastic body container, and between the outer peripheral surface of the resistance plate and the inner peripheral surface of the viscoelastic body container. The distance between the resistance plate and the viscoelastic body container in the in-plane direction is almost all horizontal force when a medium or large amplitude exceeding a small amplitude such as wind fluctuation occurs. It is characterized by being sized to be transmitted to the damper.

請求項3に記載した発明に係る制振間柱は、
建築構造物の柱・梁架構における上下の梁間に設置される制振間柱であって、
制振間柱は、上下の梁間に鋼材系ダンパーが壁型鉛ダンパーを介して設置され、面内方向への水平変形時に前記壁型鉛ダンパーが制振機能を発揮する構成とされていること、
壁型鉛ダンパーは、梁又は鋼材系ダンパーに形成された抵抗板が鉛容器内に挿入されており、抵抗板の面内方向と平行な面と鉛容器の内周面との間に鉛が設置され、抵抗板の面外方向と平行な面と鉛容器の内周面との間に所定のクリアランスが開けられた構成とされていること、
前記クリアランスは、風揺れなどの小振幅を超える中・大振幅が生じた際に抵抗板が鉛容器に衝突する大きさとされていることを特徴とする。
The vibration damping stud according to the invention described in claim 3 is:
A vibration-damping pillar installed between the upper and lower beams in a pillar / beam frame of a building structure,
The vibration damping pillar is configured such that a steel damper is installed between the upper and lower beams via a wall-type lead damper, and the wall-type lead damper exhibits a damping function when horizontally deformed in the in-plane direction.
In the wall-type lead damper, a resistor plate formed on a beam or steel damper is inserted in the lead container, and lead is placed between the surface parallel to the in-plane direction of the resistor plate and the inner peripheral surface of the lead container. Installed and configured to have a predetermined clearance between the surface parallel to the out-of-plane direction of the resistance plate and the inner peripheral surface of the lead container;
The clearance is characterized in that the resistance plate collides with the lead container when a medium or large amplitude exceeding a small amplitude such as wind fluctuation occurs.

請求項4記載の発明は、請求項1に記載した制振間柱において、
粘弾性ダンパーは、間柱部材側の連結部材と鋼材系ダンパー側の連結部材との間に粘弾性体が設置され、同粘弾性体の変形によって制振間柱の面外方向への水平変形を許容するピン機構に構成されていることを特徴とする。
The invention described in claim 4 is the vibration damping stud described in claim 1,
The viscoelastic damper has a viscoelastic body installed between the connecting member on the stud member side and the connecting member on the steel damper side, and the deformation of the viscoelastic body allows horizontal deformation in the out-of-plane direction of the damping stud. It is comprised by the pin mechanism to do.

請求項5記載の発明は、請求項1に記載した制振間柱において、
鉛ダンパーは、間柱部材側の連結部材と鋼材系ダンパー側の連結部材との間に鉛が設置され、同鉛の変形によって制振間柱の面外方向への水平変形を許容するピン機構に構成されていることを特徴とする。
The invention described in claim 5 is the vibration damping stud described in claim 1,
The lead damper is configured as a pin mechanism in which lead is installed between the connecting member on the stud member side and the connecting member on the steel damper side, and the deformation of the lead allows horizontal deformation in the out-of-plane direction of the damping stud. It is characterized by being.

請求項6記載の発明は、請求項4又は5に記載した制振間柱において、
一方の連結部材に凸レンズ状のR凸面が面外方向に形成され、他方の連結部材には凹レンズ状のR凹面が面外方向に形成されており、相対峙させた前記R凸凹面の相互間に粘弾性体又は鉛が設置されていることを特徴とする。
The invention described in claim 6 is the vibration damping stud described in claim 4 or 5,
A convex lens-shaped R convex surface is formed in one connecting member in the out-of-plane direction, and a concave lens-shaped R concave surface is formed in the other connecting member in the out-of-plane direction. Is characterized in that a viscoelastic body or lead is installed.

請求項7記載の発明は、請求項4又は5に記載した制振間柱において、
一方の連結部材に雄部が形成され、他方の連結部材に雌部が形成されており、両者を相互に嵌め合わせた構造とされていること、
前記雄部の外周面と雌部の内周面との間に粘弾性体又は鉛が設置されていることを特徴とする。
The invention according to claim 7 is the vibration damping stud described in claim 4 or 5,
A male part is formed on one connecting member, a female part is formed on the other connecting member, and the two are fitted together.
A viscoelastic body or lead is installed between the outer peripheral surface of the male part and the inner peripheral surface of the female part.

請求項8記載の発明は、請求項7に記載した制振間柱において、
雄部は側面視を鍵穴形状に形成されており、側面視をC字形状に形成された雌部と嵌め合わせた構造とされていることを特徴とする。
The invention described in claim 8 is the vibration damping stud described in claim 7,
The male part is formed in a keyhole shape when viewed from the side, and has a structure in which the male part is fitted with a female part formed in a C shape when viewed from the side.

請求項9記載の発明は、請求項4又は5に記載した制振間柱において、
鋼材系ダンパー側の連結部材に筒状部が形成され、同筒状部の中空部に間柱部材側の連結部材である回転軸が貫通され、同回転軸の両端がストッパー部材に固定されており、前記筒状部の内周面と回転軸の外周面との間に粘弾性体又は鉛が設置されていることを特徴とする。
The invention described in claim 9 is the vibration damping stud described in claim 4 or 5,
A cylindrical part is formed in the connecting member on the steel material damper side, a rotating shaft that is a connecting member on the stud member side is penetrated through a hollow part of the cylindrical part, and both ends of the rotating shaft are fixed to the stopper member The viscoelastic body or lead is installed between the inner peripheral surface of the cylindrical part and the outer peripheral surface of the rotating shaft.

請求項10記載の発明は、請求項1又は4又は5に記載した制振間柱において、
粘弾性ダンパー又は鉛ダンパーの側部に、ストッパー部材との緩衝材として粘弾性体又は鉛が設置されていることを特徴とする。
The invention described in claim 10 is the vibration damping stud described in claim 1, 4 or 5,
A viscoelastic body or lead is installed as a buffer material with the stopper member on the side of the viscoelastic damper or the lead damper.

本発明に係る制振間柱は、風揺れなどの小振幅から地震時の中・大振幅までの広い振幅領域で良好な制振機能を発揮する。しかも、粘弾性ダンパー又は鉛ダンパーが面外方向への追従機能と風揺れなどの小振幅に対する制振機能、及び鉛直荷重の吸収機能を発揮するので、部材数が少なく構造が簡単である。そのため、施工性が良く、コストの削減にも寄与できる。   The vibration damping stud according to the present invention exhibits a good vibration damping function in a wide amplitude range from a small amplitude such as wind fluctuation to a middle / large amplitude during an earthquake. In addition, since the viscoelastic damper or the lead damper exhibits a function to follow in the out-of-plane direction, a vibration control function against a small amplitude such as wind fluctuation, and a function to absorb a vertical load, the number of members is small and the structure is simple. Therefore, workability is good and can contribute to cost reduction.

また、粘弾性ダンパー又は鉛ダンパーが面外方向への追従機能を発揮した際に、同粘弾性ダンパーの粘弾性体又は鉛ダンパーの鉛が変形して、制振機能を発揮する。   Further, when the viscoelastic damper or the lead damper exhibits a follow-up function in the out-of-plane direction, the viscoelastic body of the viscoelastic damper or the lead of the lead damper is deformed to exhibit a damping function.

制振間柱は、上下の梁に設けられた間柱部材の間に鋼材系ダンパーが粘弾性ダンパー又は鉛ダンパーを介して設置され、面内方向への水平変形時に前記粘弾性ダンパー又は鉛ダンパーが制振機能を発揮し、面外方向への水平変形に追従可能な構成とされる。間柱部材には、前記粘弾性ダンパー又は鉛ダンパーの両側位置に所定のクリアランスを開けてストッパー部材が設けられる。前記クリアランスは、風揺れなどの小振幅を超える中・大振幅が生じた際に粘弾性ダンパー又は鉛ダンパーが前記ストッパー部材に衝突する大きさとされる。   In the damping stud, a steel damper is installed between the stud members provided on the upper and lower beams via a viscoelastic damper or lead damper, and the viscoelastic damper or lead damper controls the horizontal damper in the in-plane direction. It is configured to exhibit a vibration function and to follow horizontal deformation in the out-of-plane direction. The spacer member is provided with a stopper member with a predetermined clearance at both side positions of the viscoelastic damper or the lead damper. The clearance is sized such that a viscoelastic damper or a lead damper collides with the stopper member when a medium / large amplitude exceeding a small amplitude such as wind fluctuation occurs.

請求項1及び請求項4、6に記載した発明に係る制振間柱の実施例を、図1〜図9に基づいて説明する。   Embodiments of the vibration damping stud according to the invention described in claim 1 and claims 4 and 6 will be described with reference to FIGS.

この制振間柱1は、通例の制振間柱と略同様に、建築構造物2の柱3と梁4とで形成した架構5における上下の梁4と4の間に設置されるが、上側梁4から垂れ下げた剛強な上部間柱部材6と、同上部間柱部材6と向かい合う配置で下側梁4から立ち上げた剛強な下部間柱部材7との間に、鋼材系ダンパー8が粘弾性ダンパー9を介して設置された構成とされている(図1及び図2を参照)。   The vibration control pillar 1 is installed between the upper and lower beams 4 and 4 in the frame 5 formed by the pillar 3 and the beam 4 of the building structure 2 in substantially the same manner as a conventional vibration control pillar. A steel damper 8 is a viscoelastic damper 9 between a rigid upper column member 6 suspended from 4 and a rigid lower column member 7 raised from the lower beam 4 so as to face the upper column member 6. It is set as the structure installed via (refer FIG.1 and FIG.2).

鋼材系ダンパー8は、低降伏点鋼板10の外周に鋼製フレーム11が形成され、更に同低降伏点鋼板10の両面に十字状に組み立てられたスチフナー12が接合され、面外方向への座屈を防止するべく補強されている(図2及び図3を参照)。   In the steel damper 8, a steel frame 11 is formed on the outer periphery of the low yield point steel plate 10, and a stiffener 12 assembled in a cross shape is joined to both surfaces of the low yield point steel plate 10 so as to be seated in the out-of-plane direction. It is reinforced to prevent bending (see FIGS. 2 and 3).

粘弾性ダンパー9は、間柱部材側の連結部材13と鋼材系ダンパー側の連結部材14との間に通例のシリコン系(但し、材質は限定されない。)の粘弾性体15が設置された構成とされている。具体的には、間柱部材側の連結部材13は鋼板で構成されており、鋼材系ダンパー側の面13aが面外方向に向かって凸レンズ状のR凸面(以下、鋼材系ダンパー側の面と同一符号13aを使用する。)に形成されている。鋼材系ダンパー側の連結部材14も鋼板で構成されており、前記連結部材13の凸レンズ状のR凸面13aと対応するように、間柱部材側の面14aが面外方向に向かって凹レンズ状のR凹面(以下、間柱部材側の面と同一符号14aを使用する。)に形成されている(図3(B)を参照)。そして、相対峙させたR凸面13aとR凹面14aとの間には、変形した際に良好な制振機能を発揮し、且つ建築構造物2のクリープ現象などを起源とする鉛直荷重を吸収するに十分な厚さを有する粘弾性体15が設置され、同粘弾性体15の変形によって回転可能なピン機構に構成されている(図2及び図3を参照、請求項4、6記載の発明)。   The viscoelastic damper 9 has a configuration in which a viscoelastic body 15 of a usual silicon type (however, the material is not limited) is installed between the connecting member 13 on the stud member side and the connecting member 14 on the steel material damper side. Has been. Specifically, the connecting member 13 on the stud member side is made of a steel plate, and the surface 13a on the steel material damper side is an convex convex lens-shaped R convex surface (hereinafter referred to as the surface on the steel material damper side). 13a is used). The connecting member 14 on the steel material damper side is also made of a steel plate, and the surface 14a on the stud member side is concave lens-shaped R toward the out-of-plane direction so as to correspond to the convex lens-shaped R convex surface 13a of the connecting member 13. It is formed in a concave surface (hereinafter, the same reference numeral 14a as the surface on the side of the stud member is used) (see FIG. 3B). Between the R-convex surface 13a and the R-concave surface 14a, which are relatively bent, exhibit a good damping function when deformed, and absorb vertical loads originating from the creep phenomenon of the building structure 2 and the like. The viscoelastic body 15 having a sufficient thickness is installed, and is configured as a pin mechanism that can be rotated by deformation of the viscoelastic body 15 (see FIGS. 2 and 3, inventions according to claims 4 and 6). ).

鋼材系ダンパー8の上下端部にそれぞれ粘弾性ダンパー9、9が配置され、鋼材系ダンパー8の鋼製フレーム11の上下の各辺と粘弾性ダンパー9の連結部材14とが連結され一体化されている。この上下の粘弾性ダンパー9の連結部材13が間柱部材6(7)と連結されている。鋼材系ダンパー8の上下端部は、回転可能なピン機構に構成された粘弾性ダンパー9によって間柱部材6、7に連結されることになり、その結果、図4に示すように、制振間柱1は面外方向への水平変形に追従可能で、更に粘弾性ダンパー9が面外方向への追従機能を発揮した際に、同粘弾性ダンパー9の粘弾性体15が変形し、制振機能を発揮する構成となる。しかも、粘弾性体15は変形(収縮)して、クリープ現象などを起源とする鉛直荷重を吸収するので、鋼材系ダンパー8の制振機能を低下させることがない。   Viscoelastic dampers 9 and 9 are respectively disposed at the upper and lower ends of the steel damper 8, and the upper and lower sides of the steel frame 11 of the steel damper 8 and the connecting member 14 of the viscoelastic damper 9 are connected and integrated. ing. The connecting members 13 of the upper and lower viscoelastic dampers 9 are connected to the stud member 6 (7). The upper and lower end portions of the steel damper 8 are connected to the spacer members 6 and 7 by viscoelastic dampers 9 having a rotatable pin mechanism. As a result, as shown in FIG. 1 is capable of following horizontal deformation in the out-of-plane direction, and further, when the viscoelastic damper 9 exhibits a follow-up function in the out-of-plane direction, the viscoelastic body 15 of the viscoelastic damper 9 is deformed, and the vibration damping function It becomes the composition which demonstrates. In addition, since the viscoelastic body 15 is deformed (contracted) and absorbs a vertical load originating from a creep phenomenon or the like, the vibration damping function of the steel damper 8 is not deteriorated.

間柱部材6(7)には、前記粘弾性ダンパー8の両側位置に所定のクリアランスTを開けてストッパー部材16、16が設けられている(図3(A)を参照)。ここで云う所定のクリアランスTとは、風揺れなどの小振幅を超える中・大振幅が生じた際に粘弾性ダンパー9が前記ストッパー部材16に衝突する大きさとされている。すなわち、風揺れなどで小振幅が生じると、粘弾性ダンパー9の粘弾性体15が変形して制振機能を発揮する(図5を参照)。一方、地震時で中・大振幅が生じると、粘弾性ダンパー9の粘弾性体15が大きく変形してストッパー部材16に衝突して水平力を鋼材系ダンパー8に伝達する。そして、水平力が伝達された鋼材系ダンパー8は変形して降伏し、制振機能を発揮する(図6を参照)。 The stud member 6 (7), the stopper member 16, 16 with a predetermined clearance T 1 on both sides the position of the viscoelastic damper 8 is provided (see Figure 3 (A)). The predetermined clearance T 1 referred to herein, viscoelastic dampers 9 in the large amplitude and in more than small amplitude such as wind shaking occurs is sized to impinge on the stopper member 16. That is, when a small amplitude occurs due to wind fluctuation or the like, the viscoelastic body 15 of the viscoelastic damper 9 is deformed to exhibit a vibration damping function (see FIG. 5). On the other hand, when a medium or large amplitude occurs during an earthquake, the viscoelastic body 15 of the viscoelastic damper 9 is greatly deformed and collides with the stopper member 16 to transmit a horizontal force to the steel damper 8. And the steel material damper 8 to which the horizontal force was transmitted deform | transforms and yields, and exhibits a damping function (refer FIG. 6).

上記構成の制振間柱1は、風揺れなどの小振幅から地震時の中・大振幅までの広い振幅領域で良好な制振機能を発揮する。しかも、粘弾性ダンパー9が面外方向への追従機能と風揺れなどの小振幅に対する制振機能、及び鉛直荷重の吸収機能を発揮するので、部材数が少なく構造が簡単である。そのため、施工性が良く、コストの削減にも寄与できる。   The vibration damping stud 1 having the above configuration exhibits a good vibration damping function in a wide amplitude region from a small amplitude such as wind shaking to a middle / large amplitude during an earthquake. In addition, since the viscoelastic damper 9 exhibits an out-of-plane tracking function, a vibration control function against small amplitudes such as wind fluctuations, and a vertical load absorbing function, the number of members is small and the structure is simple. Therefore, workability is good and can contribute to cost reduction.

本実施例1の制振間柱1は、鋼材系ダンパー8の上下端部に粘弾性ダンパー9、9を有する構成とされているが、図7及び図8に示すように、一方の端部のみに有する構成でも、略同様に実施できる。   The damping pillar 1 of the first embodiment is configured to have viscoelastic dampers 9 and 9 at the upper and lower ends of the steel damper 8 but only one end is shown in FIGS. 7 and 8. The configuration of the above can be implemented in substantially the same manner.

本実施例1の粘弾性ダンパー9は、間柱部材側の連結部材13に形成された凸レンズ状のR凸面13aと、鋼材系ダンパー側の連結部材14に形成された凹レンズ状のR凹面14aとの間に粘弾性体15が設置された構成とされているが、間柱部材側の連結部材13に形成された凹レンズ状のR凹面と、鋼材系ダンパー側の連結部材14に形成された凸レンズ状のR凸面との間に粘弾性体15が設置された構成、即ち上下逆の構成でも略同様に実施できる(図示を省略)。また、図9に示すように、連結部材13、14にR凸面13a、R凹面14aが形成されていなくとも、略同様に実施できる。   The viscoelastic damper 9 according to the first embodiment includes a convex lens-shaped R convex surface 13a formed on the connecting member 13 on the stud member side and a concave lens-shaped R concave surface 14a formed on the connecting member 14 on the steel damper side. The viscoelastic body 15 is disposed between the concave lens-shaped R concave surface formed on the connecting member 13 on the stud member side and the convex lens-shaped surface formed on the connecting member 14 on the steel damper side. The configuration in which the viscoelastic body 15 is disposed between the convex surface of the R, that is, the configuration upside down can be implemented in substantially the same manner (not shown). Further, as shown in FIG. 9, even if the connecting members 13 and 14 are not formed with the R convex surface 13a and the R concave surface 14a, it can be carried out in substantially the same manner.

図10に示す粘弾性ダンパー17を用いても、上記実施例1と略同様に実施できる。
粘弾性ダンパー17は、間柱部材側の連結部材18に形成された雄部18a(本実施例では連結部材18全体で雄部18aを形成)と、鋼材系ダンパー側の連結部材19に形成された雌部19aとの嵌合構造とされており、前記雄部18aの外周面と雌部19aの内周面との間に粘弾性体15が設置された構成とされている(請求項7記載の発明)。
Even if the viscoelastic damper 17 shown in FIG. 10 is used, it can be implemented in substantially the same manner as in the first embodiment.
The viscoelastic damper 17 is formed on the male part 18a formed on the connecting member 18 on the stud member side (in the present embodiment, the male part 18a is formed on the entire connecting member 18) and on the connecting member 19 on the steel damper side. It is set as the fitting structure with the female part 19a, and it is set as the structure by which the viscoelastic body 15 was installed between the outer peripheral surface of the said male part 18a, and the internal peripheral surface of the female part 19a (Claim 7). Invention).

なお、本実施例の雄部18aと雌部19aとは比較的浅い嵌合構造とされているが、嵌め合いが深くても良い。その場合は、図11に示すように、雄部18aの側面視を鍵穴形状に形成し、側面視をC字形状に形成した雌部19aと嵌め合わせると良い(請求項8記載の発明)。   In addition, although the male part 18a and the female part 19a of a present Example are set as the comparatively shallow fitting structure, a fitting may be deep. In this case, as shown in FIG. 11, the male part 18a may be fitted with a female part 19a having a side view formed in a keyhole shape and a side view formed in a C-shape (the invention according to claim 8).

図12に示す粘弾性ダンパー20を用いても、上記実施例1と略同様に実施できる。
粘弾性ダンパー20の鋼材系ダンパー側の連結部材21に筒状部21aが形成され、同筒状部21aに貫通させた回転軸22を間柱部材側の連結部材として、その両端がストッパー部材16、16に固定されている。そして、筒状部21aの内周面と回転軸22の外周面との間に粘弾性体15が設置されている(請求項9記載の発明)。
Even if the viscoelastic damper 20 shown in FIG. 12 is used, it can be implemented in substantially the same manner as in the first embodiment.
A cylindrical portion 21a is formed in the connecting member 21 on the steel material damper side of the viscoelastic damper 20, and the rotating shaft 22 penetrated through the cylindrical portion 21a is used as a connecting member on the stud member side, and both ends thereof are stopper members 16. 16 is fixed. And the viscoelastic body 15 is installed between the inner peripheral surface of the cylindrical part 21a and the outer peripheral surface of the rotating shaft 22 (invention of Claim 9).

上記実施例1〜3の粘弾性ダンパー9(17、20)はストッパー部材16に直接衝突する構成とされているが、図13に例示するようにストッパー部材16との間に緩衝材として粘弾性体23が設置されていると、衝突した際に破損することがない(請求項10記載の発明)。   Although the viscoelastic dampers 9 (17, 20) of the first to third embodiments are configured to directly collide with the stopper member 16, the viscoelasticity is used as a buffer material between the stopper member 16 and the stopper member 16 as illustrated in FIG. If the body 23 is installed, it will not be damaged when it collides (invention of claim 10).

上記実施例1〜4は粘弾性ダンパー9(17、20)を用いて実施しているが、鉛ダンパーを用いても、略同様に実施できる(図示を省略)。
即ち、制振間柱は、上記実施例1〜4の粘弾性ダンパー9(17、20)の粘弾性体15の代わりに鉛が設置された構成の鉛ダンパーを介して鋼材系ダンパー8が上下の間柱部材6と7との間に設置される(請求項1及び請求項5〜9記載の発明)。
なお、この場合も実施例4と略同様に鉛ダンパーとストッパー部材16との間に緩衝材として鉛を設置すると、好都合である(請求項10記載の発明)。
Although the said Examples 1-4 are implemented using the viscoelastic damper 9 (17, 20), even if it uses a lead damper, it can implement substantially similarly (illustration is abbreviate | omitted).
That is, the steel damper 8 is vertically moved through a lead damper having a structure in which lead is installed instead of the viscoelastic body 15 of the viscoelastic damper 9 (17, 20) of the first to fourth embodiments. It is installed between the stud members 6 and 7 (Invention of Claim 1 and Claims 5-9).
In this case as well, it is advantageous to install lead as a buffer material between the lead damper and the stopper member 16 in substantially the same manner as in the fourth embodiment (the invention according to claim 10).

本実施例の制振間柱24は、壁型粘弾性ダンパー25が鋼材系ダンパー8の上下両端部に設けられている(図14を参照)。
壁型粘弾性ダンパー25は、上側連結部材26に形成された抵抗板27が、下側連結部材28に形成された前記抵抗板27の外周より一回り大きい内周を有する粘弾性体容器29内に挿入され、抵抗板27の外周面と粘弾性体容器29の内周面との間に粘弾性体15が設置されている(請求項2記載の発明)。
In the damping damping column 24 of the present embodiment, wall type viscoelastic dampers 25 are provided at both upper and lower ends of the steel damper 8 (see FIG. 14).
The wall-type viscoelastic damper 25 includes a viscoelastic body container 29 in which a resistance plate 27 formed on the upper connection member 26 has an inner circumference that is slightly larger than the outer periphery of the resistance plate 27 formed on the lower connection member 28. The viscoelastic body 15 is installed between the outer peripheral surface of the resistance plate 27 and the inner peripheral surface of the viscoelastic container 29 (the invention according to claim 2).

面外方向への水平変形に対しては、抵抗板27と粘弾性体容器29との間に設置された粘弾性体15が変形することで、制振間柱24を面外方向へ追従可能な構成とし、且つ制振機能も発揮する。   With respect to horizontal deformation in the out-of-plane direction, the viscoelastic body 15 installed between the resistance plate 27 and the viscoelastic body container 29 is deformed, so that the damping pillar 24 can follow the out-of-plane direction. It has a structure and exhibits a vibration control function.

面内方向への水平変形に対しては、風揺れなどで小振幅が生じると、抵抗板27と粘弾性体容器29との間に設置された粘弾性体15が変形して制振機能を発揮する。一方、地震で中・大振幅が生じると、抵抗板27が粘弾性体15を介して粘弾性体容器29を強く押して、水平力を鋼材系ダンパー8に伝達する。そして、水平力が伝達された鋼材系ダンパー8は変形して降伏し、制振機能を発揮する。つまり、面内方向における抵抗板27と粘弾性体容器29との間隔Lは、風揺れなどの小振幅を超える中・大振幅が生じた際に、略全ての水平力が鋼材系ダンパー8へ伝達される大きさとされている。   For horizontal deformation in the in-plane direction, when a small amplitude is generated due to wind fluctuation or the like, the viscoelastic body 15 installed between the resistance plate 27 and the viscoelastic body container 29 is deformed to have a damping function. Demonstrate. On the other hand, when a medium or large amplitude occurs due to an earthquake, the resistance plate 27 strongly pushes the viscoelastic body container 29 via the viscoelastic body 15 and transmits a horizontal force to the steel damper 8. And the steel material damper 8 to which the horizontal force was transmitted deform | transforms and yields, and exhibits a damping function. That is, the distance L between the resistance plate 27 and the viscoelastic body container 29 in the in-plane direction is such that almost all horizontal force is applied to the steel damper 8 when a medium or large amplitude exceeding a small amplitude such as wind fluctuation occurs. It is supposed to be transmitted.

クリープ現象などを起源とする鉛直荷重は、抵抗板27の下面と粘弾性体容器29の底面との間に配置された粘弾性体15が収縮して吸収する。   A vertical load originating from a creep phenomenon or the like is absorbed by contracting the viscoelastic body 15 disposed between the lower surface of the resistance plate 27 and the bottom surface of the viscoelastic body container 29.

本実施例6の制振間柱24は、鋼材系ダンパー8の上下端部に壁型粘弾性ダンパー25、25を有する構成とされているが、図15に示すように下端のみに有する構成でも良く、図示は省略するが上端のみに有する構成でも良い。また、図16に示すように、壁型粘弾性ダンパー25が上下逆の構成でも略同様に実施できる。   The vibration damping pillars 24 of the sixth embodiment are configured to have wall-type viscoelastic dampers 25 and 25 at the upper and lower ends of the steel damper 8, but may be configured only at the lower ends as shown in FIG. 15. Although not shown, a configuration having only the upper end may be used. Moreover, as shown in FIG. 16, even if the wall-type viscoelastic damper 25 is upside down, it can be implemented in substantially the same manner.

上記実施例6は壁型粘弾性ダンパー25を用いて実施したが、壁型鉛ダンパーを用いても略同様に実施できる。
即ち、図17の制振間柱30は、上下の梁4と4の間に鋼材系ダンパー8が壁型鉛ダンパー31を介して設置されている。壁型鉛ダンパー31は、上記実施例6の壁型粘弾性ダンパー25と略同様の構成とされ、上側連結部材26に形成された抵抗板27が、下側連結部材28に形成された鉛容器32内に挿入されるが、抵抗板27の面内方向と平行な面と鉛容器32の内周面との間に鉛33が設置され、抵抗板27の面外方向と平行な面と鉛容器32の内周面との間に所定のクリアランスTが開けられた構成とされている。ここで云う所定のクリアランスTとは、風揺れなどの小振幅を超える中・大振幅が生じた際に、抵抗板27が鉛容器32に衝突する大きさとされている(請求項3記載の発明)。
Although the above Example 6 was implemented using the wall type viscoelastic damper 25, it can be implemented in substantially the same manner using a wall type lead damper.
That is, in the damping damping column 30 of FIG. 17, the steel damper 8 is installed between the upper and lower beams 4 and 4 via the wall-type lead damper 31. The wall-type lead damper 31 has substantially the same configuration as the wall-type viscoelastic damper 25 of the sixth embodiment, and a lead container in which a resistance plate 27 formed on the upper connecting member 26 is formed on the lower connecting member 28. The lead 33 is inserted between the surface parallel to the in-plane direction of the resistor plate 27 and the inner peripheral surface of the lead container 32, and the surface parallel to the out-of-plane direction of the resistor plate 27 and lead. A predetermined clearance T < b > 2 is opened between the inner peripheral surface of the container 32. The predetermined clearance T 2 referred here, when a large amplitude and in more than small amplitude such as wind shaking occurs, the resistance plate 27 is sized to impinge on the bomb 32 (according to claim 3, wherein invention).

以上に本発明の実施例を説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の形態で実施し得る。   Although the embodiments of the present invention have been described above, the present invention is not limited to these embodiments and can be implemented in various forms without departing from the gist of the present invention.

本発明に係る制振間柱が設置された建築構造物を示した立面図である。It is the elevation which showed the building structure where the vibration suppression stud according to the present invention was installed. (A)は実施例1の制振間柱を示した立面図である。(B)は(A)のA−A矢視断面図である。(A) is an elevation view showing a vibration damping pillar of Example 1. FIG. (B) is AA arrow sectional drawing of (A). (A)は実施例1の制振間柱の下部を示した拡大立面図である。(B)は(A)のB−B矢視断面図である。(A) is an enlarged elevation view showing the lower part of the vibration damping stud of Example 1. FIG. (B) is a BB arrow sectional view of (A). 面外方向への変形に追従した制振間柱を示した断面図である。It is sectional drawing which showed the damping pillar which followed the deformation | transformation to an out-of-plane direction. 風揺れなどで面内方向へ変形(小振幅)が生じた際の制振間柱を示した立面図である。It is an elevational view showing a vibration damping interphase column when deformation (small amplitude) occurs in the in-plane direction due to wind fluctuation or the like. 地震時に面内方向へ変形(中・大振幅)が生じた際の制振間柱を示した立面図である。It is an elevational view showing a vibration-damping stud when deformation (medium / large amplitude) occurs in the in-plane direction during an earthquake. (A)は異なる制振間柱を示した立面図である。(B)は(A)のC−C矢視断面図である。(A) is an elevation view showing different vibration control pillars. (B) is CC sectional view taken on the line of (A). (A)は更に異なる制振間柱を示した立面図である。(B)は(A)のD−D矢視断面図である。(A) is an elevational view showing yet another vibration suppression stud. (B) is a DD arrow sectional drawing of (A). 異なる粘弾性ダンパーを示した断面図である。It is sectional drawing which showed a different viscoelastic damper. 実施例2の粘弾性ダンパーを示した断面図である。6 is a cross-sectional view showing a viscoelastic damper of Example 2. FIG. 異なる粘弾性ダンパーを示した断面図である。It is sectional drawing which showed a different viscoelastic damper. (A)は実施例3の粘弾性ダンパーを示した立面図である。(B)は(A)のE−E矢視断面図である。(A) is an elevation view showing the viscoelastic damper of Example 3. FIG. (B) is EE arrow sectional drawing of (A). 実施例4の粘弾性ダンパーを示した立面図である。FIG. 6 is an elevational view showing a viscoelastic damper of Example 4. (A)は実施例6の制振間柱を示した立面図である。(B)は(A)のF−F矢視断面図である。(C)は(A)のG−G矢視断面図である。(A) is an elevational view showing a vibration damping stud of Example 6. FIG. (B) is FF arrow sectional drawing of (A). (C) is GG arrow sectional drawing of (A). (A)は異なる制振間柱を示した立面図である。(B)は(A)のH−H矢視断面図である。(A) is an elevation view showing different vibration control pillars. (B) is a HH arrow sectional view of (A). (A)は更に異なる制振間柱を示した立面図である。(B)は(A)のI−I矢視断面図である。(A) is an elevational view showing yet another vibration suppression stud. (B) is the II arrow directional cross-sectional view of (A). (A)は実施例7の制振間柱を示した立面図である。(B)は(A)のJ−J矢視断面図である。(C)は(A)のK−K矢視断面図である。(A) is an elevational view showing a vibration damping stud of Example 7. FIG. (B) is JJ arrow sectional drawing of (A). (C) is a KK arrow sectional view of (A).

符号の説明Explanation of symbols

1 制振間柱
2 建築構造物
4 梁
5 架構
6 (上部)間柱部材
7 (下部)間柱部材
8 鋼材系ダンパー
9 粘弾性ダンパー
13 間柱部材側の連結部材
13a 凸状のR凸面
14 鋼材系ダンパー側の連結部材
14a 凹状のR凹面
15 粘弾性体
16 ストッパー部材
17 粘弾性ダンパー
18 間柱部材側の連結部材
18a 雄部
19 鋼材系ダンパー側の連結部材
19a 雌部
20 粘弾性ダンパー
21 鋼材系ダンパー側の連結部材
22 回転軸(間柱部材側の連結部材)
23 粘弾性体(緩衝材)
24 制振間柱
25 壁型粘弾性ダンパー
26 上側連結部材
27 抵抗板
28 下側連結部材
29 粘弾性体容器
30 制振間柱
31 壁型鉛ダンパー
32 鉛容器
33 鉛
、T クリアランス
L 面内方向における抵抗板と粘弾性体容器との間隔
DESCRIPTION OF SYMBOLS 1 Damping stud 2 Building structure 4 Beam 5 Frame 6 (Upper) stud member 7 (Lower) stud member 8 Steel damper 9 Viscoelastic damper 13 Connecting member 13a on the side of the stud member 13a Convex R convex surface 14 Steel damper side Connecting member 14a Concave R concave surface 15 Viscoelastic body 16 Stopper member 17 Viscoelastic damper 18 Connecting member 18 on the middle column member side Male part 19 Connecting member 19a on the steel material damper side 19a Female part 20 Viscoelastic damper 21 On the steel material damper side Connecting member 22 Rotating shaft (Connecting member on the stud member side)
23 Viscoelastic body (buffer material)
24 damping stud 25 wall type Viscoelastic Damper 26 upper connecting member 27 resistance plate 28 lower connecting member 29 viscoelastic body container 30 damping stud 31 wall type lead damper 32 bomb 33 lead T 1, T 2 clearance L plane Between resistance plate and viscoelastic container in direction

Claims (10)

建築構造物の柱・梁架構における上下の梁間に設置される制振間柱であって、
制振間柱は、上下の梁に設けられた間柱部材の間に鋼材系ダンパーが粘弾性ダンパー又は鉛ダンパーを介して設置され、面内方向への水平変形時に前記粘弾性ダンパー又は鉛ダンパーが制振機能を発揮し、面外方向への水平変形に追従可能な構成とされていること、
間柱部材には、前記粘弾性ダンパー又は鉛ダンパーの両側位置に所定のクリアランスを開けてストッパー部材が設けられており、前記クリアランスは、風揺れなどの小振幅を超える中・大振幅が生じた際に粘弾性ダンパー又は鉛ダンパーが前記ストッパー部材に衝突する大きさとされていることを特徴とする、制振間柱。
A vibration-damping pillar installed between the upper and lower beams in a pillar / beam frame of a building structure,
In the damping stud, a steel damper is installed between the stud members provided on the upper and lower beams via a viscoelastic damper or lead damper, and the viscoelastic damper or lead damper controls the horizontal damper in the in-plane direction. It has a vibration function and can follow horizontal deformation in the out-of-plane direction.
The spacer member is provided with a stopper member by opening a predetermined clearance at both side positions of the viscoelastic damper or lead damper, and the clearance is generated when a medium or large amplitude exceeding a small amplitude such as wind fluctuation occurs. The vibration damping stud is characterized in that the viscoelastic damper or the lead damper collides with the stopper member.
建築構造物の柱・梁架構における上下の梁間に設置される制振間柱であって、
制振間柱は、上下の梁間に鋼材系ダンパーが壁型粘弾性ダンパーを介して設置され、面内方向への水平変形時に前記壁型粘弾性ダンパーが制振機能を発揮する構成とされていること、
壁型粘弾性ダンパーは、梁又は鋼材系ダンパーに形成された抵抗板が粘弾性体容器内に挿入され、前記抵抗板の外周面と粘弾性体容器の内周面との間に粘弾性体が設置された構成とされ、面内方向における前記抵抗板と粘弾性体容器との間隔は、風揺れなどの小振幅を超える中・大振幅が生じた際に略全ての水平力を鋼材系ダンパーへ伝達する大きさとされていることを特徴とする、制振間柱。
A vibration-damping pillar installed between the upper and lower beams in a pillar / beam frame of a building structure,
In the damping pillar, a steel damper is installed between the upper and lower beams via a wall-type viscoelastic damper, and the wall-type viscoelastic damper exhibits a damping function during horizontal deformation in the in-plane direction. thing,
The wall-type viscoelastic damper is a viscoelastic body in which a resistance plate formed on a beam or a steel material damper is inserted into a viscoelastic body container, and between the outer peripheral surface of the resistance plate and the inner peripheral surface of the viscoelastic body container. The distance between the resistance plate and the viscoelastic body container in the in-plane direction is almost all horizontal force when a medium or large amplitude exceeding a small amplitude such as wind fluctuation occurs. A vibration-damping stud, which is sized to transmit to the damper.
建築構造物の柱・梁架構における上下の梁間に設置される制振間柱であって、
制振間柱は、上下の梁間に鋼材系ダンパーが壁型鉛ダンパーを介して設置され、面内方向への水平変形時に前記壁型鉛ダンパーが制振機能を発揮する構成とされていること、
壁型鉛ダンパーは、梁又は鋼材系ダンパーに形成された抵抗板が鉛容器内に挿入されており、抵抗板の面内方向と平行な面と鉛容器の内周面との間に鉛が設置され、抵抗板の面外方向と平行な面と鉛容器の内周面との間に所定のクリアランスが開けられた構成とされていること、
前記クリアランスは、風揺れなどの小振幅を超える中・大振幅が生じた際に抵抗板が鉛容器に衝突する大きさとされていることを特徴とする、制振間柱。
A vibration-damping pillar installed between the upper and lower beams in a pillar / beam frame of a building structure,
The damping damping column is configured such that a steel damper is installed between the upper and lower beams via a wall-type lead damper, and the wall-type lead damper exhibits a damping function when horizontally deformed in the in-plane direction.
In the wall-type lead damper, a resistor plate formed on a beam or steel damper is inserted in the lead container, and lead is placed between the surface parallel to the in-plane direction of the resistor plate and the inner peripheral surface of the lead container. Installed and configured to have a predetermined clearance between the surface parallel to the out-of-plane direction of the resistance plate and the inner peripheral surface of the lead container;
The said clearance is a magnitude | size with which a resistance board collides with a lead container when the medium and large amplitude exceeding small amplitudes, such as a wind fluctuation, generate | occur | produce, The damping pillar characterized by the above-mentioned.
粘弾性ダンパーは、間柱部材側の連結部材と鋼材系ダンパー側の連結部材との間に粘弾性体が設置され、同粘弾性体の変形によって制振間柱の面外方向への水平変形を許容するピン機構に構成されていることを特徴とする、請求項1に記載した制振間柱。   The viscoelastic damper has a viscoelastic body installed between the connecting member on the stud member side and the connecting member on the steel damper side, and the deformation of the viscoelastic body allows horizontal deformation in the out-of-plane direction of the damping stud. The vibration damping stud according to claim 1, wherein the vibration damping stud is configured as a pin mechanism. 鉛ダンパーは、間柱部材側の連結部材と鋼材系ダンパー側の連結部材との間に鉛が設置され、同鉛の変形によって制振間柱の面外方向への水平変形を許容するピン機構に構成されていることを特徴とする、請求項1に記載した制振間柱。   The lead damper is configured as a pin mechanism in which lead is installed between the connecting member on the stud member side and the connecting member on the steel damper side, and the deformation of the lead allows horizontal deformation in the out-of-plane direction of the damping stud. The damping pillar according to claim 1, wherein 一方の連結部材に凸レンズ状のR凸面が面外方向に形成され、他方の連結部材には凹レンズ状のR凹面が面外方向に形成されており、相対峙させた前記R凸凹面の相互間に粘弾性体又は鉛が設置されていることを特徴とする、請求項4又は5に記載した制振間柱。   A convex lens-shaped R convex surface is formed in one connecting member in the out-of-plane direction, and a concave lens-shaped R concave surface is formed in the other connecting member in the out-of-plane direction. 6. A vibration damping stud according to claim 4 or 5, wherein a viscoelastic body or lead is installed on the front. 一方の連結部材に雄部が形成され、他方の連結部材に雌部が形成されており、両者を相互に嵌め合わせた構造とされていること、
前記雄部の外周面と雌部の内周面との間に粘弾性体又は鉛が設置されていることを特徴とする、請求項4又は5に記載した制振間柱。
A male part is formed on one connecting member, a female part is formed on the other connecting member, and the two are fitted together.
6. The damping stud according to claim 4, wherein a viscoelastic body or lead is installed between the outer peripheral surface of the male part and the inner peripheral surface of the female part.
雄部は側面視を鍵穴形状に形成されており、側面視をC字形状に形成された雌部と嵌め合わせた構造とされていることを特徴とする、請求項7に記載した制振間柱。   8. The vibration damping stud according to claim 7, wherein the male part is formed in a keyhole shape in a side view and is fitted with a female part formed in a C shape in a side view. . 鋼材系ダンパー側の連結部材に筒状部が形成され、同筒状部の中空部に間柱部材側の連結部材である回転軸が貫通され、同回転軸の両端がストッパー部材に固定されており、前記筒状部の内周面と回転軸の外周面との間に粘弾性体又は鉛が設置されていることを特徴とする、請求項4又は5に記載した制振間柱。   A cylindrical part is formed in the connecting member on the steel material damper side, a rotating shaft that is a connecting member on the stud member side is penetrated through a hollow part of the cylindrical part, and both ends of the rotating shaft are fixed to the stopper member 6. The vibration damping stud according to claim 4, wherein a viscoelastic body or lead is installed between the inner peripheral surface of the cylindrical portion and the outer peripheral surface of the rotating shaft. 粘弾性ダンパー又は鉛ダンパーの側部に、ストッパー部材との緩衝材として粘弾性体又は鉛が設置されていることを特徴とする、請求項1又は4又は5に記載した制振間柱。   6. The vibration damping stud according to claim 1, wherein a viscoelastic body or lead is installed as a cushioning material for the stopper member at a side portion of the viscoelastic damper or the lead damper.
JP2004360661A 2004-12-14 2004-12-14 Vibration control pillar Expired - Fee Related JP4683909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360661A JP4683909B2 (en) 2004-12-14 2004-12-14 Vibration control pillar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360661A JP4683909B2 (en) 2004-12-14 2004-12-14 Vibration control pillar

Publications (2)

Publication Number Publication Date
JP2006169747A true JP2006169747A (en) 2006-06-29
JP4683909B2 JP4683909B2 (en) 2011-05-18

Family

ID=36670790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360661A Expired - Fee Related JP4683909B2 (en) 2004-12-14 2004-12-14 Vibration control pillar

Country Status (1)

Country Link
JP (1) JP4683909B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019476A (en) * 2007-07-13 2009-01-29 Daiwa House Ind Co Ltd Stud seismic response control aseismic structure
JP2010112077A (en) * 2008-11-06 2010-05-20 Fujita Corp Vibration control device of structure
KR101070043B1 (en) * 2008-07-28 2011-10-27 (주)정우엔지니어링건축사사무소 Column-type damper for improving earthquake-proof efficiency

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107660A (en) * 1986-10-23 1988-05-12 住友建設株式会社 Earthquake resistant wall
JPH01312170A (en) * 1988-06-13 1989-12-15 Sumitomo Constr Co Ltd Earthquake-proof wall
JPH07279477A (en) * 1994-04-11 1995-10-27 Kajima Corp Complex elastoplastic damper
JPH10184069A (en) * 1996-12-25 1998-07-14 Hazama Gumi Ltd Vibration-damping frame
JP2000104418A (en) * 1998-09-28 2000-04-11 Oiles Ind Co Ltd Vibration control wall structure
JP2000213592A (en) * 1999-01-27 2000-08-02 Tokyu Constr Co Ltd Damper device and installing work methods therefor
JP2001049893A (en) * 1999-08-06 2001-02-20 Takenaka Komuten Co Ltd Vibration isolation structure by viscous-body wall damper
JP2001288924A (en) * 2000-04-07 2001-10-19 Kobe Steel Ltd Damping structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107660A (en) * 1986-10-23 1988-05-12 住友建設株式会社 Earthquake resistant wall
JPH01312170A (en) * 1988-06-13 1989-12-15 Sumitomo Constr Co Ltd Earthquake-proof wall
JPH07279477A (en) * 1994-04-11 1995-10-27 Kajima Corp Complex elastoplastic damper
JPH10184069A (en) * 1996-12-25 1998-07-14 Hazama Gumi Ltd Vibration-damping frame
JP2000104418A (en) * 1998-09-28 2000-04-11 Oiles Ind Co Ltd Vibration control wall structure
JP2000213592A (en) * 1999-01-27 2000-08-02 Tokyu Constr Co Ltd Damper device and installing work methods therefor
JP2001049893A (en) * 1999-08-06 2001-02-20 Takenaka Komuten Co Ltd Vibration isolation structure by viscous-body wall damper
JP2001288924A (en) * 2000-04-07 2001-10-19 Kobe Steel Ltd Damping structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019476A (en) * 2007-07-13 2009-01-29 Daiwa House Ind Co Ltd Stud seismic response control aseismic structure
KR101070043B1 (en) * 2008-07-28 2011-10-27 (주)정우엔지니어링건축사사무소 Column-type damper for improving earthquake-proof efficiency
JP2010112077A (en) * 2008-11-06 2010-05-20 Fujita Corp Vibration control device of structure

Also Published As

Publication number Publication date
JP4683909B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP6419449B2 (en) Seismic isolation device
JP2015063838A (en) Vibration control wall structure
JP2011042974A (en) Vibration control device and structure having the same and aseismatic device and structure having the same
JP4683909B2 (en) Vibration control pillar
JP2007247278A (en) Seismic control damper
WO2008149996A1 (en) Earthquake damper
JP4780698B2 (en) Vibration control device
JP4552817B2 (en) Tower structure
JP2010043415A (en) Seismic control device
JP2012077483A (en) Reinforcing structure of joint part of wooden building
JP2006037581A (en) Earthquake resisting stud
JP2005054458A (en) Installation structure of damper
CN104340038B (en) Automobile suspended assembly and automobile
JP4660722B2 (en) Vibration control device
JP5587485B1 (en) Damper set
JP5438790B2 (en) Vibration control panel
JP2011163020A (en) Viscoelastic damper device
JP2019124024A (en) Column member and column base structure
KR20160122956A (en) Multiaction-type Plate Steel Damper
JP2008127859A (en) Vibration control structure and vibration control panel
JP2017137919A (en) Flexure yielding type damper
JP3245445U (en) Vibration damping structure
JP2006022843A (en) Damper
JP3166077U (en) Double steel pipe brace
US20180045402A1 (en) Boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110208

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees