JP2006169422A - Ceramic composite material for photo-conversion and emitter device using it - Google Patents

Ceramic composite material for photo-conversion and emitter device using it Download PDF

Info

Publication number
JP2006169422A
JP2006169422A JP2004365590A JP2004365590A JP2006169422A JP 2006169422 A JP2006169422 A JP 2006169422A JP 2004365590 A JP2004365590 A JP 2004365590A JP 2004365590 A JP2004365590 A JP 2004365590A JP 2006169422 A JP2006169422 A JP 2006169422A
Authority
JP
Japan
Prior art keywords
light
ceramic composite
conversion
light emitting
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004365590A
Other languages
Japanese (ja)
Other versions
JP4513541B2 (en
Inventor
Atsushi Mitani
敦志 三谷
Shinichi Sakata
信一 坂田
Kazuhiro Fujii
一宏 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2004365590A priority Critical patent/JP4513541B2/en
Publication of JP2006169422A publication Critical patent/JP2006169422A/en
Application granted granted Critical
Publication of JP4513541B2 publication Critical patent/JP4513541B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photo-conversion material, wherein a red fluorescent ray can be generated at high efficacy from an excited ray, the red fluorescent ray can homogeneously be mixed with the excited ray, degradation like in an organic material is not observed and a heat resistance and durability are excellent, and also to provide an emitter device using the photo-conversion material, wherein luminosity is high, color control is possible and color reproduction is also possible. <P>SOLUTION: The photo-conversion ceramic composite material comprises a coagulated solid which is constructed by three-dimensional continuous twist of at least two oxide layers selected from a single metal oxide layer and a composed metal oxide layer, and at least one oxide layer in the coagulated solid comprises Al<SB>2</SB>O<SB>3</SB>layer activated by chromium. The emitter device comprises an emitter element, a coating layer containing a fluorescent powder having a garnet type structure activated at least by cerium, and a photo-conversion ceramic composite material. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ディスプレイ、照明、バックライト光源等に利用できる発光装置に関する。詳しくは、照射光を利用して蛍光を得る光変換部材である光変換用セラミック複合体と、その光変換用セラミック複合体を用いた発光装置に関する。   The present invention relates to a light emitting device that can be used for a display, illumination, a backlight light source, and the like. Specifically, the present invention relates to a ceramic composite for light conversion that is a light conversion member that obtains fluorescence by using irradiation light, and a light-emitting device using the ceramic composite for light conversion.

近年、青色発光ダイオード素子を発光源とする白色発光ダイオードの開発研究が盛んに行われている。白色発光ダイオードは軽量で、水銀を使用せず、長寿命であることから、今後、需要が急速に拡大することが予測されている。青色発光素子の青色光を白色光ヘ変換する方法として最も一般的に行なわれている方法は、例えば特許文献1に記載されているように、青色光を発光する発光素子の前面に、青色光の一部を吸収して黄色光を発する蛍光体を含有するコーティング層と、光源の青色光とコーティング層からの黄色光を混色するためのモールド層とを設け、補色関係にある青色と黄色を混色することにより擬似的に白色を得るものである。コーティング層としては、セリウムで付活されたYAG(YAl12:Ce)粉末とエポキシ樹脂の混合物が採用されている。 In recent years, research and development of white light emitting diodes using blue light emitting diode elements as light sources have been actively conducted. White light-emitting diodes are lightweight, do not use mercury, and have a long life, so that demand is expected to increase rapidly in the future. The most commonly used method for converting blue light of a blue light emitting element into white light is, for example, as described in Patent Document 1, blue light is emitted on the front surface of a light emitting element that emits blue light. A coating layer containing a phosphor that absorbs a part of the light and emits yellow light, and a mold layer for mixing the blue light of the light source and the yellow light from the coating layer are provided, and the complementary blue and yellow colors are provided. By mixing colors, a pseudo white color is obtained. As the coating layer, a mixture of YAG (Y 3 Al 5 O 12 : Ce) powder activated with cerium and an epoxy resin is employed.

しかし、本方法では青色と黄色の混色により擬似的に白色を得ており、発光スペクトルに赤色の成分が少ない。このため、例えば赤いものがくすんで見えるなどの色再現性に問題があり、将来家庭用照明の光源として適用を図っていく際の課題とされている。   However, in this method, a pseudo white color is obtained by mixing blue and yellow, and there are few red components in the emission spectrum. For this reason, there is a problem in color reproducibility, for example, a red object looks dull, and it is a problem when it is applied as a light source for home lighting in the future.

この赤色成分の不足を解決するため特許文献2では、図2に示したように、Crを含有させたアルミナ基板上に半導体発光層を形成した青色発光ダイオード素子の周囲に樹脂に分散させたYAG:Ce蛍光体粉末を塗布し白色発光ダイオードを構成する方法を提案している。これは、半導体発光層からの青色光と、YAG:Ce蛍光体粉末からの黄色光、それにCr含有アルミナ基板が黄色光を吸収し発光する赤色光を加えることにより、発光スペクトルに赤色成分を付加して色再現性を改善するものである。   In order to solve this shortage of red component, in Patent Document 2, as shown in FIG. 2, YAG dispersed in resin around a blue light emitting diode element in which a semiconductor light emitting layer is formed on an alumina substrate containing Cr. : A method of forming a white light emitting diode by applying Ce phosphor powder is proposed. This is because the blue light from the semiconductor light emitting layer, the yellow light from the YAG: Ce phosphor powder, and the red light that the Cr-containing alumina substrate absorbs the yellow light and emits light are added to the emission spectrum. Thus, the color reproducibility is improved.

特開2000−208815号公報JP 2000-208815 A 特開2001−156336号公報JP 2001-156336 A

しかしながら特許文献2に記載の方法では、赤色光を得るためのアルミナ層が半導体発光層を形成するための基板として使用されていることから、半導体発光層を形成したアルミナ層は半導体形成基板としての要件を満たす必要があり、赤色発光量の制御手法、制御範囲が限られたものとなる。特に半導体発光層を形成した後は赤色光量を調整することは困難である。   However, in the method described in Patent Document 2, since the alumina layer for obtaining red light is used as a substrate for forming a semiconductor light emitting layer, the alumina layer on which the semiconductor light emitting layer is formed is used as a semiconductor formation substrate. It is necessary to satisfy the requirements, and the control method and control range of the red light emission amount are limited. In particular, it is difficult to adjust the amount of red light after forming the semiconductor light emitting layer.

また特許文献2に記載の方法において、発光した赤色光は外部へ放射される過程において、周囲のYAG:Ce蛍光体粉末によって散乱される。散乱は蛍光体粉末の分布のむら、量のバラツキ等により影響を受けるが、蛍光体粉末の塗布むらが生じやすく、蛍光体粉末からの黄色蛍光むらに赤色光の散乱のむらが加わり、発光ダイオードの色むらが増幅され、製造上の歩留まりが低下する。   In the method described in Patent Document 2, the emitted red light is scattered by the surrounding YAG: Ce phosphor powder in the process of being emitted to the outside. Scattering is affected by unevenness in the distribution of the phosphor powder, variation in quantity, etc., but uneven coating of the phosphor powder is likely to occur, and the unevenness of red light scattering is added to the unevenness of yellow fluorescence from the phosphor powder, resulting in the color of the light emitting diode. Unevenness is amplified and the manufacturing yield decreases.

本発明の目的は、例えば発光ダイオード素子等から得られる励起光から、赤色蛍光を効率よく発し、得られた赤色蛍光と前記励起光とをむらなく効率的に混色することができ、有機材料のような劣化等のない、高輝度で、耐熱性、耐久性に優れた光変換部材を提供することである。また、その変換部材を利用した、高輝度で、色調制御の可能で色再現性の高い、劣化のない発光装置を提供することである。   An object of the present invention is to efficiently emit red fluorescence from excitation light obtained from, for example, a light-emitting diode element, and to efficiently mix the obtained red fluorescence and the excitation light evenly. An object of the present invention is to provide a light conversion member that is free from such deterioration and has high brightness, excellent heat resistance and durability. Another object of the present invention is to provide a light-emitting device that uses the conversion member and has high brightness, color tone control, high color reproducibility, and no deterioration.

本発明者らは、励起光の一部を効率的に赤色光に変換し、かつ、残りの励起光を損失少なく透過する材料について鋭意検討した結果、本発明にいたった。即ち、本発明は、単一金属酸化物および複合金属酸化物から選ばれる少なくとも2つ以上の酸化物相が連続的にかつ三次元的に相互に絡み合って形成されている凝固体からなり、該凝固体中の酸化物相のうち少なくとも1つはクロムで付活されたAl相であることを特徴とする光変換用セラミック複合体に関するものである。本発明の光変換用セラミック複合体において、前記凝固体中の酸化物相のうち少なくとも他の1つは、YAl12結晶相であることが好ましい。 The inventors of the present invention have made the present invention as a result of intensive studies on a material that efficiently converts part of the excitation light into red light and transmits the remaining excitation light with little loss. That is, the present invention comprises a solidified body in which at least two or more oxide phases selected from a single metal oxide and a composite metal oxide are continuously and three-dimensionally entangled with each other, The present invention relates to a ceramic composite for light conversion, wherein at least one of the oxide phases in the solidified body is an Al 2 O 3 phase activated by chromium. In the ceramic composite for light conversion of the present invention, it is preferable that at least another one of the oxide phases in the solidified body is a Y 3 Al 5 O 12 crystal phase.

また、本発明は、発光素子と、少なくともセリウムで付活されたガーネット型構造を有する蛍光体粉末を含有するコーティング層と、光変換用セラミック複合体とからなる発光装置であり、該光変換用セラミック複合体は単一金属酸化物および複合金属酸化物から選ばれる少なくとも2つ以上の酸化物相が連続的にかつ三次元的に相互に絡み合って形成されている凝固体からなり、該凝固体中の酸化物相のうち少なくとも1つはクロムで付活されたAl相である発光装置に関する。 Further, the present invention is a light emitting device comprising a light emitting element, a coating layer containing a phosphor powder having a garnet-type structure activated with at least cerium, and a ceramic composite for light conversion. The ceramic composite comprises a solidified body in which at least two oxide phases selected from a single metal oxide and a composite metal oxide are continuously and three-dimensionally entangled with each other, and the solidified body It relates to a light emitting device in which at least one of the oxide phases is an Al 2 O 3 phase activated by chromium.

本発明の発光装置の一態様は、前記ガーネット型構造を有する蛍光体粉末が、セリウムで付活されたYAl12粉末であることを特徴とする。 One aspect of the light-emitting device of the present invention is characterized in that the phosphor powder having a garnet-type structure is Y 3 Al 5 O 12 powder activated with cerium.

また、本発明の発光装置の一態様は、前記発光素子から発生する励起光と、該励起光により前記コーティング層から発生する第1の蛍光と、前記励起光または前記第1の蛍光により前記光変換用セラミック複合体から発生する第2の蛍光とが混合された光を発生することを特徴とする。   In one embodiment of the light-emitting device of the present invention, excitation light generated from the light-emitting element, first fluorescence generated from the coating layer by the excitation light, and the light generated by the excitation light or the first fluorescence. It is characterized by generating light mixed with the second fluorescence generated from the ceramic composite for conversion.

さらに、本発明の発光装置において、前記励起光が波長380nm〜490nmにピークを有する光であることを特徴とする。   Furthermore, in the light emitting device of the present invention, the excitation light is light having a peak at a wavelength of 380 nm to 490 nm.

また、本発明の発光装置の一態様は、前記発光素子が発光ダイオード素子であることを特徴とする。   In one embodiment of the light-emitting device of the present invention, the light-emitting element is a light-emitting diode element.

本発明の光変換用セラミック複合体を用いることにより、励起光を透過しつつ、赤色蛍光を発し、それらを効率よくかつ均質に混合された光を得ることができる。例えば青色発光ダイオード素子と、黄色蛍光を発するセリウムで付活されたガーネット型構造を有する蛍光体粉末を含有するコーティング層と、本発明の光変換用セラミック複合体とを組み合わせることにより、青色光、黄色光、赤色光成分を含み、色再現性に優れ照明用光源として好適な白色光を得ることができ、色調制御が容易で色再現性のある、製造上色むらが小さい均質な白色発光ダイオード等の発光装置を提供することができる。   By using the ceramic composite for light conversion of the present invention, red fluorescence is emitted while transmitting excitation light, and light obtained by mixing them efficiently and homogeneously can be obtained. For example, by combining a blue light emitting diode element, a coating layer containing a phosphor powder having a garnet-type structure activated with cerium that emits yellow fluorescence, and the ceramic composite for light conversion of the present invention, blue light, Homogeneous white light-emitting diode that contains yellow light and red light components, has excellent color reproducibility, can be used as a light source for illumination, is easy to control color tone, has color reproducibility, and has little color unevenness in production. Etc. can be provided.

以下、本発明を図面を用いて詳細に説明する。本発明の光変換用セラミック複合体を用いた発光装置は、例えば図1に示されるような、発光素子と、蛍光体粉末を含有するコーティング層と、本発明の光変換用セラミック複合体とよりなる。発光素子としては、発光ダイオード素子、レーザー光を発生する素子、水銀灯などが挙げられるが、発光ダイオード素子が小型で安価に得られるため好ましい。以後、発光素子として発光ダイオード素子を用いた場合について説明するが、これに限定されるものではない。また、発光素子として発光ダイオード素子を用いた場合の本発明の発光装置を発光ダイオードという。   Hereinafter, the present invention will be described in detail with reference to the drawings. A light emitting device using the ceramic composite for light conversion of the present invention comprises, for example, a light emitting element, a coating layer containing phosphor powder, and the ceramic composite for light conversion of the present invention as shown in FIG. Become. Examples of the light-emitting element include a light-emitting diode element, an element that generates laser light, a mercury lamp, and the like, which are preferable because the light-emitting diode element is small and can be obtained at low cost. Hereinafter, although the case where a light emitting diode element is used as a light emitting element is described, the present invention is not limited to this. The light-emitting device of the present invention when a light-emitting diode element is used as the light-emitting element is referred to as a light-emitting diode.

本発明の光変換用セラミック複合体は、励起光により赤色の蛍光を発する光変換部材であり、単一金属酸化物および複合金属酸化物から選ばれる少なくとも2つ以上の酸化物相が連続的にかつ三次元的に相互に絡み合って形成されている凝固体からなり、前記凝固体中の酸化物相のうち少なくとも1つはクロムで付活されたAl蛍光体相である。単一金属酸化物とは、1種類の金属の酸化物であり、複合金属酸化物は、2種以上の金属の酸化物である。それぞれの酸化物は、単結晶状態となって三次元的に相互に絡み合った構造をしている。 The ceramic composite for light conversion of the present invention is a light conversion member that emits red fluorescence by excitation light, and at least two or more oxide phases selected from a single metal oxide and a composite metal oxide are continuously present. And it consists of the solidified body formed intertwined three-dimensionally, and at least one of the oxide phases in the solidified body is an Al 2 O 3 phosphor phase activated by chromium. A single metal oxide is an oxide of one kind of metal, and a composite metal oxide is an oxide of two or more kinds of metals. Each oxide has a single crystal state and a three-dimensionally entangled structure.

蛍光を発する光変換部材が、このように金属酸化物で構成されているため、従来の蛍光体粉末を樹脂等の有機化合物に分散させた部材とくらべて、耐熱性に優れると共に、光による劣化等もない。また、これらの相は結晶でできており、2種以上の相の境界相はほとんど存在しないため、光の損失が少なく、変換されない光の透過率も高く、高輝度の光を得ることが可能である。また、組織が3次元的に絡み合った構造をしているため、光の混合性が高い。また、劣化がないことから、光源に光強度の大きいものを使用することができる。   Since the light conversion member that emits fluorescence is composed of a metal oxide in this way, it is superior in heat resistance and deteriorated by light compared to a member in which a conventional phosphor powder is dispersed in an organic compound such as a resin. Not even. In addition, these phases are made of crystals and there is almost no boundary phase between two or more phases, so there is little loss of light, high transmittance of unconverted light, and high brightness light can be obtained. It is. In addition, since the tissue has a three-dimensionally entangled structure, the light mixing property is high. Moreover, since there is no deterioration, a light source having a high light intensity can be used.

このような単一金属酸化物としては、酸化アルミニウム(Al)、酸化ジルコニウム(ZrO)、酸化マグネシウム(MgO)、酸化シリコン(SiO)、酸化チタン(TiO)、酸化バリウム(BaO)、酸化ベリリウム(BeO)、酸化カルシウム(CaO)、酸化クロミウム(Cr)等の他、希土類元素酸化物(La、Y、CeO、Pr11、Nd、Sm、Gd、Eu、Tb、Dy、Ho、Er、Tm、Yb、Lu)が挙げられる。また、複合金属酸化物としては、LaAlO、CeAlO、PrAlO、NdAlO、SmAlO、EuAlO、GdAlO、DyAlO、ErAlO、YbAl、YAl12、ErAl12、TbAl12、11Al・La、11Al・Nd、3Dy・5Al、2Dy・Al、11Al・Pr、EuAl1118、2Gd・Al、11Al・Sm、YbAl12、CeAl1118、ErAl等が挙げられる。 Examples of such a single metal oxide include aluminum oxide (Al 2 O 3 ), zirconium oxide (ZrO 2 ), magnesium oxide (MgO), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), and barium oxide ( In addition to BaO), beryllium oxide (BeO), calcium oxide (CaO), chromium oxide (Cr 2 O 3 ), etc., rare earth element oxides (La 2 O 3 , Y 2 O 3 , CeO 2 , Pr 6 O 11 , Nd 2 O 3 , Sm 2 O 3 , Gd 2 O 3 , Eu 2 O 3 , Tb 4 O 7 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , Lu 2 O 3 ). As the composite metal oxide, LaAlO 3, CeAlO 3, PrAlO 3, NdAlO 3, SmAlO 3, EuAlO 3, GdAlO 3, DyAlO 3, ErAlO 3, Yb 4 Al 2 O 9, Y 3 Al 5 O 12, Er 3 Al 5 O 12, Tb 3 Al 5 O 12, 11Al 2 O 3 · La 2 O 3, 11Al 2 O 3 · Nd 2 O 3, 3Dy 2 O 3 · 5Al 2 O 3, 2Dy 2 O 3 · Al 2 O 3, 11Al 2 O 3 · Pr 2 O 3, EuAl 11 O 18, 2Gd 2 O 3 · Al 2 O 3, 11Al 2 O 3 · Sm 2 O 3, Yb 3 Al 5 O 12, CeAl 11 O 18 , Er 4 Al 2 O 9 and the like.

光変換用セラミック複合体として、前記凝固体中の酸化物相のうち少なくとも他の1つの相は、YAl12結晶相であることが好ましい。YAl12結晶相は透光性に優れ、また光学的等方体であるため結晶方位によらない均質な光学的性質を有するためである。特に、クロムで付活されたAl蛍光体相とYAl12結晶相との2相からなる凝固体からなる光変換用セラミック複合体は、2相が均一に、かつ好ましい形態で3次元的絡み合った構造が容易に形成できるため、好ましい。 As the ceramic composite for light conversion, it is preferable that at least one other phase of the oxide phase in the solidified body is a Y 3 Al 5 O 12 crystal phase. This is because the Y 3 Al 5 O 12 crystal phase is excellent in translucency and has optical properties that are homogeneous regardless of crystal orientation because it is an optical isotropic body. In particular, the ceramic composite for light conversion comprising a solidified body composed of two phases of a chromium-activated Al 2 O 3 phosphor phase and a Y 3 Al 5 O 12 crystal phase is preferable in that the two phases are uniform. Since a three-dimensionally entangled structure can be easily formed, it is preferable.

本発明の光変換用セラミック複合体に含まれるクロムで付活されたAl蛍光体相は波長350nm〜690nmの励起光により694nmをピークとする赤色蛍光を発することができる。特に波長530nm〜630nmの励起光では高い励起効率を得ることができる。また得られる蛍光の強度はクロム量により制御することが可能であるが、その量はAl1モルに対しCrが0.05モルを超えると蛍光強度が低下するため、それ以下であることが好ましい。 The Al 2 O 3 phosphor phase activated by chromium contained in the ceramic composite for light conversion of the present invention can emit red fluorescence having a peak at 694 nm by excitation light having a wavelength of 350 nm to 690 nm. In particular, high excitation efficiency can be obtained with excitation light having a wavelength of 530 nm to 630 nm. The intensity of the fluorescence obtained can be controlled by the amount of chromium. However, the amount of Cr 2 O 3 exceeds 0.05 mol relative to 1 mol of Al 2 O 3. The following is preferable.

本発明の光変換用セラミック複合体を構成する凝固体は、原料金属酸化物を融解後、凝固させることで作製される。例えば、所定温度に保持したルツボに仕込んだ溶融物を、冷却温度を制御しながら冷却凝結させる簡単な方法で凝固体を得ることができるが、最も好ましいのは一方向凝固法により作製されたものである。一方向凝固をおこなうことにより含まれる結晶相が単結晶状態で連続的に成長し、部材内での光の減衰が減少するためである。また蛍光を発する金属元素酸化物は凝固体作製後、熱拡散、イオン注入などの方法で加えても良い。   The solidified body constituting the ceramic composite for light conversion of the present invention is produced by solidifying a raw metal oxide after melting. For example, it is possible to obtain a solidified body by a simple method of cooling and condensing a melt charged in a crucible held at a predetermined temperature while controlling the cooling temperature, but the most preferable one is produced by a unidirectional solidification method. It is. This is because the crystal phase contained by the unidirectional solidification grows continuously in a single crystal state, and the attenuation of light in the member decreases. Further, the metal element oxide that emits fluorescence may be added by a method such as thermal diffusion or ion implantation after the solidified body is prepared.

本発明の光変換用セラミック複合体を構成する凝固体は、少なくとも1つの相が蛍光を発する金属元素酸化物を含有していることを除き、本願出願人が先に特開平7−149597号公報、特開平7−187893号公報、特開平8−81257号公報、特開平8−253389号公報、特開平8−253390号公報および特開平9−67194号公報並びにこれらに対応する米国出願(米国特許第5,569,547号、同第5,484,752号、同第5,902,963号)等に開示したセラミック複合材料と同様のものであることができ、これらの出願(特許)に開示した製造方法で製造できるものである。これらの出願あるいは特許の開示内容はここに参照して含めるものである。   The solidified body constituting the ceramic composite for light conversion of the present invention is disclosed in Japanese Patent Application Laid-Open No. 7-149597 by the applicant of the present application, except that at least one phase contains a metal element oxide that emits fluorescence. JP-A-7-187893, JP-A-8-81257, JP-A-8-253389, JP-A-8-253390, JP-A-9-67194, and corresponding US applications (US patents). No. 5,569,547, No. 5,484,752, No. 5,902,963) etc., and these applications (patents) It can be manufactured by the disclosed manufacturing method. The disclosures of these applications or patents are hereby incorporated by reference.

本発明における発光装置に用いる光変換用セラミック複合体は、上記方法により作製された凝固体を、板状等の適切な形状に加工することによって得られる。上記Al蛍光体のクロム含有量に加えて、部材厚み等を変えることによっても、赤色蛍光の発光量を変化させることができ、発光装置の色調を容易に制御することができる。 The ceramic composite for light conversion used for the light emitting device in the present invention is obtained by processing the solidified body produced by the above method into an appropriate shape such as a plate. In addition to the chromium content of the Al 2 O 3 phosphor, the emission amount of red fluorescence can also be changed by changing the thickness of the member, and the color tone of the light emitting device can be easily controlled.

本発明の光変換用セラミック複合体は、波長380nm以下の近紫外線によっても波長694nmの赤色蛍光を発することができるため、本発明の発光装置以外にも、例えば近紫外線を発する発光素子と青色、緑色蛍光体と組み合わすことにより、色再現性の良い発光装置を構成することができる。   Since the ceramic composite for light conversion of the present invention can emit red fluorescence having a wavelength of 694 nm even by near ultraviolet light having a wavelength of 380 nm or less, in addition to the light emitting device of the present invention, for example, a light emitting element that emits near ultraviolet light and blue, By combining with a green phosphor, a light emitting device with good color reproducibility can be configured.

本発明の発光装置を構成する、蛍光体粉末を含有するコーティング層は、蛍光体粉末と透光性樹脂の混合物からなる。該透光性樹脂としては、例えばエポキシ樹脂、シリコーン樹脂等があげられる。また、蛍光体粉末を含有するコーティング層は、少なくともセリウムで付活されたガーネット型構造を有する蛍光体粉末を含有することが好ましい。セリウムで付活されたガーネット型構造を有する蛍光体は、波長380nm〜490nmにピークを有する紫色〜青色の光により、第1の蛍光として波長530nmをピークとする黄色蛍光を発し、前記光変換用セラミック複合体に含まれるクロムで付活されたAl蛍光体相が、この第1の蛍光により波長694nmの赤色蛍光を発せさせることができるためである。ガーネット型結晶はA12の構造式で表され、構造式中AにはY,Tb,Sm,Gd,La,Er,Pr,Dyの群から選ばれる1種以上の元素、同じく構造式中XにはAl,Gaから選ばれる1種以上の元素が、含まれる場合、強い黄色蛍光を得ることができるため特に好ましい。 The coating layer containing phosphor powder constituting the light emitting device of the present invention is composed of a mixture of phosphor powder and translucent resin. Examples of the translucent resin include epoxy resins and silicone resins. The coating layer containing the phosphor powder preferably contains a phosphor powder having a garnet-type structure activated with at least cerium. The phosphor having a garnet-type structure activated by cerium emits yellow fluorescence having a peak at a wavelength of 530 nm as a first fluorescence by violet to blue light having a peak at a wavelength of 380 nm to 490 nm, and is used for the light conversion. This is because the Al 2 O 3 phosphor phase activated by chromium contained in the ceramic composite can emit red fluorescence having a wavelength of 694 nm by the first fluorescence. The garnet-type crystal is represented by a structural formula of A 3 X 5 O 12 , where A is one or more elements selected from the group of Y, Tb, Sm, Gd, La, Er, Pr, and Dy, When X in the structural formula contains one or more elements selected from Al and Ga, it is particularly preferable because strong yellow fluorescence can be obtained.

コーティング層は、前記少なくともセリウムで付活されたガーネット型構造を有する蛍光体粉末と透光性樹脂の混合物を塗布することにより形成される。該ガーネット型構造を有する蛍光体粉末が、なかでもセリウムで付活されたYAl12(=YAG:Ce)粉末である場合、最も強い黄色蛍光を得ることができるのでさらに好適である。 The coating layer is formed by applying a mixture of the phosphor powder having a garnet-type structure activated with at least cerium and a translucent resin. When the phosphor powder having the garnet structure is Y 3 Al 5 O 12 (= YAG: Ce) powder activated by cerium, it is more preferable because the strongest yellow fluorescence can be obtained. .

本発明における発光素子は、波長380nm〜490nmにピークを有する紫色〜青色光を発することが好ましい。紫から青色の光により、前記少なくともセリウムで付活されたガーネット型構造を有する蛍光体がその一部を吸収し黄色の第1の蛍光を発し、また前記光変換用セラミック複合体がこれらの光を透過しつつ、第1の蛍光あるいはそれに加えて発光素子からの発光の一部を吸収し赤色の第2の蛍光を発し、これらの青・紫色光、黄色光、赤色光が光変換用セラミック複合体内の連続的にかつ三次元的に相互に絡み合った組織により混合され、放出されるため、色むらのない均質な色再現性に優れた白色を得ることができるためである。本発明の発光装置は、前記励起光を発する発光素子と、前記少なくともセリウムで付活されたガーネット型構造を有する蛍光体粉末を含有するコーティング層と、前記光変換用セラミック複合体と組み合わせることにより構成される。   The light-emitting element in the present invention preferably emits purple to blue light having a peak at a wavelength of 380 nm to 490 nm. By the purple to blue light, the phosphor having a garnet structure activated by at least cerium absorbs a part thereof and emits yellow first fluorescence, and the ceramic composite for light conversion uses these lights. The first fluorescent light or a part of the light emitted from the light emitting element is absorbed to emit red second fluorescent light, and these blue / violet light, yellow light and red light are converted into a ceramic for light conversion. This is because they are mixed and released by the tissues that are continuously and three-dimensionally entangled with each other in the composite body, so that it is possible to obtain white having excellent color reproducibility without color unevenness. The light-emitting device of the present invention is a combination of the light-emitting element that emits the excitation light, the coating layer containing the phosphor powder having a garnet-type structure activated with at least cerium, and the ceramic composite for light conversion. Composed.

従って、本発明の、発光装置は、高輝度で、劣化がなく、光混合性がよく、色調の制御が可能で、色再現性に優れ照明用光源として好適な白色発光ダイオード等の発光装置を提供することができる。   Therefore, the light-emitting device of the present invention is a light-emitting device such as a white light-emitting diode that has high luminance, no deterioration, good light mixing, can control color tone, has excellent color reproducibility, and is suitable as a light source for illumination. Can be provided.

以下、具体的例を挙げ、本発明を更に詳しく説明する。   Hereinafter, the present invention will be described in more detail with specific examples.

(実施例1)
α−Al粉末(純度99.99%)とY粉末(純度99.999%)をモル比で82:18となるよう、またCr粉末(純度99.99%)を生成するAl相1モルに対し0.005モルとなるよう秤量した。これらの粉末をエタノール中、ボールミルによって16時間湿式混合した後、エバポレーターを用いてエタノールを脱媒して原料粉末を得た。原料粉末は、真空炉中で予備溶解し一方向凝固の原料とした。
Example 1
α-Al 2 O 3 powder (purity: 99.99%) and Y 2 O 3 powder (purity: 99.999%) are in a molar ratio of 82:18, and Cr 2 O 3 powder (purity: 99.99%). ) To 0.005 mol with respect to 1 mol of the Al 2 O 3 phase that produces ( 2 ). These powders were wet mixed in ethanol by a ball mill for 16 hours, and then ethanol was removed using an evaporator to obtain a raw material powder. The raw material powder was pre-melted in a vacuum furnace and used as a raw material for unidirectional solidification.

次に、この原料をそのままモリブデンルツボに仕込み、一方向凝固装置にセットし、1.33×10−3Pa(10−5Torr)の圧力下で原料を融解した。次に同一の雰囲気においてルツボを5mm/時間の速度で下降させ、ガーネット型結晶であるYAl12とAl:Crからなる凝固体を得た。得られた凝固体は赤紫色を呈していた。 Next, this raw material was directly charged into a molybdenum crucible and set in a unidirectional solidification apparatus, and the raw material was melted under a pressure of 1.33 × 10 −3 Pa (10 −5 Torr). Next, the crucible was lowered at a rate of 5 mm / hour in the same atmosphere to obtain a solidified body composed of garnet-type crystals Y 3 Al 5 O 12 and Al 2 O 3 : Cr. The obtained solidified body was reddish purple.

凝固体の凝固方向に平行な断面組織を図3に示す。白い部分がYAl12結晶、黒い部分がAl:Cr結晶である。二つの酸化物相が相互に絡み合いつつ、縦方向に伸びており、入射した光が透過しやすい組織を有していることが分かる。 A cross-sectional structure parallel to the solidification direction of the solidified body is shown in FIG. The white part is Y 3 Al 5 O 12 crystal and the black part is Al 2 O 3 : Cr crystal. It can be seen that the two oxide phases are intertwined with each other and extend in the longitudinal direction and have a structure through which incident light is easily transmitted.

凝固体をφ20厚み1mmに切り出し、励起波長590nmで蛍光スペクトルを測定した結果を図4に示す。694nmにシャープなピークを有する発光が認められ、含まれるAl:Cr蛍光体相から赤色蛍光が発せられていることを示している。 FIG. 4 shows the result of measuring the fluorescence spectrum at an excitation wavelength of 590 nm by cutting the coagulated body into a φ20 thickness of 1 mm. Luminescence having a sharp peak at 694 nm was observed, indicating that red fluorescence was emitted from the contained Al 2 O 3 : Cr phosphor phase.

(実施例2)
実施例1のCr量を、生成するAl相1モルに対し0.0015モルとなるようにした以外は実施例1と同様な方法でYAl12とAl:Crからなる凝固体を得た。
(Example 2)
Y 3 Al 5 O 12 and Al 2 were prepared in the same manner as in Example 1 except that the amount of Cr 2 O 3 in Example 1 was 0.0015 mol with respect to 1 mol of Al 2 O 3 phase to be produced. A solidified body made of O 3 : Cr was obtained.

実施例1,2の凝固体を前記と同様にφ20厚み1mmに切り出し、蛍光波長694nmの励起スペクトルを測定した結果を図5に示す。410nm、590nmに励起ピークが認められ、YAG:Ce蛍光体からの黄色(ピーク波長530nm)蛍光により、赤色を発光することができることがわかる。また、クロム量により蛍光の強度を変化させることができることも示している。   FIG. 5 shows the result of measuring the excitation spectrum at a fluorescence wavelength of 694 nm after cutting the coagulated bodies of Examples 1 and 2 into a φ20 thickness of 1 mm in the same manner as described above. Excitation peaks are observed at 410 nm and 590 nm, and it can be seen that red light can be emitted by yellow (peak wavelength: 530 nm) fluorescence from the YAG: Ce phosphor. It also shows that the intensity of fluorescence can be changed by the amount of chromium.

実施例1の凝固体を所定の形状・厚みに切り出し、得られた光変換用セラミック複合体と青色(463nm)を発する発光ダイオード素子とYAG:Ce蛍光体粉末とを組み合わせ、発光ダイオードを構成し発光スペクトルの測定をおこなった。光変換用セラミック複合体の厚みを0.6mmとした場合の発光スペクトルを図6に示す。青色(463nm)、YAG:Ce蛍光体からの黄色(520nm)、光変換用セラミック複合体に含まれるAl:Cr蛍光体相からの赤色(694nm)をそれぞれピークとする光成分が混合されていることが認められる。またYAG:Ce蛍光体相からの蛍光の内、530-600nmの光成分が減衰しており、これはAl:Cr蛍光体相が吸収し、より長波長の赤色蛍光へと変換したことを示している。 The solidified body of Example 1 was cut into a predetermined shape and thickness, and the resulting ceramic composite for light conversion, a light emitting diode element emitting blue (463 nm) and a YAG: Ce phosphor powder were combined to form a light emitting diode. The emission spectrum was measured. The emission spectrum when the thickness of the ceramic composite for light conversion is 0.6 mm is shown in FIG. Light components peaking in blue (463 nm), yellow (520 nm) from YAG: Ce phosphor, and red (694 nm) from Al 2 O 3 : Cr phosphor phase contained in the ceramic composite for light conversion are mixed. It is recognized that In addition, among the fluorescence from the YAG: Ce phosphor phase, the light component of 530-600 nm is attenuated, and this is absorbed by the Al 2 O 3 : Cr phosphor phase and converted to longer wavelength red fluorescence. It is shown that.

本発明の発光装置の一実施形態を示す模式的断面図である。It is typical sectional drawing which shows one Embodiment of the light-emitting device of this invention. 従来の発光ダイオードの構造を示す模式的断面図である。It is typical sectional drawing which shows the structure of the conventional light emitting diode. 本発明の光変換用セラミック複合体の組織構造の一例を示す顕微鏡写真である。It is a microscope picture which shows an example of the structure | tissue structure of the ceramic composite for light conversion of this invention. 本発明の光変換用セラミック複合体の励起波長590nmにおける蛍光スペクトル図である。It is a fluorescence spectrum figure in excitation wavelength 590nm of the ceramic composite for light conversion of this invention. 本発明の光変換用セラミック複合体の蛍光波長694nmの励起スペクトル図である。It is an excitation spectrum figure of the fluorescence wavelength of 694 nm of the ceramic composite for light conversion of this invention. 本発明の発光ダイオードの一例を示す発光スペクトル図である。It is an emission spectrum figure which shows an example of the light emitting diode of this invention.

符号の説明Explanation of symbols

1 光変換用セラミック複合体
2 発光素子(発光ダイオード素子)
3 リードワイヤー
4 リード電極
5 Crを含有させたアルミナ単結晶基板
6 YAG:Ce蛍光体粉末
7 窒化物半導体発光層
8 透光性樹脂
9 コーティング層
1 Ceramic composite for light conversion 2 Light emitting element (light emitting diode element)
3 Lead wire 4 Lead electrode 5 Cr-containing alumina single crystal substrate 6 YAG: Ce phosphor powder 7 Nitride semiconductor light emitting layer 8 Translucent resin 9 Coating layer

Claims (7)

単一金属酸化物および複合金属酸化物から選ばれる少なくとも2つ以上の酸化物相が連続的にかつ三次元的に相互に絡み合って形成されている凝固体からなり、該凝固体中の酸化物相のうち少なくとも1つはクロムで付活されたAl相であることを特徴とする光変換用セラミック複合体。 An oxide in the solidified body comprising a solidified body in which at least two or more oxide phases selected from a single metal oxide and a composite metal oxide are continuously and three-dimensionally entangled with each other. A ceramic composite for light conversion, wherein at least one of the phases is an Al 2 O 3 phase activated by chromium. 前記凝固体中の酸化物相のうち少なくとも1つは、YAl12結晶相であることを特徴とする請求項1記載の光変換用セラミック複合体。 The ceramic composite for light conversion according to claim 1, wherein at least one of the oxide phases in the solidified body is a Y 3 Al 5 O 12 crystal phase. 発光素子と、少なくともセリウムで付活されたガーネット型構造を有する蛍光体粉末を含有するコーティング層と、光変換用セラミック複合体とからなる発光装置であり、該光変換用セラミック複合体は単一金属酸化物および複合金属酸化物から選ばれる少なくとも2つ以上の酸化物相が連続的にかつ三次元的に相互に絡み合って形成されている凝固体からなり、該凝固体中の酸化物相のうち少なくとも1つはクロムで付活されたAl相であることを特徴とする発光装置。 A light-emitting device comprising a light-emitting element, a coating layer containing a phosphor powder having a garnet-type structure activated with at least cerium, and a ceramic composite for light conversion. It consists of a solidified body in which at least two or more oxide phases selected from metal oxides and composite metal oxides are continuously and three-dimensionally entangled with each other, and the oxide phase in the solidified body At least one of them is an Al 2 O 3 phase activated by chromium, and the light emitting device. 前記ガーネット型構造を有する蛍光体粉末が、セリウムで付活されたYAl12粉末であることを特徴とする請求項3記載の発光装置。 4. The light emitting device according to claim 3, wherein the phosphor powder having a garnet-type structure is Y 3 Al 5 O 12 powder activated with cerium. 前記発光素子から発生する励起光と、該励起光により前記コーティング層から発生する第1の蛍光と、前記励起光または前記第1の蛍光により前記光変換用セラミック複合体から発生する第2の蛍光とが混合された光を発生することを特徴とする請求項3記載の発光装置。 Excitation light generated from the light emitting element, first fluorescence generated from the coating layer by the excitation light, and second fluorescence generated from the ceramic composite for light conversion by the excitation light or the first fluorescence. The light emitting device according to claim 3, wherein the light is mixed. 前記励起光が波長380nm〜490nmにピークを有する光であることを特徴とする請求項3記載の発光装置。 4. The light emitting device according to claim 3, wherein the excitation light is light having a peak at a wavelength of 380 nm to 490 nm. 前記発光素子が発光ダイオード素子であることを特徴とする請求項3記載の発光装置。
The light emitting device according to claim 3, wherein the light emitting element is a light emitting diode element.
JP2004365590A 2004-12-17 2004-12-17 Light emitting device using ceramic composite for light conversion Expired - Fee Related JP4513541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004365590A JP4513541B2 (en) 2004-12-17 2004-12-17 Light emitting device using ceramic composite for light conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004365590A JP4513541B2 (en) 2004-12-17 2004-12-17 Light emitting device using ceramic composite for light conversion

Publications (2)

Publication Number Publication Date
JP2006169422A true JP2006169422A (en) 2006-06-29
JP4513541B2 JP4513541B2 (en) 2010-07-28

Family

ID=36670517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004365590A Expired - Fee Related JP4513541B2 (en) 2004-12-17 2004-12-17 Light emitting device using ceramic composite for light conversion

Country Status (1)

Country Link
JP (1) JP4513541B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114493A1 (en) * 2006-03-30 2007-10-11 Ube Industries, Ltd. Light transmission scattering material and its use
JP2011012215A (en) * 2009-07-03 2011-01-20 Covalent Materials Corp Ceramic composite
EP2645433A2 (en) 2012-03-28 2013-10-02 Nichia Corporation Wave-length conversion inorganic member, method for manufacturing the same, and light emitting device
CN109923446A (en) * 2016-10-28 2019-06-21 日本特殊陶业株式会社 Light wavelength conversion component and light emitting device
CN111333417A (en) * 2020-03-09 2020-06-26 西北工业大学 Eutectic fluorescent composite ceramic and preparation method and application thereof
KR20210157475A (en) * 2013-07-20 2021-12-28 어플라이드 머티어리얼스, 인코포레이티드 Ion assisted deposition for rare-earth oxide based coatings on lids and nozzles
WO2022163604A1 (en) * 2021-01-27 2022-08-04 アダマンド並木精密宝石株式会社 Light emitter, wristwatch, and method for manufacturing light emitter
US11566319B2 (en) 2013-12-06 2023-01-31 Applied Materials, Inc. Ion beam sputtering with ion assisted deposition for coatings on chamber components

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105549262A (en) * 2016-02-03 2016-05-04 青岛海信电器股份有限公司 Backlight unit, backlight source module and liquid-crystal display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156336A (en) * 1999-11-30 2001-06-08 Nichia Chem Ind Ltd Light emitting diode
JP2002120394A (en) * 2000-10-16 2002-04-23 Futaba Corp Electron beam excited light emission type print head
JP2002344021A (en) * 2001-05-16 2002-11-29 Nichia Chem Ind Ltd Light-emitting device
JP2003204079A (en) * 2001-11-05 2003-07-18 Nichia Chem Ind Ltd Nitride semiconductor element using activating agent- containing substrate and its growing method
WO2004065324A1 (en) * 2003-01-20 2004-08-05 Ube Industries, Ltd. Ceramic composite material for optical conversion and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156336A (en) * 1999-11-30 2001-06-08 Nichia Chem Ind Ltd Light emitting diode
JP2002120394A (en) * 2000-10-16 2002-04-23 Futaba Corp Electron beam excited light emission type print head
JP2002344021A (en) * 2001-05-16 2002-11-29 Nichia Chem Ind Ltd Light-emitting device
JP2003204079A (en) * 2001-11-05 2003-07-18 Nichia Chem Ind Ltd Nitride semiconductor element using activating agent- containing substrate and its growing method
WO2004065324A1 (en) * 2003-01-20 2004-08-05 Ube Industries, Ltd. Ceramic composite material for optical conversion and use thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007114493A1 (en) * 2006-03-30 2007-10-11 Ube Industries, Ltd. Light transmission scattering material and its use
EP2000829A2 (en) * 2006-03-30 2008-12-10 Ube Industries, Ltd. Light transmission scattering material and its use
JP4775439B2 (en) * 2006-03-30 2011-09-21 宇部興産株式会社 Light transmission scatterer and use thereof
EP2000829A4 (en) * 2006-03-30 2012-01-04 Ube Industries Light transmission scattering material and its use
JP2011012215A (en) * 2009-07-03 2011-01-20 Covalent Materials Corp Ceramic composite
US8994259B2 (en) 2012-03-28 2015-03-31 Nichia Corporation Wave-length conversion inorganic member, and method for manufacturing the same
US9835310B2 (en) 2012-03-28 2017-12-05 Nichia Corporation Wave-length conversion inorganic member, and method for manufacturing the same
EP2645433A2 (en) 2012-03-28 2013-10-02 Nichia Corporation Wave-length conversion inorganic member, method for manufacturing the same, and light emitting device
KR102516707B1 (en) * 2013-07-20 2023-03-30 어플라이드 머티어리얼스, 인코포레이티드 Ion assisted deposition for rare-earth oxide based coatings on lids and nozzles
KR20210157475A (en) * 2013-07-20 2021-12-28 어플라이드 머티어리얼스, 인코포레이티드 Ion assisted deposition for rare-earth oxide based coatings on lids and nozzles
US11424136B2 (en) 2013-07-20 2022-08-23 Applied Materials, Inc. Rare-earth oxide based coatings based on ion assisted deposition
US11566319B2 (en) 2013-12-06 2023-01-31 Applied Materials, Inc. Ion beam sputtering with ion assisted deposition for coatings on chamber components
US11566318B2 (en) 2013-12-06 2023-01-31 Applied Materials, Inc. Ion beam sputtering with ion assisted deposition for coatings on chamber components
US11566317B2 (en) 2013-12-06 2023-01-31 Applied Materials, Inc. Ion beam sputtering with ion assisted deposition for coatings on chamber components
CN109923446A (en) * 2016-10-28 2019-06-21 日本特殊陶业株式会社 Light wavelength conversion component and light emitting device
CN109923446B (en) * 2016-10-28 2021-05-18 日本特殊陶业株式会社 Optical wavelength conversion member and light emitting device
CN111333417A (en) * 2020-03-09 2020-06-26 西北工业大学 Eutectic fluorescent composite ceramic and preparation method and application thereof
WO2022163604A1 (en) * 2021-01-27 2022-08-04 アダマンド並木精密宝石株式会社 Light emitter, wristwatch, and method for manufacturing light emitter

Also Published As

Publication number Publication date
JP4513541B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4582095B2 (en) Light converting structure and light emitting device using the same
JP7056553B2 (en) Fluorescent material, light emitting device, lighting device and image display device
JP4609319B2 (en) Ceramic composite material for light conversion and its use
JP4420021B2 (en) White light emitting diode device
JP5347354B2 (en) Fluorescent material molded body, method for manufacturing the same, and light emitting device
KR101035029B1 (en) Ceramic composite light converting member and light emitting device using the same
JP2006173433A (en) Light transforming ceramic compound, and light emitting device using the same
TWI428309B (en) A ceramic composite for optical conversion and a light-emitting device using the ceramic composite
TWI535824B (en) A ceramic composite for optical conversion and a light-emitting device using the same
JP2006241249A (en) Phosphor mixture and light-emitting device
JP7454785B2 (en) Phosphors and light emitting devices using them
TWI500591B (en) A ceramic composite for optical conversion, a method for manufacturing the same, and a light-emitting device provided with the same
JP4513541B2 (en) Light emitting device using ceramic composite for light conversion
JP5125039B2 (en) Rare earth oxynitride phosphor and light emitting device using the same
JP7361314B2 (en) Phosphors and light emitting devices using them
JP7345141B2 (en) Phosphors and light emitting devices using them
US10982142B1 (en) Red phosphor and light emitting device using the same
JP2022163455A (en) Phosphor and light-emitting device including the same
JP2022163459A (en) Phosphor and light-emitting device including the same
JP2020139033A (en) Red phosphor and light emitting device including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100420

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees