JP2006169302A - Polymer and positive type resist material and method for forming pattern therewith - Google Patents

Polymer and positive type resist material and method for forming pattern therewith Download PDF

Info

Publication number
JP2006169302A
JP2006169302A JP2004360713A JP2004360713A JP2006169302A JP 2006169302 A JP2006169302 A JP 2006169302A JP 2004360713 A JP2004360713 A JP 2004360713A JP 2004360713 A JP2004360713 A JP 2004360713A JP 2006169302 A JP2006169302 A JP 2006169302A
Authority
JP
Japan
Prior art keywords
group
acid
resist material
bis
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004360713A
Other languages
Japanese (ja)
Other versions
JP4642452B2 (en
Inventor
Jun Hatakeyama
潤 畠山
Takanobu Takeda
隆信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2004360713A priority Critical patent/JP4642452B2/en
Publication of JP2006169302A publication Critical patent/JP2006169302A/en
Application granted granted Critical
Publication of JP4642452B2 publication Critical patent/JP4642452B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a positive resist material, especially a chemical amplification positive type resist material, which has high resolution, high exposure margin, small compressional dimension difference, and process adaptability, forms good patterns, after exposed to light, and exhibits excellent etching resistance. <P>SOLUTION: This polymer containing at least copolymerization repeating units represented by general formula (1) and having a weight-average mol. wt. of 1,000 to 500,000. The positive resist material containing the polymer as a base resin. A method for forming a pattern includes a process for coating a substrate with the polymer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、置換可アセナフチレンと、置換可ヒドロキシスチレンを共重合して得られ、酸の作用によってアルカリ溶解性が向上する高分子化合物をベース樹脂としてレジスト材料に配合することにより、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有し、露光後のパターン形状が良好であり、さらに優れたエッチング耐性を示す、特に超LSI製造用あるいはフォトマスクの微細パターン形成材料として好適なポジ型レジスト材料、特には化学増幅ポジ型レジスト材料に関する。   The present invention is obtained by copolymerizing a resist material with a polymer compound obtained by copolymerizing substituted acenaphthylene and substituted hydroxystyrene and having improved alkali solubility by the action of an acid as a base resin. Fine pattern forming material, especially for VLSI manufacturing or photomasks, with significantly high dissolution rate contrast, high sensitivity and high resolution, good pattern shape after exposure, and excellent etching resistance In particular, the present invention relates to a positive resist material suitable as a chemical amplification positive resist material.

近年、LSIの高集積化と高速度化に伴い、パターンルールの微細化が求められているなか、次世代の微細加工技術として遠紫外線リソグラフィーが有望視されている。遠紫外線リソグラフィーは、0.5μm以下の加工も可能であり、光吸収の低いレジスト材料を用いた場合、基板に対して垂直に近い側壁を有したパターン形成が可能になる。   In recent years, along with the high integration and high speed of LSIs, far ultraviolet lithography is considered promising as a next-generation microfabrication technique, while miniaturization of pattern rules is required. Far-ultraviolet lithography can process 0.5 μm or less, and when a resist material with low light absorption is used, it is possible to form a pattern having sidewalls that are nearly perpendicular to the substrate.

近年開発された酸を触媒とした化学増幅ポジ型レジスト材料は、遠紫外線の光源として高輝度なKrFエキシマレーザーを利用し、感度、解像性、ドライエッチング耐性が高く、優れた特性を有した遠紫外線リソグラフィーに特に有望なレジスト材料として用いられている(特許文献1〜2)。   A recently developed acid-catalyzed chemically amplified positive resist material uses a high-brightness KrF excimer laser as a deep ultraviolet light source, and has excellent sensitivity, resolution, dry etching resistance, and excellent characteristics. It is used as a resist material particularly promising for deep ultraviolet lithography (Patent Documents 1 and 2).

このような化学増幅ポジ型レジスト材料としては、ベースポリマー、酸発生剤からなる二成分系、ベースポリマー、酸発生剤、酸不安定基を有する溶解阻止剤からなる三成分系が知られている。
例えば、ポリ−p−tert−ブトキシスチレンと酸発生剤からなるレジスト材料が提案され(特許文献3)、この提案と類似したものとして分子内にtert−ブトキシ基を有する樹脂と酸発生剤からなる二成分系レジスト材料(特許文献4)、更にはメチル基、イソプロピル基、tert−ブチル基、テトラヒドロピラニル基、トリメチルシリル基含有ポリヒドロキシスチレンと酸発生剤からなる二成分系のレジスト材料が提案されている(特許文献5)。
更に、ポリ[3,4−ビス(2−テトラヒドロピラニルオキシ)スチレン]、ポリ[3,4−ビス(tert−ブトキシカルボニルオキシ)スチレン]、ポリ[3,5−ビス(2−テトラヒドロピラニルオキシ)スチレン]等のポリジヒドロキシスチレン誘導体と酸発生剤からなるレジスト材料が提案されている(特許文献6)。
As such a chemically amplified positive resist material, a two-component system comprising a base polymer and an acid generator, a three-component system comprising a base polymer, an acid generator and a dissolution inhibitor having an acid labile group are known. .
For example, a resist material composed of poly-p-tert-butoxystyrene and an acid generator has been proposed (Patent Document 3). As similar to this proposal, a resist material composed of a resin having a tert-butoxy group in the molecule and an acid generator is proposed. A two-component resist material (Patent Document 4) and a two-component resist material composed of polyhydroxystyrene containing a methyl group, an isopropyl group, a tert-butyl group, a tetrahydropyranyl group, and a trimethylsilyl group and an acid generator have been proposed. (Patent Document 5).
Furthermore, poly [3,4-bis (2-tetrahydropyranyloxy) styrene], poly [3,4-bis (tert-butoxycarbonyloxy) styrene], poly [3,4-bis (2-tetrahydropyranyl) A resist material composed of a polydihydroxystyrene derivative such as (oxy) styrene] and an acid generator has been proposed (Patent Document 6).

しかしながら、これらレジスト材料のベース樹脂は、酸不安定基を側鎖に有するものであり、酸不安定基がtert−ブチル基、tert−ブトキシカルボニル基のように強酸で分解されるものであると、そのレジスト材料のパターン形状がT−トップ形状になり易い。一方、エトキシエチル基等のようなアルコキシアルキル基は弱酸で分解されるため、露光から加熱処理までの時間経過に伴ってパターン形状が著しく細るという欠点を有している。また、側鎖にかさ高い基を有しているので、耐熱性が下がったり、感度及び解像度が満足できるものでない。このように、いずれも問題を有している。   However, the base resin of these resist materials has an acid labile group in the side chain, and the acid labile group is decomposed with a strong acid such as tert-butyl group and tert-butoxycarbonyl group. The pattern shape of the resist material tends to be a T-top shape. On the other hand, since an alkoxyalkyl group such as an ethoxyethyl group is decomposed by a weak acid, it has a drawback that the pattern shape becomes extremely thin with the passage of time from exposure to heat treatment. In addition, since the side chain has a bulky group, the heat resistance is not lowered, and the sensitivity and resolution are not satisfactory. Thus, both have problems.

また、より高い透明性及び基板への密着性の実現と、基板までの裾引き改善、エッチング耐性向上のため、ヒドロキシスチレンと(メタ)アクリル酸3級エステルとの共重合体を使用したレジスト材料も報告されているが、この種のレジスト材料は耐熱性や、露光後のパターン形状が悪い等の問題があり、またエッチング耐性も満足できるものではなかった(特許文献7〜8)。   In addition, a resist material using a copolymer of hydroxystyrene and (meth) acrylic acid tertiary ester to realize higher transparency and adhesion to the substrate, to improve the tailing to the substrate, and to improve etching resistance. However, this type of resist material has problems such as heat resistance and poor pattern shape after exposure, and etching resistance is not satisfactory (Patent Documents 7 to 8).

ここで、エッチング耐性向上のために、ヒドロキシスチレン−スチレン−(メタ)アクリル酸3級エステル共重合体が提案されている(特許文献9〜10)。スチレンの導入により、エッチング耐性が向上するだけでなく、孤立残しパターンのマージンが拡大し、グループパターンと孤立残しパターンとの寸法差(疎密寸法差)が小さくなる特徴がある。疎密寸法差が小さくなる現象は、酸拡散距離が小さくなるためと考えられる。酸拡散距離を小さくするためには、分子量がより大きく、よりバルキーな酸を発生させる酸発生剤を添加することが効果的であるとされる。しかしながら、酸に不活性な基、例えばスチレンの導入によっても酸拡散距離を小さくすることが可能である。   Here, in order to improve etching resistance, hydroxystyrene-styrene- (meth) acrylic acid tertiary ester copolymers have been proposed (Patent Documents 9 to 10). By introducing styrene, not only the etching resistance is improved, but also the margin of the isolated residual pattern is enlarged, and the dimensional difference (dense dimensional difference) between the group pattern and the isolated residual pattern is reduced. The phenomenon in which the density difference between the density and the density is reduced is considered to be because the acid diffusion distance is reduced. In order to reduce the acid diffusion distance, it is considered to be effective to add an acid generator having a higher molecular weight and generating a bulky acid. However, it is also possible to reduce the acid diffusion distance by introducing an acid inert group such as styrene.

近年、KrFリソグラフィーにおいても150nmデザインルールの量産が本格的になり、130nmの量産も開始されようとしており、100nmまでの延命が検討されている。ここで、波長より遙かに小さい寸法を解像するためには、露光機の投影レンズの高NA化が必須であるが、変形照明あるいは位相シフトマスクなどの超解像技術が必要である。しかしながら、波長限界に近い寸法では、疎密寸法差が大きくなる問題が深刻化している。同時に、より解像度を上げるための更なる高コントラスト化も必要である。   In recent years, the mass production of 150 nm design rules has become full-scale in KrF lithography, and mass production of 130 nm is about to start, and the extension of life to 100 nm is being studied. Here, in order to resolve a dimension much smaller than the wavelength, it is essential to increase the NA of the projection lens of the exposure machine, but super-resolution technology such as modified illumination or a phase shift mask is necessary. However, in the dimension close to the wavelength limit, the problem that the sparse / dense dimensional difference increases becomes serious. At the same time, further higher contrast is required to increase the resolution.

例えば、前記のヒドロキシスチレン−スチレン−(メタ)アクリル酸tert−ブチルの3元共重合体において、溶解コントラストを上げるためには、(メタ)アクリル酸tert−ブチルの割合を上げる必要がある。しかしながら、(メタ)アクリル酸tert−ブチルの割合が高すぎると疎密寸法差が非常に大きくなる欠点がある。スチレンの割合を上げて(メタ)アクリル酸tert−ブチルの割合を下げると疎密寸法差が小さくなるが溶解コントラストが低下する。このことよりスチレンと(メタ)アクリル酸tert−ブチルの割合を最適化して溶解コントラストと疎密寸法差とのバランス取りを行う必要がある。
しかしながら、微細化の進行により、スチレンと(メタ)アクリル酸tert−ブチルとのバランス取りだけでは要求される性能が達成できなくなってきた。
そのため、最小の酸拡散と最大の溶解コントラストを達成するために、更なるブレークスルーが必要となってきた。
For example, in the above terpolymer of hydroxystyrene-styrene-tert-butyl (meth) acrylate, it is necessary to increase the ratio of tert-butyl (meth) acrylate in order to increase the dissolution contrast. However, if the ratio of tert-butyl (meth) acrylate is too high, there is a disadvantage that the dimensional difference in density is very large. Increasing the proportion of styrene and decreasing the proportion of tert-butyl (meth) acrylate reduces the density difference but decreases the dissolution contrast. Therefore, it is necessary to optimize the proportion of styrene and tert-butyl (meth) acrylate to balance the dissolution contrast and the density difference.
However, with the progress of miniaturization, required performance cannot be achieved only by balancing styrene and tert-butyl (meth) acrylate.
Thus, further breakthroughs have been required to achieve minimum acid diffusion and maximum dissolution contrast.

ラインエッジラフネス低減のためにはベースポリマーの分子量を下げることが有効であることが示されている。そのためカリックスアレン、低分子ノボラック、低分子ヒドロキシスチレンなど低分子ポリマーをベースにしたレジストが報告されている。しかしながら、一般的には低分子ポリマーはガラス転移点(Tg)が低いために、低分子のノボラックやヒドロキシスチレンはポストエクスポジュアーベーク(PEB)中の酸拡散制御が困難である。分子量が低くかつTgが高いポリマーが望まれている。   It has been shown that reducing the molecular weight of the base polymer is effective for reducing line edge roughness. Therefore, resists based on low molecular weight polymers such as calixarene, low molecular weight novolak, and low molecular weight hydroxystyrene have been reported. However, since a low molecular polymer generally has a low glass transition point (Tg), it is difficult to control acid diffusion in a post-exposure bake (PEB) of a low molecular novolak or hydroxystyrene. A polymer having a low molecular weight and a high Tg is desired.

特公平2−27660号公報JP-B-2-27660 特開昭63−27829号公報JP 63-27829 A 特開昭62−115440号公報JP 62-115440 A 特開平3−223858号公報JP-A-3-223858 特開平4−211258号公報JP-A-4-21258 特開平6−100488号公報Japanese Patent Laid-Open No. 6-1000048 特開平3−275149号公報JP-A-3-275149 特開平6−289608号公報JP-A-6-289608 特開平10−186665号公報Japanese Patent Laid-Open No. 10-186665 特開平11−305441号公報JP-A-11-305441

本発明は、上記事情に鑑みなされたもので、従来のポジ型レジスト材料を上回る高解像度、露光余裕度、小さい疎密寸法差、プロセス適応性を有し、露光後のパターン形状が良好であり、さらに優れたエッチング耐性を示すポジ型レジスト材料、特に化学増幅ポジ型レジスト材料を提供することを目的とする。   The present invention has been made in view of the above circumstances, has high resolution, exposure margin, small density difference, process adaptability, and a good pattern shape after exposure, compared to conventional positive resist materials. It is another object of the present invention to provide a positive resist material exhibiting excellent etching resistance, particularly a chemically amplified positive resist material.

上記課題を解決するため、本発明によれば、少なくとも、下記一般式(1)で示される共重合による繰り返し単位を含んでなる、重量平均分子量が1,000〜500,000の範囲である高分子化合物が提供される。

Figure 2006169302
(上式中、R1は同一又は非同一の水素原子、ヒドロキシ基、炭素数1〜4の直鎖状、分岐状のアルキル基、アセトキシ基、ヒドロキシメチル基、ハロゲン原子、又は−OR4(式中、R4は炭素数1〜6の直鎖状、分岐状のアルキル基、又は酸不安定基を表す。)を表し、mは0又は1〜6の正の整数であり、nは1〜5の整数であり、R2は水素原子又はメチル基を表し、R3は酸不安定基又は水素原子を表すが、R3とR4が併存するときはそのうちの少なくとも一つが酸不安定基であり、R4が存在しないときはR3のうちの少なくとも一つが酸不安定基であり、pとqはモル分率を表し各々1未満の正数であり、p+q≦1の関係を満たす。) In order to solve the above-mentioned problems, according to the present invention, at least a repeating unit by copolymerization represented by the following general formula (1) having a weight average molecular weight in the range of 1,000 to 500,000 is high. Molecular compounds are provided.
Figure 2006169302
(In the above formula, R 1 is the same or non-identical hydrogen atom, hydroxy group, linear or branched alkyl group having 1 to 4 carbon atoms, acetoxy group, hydroxymethyl group, halogen atom, or —OR 4 ( In the formula, R 4 represents a linear or branched alkyl group having 1 to 6 carbon atoms, or an acid labile group.), M is 0 or a positive integer of 1 to 6, and n is R 2 represents a hydrogen atom or a methyl group, R 3 represents an acid labile group or a hydrogen atom, and when R 3 and R 4 coexist, at least one of them is an acid-immobilized group. When R 4 is not present, at least one of R 3 is an acid labile group, p and q are mole fractions, each being a positive number less than 1, and p + q ≦ 1 Meet.)

また、一般式(1)で示される繰り返し単位を含んでなり、重量平均分子量が1,000〜500,000の範囲である高分子化合物をベース樹脂として含むポジ型レジスト材料を提供する。このポジ型レジスト材料は、レジスト膜の溶解コントラストが高く、高感度で高解像性を有し、露光余裕度があり、プロセス適応性に優れ、露光後のパターン形状が良好で、特に密パターンと疎パターンとの寸法差が小さく、より優れたエッチング耐性を示すものとなる。したがって、これらの優れた特性を有することから実用性がきわめて高く、超LSI用レジスト材料として非常に有効である。
このような本発明のポジ型レジスト材料は、少なくとも、該レジスト材料を基板上に塗布する工程と、得られた塗膜を加熱処理する工程と、加熱処理された塗膜を高エネルギー線で露光する工程と、露光された塗膜を現像液を用いて現像する工程とを行うことによって、半導体基板やマスク基板等にパターンを形成する方法として用いることができる。
もちろん、露光後加熱処理を加えた後に現像してもよいし、エッチング工程、レジスト除去工程、洗浄工程等その他の各種の工程が行われてもよいことは言うまでない。
以上のような本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料の用途としては、例えば、半導体回路形成におけるリソグラフィーだけでなく、マスク回路パターンの形成、あるいはマイクロマシーン、薄膜磁気ヘッド回路形成にも応用することができる。
Moreover, the present invention provides a positive resist material comprising a high molecular compound having a repeating unit represented by the general formula (1) and having a weight average molecular weight in the range of 1,000 to 500,000 as a base resin. This positive resist material has a resist film with high dissolution contrast, high sensitivity and high resolution, exposure margin, excellent process adaptability, good pattern shape after exposure, especially dense patterns And the sparse pattern have a small dimensional difference and exhibit better etching resistance. Therefore, since it has these excellent characteristics, it is extremely practical and is very effective as a resist material for VLSI.
Such a positive resist material of the present invention includes at least a step of coating the resist material on a substrate, a step of heat-treating the obtained coating film, and exposing the heat-treated coating film with high energy rays. It can be used as a method for forming a pattern on a semiconductor substrate, a mask substrate or the like by performing a step of developing and a step of developing the exposed coating film using a developer.
Needless to say, development may be performed after the post-exposure heat treatment, and various other processes such as an etching process, a resist removal process, and a cleaning process may be performed.
Examples of the use of the positive resist material of the present invention as described above, particularly the chemically amplified positive resist material, include not only lithography in semiconductor circuit formation, but also mask circuit pattern formation, micromachines, and thin film magnetic head circuits. It can also be applied to formation.

本発明は、置換可アセナフチレンと置換可ヒドロキシスチレンを共重合して得られる高分子化合物をベース樹脂としてレジスト材料に配合することにより、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有し、露光後のパターン形状が良好で、その上特に酸拡散速度を抑制し、優れたエッチング耐性を示す。したがって、特に超LSI製造用あるいはフォトマスクの微細パターン形成材料として好適なポジ型レジスト材料、特には化学増幅ポジ型レジスト材料を得ることができる。   In the present invention, a polymer compound obtained by copolymerizing substituted acenaphthylene and substituted hydroxystyrene is blended with a resist material as a base resin, so that the alkali dissolution rate contrast before and after exposure is significantly high, and the sensitivity is high. It has resolution, has a good pattern shape after exposure, and particularly suppresses the acid diffusion rate and exhibits excellent etching resistance. Accordingly, it is possible to obtain a positive resist material, particularly a chemically amplified positive resist material, which is particularly suitable as a material for forming a fine pattern for VLSI manufacturing or a photomask.

以下、本発明の実施の形態を詳細に説明するが、本発明はこれらに限定されるものではない。
本発明者らは、近年要望される高感度及び高解像度、露光余裕度等を有し、エッチング形状が良好で、優れたエッチング耐性を示すポジ型レジスト材料を得るべく鋭意検討を重ねた結果、これにはヒドロキシ基の水素原子を酸不安定基で置換したヒドロキシスチレンと、アセナフチレンとの共重合により得られるポリマーをポジ型レジスト材料、特に化学増幅ポジ型レジスト材料のベース樹脂として用いれば極めて有効であることを知見し本発明を完成させたものである。
Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto.
As a result of intensive studies to obtain a positive resist material having high sensitivity and high resolution, exposure margin, etc. that have been recently requested, good etching shape, and excellent etching resistance, For this purpose, it is extremely effective if a polymer obtained by copolymerization of hydroxystyrene in which a hydrogen atom of a hydroxy group is substituted with an acid labile group and acenaphthylene is used as a base resin of a positive resist material, particularly a chemically amplified positive resist material. Thus, the present invention has been completed.

すなわち、本発明者らは、本発明に先立ち、アセナフチレンを共重合させることを検討した。これらのものはエッチング耐性が向上するだけでなく、酸拡散を抑えることによって疎密寸法差を小さくする特徴があり、その効果はスチレン以上であった。これは、アセナフチレンはシクロオレフィンであり、その重合物の主鎖が剛直になることによって分子内の熱運動が抑制され、酸拡散を抑えるためと考えられる。
以上のことから、本発明者らは、更に酸拡散を抑えるために、ヒドロキシ基の水素原子を酸不安定基で置換したヒドロキシスチレンと、アセナフチレンとの共重合により得られるポリマーをポジ型レジスト材料、特に化学増幅ポジ型レジスト材料のベース樹脂として用いることを発想した。
That is, the present inventors examined the copolymerization of acenaphthylene prior to the present invention. These materials not only have improved etching resistance, but also have a feature of reducing the density difference by suppressing acid diffusion, and the effect is higher than that of styrene. This is considered to be because acenaphthylene is a cycloolefin, and the thermal motion in the molecule is suppressed by the main chain of the polymer being rigid, thereby suppressing acid diffusion.
From the above, the present inventors further developed a polymer obtained by copolymerizing hydroxystyrene in which a hydrogen atom of a hydroxy group is substituted with an acid labile group and acenaphthylene in order to suppress acid diffusion, as a positive resist material. In particular, the idea was to use it as a base resin for chemically amplified positive resist materials.

本発明に係る高分子化合物は、少なくとも、上記一般式(1)で示される共重合による繰り返し単位を含んでなる、重量平均分子量が1,000〜500,000の範囲である高分子化合物である。   The polymer compound according to the present invention is a polymer compound having a weight average molecular weight in the range of 1,000 to 500,000, comprising at least a repeating unit by copolymerization represented by the general formula (1). .

このような高分子化合物をベース樹脂とし、これに有機溶剤、酸発生剤、溶解阻止剤、塩基性化合物、界面活性剤等を目的に応じ適宜組み合わせて配合してポジ型レジスト材料を構成することによって、レジスト膜の溶解コントラスト及び解像性が高く、露光余裕度があり、プロセス適応性に優れ、露光後のパターン形状が良好でありながら、より優れたエッチング耐性を示し、特に酸拡散を抑制できることから粗密寸法差が小さく、これらのことがら実用性が高く、超LSI用レジスト材料として非常に有効なものとすることが出来る。特に、酸発生剤を含有させ、酸触媒反応を利用した化学増幅ポジ型レジスト材料とすると、より高感度のものとすることが出来るとともに、諸特性が一層優れたものとなりきわめて有用なものとなる。   Using such a high molecular compound as a base resin, an organic solvent, an acid generator, a dissolution inhibitor, a basic compound, a surfactant and the like are appropriately combined according to the purpose to form a positive resist material. Resist resist film has high dissolution contrast and resolution, exposure margin, excellent process adaptability, good pattern shape after exposure, and better etching resistance, especially suppressing acid diffusion Therefore, the dimensional difference is small, and these facts are highly practical and can be very effective as a resist material for VLSI. In particular, when a chemically amplified positive resist material containing an acid generator and utilizing an acid catalytic reaction is used, it can be made more sensitive and have excellent properties and is extremely useful. .

本発明によれば、前記高分子化合物をベース樹脂とし、さらに有機溶剤及び酸発生剤を含有する化学増幅型のレジスト材料とするのが好ましい。このように、前記高分子化合物をベース樹脂として用い、さらに有機溶剤及び酸発生剤を配合することによって、露光部では前記高分子化合物が触媒反応により現像液に対する溶解速度が加速されるので、きわめて高感度のポジ型レジスト材料とすることができる。
この場合、本発明のポジ型レジスト材料では、好ましくは、さらに溶解阻止剤を含有することができる。このように、ポジ型レジスト材料に溶解阻止剤を配合することによって、露光部と未露光部との溶解速度の差を一層大きくすることができ解像度を一層向上させることが出来る。
また、本発明では、好ましくは、さらに添加剤として塩基性化合物及び/又は界面活性剤が配合することができる。このように、塩基性化合物を添加することによって、例えばレジスト膜中での酸の拡散速度を抑制し解像度を一層向上させることが出来るし、界面活性剤を添加することによってレジスト材料の塗布性を一層向上あるいは制御することが出来る。
According to the present invention, it is preferable to use a chemically amplified resist material containing the polymer compound as a base resin and further containing an organic solvent and an acid generator. Thus, by using the polymer compound as a base resin, and further blending an organic solvent and an acid generator, the dissolution rate of the polymer compound in the developing solution is accelerated by a catalytic reaction in the exposed area. A highly sensitive positive resist material can be obtained.
In this case, the positive resist material of the present invention can preferably further contain a dissolution inhibitor. Thus, by adding a dissolution inhibitor to the positive resist material, the difference in dissolution rate between the exposed area and the unexposed area can be further increased, and the resolution can be further improved.
In the present invention, preferably, a basic compound and / or a surfactant can be further added as an additive. Thus, by adding a basic compound, for example, the acid diffusion rate in the resist film can be suppressed and the resolution can be further improved, and by adding a surfactant, the coatability of the resist material can be improved. It can be further improved or controlled.

一般式(1)中のR3又はR4において、これらが酸不安定基の機能を示す場合、種々選定されるが、同一でも非同一でもよく、フェノールの水酸基の水素原子を特に下記式(AL10)で示される基、下記式(AL11)で示される基、下記式(AL12)で示される炭素数4〜40の3級アルキル基、炭素数1〜6のトリアルキルシリル基、又は炭素数4〜20のオキソアルキル基等で置換されていることが好ましい。 In R 3 or R 4 in the general formula (1), when they exhibit the function of an acid labile group, they are variously selected and may be the same or non-identical. A group represented by the following formula (AL11), a tertiary alkyl group having 4 to 40 carbon atoms, a trialkylsilyl group having 1 to 6 carbon atoms, or a carbon number represented by the following formula (AL12): It is preferably substituted with 4 to 20 oxoalkyl groups or the like.

Figure 2006169302
Figure 2006169302

式(AL10)と(AL11)においてR6とR9は、炭素数1〜20の直鎖状、分岐状又は環状のアルキル基であり、酸素、硫黄、窒素又はフッ素などのヘテロ原子を含んでもよい。
7とR8は、水素原子、又は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基であり、酸素、硫黄、窒素、又はフッ素などのヘテロ原子を含んでも良く、aは0〜10の整数である。R7とR8、R7とR9、又はR8とR9はそれぞれ結合して環を形成しても良い。
In the formulas (AL10) and (AL11), R 6 and R 9 are linear, branched or cyclic alkyl groups having 1 to 20 carbon atoms and may contain heteroatoms such as oxygen, sulfur, nitrogen or fluorine. Good.
R 7 and R 8 are a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, and may contain a heteroatom such as oxygen, sulfur, nitrogen, or fluorine, and a is It is an integer of 0-10. R 7 and R 8 , R 7 and R 9 , or R 8 and R 9 may be bonded to each other to form a ring.

式(AL10)に示される化合物を具体的に例示すると、tert−ブトキシカルボニル基、tert−ブトキシカルボニルメチル基、tert−アミロキシカルボニル基、tert−アミロキシカルボニルメチル基、1−エトキシエトキシカルボニルメチル基、2−テトラヒドロピラニルオキシカルボニルメチル基、2−テトラヒドロフラニルオキシカルボニルメチル基等が挙げられ、また下記一般式(AL10)−1〜(AL10)−9で示される置換基が挙げられる。   Specific examples of the compound represented by the formula (AL10) include a tert-butoxycarbonyl group, a tert-butoxycarbonylmethyl group, a tert-amyloxycarbonyl group, a tert-amyloxycarbonylmethyl group, and a 1-ethoxyethoxycarbonylmethyl group. , 2-tetrahydropyranyloxycarbonylmethyl group, 2-tetrahydrofuranyloxycarbonylmethyl group and the like, and substituents represented by the following general formulas (AL10) -1 to (AL10) -9.

Figure 2006169302
Figure 2006169302

式(AL10)−1〜(AL10)−9中、R14は、同一又は非同一の炭素数1〜8の直鎖状、分岐鎖状もしくは環状のアルキル基、炭素数6〜20のアリール基、又は炭素数6〜20のアラルキル基を示す。R15は存在しないか、又は炭素数1〜20の直鎖状、分岐鎖状もしくは環状のアルキル基を示す。R16は炭素数6〜20のアリール基又は炭素数6〜20のアラルキル基を示す。 In formulas (AL10) -1 to (AL10) -9, R 14 is the same or non-identical linear, branched or cyclic alkyl group having 1 to 8 carbon atoms, or aryl group having 6 to 20 carbon atoms. Or an aralkyl group having 6 to 20 carbon atoms. R 15 does not exist, or represents a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms. R 16 represents an aryl group having 6 to 20 carbon atoms or an aralkyl group having 6 to 20 carbon atoms.

式(AL11)で示されるアセタール化合物を、下記(AL11)−1〜(AL11)−30に例示する。   Examples of the acetal compound represented by the formula (AL11) are the following (AL11) -1 to (AL11) -30.

Figure 2006169302
Figure 2006169302

Figure 2006169302
Figure 2006169302

また、下記一般式(AL−11a)あるいは(AL−11b)で表される酸不安定基によってベース樹脂が分子間あるいは分子内架橋されていてもよい。   In addition, the base resin may be intermolecularly or intramolecularly crosslinked by an acid labile group represented by the following general formula (AL-11a) or (AL-11b).

Figure 2006169302
Figure 2006169302

上記式中、R33とR34は、水素原子、又は炭素数1〜8の直鎖状、分岐状もしくは環状のアルキル基を示す。また、R33とR34は結合して環を形成してもよく、環を形成する場合にはR33、R34は炭素数1〜8の直鎖状又は分岐状のアルキレン基を示す。R35は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基、bとdは0又は1〜10、好ましくは0又は1〜5の整数である。cは1〜7の整数である。Aは、(c+1)価の炭素数1〜50の脂肪族もしくは脂環式飽和炭化水素基、芳香族炭化水素基又はヘテロ環基を示し、これらの基はO、SもしくはN等のヘテロ原子を介在してもよく、又はその炭素原子に結合する水素原子の一部が水酸基、カルボキシル基、カルボニル基又はフッ素原子によって置換されていてもよい。Bは−CO−O−、−NHCO−O−又は−NHCONH−を示す。 In the above formula, R 33 and R 34 represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms. R 33 and R 34 may combine to form a ring, and when forming a ring, R 33 and R 34 represent a linear or branched alkylene group having 1 to 8 carbon atoms. R 35 is a linear, branched or cyclic alkylene group having 1 to 10 carbon atoms, and b and d are 0 or 1 to 10, preferably 0 or an integer of 1 to 5. c is an integer of 1-7. A represents a (c + 1) -valent C1-C50 aliphatic or alicyclic saturated hydrocarbon group, aromatic hydrocarbon group or heterocyclic group, and these groups are heteroatoms such as O, S or N Or a part of hydrogen atoms bonded to the carbon atom may be substituted with a hydroxyl group, a carboxyl group, a carbonyl group or a fluorine atom. B represents —CO—O—, —NHCO—O— or —NHCONH—.

この場合、好ましくは、Aは2〜4価の炭素数1〜20の直鎖状、分岐状もしくは環状のアルキレン基、アルキルトリイル基、アルキルテトライル基、又は炭素数6〜30のアリーレン基であり、これらの基はO、SもしくはN等のヘテロ原子を介在していてもよく、またその炭素原子に結合する水素原子の一部が水酸基、カルボキシル基、アシル基又はハロゲン原子によって置換されていてもよい。また、cは、好ましくは1〜3の整数である。   In this case, A is preferably a divalent to tetravalent C1-C20 linear, branched or cyclic alkylene group, an alkyltriyl group, an alkyltetrayl group, or an arylene group having 6 to 30 carbon atoms. These groups may have intervening heteroatoms such as O, S or N, and a part of the hydrogen atoms bonded to the carbon atoms are substituted by a hydroxyl group, a carboxyl group, an acyl group or a halogen atom. It may be. C is preferably an integer of 1 to 3.

一般式(AL−11a)と(AL−11b)で示される架橋型アセタール基は、具体的には下記式(AL−11)−31〜(AL−11)−38のものが挙げられる。   Specific examples of the cross-linked acetal groups represented by the general formulas (AL-11a) and (AL-11b) include those represented by the following formulas (AL-11) -31 to (AL-11) -38.

Figure 2006169302
Figure 2006169302

次に、前記式(AL12)に示される3級アルキル基としては、tert−ブチル基、トリエチルカルビル基、1ーエチルノルボニル基、1−メチルシクロヘキシル基、1−エチルシクロペンチル基、2−(2−メチル)アダマンチル基、2−(2−エチル)アダマンチル基、tert−アミル基等あるいは下記一般式(AL12)−1〜(AL12)−18を挙げることができる。   Next, examples of the tertiary alkyl group represented by the formula (AL12) include tert-butyl group, triethylcarbyl group, 1-ethylnorbornyl group, 1-methylcyclohexyl group, 1-ethylcyclopentyl group, 2- ( Examples thereof include 2-methyl) adamantyl group, 2- (2-ethyl) adamantyl group, tert-amyl group, and the following general formulas (AL12) -1 to (AL12) -18.

Figure 2006169302
Figure 2006169302

上式中、R10は同一又は非同一の炭素数1〜8の直鎖状、分岐鎖状もしくは環状のアルキル基、炭素数6〜20のアリール基、又は炭素数6〜20のアラルキル基を示す。R11とR13は存在しないか炭素数1〜20の直鎖状、分岐鎖状もしくは環状のアルキル基を示す。R12は炭素数6〜20のアリール基、又は炭素数6〜20のアラルキル基を示す。 In the above formula, R 10 represents the same or non-identical linear, branched or cyclic alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an aralkyl group having 6 to 20 carbon atoms. Show. R 11 and R 13 are not present or represent a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms. R 12 represents an aryl group having 6 to 20 carbon atoms or an aralkyl group having 6 to 20 carbon atoms.

更に、下記式(AL12)−19と(AL12)−20に示すように、2価以上のアルキレン基、又はアリーレン基であるR17を含んで、ポリマーの分子内あるいは分子間が架橋されていても良い。式(AL12)−19及び(AL12)−20のR10は前述と同様、R17は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキレン基、又はアリーレン基を示し、酸素原子や硫黄原子、もしくは窒素原子などのヘテロ原子を含んでいてもよい。eは1〜3の整数である。 Furthermore, as shown in the following formulas (AL12) -19 and (AL12) -20, a polymer having a divalent or higher valent alkylene group or an arylene group, R 17 , is crosslinked within or between the molecules of the polymer. Also good. In the formulas (AL12) -19 and (AL12) -20, R 10 is the same as described above, and R 17 is a linear, branched or cyclic alkylene group having 1 to 20 carbon atoms, or an arylene group. It may contain a hetero atom such as a sulfur atom or a nitrogen atom. e is an integer of 1-3.

Figure 2006169302
Figure 2006169302

更にR10、R11、R12、及びR13は、酸素、窒素、又は硫黄などのヘテロ原子を有していてもよく、具体的には下記(AL13)−1〜(AL13)−7に示すことができる。 Furthermore, R 10 , R 11 , R 12 , and R 13 may have a heteroatom such as oxygen, nitrogen, or sulfur, and specifically include the following (AL13) -1 to (AL13) -7. Can show.

Figure 2006169302
Figure 2006169302

本発明の高分子化合物の酸不安定基として用いることができる、炭素数1〜6のトリアルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、ジメチル−tert−ブチルシリル基等が挙げられる。また、オキソアルキル基としては、3−オキソシクロヘキシル基、4−メチルー2−オキソオキサンー4−イル基、5−メチルー2―オキソオキソランー5−イル基が例示できる。   Examples of the trialkylsilyl group having 1 to 6 carbon atoms that can be used as the acid labile group of the polymer compound of the present invention include a trimethylsilyl group, a triethylsilyl group, and a dimethyl-tert-butylsilyl group. Examples of the oxoalkyl group include a 3-oxocyclohexyl group, a 4-methyl-2-oxooxan-4-yl group, and a 5-methyl-2-oxooxolan-5-yl group.

なお、酸不安定基の置換率は、酸不安定基の種類によって、また現像するアルカリ水の濃度に依存するが、ヒドロキシスチレン又はヒドロキシアセナフチレンの水酸基の水素原子の5〜50モル%を置換することが好ましい範囲である。この場合、ポリマー膜はアルカリ現像液に対して未溶、あるいは難溶になる。   The substitution rate of the acid labile group depends on the type of the acid labile group and the concentration of the alkaline water to be developed, but 5 to 50 mol% of the hydroxyl atom of hydroxystyrene or hydroxyacenaphthylene is used. Substitution is a preferred range. In this case, the polymer film becomes insoluble or hardly soluble in the alkaline developer.

次に、レジスト材料の特性を考慮すると、上記式(1)において、pとqはそれぞれ正数で、下記式を満足する数であるのが望ましい。
すなわち、0<p/(p+q)≦0.7、好ましくは0.03≦p/(p+q)≦0.6の範囲であり、0.1<q/(p+q)≦0.97、好ましくは0.3≦q/(p+q)≦0.95の範囲である。0.5≦p+q≦1、好ましくは0.6≦p+q≦1の範囲である。従って、本発明は、p、q単位に加えてさらに別の単位を共重合させたものとしてもよい。
一方、qが0.4以下の場合、通常のラジカル重合ではp単位単独の重合速度がかなり遅いため、高分子体を得ることが困難になる場合がある。この場合はカチオン重合での重合を行う。また、p単位が0.03未満の場合、本発明の効果がなくなる場合がある。
Next, considering the characteristics of the resist material, in the above formula (1), p and q are each positive numbers, and are desirably numbers satisfying the following formula.
That is, 0 <p / (p + q) ≦ 0.7, preferably 0.03 ≦ p / (p + q) ≦ 0.6, 0.1 <q / (p + q) ≦ 0.97, preferably The range is 0.3 ≦ q / (p + q) ≦ 0.95. The range is 0.5 ≦ p + q ≦ 1, preferably 0.6 ≦ p + q ≦ 1. Therefore, in the present invention, another unit may be copolymerized in addition to the p and q units.
On the other hand, when q is 0.4 or less, in normal radical polymerization, the polymerization rate of the p unit alone is considerably slow, and it may be difficult to obtain a polymer. In this case, polymerization by cationic polymerization is performed. Further, when the p unit is less than 0.03, the effect of the present invention may be lost.

本発明の高分子化合物は、それぞれ重量平均分子量が1,000〜500,000、好ましくは2,000〜30,000である必要がある。重量平均分子量が小さすぎるとレジスト材料が耐熱性に劣るものとなり、大きすぎるとアルカリ溶解性が低下し、パターン形成後に裾引き現象が生じ易くなってしまう。なお、重量平均分子量(Mw)と数平均分子量(Mn)は、GPC(ゲルパーミエーションクロマトグラフ)を用いてポリスチレン換算で得られる。   The polymer compound of the present invention has a weight average molecular weight of 1,000 to 500,000, preferably 2,000 to 30,000. If the weight average molecular weight is too small, the resist material is inferior in heat resistance. If the weight average molecular weight is too large, the alkali solubility is lowered, and a trailing phenomenon is likely to occur after pattern formation. In addition, a weight average molecular weight (Mw) and a number average molecular weight (Mn) are obtained by polystyrene conversion using GPC (gel permeation chromatograph).

更に、本発明の高分子化合物においては、上記式(1)の多成分共重合体の分子量分布(Mw/Mn)が広い場合は低分子量や高分子量のポリマーが存在するために、露光後、パターン上に異物が見られたり、パターンの形状が悪化したりする。それ故、パターンルールが微細化するに従ってこのような分子量、分子量分布の影響が大きくなり易いことから、微細なパターン寸法に好適に用いられるレジスト材料を得るには、使用する多成分共重合体の分子量分布は1.0〜2.0、特に1.0〜1.5と狭分散であることが好ましい。
また、組成比率や分子量分布や分子量が異なる2つ以上のポリマーをブレンドすることも可能である。
Furthermore, in the polymer compound of the present invention, when the molecular weight distribution (Mw / Mn) of the multi-component copolymer of the above formula (1) is wide, a low molecular weight or high molecular weight polymer is present. Foreign matter is seen on the pattern or the shape of the pattern is deteriorated. Therefore, since the influence of such molecular weight and molecular weight distribution tends to increase as the pattern rule becomes finer, in order to obtain a resist material suitably used for fine pattern dimensions, the multi-component copolymer to be used is obtained. The molecular weight distribution is preferably from 1.0 to 2.0, particularly preferably from 1.0 to 1.5 and narrow dispersion.
It is also possible to blend two or more polymers having different composition ratios, molecular weight distributions, and molecular weights.

本発明の一般式(1)中、モル分率pを有する繰り返し単位に示される置換アセナフチレンは、具体的には下記に示すことができる。   In the general formula (1) of the present invention, the substituted acenaphthylene shown in the repeating unit having a molar fraction p can be specifically shown below.

Figure 2006169302
Figure 2006169302

本発明の一般式(1)中、モル分率qを有する繰り返し単位に示される置換ヒドロキシスチレンは、具体的には下記に示すことができる。なお、下記例においてRaは酸不安定基を表す。   In the general formula (1) of the present invention, the substituted hydroxystyrene shown in the repeating unit having a molar fraction q can be specifically shown below. In the following examples, Ra represents an acid labile group.

Figure 2006169302
Figure 2006169302

一般式(1)で示される、モル分率pとqを有する繰り返し単位以外に、密着性やドライエッチング耐性、透明性を向上させるための他の成分を追加することも可能である。
追加成分としては、例えば、(メタ)アクリル酸誘導体、(メタ)アクリルアミド誘導体、イタコン酸誘導体、ノルボルネン誘導体、無水マレイン酸、マレイミド誘導体、インデン誘導体、スチレン、ビニルナフタレン誘導体、ビニルアントラセン誘導体、ノルトリシクレン、酢酸ビニル、(メタ)アクリロニトリル、ビニルピロリドン、テトラフルオロエチレンなどが挙げられる。なお、(メタ)アクリルは、メタクリル又はアクリルを意味する。
In addition to the repeating unit having the molar fractions p and q represented by the general formula (1), other components for improving adhesion, dry etching resistance, and transparency can be added.
Additional components include, for example, (meth) acrylic acid derivatives, (meth) acrylamide derivatives, itaconic acid derivatives, norbornene derivatives, maleic anhydride, maleimide derivatives, indene derivatives, styrene, vinyl naphthalene derivatives, vinyl anthracene derivatives, nortricyclene, acetic acid Examples include vinyl, (meth) acrylonitrile, vinyl pyrrolidone, and tetrafluoroethylene. In addition, (meth) acryl means methacryl or acryl.

これら高分子化合物を合成するには、1つの方法としてはアセトキシスチレンモノマーと置換可アセナフチレンモノマーを、有機溶剤中、ラジカル開始剤あるいはカチオン開始剤を加え加熱重合を行い、得られた高分子化合物を有機溶剤中アルカリ加水分解を行い、アセトキシ基を脱保護し、ヒドロキシスチレンと、置換可アセナフチレンのいずれかとの2成分共重合体の高分子化合物を得ることができる。
また、酸不安定基で置換されたヒドロキシスチレンモノマーとアセナフチレンを有機溶剤中、ラジカル開始剤を加え加熱重合を行い、得られた高分子化合物を有機溶剤中酸触媒により脱保護化し、ヒドロキシスチレンとアセナフチレンの2成分共重合体の高分子化合物を得る方法もある。
酸不安定基はヒドロキシスチレンのヒドロキシ基の水素原子を置換していても良いし、ヒドロキシアセナフチレンのヒドロキシ基を置換してもよい。
In order to synthesize these polymer compounds, as one method, an acetoxystyrene monomer and a substitutable acenaphthylene monomer are added to a radical initiator or a cationic initiator in an organic solvent and subjected to heat polymerization, and the resulting polymer is obtained. The compound is subjected to alkaline hydrolysis in an organic solvent to deprotect the acetoxy group, and a polymer compound of a two-component copolymer of hydroxystyrene and one of substituted acenaphthylenes can be obtained.
In addition, a hydroxystyrene monomer substituted with an acid labile group and acenaphthylene are heated in an organic solvent by adding a radical initiator, and the resulting polymer compound is deprotected with an acid catalyst in an organic solvent to produce hydroxystyrene and There is also a method of obtaining a polymer compound of a two-component copolymer of acenaphthylene.
The acid labile group may substitute a hydrogen atom of the hydroxy group of hydroxystyrene, or may substitute a hydroxy group of hydroxyacenaphthylene.

重合時に使用する有機溶剤としては、トルエン、ベンゼン、テトラヒドロフラン、ジエチルエーテル、ジオキサン等が例示できる。
ラジカル重合開始剤としては、2,2´−アゾビスイソブチロニトリル、2,2´−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2−アゾビス(2−メチルプロピオネート)、ベンゾイルパーオキシド、ラウロイルパーオキシド等が挙げられる。
カチオン重合開始剤としては、硫酸、燐酸、塩酸、硝酸、次亜塩素酸、トリクロロ酢酸、トリフルオロ酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、カンファースルホン酸、トシル酸等の酸、BF3、AlCl3、TiCl4、SnCl4などのフリーデルクラフツ触媒のほか、I2、(C653CClのようにカチオンを生成しやすい物質が例示できる。
重合は、好ましくは50℃から80℃に加熱して行われる。反応時間としては、好ましくは2〜100時間、より好ましくは5〜20時間である。
Examples of the organic solvent used at the time of polymerization include toluene, benzene, tetrahydrofuran, diethyl ether, dioxane and the like.
As radical polymerization initiators, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2-azobis (2-methylpropionate), Examples include benzoyl peroxide and lauroyl peroxide.
Examples of the cationic polymerization initiator include sulfuric acid, phosphoric acid, hydrochloric acid, nitric acid, hypochlorous acid, trichloroacetic acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, camphorsulfonic acid, tosylic acid and the like, BF 3 , AlCl 3, TiCl 4, SnCl 4 other Friedel-Crafts catalyst such as, I 2, (C 6 H 5) 3 generated material susceptible to cationic as CCl can be exemplified.
The polymerization is preferably performed by heating from 50 ° C to 80 ° C. The reaction time is preferably 2 to 100 hours, more preferably 5 to 20 hours.

ヒドロキシスチレンのヒドロキシ基の水素原子が酸不安定基で置換されたスチレンモノマーと、アセトキシスチレンモノマーと、アセナフチレンモノマーを重合し、重合後上記アルカリ加水分解によってアセトキシスチレンのみを脱保護してヒドロキシスチレンにする方法もある。また、アセトキシスチレンのかわりにアセトキシアセナフチレンを用いることもできる。
アルカリ加水分解時の塩基としては、アンモニア水、トリエチルアミン等が使用できる。また、反応温度としては、好ましくは−20〜100℃、より好ましくは0〜60℃であり、反応時間としては好ましくは0.2〜100時間、より好ましくは0.5〜20時間である。
A styrene monomer in which the hydrogen atom of the hydroxy group of hydroxystyrene is substituted with an acid labile group, an acetoxystyrene monomer, and an acenaphthylene monomer are polymerized, and after the polymerization, only acetoxystyrene is deprotected by the above alkaline hydrolysis to produce hydroxy. There is also a method of using styrene. Further, acetoxyacenaphthylene can be used instead of acetoxystyrene.
Ammonia water, triethylamine, etc. can be used as the base during the alkali hydrolysis. Moreover, as reaction temperature, it becomes like this. Preferably it is -20-100 degreeC, More preferably, it is 0-60 degreeC, As reaction time, Preferably it is 0.2-100 hours, More preferably, it is 0.5-20 hours.

得られた高分子化合物を単離後、フェノール性水酸基部分に対して、一般式(1)中R3、R4で示される酸不安定基を導入することも可能である。例えば、高分子化合物のフェノール性水酸基をアルケニルエーテル化合物と酸触媒下反応させて、部分的にフェノール性水酸基がアルコキシアルキル基で保護された高分子化合物を得ることが可能である。
この時、反応溶媒としては、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、酢酸エチル等の非プロトン性極性溶媒が好ましく、単独でも2種以上混合して使用してもかまわない。触媒の酸としては、塩酸、硫酸、トリフルオロメタンスルホン酸、p−トルエンスルホン酸、メタンスルホン酸、p−トルエンスルホン酸ピリジニウム塩等が好ましく、その使用量は反応する高分子化合物のフェノール性水酸基の水素原子をその全水酸基の1モルに対して0.1〜10モル%であることが好ましい。反応温度としては、好ましくは−20〜100℃、より好ましくは0〜60℃であり、反応時間としては、好ましくは0.2〜100時間、より好ましくは0.5〜20時間である。
After isolating the obtained polymer compound, acid labile groups represented by R 3 and R 4 in the general formula (1) can be introduced into the phenolic hydroxyl group. For example, it is possible to obtain a polymer compound in which the phenolic hydroxyl group is partially protected with an alkoxyalkyl group by reacting the phenolic hydroxyl group of the polymer compound with an alkenyl ether compound in the presence of an acid catalyst.
At this time, the reaction solvent is preferably an aprotic polar solvent such as dimethylformamide, dimethylacetamide, tetrahydrofuran or ethyl acetate, and may be used alone or in combination. As the acid of the catalyst, hydrochloric acid, sulfuric acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid pyridinium salt and the like are preferable, and the amount used thereof is the phenolic hydroxyl group of the polymer compound to be reacted. It is preferable that a hydrogen atom is 0.1-10 mol% with respect to 1 mol of the whole hydroxyl group. The reaction temperature is preferably −20 to 100 ° C., more preferably 0 to 60 ° C., and the reaction time is preferably 0.2 to 100 hours, more preferably 0.5 to 20 hours.

また、ハロゲン化アルキルエーテル化合物を用いて、塩基の存在下、高分子化合物と反応させることにより、部分的にフェノール性水酸基がアルコキシアルキル基で保護された高分子化合物を得ることも可能である。
この時、反応溶媒としては、アセトニトリル、アセトン、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、ジメチルスルホキシド等の非プロトン性極性溶媒が好ましく、単独でも2種以上混合して使用してもかまわない。塩基としては、トリエチルアミン、ピリジン、ジイソプロピルアミン、炭酸カリウム等が好ましく、その使用量は反応する高分子化合物のフェノール性水酸基の水素原子をその全水酸基の1モルに対して10モル%以上であることが好ましい。反応温度としては、好ましくは−50〜100℃、より好ましくは0〜60℃であり、反応時間としては、好ましくは0.5〜100時間、より好ましくは1〜20時間である。
It is also possible to obtain a polymer compound in which a phenolic hydroxyl group is partially protected with an alkoxyalkyl group by reacting with a polymer compound in the presence of a base using a halogenated alkyl ether compound.
At this time, the reaction solvent is preferably an aprotic polar solvent such as acetonitrile, acetone, dimethylformamide, dimethylacetamide, tetrahydrofuran, or dimethylsulfoxide, and may be used alone or in combination. As the base, triethylamine, pyridine, diisopropylamine, potassium carbonate and the like are preferable, and the amount used is 10 mol% or more of the hydrogen atom of the phenolic hydroxyl group of the polymer compound to be reacted with respect to 1 mol of the total hydroxyl group. Is preferred. The reaction temperature is preferably −50 to 100 ° C., more preferably 0 to 60 ° C., and the reaction time is preferably 0.5 to 100 hours, more preferably 1 to 20 hours.

さらに、一般式(1)中R3で示される酸不安定基の導入は、二炭酸ジアルキル化合物又は、アルコキシカルボニルアルキルハライドと高分子化合物を、溶媒中において塩基の存在下反応を行うことで可能である。
この時、反応溶媒としては、アセトニトリル、アセトン、ジメチルホルムアミド、ジメチルアセトアミド、テトラヒドロフラン、ジメチルスルホキシド等の非プロトン性極性溶媒が好ましく、単独でも2種以上混合して使用してもかまわない。塩基としては、トリエチルアミン、ピリジン、イミダゾール、ジイソプロピルアミン、炭酸カリウム等が好ましく、その使用量は元の高分子化合物のフェノール性水酸基の水素原子をその全水酸基の1モルに対して10モル%以上であることが好ましい。反応温度としては、好ましくは0〜100℃、より好ましくは0〜60℃である。反応時間としては、好ましくは0.2〜100時間、より好ましくは1〜10時間である。
Furthermore, introduction of an acid labile group represented by R 3 in the general formula (1) is possible by reacting a dialkyl dicarbonate compound or alkoxycarbonylalkyl halide with a polymer compound in a solvent in the presence of a base. It is.
At this time, the reaction solvent is preferably an aprotic polar solvent such as acetonitrile, acetone, dimethylformamide, dimethylacetamide, tetrahydrofuran, or dimethylsulfoxide, and may be used alone or in combination. As the base, triethylamine, pyridine, imidazole, diisopropylamine, potassium carbonate and the like are preferable, and the amount used is 10 mol% or more of the hydrogen atom of the phenolic hydroxyl group of the original polymer compound with respect to 1 mol of the total hydroxyl group. Preferably there is. The reaction temperature is preferably 0 to 100 ° C, more preferably 0 to 60 ° C. The reaction time is preferably 0.2 to 100 hours, more preferably 1 to 10 hours.

二炭酸ジアルキル化合物としては、二炭酸ジ−tert−ブチル、二炭酸ジ−tert−アミル等が挙げられる。アルコキシカルボニルアルキルハライドとしては、tert−ブトキシカルボニルメチルクロライド、tert−アミロキシカルボニルメチルクロライド、tert−ブトキシカルボニルメチルブロマイド、tert−ブトキシカルボニルエチルクロライド等が挙げられる。
ただしこれら合成手法に限定されるものではない。
Examples of the dialkyl dicarbonate compound include di-tert-butyl dicarbonate and di-tert-amyl dicarbonate. Examples of the alkoxycarbonylalkyl halide include tert-butoxycarbonylmethyl chloride, tert-amyloxycarbonylmethyl chloride, tert-butoxycarbonylmethyl bromide, tert-butoxycarbonylethyl chloride and the like.
However, it is not limited to these synthesis methods.

本発明のポジ型レジスト材料には、有機溶剤、高エネルギー線に感応して酸を発生する化合物(酸発生剤)、必要に応じて溶解阻止剤、塩基性化合物、界面活性剤、その他の成分を含有することができる。   The positive resist material of the present invention includes an organic solvent, a compound that generates an acid in response to high energy rays (acid generator), a dissolution inhibitor, a basic compound, a surfactant, and other components as necessary. Can be contained.

本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料に使用される有機溶剤としては、ベース樹脂、酸発生剤、その他の添加剤等が溶解可能な有機溶剤であればいずれでもよい。このような有機溶剤としては、例えば、シクロヘキサノン、メチル−2−n−アミルケトン等のケトン類、3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル、プロピオン酸tert―ブチル、プロピレングリコールモノtert−ブチルエーテルアセテート等のエステル類、γ―ブチルラクトン等のラクトン類が挙げられるが、これらに限定されるものではない。   The organic solvent used in the positive resist material of the present invention, particularly the chemically amplified positive resist material, may be any organic solvent that can dissolve the base resin, acid generator, other additives, and the like. Examples of such organic solvents include ketones such as cyclohexanone and methyl-2-n-amyl ketone, 3-methoxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol, 1-ethoxy- Alcohols such as 2-propanol, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, and other ethers, propylene glycol monomethyl ether acetate, propylene glycol monoethyl Ether acetate, ethyl lactate, ethyl pyruvate, butyl acetate, methyl 3-methoxypropionate, 3-ethoxy Ethyl propionate, acetate tert- butyl, tert- butyl propionate, and propylene glycol monobutyl tert- butyl ether acetate, although lactones such as γ- butyl lactone, not being limited thereto.

これらの有機溶剤は、1種を単独で又は2種以上を混合して使用することができる。本発明では、これらの有機溶剤の中でもレジスト成分中の酸発生剤の溶解性が最も優れているジエチレングリコールジメチルエーテルや1−エトキシ−2−プロパノール、プロピレングリコールモノメチルエーテルアセテート及びその混合溶剤が好ましく使用される。
有機溶剤の使用量は、ベース樹脂100質量部に対して好ましくは200〜1,000質量部、より好ましくは400〜800質量部である。
These organic solvents can be used individually by 1 type or in mixture of 2 or more types. In the present invention, among these organic solvents, diethylene glycol dimethyl ether, 1-ethoxy-2-propanol, propylene glycol monomethyl ether acetate, and mixed solvents thereof, which have the highest solubility of the acid generator in the resist component, are preferably used. .
The amount of the organic solvent used is preferably 200 to 1,000 parts by mass, more preferably 400 to 800 parts by mass with respect to 100 parts by mass of the base resin.

本発明のポジ型レジスト材料に配合される酸発生剤としては、
i) 下記一般式(P1a−1)、(P1a−2)又は(P1b)のオニウム塩、
ii) 下記一般式(P2)のジアゾメタン誘導体、
iii) 下記一般式(P3)のグリオキシム誘導体、
iv) 下記一般式(P4)のビススルホン誘導体、
v) 下記一般式(P5)のN−ヒドロキシイミド化合物のスルホン酸エステル、
vi) β−ケトスルホン酸誘導体、
vii) ジスルホン誘導体、
viii) ニトロベンジルスルホネート誘導体、
ix) スルホン酸エステル誘導体
等が挙げられる。
As an acid generator blended in the positive resist material of the present invention,
i) Onium salt of the following general formula (P1a-1), (P1a-2) or (P1b),
ii) a diazomethane derivative represented by the following general formula (P2):
iii) a glyoxime derivative of the following general formula (P3),
iv) a bissulfone derivative of the following general formula (P4),
v) a sulfonic acid ester of an N-hydroxyimide compound of the following general formula (P5),
vi) β-ketosulfonic acid derivatives,
vii) disulfone derivatives,
viii) nitrobenzyl sulfonate derivatives,
ix) sulfonic acid ester derivatives and the like.

Figure 2006169302
Figure 2006169302

(上式中、R101a、R101b、R101cはそれぞれ炭素数1〜12の直鎖状、分岐状もしくは環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6〜20のアリール基、又は炭素数7〜12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R101bとR101cとは環を形成してもよく、環を形成する場合には、R101b、R101cはそれぞれ炭素数1〜6のアルキレン基を示す。K-は非求核性対向イオンを表す。) (In the above formula, R 101a , R 101b and R 101c are each a linear, branched or cyclic alkyl group having 1 to 12 carbon atoms, an alkenyl group, an oxoalkyl group or an oxoalkenyl group, and having 6 to 20 carbon atoms. An aryl group, an aralkyl group having 7 to 12 carbon atoms, or an aryloxoalkyl group, part or all of hydrogen atoms of which may be substituted with an alkoxy group, etc. R 101b and R 101c And may form a ring, and in the case of forming a ring, R 101b and R 101c each represent an alkylene group having 1 to 6 carbon atoms, and K represents a non-nucleophilic counter ion.)

上記R101a、R101b、R101cは互いに同一であっても異なっていてもよく、具体的にはアルキル基として、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、2−オキソシクロペンチル基、2−オキソシクロヘキシル基等が挙げられ、2−オキソプロピル基、2−シクロペンチル−2−オキソエチル基、2−シクロヘキシル−2−オキソエチル基、2−(4−メチルシクロヘキシル)−2−オキソエチル基等を挙げることができる。アリール基としては、フェニル基、ナフチル基等や、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としてはベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、2−フェニル−2−オキソエチル基、2−(1−ナフチル)−2−オキソエチル基、2−(2−ナフチル)−2−オキソエチル基等の2−アリール−2−オキソエチル基等が挙げられる。K-の非求核性対向イオンとしては、塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネートが挙げられる。 R 101a , R 101b and R 101c may be the same as or different from each other. Specifically, as an alkyl group, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl Group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopropylmethyl group, 4-methylcyclohexyl group, cyclohexylmethyl group, norbornyl group, adamantyl group, etc. Is mentioned. Examples of the alkenyl group include a vinyl group, an allyl group, a propenyl group, a butenyl group, a hexenyl group, and a cyclohexenyl group. Examples of the oxoalkyl group include 2-oxocyclopentyl group, 2-oxocyclohexyl group, and the like. 2-oxopropyl group, 2-cyclopentyl-2-oxoethyl group, 2-cyclohexyl-2-oxoethyl group, 2- (4 -Methylcyclohexyl) -2-oxoethyl group and the like can be mentioned. Examples of the aryl group include a phenyl group, a naphthyl group, a p-methoxyphenyl group, an m-methoxyphenyl group, an o-methoxyphenyl group, an ethoxyphenyl group, a p-tert-butoxyphenyl group, and an m-tert-butoxyphenyl group. Alkylphenyl groups such as alkoxyphenyl groups, 2-methylphenyl groups, 3-methylphenyl groups, 4-methylphenyl groups, ethylphenyl groups, 4-tert-butylphenyl groups, 4-butylphenyl groups, dimethylphenyl groups, etc. Alkyl naphthyl groups such as methyl naphthyl group and ethyl naphthyl group, alkoxy naphthyl groups such as methoxy naphthyl group and ethoxy naphthyl group, dialkyl naphthyl groups such as dimethyl naphthyl group and diethyl naphthyl group, dimethoxy naphthyl group and diethoxy naphthyl group Dialkoxynaphthyl group And the like. Examples of the aralkyl group include a benzyl group, a phenylethyl group, and a phenethyl group. As the aryloxoalkyl group, 2-aryl-2-oxoethyl group such as 2-phenyl-2-oxoethyl group, 2- (1-naphthyl) -2-oxoethyl group, 2- (2-naphthyl) -2-oxoethyl group and the like Groups and the like. Non-nucleophilic counter ions of K include halide ions such as chloride ions and bromide ions, triflate, fluoroalkyl sulfonates such as 1,1,1-trifluoroethanesulfonate, nonafluorobutanesulfonate, tosylate, and benzene. Examples thereof include aryl sulfonates such as sulfonate, 4-fluorobenzene sulfonate and 1,2,3,4,5-pentafluorobenzene sulfonate, and alkyl sulfonates such as mesylate and butane sulfonate.

Figure 2006169302
(上式中、R102a、R102bはそれぞれ炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。R103は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基を示す。R104a、R104bはそれぞれ炭素数3〜7の2−オキソアルキル基を示す。K-は非求核性対向イオンを表す。)
Figure 2006169302
(In the above formula, R 102a and R 102b each represent a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms. R 103 is a linear, branched or cyclic group having 1 to 10 carbon atoms. Represents an alkylene group, R 104a and R 104b each represent a 2-oxoalkyl group having 3 to 7 carbon atoms, and K represents a non-nucleophilic counter ion.)

上記R102a、R102bとして、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4−シクロへキシレン基、1,2−シクロへキシレン基、1,3−シクロペンチレン基、1,4−シクロオクチレン基、1,4−シクロヘキサンジメチレン基等が挙げられる。R104a、R104bとしては、2−オキソプロピル基、2−オキソシクロペンチル基、2−オキソシクロヘキシル基、2−オキソシクロヘプチル基等が挙げられる。K-は、式(P1a−1)及び(P1a−2)で説明したものと同様のものを挙げることができる。 Specific examples of R 102a and R 102b include methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, and octyl. Group, cyclopentyl group, cyclohexyl group, cyclopropylmethyl group, 4-methylcyclohexyl group, cyclohexylmethyl group and the like. R 103 is methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, 1,4-cyclohexylene group, 1,2-cyclohexylene. Group, 1,3-cyclopentylene group, 1,4-cyclooctylene group, 1,4-cyclohexanedimethylene group and the like. Examples of R 104a and R 104b include a 2-oxopropyl group, a 2-oxocyclopentyl group, a 2-oxocyclohexyl group, and a 2-oxocycloheptyl group. Examples of K include the same ones as described in the formulas (P1a-1) and (P1a-2).

Figure 2006169302
(上式中、R105、R106は、炭素数1〜12の直鎖状、分岐状もしくは環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。)
Figure 2006169302
(In the above formula, R 105 and R 106 are each a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, an aryl group or halogenated aryl group having 6 to 20 carbon atoms, or An aralkyl group having 7 to 12 carbon atoms is shown.)

105、R106のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としては、トリフルオロメチル基、1,1,1−トリフルオロエチル基、1,1,1−トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としては、フェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。ハロゲン化アリール基としては、フルオロフェニル基、クロロフェニル基、1,2,3,4,5−ペンタフルオロフェニル基等が挙げられる。アラルキル基としては、ベンジル基、フェネチル基等が挙げられる。 Examples of the alkyl group represented by R 105 and R 106 include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, Examples include amyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, norbornyl group, adamantyl group and the like. Examples of the halogenated alkyl group include a trifluoromethyl group, a 1,1,1-trifluoroethyl group, a 1,1,1-trichloroethyl group, a nonafluorobutyl group, and the like. As the aryl group, an alkoxyphenyl group such as a phenyl group, a p-methoxyphenyl group, an m-methoxyphenyl group, an o-methoxyphenyl group, an ethoxyphenyl group, a p-tert-butoxyphenyl group, or an m-tert-butoxyphenyl group. And alkylphenyl groups such as 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, and dimethylphenyl group. Examples of the halogenated aryl group include a fluorophenyl group, a chlorophenyl group, and 1,2,3,4,5-pentafluorophenyl group. Examples of the aralkyl group include a benzyl group and a phenethyl group.

Figure 2006169302
(上式中、R107、R108、R109は、炭素数1〜12の直鎖状、分岐状又は環状のアルキル基又はハロゲン化アルキル基、炭素数6〜20のアリール基又はハロゲン化アリール基、又は炭素数7〜12のアラルキル基を示す。R108、R109は互いに結合して環状構造を形成してもよく、環状構造を形成する場合、R108、R109はそれぞれ炭素数1〜6の直鎖状、分岐状のアルキレン基を示す。R105は、P2式のものと同様である。)
Figure 2006169302
(In the above formula, R 107 , R 108 and R 109 are each a linear, branched or cyclic alkyl group or halogenated alkyl group having 1 to 12 carbon atoms, an aryl group or aryl halide having 6 to 20 carbon atoms. Or an aralkyl group having 7 to 12 carbon atoms, R 108 and R 109 may be bonded to each other to form a cyclic structure, and when forming a cyclic structure, each of R 108 and R 109 is 1 carbon atom. And represents a linear or branched alkylene group of ˜6, and R 105 is the same as that of the formula P2.)

107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。 Examples of the alkyl group, halogenated alkyl group, aryl group, halogenated aryl group, and aralkyl group of R 107 , R 108 , and R 109 include the same groups as those described for R 105 and R 106 . Examples of the alkylene group for R 108 and R 109 include a methylene group, an ethylene group, a propylene group, a butylene group, and a hexylene group.

Figure 2006169302
(上式中、R101a、R101bは前記と同様である。)
Figure 2006169302
(In the above formula, R 101a and R 101b are the same as described above.)

Figure 2006169302
(上式中、R110は、炭素数6〜10のアリーレン基、炭素数1〜6のアルキレン基又は炭素数2〜6のアルケニレン基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4の直鎖状又は分岐状のアルキル基又はアルコキシ基、ニトロ基、アセチル基、又はフェニル基で置換されていてもよい。R111は、炭素数1〜8の直鎖状、分岐状又は置換のアルキル基、アルケニル基又はアルコキシアルキル基、フェニル基、又はナフチル基を示し、これらの基の水素原子の一部又は全部は更に炭素数1〜4のアルキル基又はアルコキシ基;炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基;炭素数3〜5のヘテロ芳香族基;又は塩素原子、フッ素原子で置換されていてもよい。)
Figure 2006169302
(In the above formula, R 110 represents an arylene group having 6 to 10 carbon atoms, an alkylene group having 1 to 6 carbon atoms, or an alkenylene group having 2 to 6 carbon atoms, and part or all of the hydrogen atoms of these groups are Further, it may be substituted with a linear or branched alkyl group or alkoxy group having 1 to 4 carbon atoms, a nitro group, an acetyl group, or a phenyl group, and R 111 is a straight chain having 1 to 8 carbon atoms. A branched or substituted alkyl group, an alkenyl group or an alkoxyalkyl group, a phenyl group, or a naphthyl group, wherein some or all of the hydrogen atoms of these groups are further an alkyl group or alkoxy group having 1 to 4 carbon atoms; A phenyl group which may be substituted by an alkyl group having 1 to 4 carbon atoms, an alkoxy group, a nitro group or an acetyl group; a heteroaromatic group having 3 to 5 carbon atoms; or a substituent which may be substituted by a chlorine atom or a fluorine atom Good.)

ここで、R110のアリーレン基としては、1,2−フェニレン基、1,8−ナフチレン基等が、アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン−2,3−ジイル基等が、アルケニレン基としては、1,2−ビニレン基、1−フェニル−1,2−ビニレン基、5−ノルボルネン−2,3−ジイル基等が挙げられる。R111のアルキル基としては、R101a〜R101cと同様のものが、アルケニル基としては、ビニル基、1−プロペニル基、アリル基、1−ブテニル基、3−ブテニル基、イソプレニル基、1−ペンテニル基、3−ペンテニル基、4−ペンテニル基、ジメチルアリル基、1−ヘキセニル基、3−ヘキセニル基、5−ヘキセニル基、1−ヘプテニル基、3−ヘプテニル基、6−ヘプテニル基、7−オクテニル基等が、アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。
なお、更に置換されていてもよい炭素数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等が、炭素数1〜4のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、tert−ブトキシ基等が、炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、フェニル基、トリル基、p−tert−ブトキシフェニル基、p−アセチルフェニル基、p−ニトロフェニル基等が、炭素数3〜5のヘテロ芳香族基としては、ピリジル基、フリル基等が挙げられる。
Here, as the arylene group of R 110 , 1,2-phenylene group, 1,8-naphthylene group, etc., and as the alkylene group, methylene group, ethylene group, trimethylene group, tetramethylene group, phenylethylene group, norbornane Examples of the alkenylene group such as -2,3-diyl group include 1,2-vinylene group, 1-phenyl-1,2-vinylene group, 5-norbornene-2,3-diyl group and the like. The alkyl group for R 111 is the same as R 101a to R 101c, and the alkenyl group is a vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 3-butenyl group, isoprenyl group, 1- Pentenyl group, 3-pentenyl group, 4-pentenyl group, dimethylallyl group, 1-hexenyl group, 3-hexenyl group, 5-hexenyl group, 1-heptenyl group, 3-heptenyl group, 6-heptenyl group, 7-octenyl Groups such as alkoxyalkyl groups include methoxymethyl, ethoxymethyl, propoxymethyl, butoxymethyl, pentyloxymethyl, hexyloxymethyl, heptyloxymethyl, methoxyethyl, ethoxyethyl, Propoxyethyl, butoxyethyl, pentyloxyethyl, hexyloxyethyl, methoxypro Group, ethoxypropyl group, propoxypropyl group, butoxy propyl group, methoxybutyl group, ethoxybutyl group, propoxybutyl group, a methoxy pentyl group, an ethoxy pentyl group, a methoxy hexyl group, a methoxy heptyl group.
In addition, examples of the optionally substituted alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group. As the alkoxy group of ˜4, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a tert-butoxy group and the like are an alkyl group having 1 to 4 carbon atoms, an alkoxy group, and a nitro group. As the phenyl group which may be substituted with an acetyl group, a phenyl group, a tolyl group, a p-tert-butoxyphenyl group, a p-acetylphenyl group, a p-nitrophenyl group, etc. are heterocycles having 3 to 5 carbon atoms. Examples of the aromatic group include a pyridyl group and a furyl group.

酸発生剤は、具体的には、オニウム塩としては、例えばトリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、p−トルエンスルホン酸ジフェニルヨードニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p−トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、p−トルエンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p−トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p−トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2−オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩を挙げることができる。   Specific examples of the acid generator include onium salts such as diphenyliodonium trifluoromethanesulfonate, phenyliodonium trifluoromethanesulfonate (p-tert-butoxyphenyl), diphenyliodonium p-toluenesulfonate, and p-toluenesulfone. Acid (p-tert-butoxyphenyl) phenyliodonium, triphenylsulfonium trifluoromethanesulfonate, trifluoromethanesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, bis (p-tert-butoxyphenyl) phenylsulfonium trifluoromethanesulfonate , Tris (p-tert-butoxyphenyl) sulfonium trifluoromethanesulfonate, triphenylsulfonium p-toluenesulfonate p-toluenesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, p-toluenesulfonic acid bis (p-tert-butoxyphenyl) phenylsulfonium, p-toluenesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, nona Triphenylsulfonium fluorobutanesulfonate, triphenylsulfonium butanesulfonate, trimethylsulfonium trifluoromethanesulfonate, trimethylsulfonium p-toluenesulfonate, cyclohexylmethyl trifluoromethanesulfonate (2-oxocyclohexyl) sulfonium, cyclohexyl p-toluenesulfonate Methyl (2-oxocyclohexyl) sulfonium, dimethylphenylsulfonium trifluoromethanesulfonate, -Toluenesulfonic acid dimethylphenylsulfonium, trifluoromethanesulfonic acid dicyclohexylphenylsulfonium, p-toluenesulfonic acid dicyclohexylphenylsulfonium, trifluoromethanesulfonic acid trinaphthylsulfonium, trifluoromethanesulfonic acid (2-norbornyl) methyl (2-oxocyclohexyl) sulfonium And onium salts such as ethylenebis [methyl (2-oxocyclopentyl) sulfonium trifluoromethanesulfonate] and 1,2′-naphthylcarbonylmethyltetrahydrothiophenium triflate.

ジアゾメタン誘導体としては、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン、ビス(n−アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec−アミルスルホニル)ジアゾメタン、ビス(tert−アミルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−アミルスルホニル)ジアゾメタン、1−tert−アミルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体を挙げることができる。   Diazomethane derivatives include bis (benzenesulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, bis (xylenesulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (cyclopentylsulfonyl) diazomethane, bis (n-butylsulfonyl) diazomethane Bis (isobutylsulfonyl) diazomethane, bis (sec-butylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, bis (tert-butylsulfonyl) diazomethane, bis (n-amylsulfonyl) diazomethane Bis (isoamylsulfonyl) diazomethane, bis (sec-amylsulfonyl) diazomethane, bis (tert-amylsulfur) Nyl) diazomethane, 1-cyclohexylsulfonyl-1- (tert-butylsulfonyl) diazomethane, 1-cyclohexylsulfonyl-1- (tert-amylsulfonyl) diazomethane, 1-tert-amylsulfonyl-1- (tert-butylsulfonyl) diazomethane And the like.

グリオキシム誘導体としては、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(p−トルエンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(p−トルエンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(n−ブタンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(メタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(トリフルオロメタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(1,1,1−トリフルオロエタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(tert−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(パーフルオロオクタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(シクロヘキサンスルホニル)−α−ジメチルグリオキシム、ビス−O−(ベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−フルオロベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−tert−ブチルベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(キシレンスルホニル)−α−ジメチルグリオキシム、ビス−O−(カンファースルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体を挙げることができる。   Examples of glyoxime derivatives include bis-O- (p-toluenesulfonyl) -α-dimethylglyoxime, bis-O- (p-toluenesulfonyl) -α-diphenylglyoxime, bis-O- (p-toluenesulfonyl)- α-dicyclohexylglyoxime, bis-O- (p-toluenesulfonyl) -2,3-pentanedione glyoxime, bis-O- (p-toluenesulfonyl) -2-methyl-3,4-pentanedione glyoxime, Bis-O- (n-butanesulfonyl) -α-dimethylglyoxime, bis-O- (n-butanesulfonyl) -α-diphenylglyoxime, bis-O- (n-butanesulfonyl) -α-dicyclohexylglyoxime Bis-O- (n-butanesulfonyl) -2,3-pentanedione glyoxime, bis-O- ( -Butanesulfonyl) -2-methyl-3,4-pentanedione glyoxime, bis-O- (methanesulfonyl) -α-dimethylglyoxime, bis-O- (trifluoromethanesulfonyl) -α-dimethylglyoxime, bis -O- (1,1,1-trifluoroethanesulfonyl) -α-dimethylglyoxime, bis-O- (tert-butanesulfonyl) -α-dimethylglyoxime, bis-O- (perfluorooctanesulfonyl)- α-dimethylglyoxime, bis-O- (cyclohexanesulfonyl) -α-dimethylglyoxime, bis-O- (benzenesulfonyl) -α-dimethylglyoxime, bis-O- (p-fluorobenzenesulfonyl) -α- Dimethylglyoxime, bis-O- (p-tert-butylbenzenesulfonyl) α- dimethylglyoxime, bis -O- (xylene sulfonyl)-.alpha.-dimethylglyoxime, and bis -O- (camphorsulfonyl)-.alpha.-glyoxime derivatives such as dimethylglyoxime.

ビススルホン誘導体としては、ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス−p−トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体を挙げることができる。   Examples of bissulfone derivatives include bisnaphthylsulfonylmethane, bistrifluoromethylsulfonylmethane, bismethylsulfonylmethane, bisethylsulfonylmethane, bispropylsulfonylmethane, bisisopropylsulfonylmethane, bis-p-toluenesulfonylmethane, and bisbenzenesulfonylmethane. Bissulfone derivatives can be mentioned.

β−ケトスルホン誘導体としては、2−シクロヘキシルカルボニル−2−(p−トルエンスルホニル)プロパン、2−イソプロピルカルボニル−2−(p−トルエンスルホニル)プロパン等のβ−ケトスルホン誘導体を挙げることができる。
ジスルホン誘導体としては、ジフェニルジスルホン誘導体、ジシクロヘキシルジスルホン誘導体等のジスルホン誘導体を挙げることができる。
Examples of β-ketosulfone derivatives include β-ketosulfone derivatives such as 2-cyclohexylcarbonyl-2- (p-toluenesulfonyl) propane and 2-isopropylcarbonyl-2- (p-toluenesulfonyl) propane.
Examples of the disulfone derivative include disulfone derivatives such as diphenyl disulfone derivatives and dicyclohexyl disulfone derivatives.

ニトロベンジルスルホネート誘導体としては、p−トルエンスルホン酸2,6−ジニトロベンジル、p−トルエンスルホン酸2,4−ジニトロベンジル等のニトロベンジルスルホネート誘導体を挙げることができる。   Examples of the nitrobenzyl sulfonate derivative include nitrobenzyl sulfonate derivatives such as 2,6-dinitrobenzyl p-toluenesulfonate and 2,4-dinitrobenzyl p-toluenesulfonate.

スルホン酸エステル誘導体としては、1,2,3−トリス(メタンスルホニルオキシ)ベンゼン、1,2,3−トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3−トリス(p−トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体を挙げることができる。
また、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミドエタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−オクタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシスクシンイミドp−メトキシベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド2−クロロエタンスルホン酸エステル、N−ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド−2,4,6−トリメチルベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ナフタレンスルホン酸エステル、N−ヒドロキシスクシンイミド2−ナフタレンスルホン酸エステル、N−ヒドロキシ−2−フェニルスクシンイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドエタンスルホン酸エステル、N−ヒドロキシ−2−フェニルマレイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドメタンスルホン酸エステル、N−ヒドロキシフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシフタルイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドp−トルエンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体を挙げることができる。
Examples of sulfonic acid ester derivatives include 1,2,3-tris (methanesulfonyloxy) benzene, 1,2,3-tris (trifluoromethanesulfonyloxy) benzene, 1,2,3-tris (p-toluenesulfonyloxy). Mention may be made of sulfonic acid ester derivatives such as benzene.
Further, N-hydroxysuccinimide methanesulfonic acid ester, N-hydroxysuccinimide trifluoromethanesulfonic acid ester, N-hydroxysuccinimide ethanesulfonic acid ester, N-hydroxysuccinimide 1-propanesulfonic acid ester, N-hydroxysuccinimide 2-propanesulfonic acid Ester, N-hydroxysuccinimide 1-pentanesulfonic acid ester, N-hydroxysuccinimide 1-octanesulfonic acid ester, N-hydroxysuccinimide p-toluenesulfonic acid ester, N-hydroxysuccinimide p-methoxybenzenesulfonic acid ester, N-hydroxy Succinimide 2-chloroethane sulfonate, N-hydroxysuccinimide benzene sulfonate N-hydroxysuccinimide-2,4,6-trimethylbenzenesulfonic acid ester, N-hydroxysuccinimide 1-naphthalenesulfonic acid ester, N-hydroxysuccinimide 2-naphthalenesulfonic acid ester, N-hydroxy-2-phenylsuccinimide methanesulfonic acid Ester, N-hydroxymaleimide methanesulfonate, N-hydroxymaleimide ethanesulfonate, N-hydroxy-2-phenylmaleimide methanesulfonate, N-hydroxyglutarimide methanesulfonate, N-hydroxyglutarimide benzenesulfone Acid ester, N-hydroxyphthalimidomethanesulfonic acid ester, N-hydroxyphthalimidobenzenesulfonic acid ester, N-hydroxyl Phthalimide trifluoromethanesulfonate, N-hydroxyphthalimide p-toluenesulfonate, N-hydroxynaphthalimide methanesulfonate, N-hydroxynaphthalimidebenzenesulfonate, N-hydroxy-5-norbornene-2,3- Dicarboximide methanesulfonate, N-hydroxy-5-norbornene-2,3-dicarboximide trifluoromethanesulfonate, N-hydroxy-5-norbornene-2,3-dicarboximide p-toluenesulfonate Examples thereof include sulfonic acid ester derivatives of N-hydroxyimide compounds.

特に、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン等のビススルホン誘導体、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体が好ましく用いられる。   In particular, triphenylsulfonium trifluoromethanesulfonate, trifluoromethanesulfonate (p-tert-butoxyphenyl) diphenylsulfonium, tris (p-tert-butoxyphenyl) sulfonium trifluoromethanesulfonate, triphenylsulfonium p-toluenesulfonate, p -Toluenesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, p-toluenesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, trifluoromethanesulfonic acid trinaphthylsulfonium, trifluoromethanesulfonic acid cyclohexylmethyl (2-oxocyclohexyl) ) Sulfonium, (2-norbornyl) methyl (2-oxocyclohexyl) sulfonyl trifluoromethanesulfonate Onium salts such as 1,2′-naphthylcarbonylmethyltetrahydrothiophenium triflate, bis (benzenesulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (n-butylsulfonyl) Diazomethane derivatives such as diazomethane, bis (isobutylsulfonyl) diazomethane, bis (sec-butylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, bis (tert-butylsulfonyl) diazomethane, bis-O Glyoxime derivatives such as-(p-toluenesulfonyl) -α-dimethylglyoxime and bis-O- (n-butanesulfonyl) -α-dimethylglyoxime, bisnaphthy Bissulfone derivatives such as sulfonylmethane, N-hydroxysuccinimide methanesulfonate, N-hydroxysuccinimide trifluoromethanesulfonate, N-hydroxysuccinimide 1-propanesulfonate, N-hydroxysuccinimide 2-propanesulfonate, N- Hydroxysuccinimide 1-pentanesulfonic acid ester, N-hydroxysuccinimide p-toluenesulfonic acid ester, N-hydroxynaphthalimide methanesulfonic acid ester, N-hydroxynaphthalimide benzenesulfonic acid ester, etc. Derivatives are preferably used.

なお、上記酸発生剤は、1種を単独で又は2種以上を組み合わせて用いることができる。オニウム塩は矩形性向上効果に優れ、ジアゾメタン誘導体及びグリオキシム誘導体は定在波低減効果に優れるため、両者を組み合わせることによりプロファイルの微調整を行うことが可能である。
酸発生剤の添加量は、ベース樹脂100質量部に対して、好ましくは0.1〜50質量部、より好ましくは0.5〜40質量部である。0.1質量部より少ないと露光時の酸発生量が少なく、感度及び解像力が劣る場合があり、50質量部を超えるとレジストの透過率が低下し、解像力が劣る場合がある。
In addition, the said acid generator can be used individually by 1 type or in combination of 2 or more types. Since onium salts are excellent in rectangularity improving effect and diazomethane derivatives and glyoxime derivatives are excellent in standing wave reducing effect, it is possible to finely adjust the profile by combining both.
The addition amount of the acid generator is preferably 0.1 to 50 parts by mass, more preferably 0.5 to 40 parts by mass with respect to 100 parts by mass of the base resin. If the amount is less than 0.1 parts by mass, the amount of acid generated during exposure is small and the sensitivity and resolution may be inferior. If the amount exceeds 50 parts by mass, the transmittance of the resist may be reduced and the resolution may be inferior.

次に、本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料に配合される溶解阻止剤(溶解制御剤)としては、平均分子量が100〜1,000、好ましくは150〜800で、かつ分子内にフェノール性水酸基を2つ以上有する化合物の該フェノール性水酸基の水素原子を酸不安定基により全体として平均0〜100モル%の割合で置換した化合物又は分子内にカルボキシ基を有する化合物の該カルボキシ基の水素原子を酸不安定基により全体として平均50〜100モル%の割合で置換した化合物が好ましい。   Next, as a dissolution inhibitor (dissolution control agent) blended in the positive resist material of the present invention, particularly a chemically amplified positive resist material, the average molecular weight is 100 to 1,000, preferably 150 to 800, And the compound which substituted the hydrogen atom of this phenolic hydroxyl group of the compound which has two or more phenolic hydroxyl groups in a molecule | numerator by the acid labile group as a whole in the ratio of 0-100 mol% on the whole, or the compound which has a carboxy group in a molecule | numerator A compound in which the hydrogen atoms of the carboxy group are substituted with an acid labile group as a whole in an average ratio of 50 to 100 mol% is preferable.

なお、フェノール性水酸基の水素原子の酸不安定基による置換率は、平均でフェノール性水酸基全体の0モル%以上、好ましくは30モル%以上であり、その上限は100モル%、より好ましくは80モル%である。カルボキシ基の水素原子の酸不安定基による置換率は、平均でカルボキシ基全体の50モル%以上、好ましくは70モル%以上であり、その上限は100モル%である。
この場合、かかるフェノール性水酸基を2つ以上有する化合物又はカルボキシ基を有する化合物としては、下記式(D1)〜(D14)で示されるものが好ましい。
The substitution rate of the hydrogen atom of the phenolic hydroxyl group by an acid labile group is on average 0 mol% or more, preferably 30 mol% or more of the entire phenolic hydroxyl group, and the upper limit is 100 mol%, more preferably 80 mol%. Mol%. The substitution rate of the hydrogen atom of the carboxy group with an acid labile group is 50 mol% or more, preferably 70 mol% or more of the entire carboxy group on average, and the upper limit is 100 mol%.
In this case, as the compound having two or more phenolic hydroxyl groups or the compound having a carboxy group, those represented by the following formulas (D1) to (D14) are preferable.

Figure 2006169302
Figure 2006169302

上式中、R201、R202は、それぞれ水素原子、又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基を示す。R203は水素原子、又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基、あるいは−(R207)hCOOHを示す。R204は−(CH2i−(i=2〜10)、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す。R205は、炭素数1〜10のアルキレン基、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す。R206は、水素原子、炭素数1〜8の直鎖状又は分岐状のアルキル基、アルケニル基又はそれぞれ水酸基で置換されたフェニル基又はナフチル基を示す。R207は、炭素数1〜10の直鎖状又は分岐状のアルキレン基を示す。R208は、水素原子又は水酸基を示す。jは0〜5の整数である。u、hは0又は1である。s、t、s´、t´、s´´、t´´はそれぞれs+t=8、s´+t´=5、s´´+t´´=4を満足し、かつ各フェニル骨格中に少なくとも1つの水酸基を有するような数である。αは式(D8)、(D9)の化合物の分子量を100〜1,000とする数である。 In the above formula, R 201 and R 202 each represent a hydrogen atom, or a linear or branched alkyl group or alkenyl group having 1 to 8 carbon atoms. R 203 represents a hydrogen atom, a linear or branched alkyl group or alkenyl group having 1 to 8 carbon atoms, or — (R 207 ) h COOH. R 204 is - (CH 2) i - ( i = 2~10), shows an arylene group having 6 to 10 carbon atoms, a carbonyl group, a sulfonyl group, an oxygen atom or a sulfur atom. R 205 represents an alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 10 carbon atoms, a carbonyl group, a sulfonyl group, an oxygen atom or a sulfur atom. R 206 represents a hydrogen atom, a linear or branched alkyl group having 1 to 8 carbon atoms, an alkenyl group, or a phenyl group or naphthyl group each substituted with a hydroxyl group. R207 represents a linear or branched alkylene group having 1 to 10 carbon atoms. R 208 represents a hydrogen atom or a hydroxyl group. j is an integer of 0-5. u and h are 0 or 1. s, t, s ′, t ′, s ″, t ″ satisfy s + t = 8, s ′ + t ′ = 5, s ″ + t ″ = 4, respectively, and at least 1 in each phenyl skeleton The number has two hydroxyl groups. α is a number that makes the molecular weight of the compounds of formulas (D8) and (D9) 100 to 1,000.

なお、上記化合物の重量平均分子量は、好ましくは100〜1,000、より好ましくは150〜800である。溶解阻止剤の配合量は、ベース樹脂100質量部に対して、好ましくは0〜50質量部、より好ましくは5〜50質量部、さらに好ましくは10〜30質量部であり、単独又は2種以上を混合して使用できる。配合量が少ないと解像性の向上がない場合があり、多すぎるとパターンの膜減りが生じ、解像度が低下する傾向がある。   In addition, the weight average molecular weight of the compound is preferably 100 to 1,000, and more preferably 150 to 800. The blending amount of the dissolution inhibitor is preferably 0 to 50 parts by mass, more preferably 5 to 50 parts by mass, and still more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the base resin. Can be used in combination. If the blending amount is small, the resolution may not be improved. If the blending amount is too large, the pattern film is reduced and the resolution tends to decrease.

更に、本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料には塩基性化合物を配合することができる。
塩基性化合物としては、酸発生剤より発生する酸がレジスト膜中に拡散する際の拡散速度を抑制することができる化合物が適している。塩基性化合物の配合により、レジスト膜中での酸の拡散速度が抑制されて解像度が向上し、露光後の感度変化を抑制したり、基板や環境依存性を少なくし、露光余裕度やパターンプロファイル等を向上することができる。
Furthermore, a basic compound can be blended in the positive resist material of the present invention, particularly in the chemically amplified positive resist material.
As the basic compound, a compound capable of suppressing the diffusion rate when the acid generated from the acid generator diffuses into the resist film is suitable. By adding a basic compound, the acid diffusion rate in the resist film is suppressed and resolution is improved, sensitivity change after exposure is suppressed, and substrate and environment dependency is reduced, and exposure margin and pattern profile are reduced. Etc. can be improved.

このような塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。   Examples of such basic compounds include primary, secondary, and tertiary aliphatic amines, hybrid amines, aromatic amines, heterocyclic amines, nitrogen-containing compounds having a carboxy group, and sulfonyl groups. A nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyphenyl group, an alcoholic nitrogen-containing compound, an amide derivative, an imide derivative, and the like.

具体的には、第一級の脂肪族アミン類として、アンモニア、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、tert−アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示される。
第二級の脂肪族アミン類として、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N−ジメチルメチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルテトラエチレンペンタミン等が例示される。
第三級の脂肪族アミン類として、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリ−sec−ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’−テトラメチルメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルテトラエチレンペンタミン等が例示される。
また、混成アミン類としては、例えばジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。
Specifically, primary aliphatic amines include ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, tert- Examples include amylamine, cyclopentylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cetylamine, methylenediamine, ethylenediamine, tetraethylenepentamine and the like.
Secondary aliphatic amines include dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, dipentylamine, dicyclopentylamine, dihexylamine, Examples include dicyclohexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, didodecylamine, dicetylamine, N, N-dimethylmethylenediamine, N, N-dimethylethylenediamine, N, N-dimethyltetraethylenepentamine and the like.
Tertiary aliphatic amines include trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine, tripentylamine, tricyclopentylamine, tri Hexylamine, tricyclohexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, tridodecylamine, tricetylamine, N, N, N ′, N′-tetramethylmethylenediamine, N, N, Examples thereof include N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethyltetraethylenepentamine and the like.
Examples of hybrid amines include dimethylethylamine, methylethylpropylamine, benzylamine, phenethylamine, and benzyldimethylamine.

芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えばアニリン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2−ニトロアニリン、3−ニトロアニリン、4−ニトロアニリン、2,4−ジニトロアニリン、2,6−ジニトロアニリン、3,5−ジニトロアニリン、N,N−ジメチルトルイジン等)、ジフェニル(p−トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H−ピロール、1−メチルピロール、2,4−ジメチルピロール、2,5−ジメチルピロール、N−メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリドン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。   Specific examples of aromatic amines and heterocyclic amines include aniline derivatives (eg, aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N, N-dimethylaniline, 2-methylaniline, 3- Methylaniline, 4-methylaniline, ethylaniline, propylaniline, trimethylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2,6-dinitroaniline, 3,5- Dinitroaniline, N, N-dimethyltoluidine, etc.), diphenyl (p-tolyl) amine, methyldiphenylamine, triphenylamine, phenylenediamine, naphthylamine, diaminonaphthalene, pyrrole derivatives (eg pyrrole, 2H-pyrrole, 1-methylpyrrole, 2,4-dim Lupyrrole, 2,5-dimethylpyrrole, N-methylpyrrole, etc.), oxazole derivatives (eg oxazole, isoxazole etc.), thiazole derivatives (eg thiazole, isothiazole etc.), imidazole derivatives (eg imidazole, 4-methylimidazole, 4 -Methyl-2-phenylimidazole, etc.), pyrazole derivatives, furazane derivatives, pyrroline derivatives (eg pyrroline, 2-methyl-1-pyrroline etc.), pyrrolidine derivatives (eg pyrrolidine, N-methylpyrrolidine, pyrrolidinone, N-methylpyrrolidone etc.) ), Imidazoline derivatives, imidazolidine derivatives, pyridine derivatives (eg pyridine, methylpyridine, ethylpyridine, propylpyridine, butylpyridine, 4- (1-butylpentyl) pyridine, dimethyl) Lysine, trimethylpyridine, triethylpyridine, phenylpyridine, 3-methyl-2-phenylpyridine, 4-tert-butylpyridine, diphenylpyridine, benzylpyridine, methoxypyridine, butoxypyridine, dimethoxypyridine, 1-methyl-2-pyridone, 4-pyrrolidinopyridine, 1-methyl-4-phenylpyridine, 2- (1-ethylpropyl) pyridine, aminopyridine, dimethylaminopyridine, etc.), pyridazine derivatives, pyrimidine derivatives, pyrazine derivatives, pyrazoline derivatives, pyrazolidine derivatives, piperidine Derivatives, piperazine derivatives, morpholine derivatives, indole derivatives, isoindole derivatives, 1H-indazole derivatives, indoline derivatives, quinoline derivatives (eg quinoline, 3-quinoline carbo Nitriles), isoquinoline derivatives, cinnoline derivatives, quinazoline derivatives, quinoxaline derivatives, phthalazine derivatives, purine derivatives, pteridine derivatives, carbazole derivatives, phenanthridine derivatives, acridine derivatives, phenazine derivatives, 1,10-phenanthroline derivatives, adenine derivatives, adenosine Examples include derivatives, guanine derivatives, guanosine derivatives, uracil derivatives, uridine derivatives and the like.

更に、カルボキシ基を有する含窒素化合物としては、例えばアミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3−アミノピラジン−2−カルボン酸、メトキシアラニン)等が例示され、スルホニル基を有する含窒素化合物として3−ピリジンスルホン酸、p−トルエンスルホン酸ピリジニウム等が例示され、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物としては、2−ヒドロキシピリジン、アミノクレゾール、2,4−キノリンジオール、3−インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’−イミノジエタノール、2−アミノエタノ−ル、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、4−(2−ヒドロキシエチル)モルホリン、2−(2−ヒドロキシエチル)ピリジン、1−(2−ヒドロキシエチル)ピペラジン、1−[2−(2−ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1−(2−ヒドロキシエチル)ピロリジン、1−(2−ヒドロキシエチル)−2−ピロリジノン、3−ピペリジノ−1,2−プロパンジオール、3−ピロリジノ−1,2−プロパンジオール、8−ヒドロキシユロリジン、3−クイヌクリジノール、3−トロパノール、1−メチル−2−ピロリジンエタノール、1−アジリジンエタノール、N−(2−ヒドロキシエチル)フタルイミド、N−(2−ヒドロキシエチル)イソニコチンアミド等が例示される。   Furthermore, examples of the nitrogen-containing compound having a carboxy group include aminobenzoic acid, indolecarboxylic acid, amino acid derivatives (for example, nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, glycylleucine, leucine, methionine. , Phenylalanine, threonine, lysine, 3-aminopyrazine-2-carboxylic acid, methoxyalanine) and the like, and examples of the nitrogen-containing compound having a sulfonyl group include 3-pyridinesulfonic acid, pyridinium p-toluenesulfonate, and the like. Nitrogen-containing compounds having a hydroxyl group, nitrogen-containing compounds having a hydroxyphenyl group, and alcoholic nitrogen-containing compounds include 2-hydroxypyridine, aminocresol, 2,4-quinolinediol, and 3-indolemethanol. Drate, monoethanolamine, diethanolamine, triethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, triisopropanolamine, 2,2'-iminodiethanol, 2-aminoethanol, 3-amino-1-propanol 4-amino-1-butanol, 4- (2-hydroxyethyl) morpholine, 2- (2-hydroxyethyl) pyridine, 1- (2-hydroxyethyl) piperazine, 1- [2- (2-hydroxyethoxy) Ethyl] piperazine, piperidineethanol, 1- (2-hydroxyethyl) pyrrolidine, 1- (2-hydroxyethyl) -2-pyrrolidinone, 3-piperidino-1,2-propanediol, 3-pyrrolidino-1,2-propane Diol, 8-hydroxyuroli , 3-cuincridinol, 3-tropanol, 1-methyl-2-pyrrolidineethanol, 1-aziridineethanol, N- (2-hydroxyethyl) phthalimide, N- (2-hydroxyethyl) isonicotinamide, etc. Illustrated.

アミド誘導体としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。
イミド誘導体としては、フタルイミド、サクシンイミド、マレイミド等が例示される。
Examples of amide derivatives include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide and the like.
Examples of imide derivatives include phthalimide, succinimide, maleimide and the like.

更に下記一般式(B)−1で示される塩基性化合物から選ばれる1種又は2種以上を添加することもできる。

Figure 2006169302
上式中、nは1、2又は3である。側鎖Xは同一でも異なっていても良く、下記一般式(X)−1〜(X)−3で表すことができる。側鎖Yは同一又は異種の、水素原子もしくは直鎖状、分岐状又は環状の炭素数1〜20のアルキル基を示し、エーテル基もしくはヒドロキシル基を含んでもよい。また、X同士が結合して環を形成しても良い。 Furthermore, 1 type, or 2 or more types chosen from the basic compound shown by the following general formula (B) -1 can also be added.
Figure 2006169302
In the above formula, n is 1, 2 or 3. The side chains X may be the same or different, and can be represented by the following general formulas (X) -1 to (X) -3. The side chain Y represents the same or different hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, and may contain an ether group or a hydroxyl group. Xs may be bonded to form a ring.

Figure 2006169302
Figure 2006169302

ここでR300、R302、R305は、炭素数1〜4の直鎖状、分岐状のアルキレン基であり、R301、R304は、水素原子、炭素数1〜20の直鎖状、分岐状、環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基、ラクトン環を1あるいは複数含んでいても良い。
303は、単結合、炭素数1〜4の直鎖状、分岐状のアルキレン基であり、R306は、炭素数1〜20の直鎖状、分岐状、環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基、ラクトン環を1あるいは複数含んでいても良い。
R 300 , R 302 and R 305 are linear or branched alkylene groups having 1 to 4 carbon atoms, R 301 and R 304 are hydrogen atoms, linear chains having 1 to 20 carbon atoms, It is a branched or cyclic alkyl group and may contain one or a plurality of hydroxy groups, ether groups, ester groups and lactone rings.
R 303 is a single bond, a linear or branched alkylene group having 1 to 4 carbon atoms, R 306 is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, One or more groups, ether groups, ester groups and lactone rings may be contained.

一般式(B)−1で表される化合物は具体的には下記に例示される。
トリス(2−メトキシメトキシエチル)アミン、トリス{2−(2−メトキシエトキシ)エチル}アミン、トリス{2−(2−メトキシエトキシメトキシ)エチル}アミン、トリス{2−(1−メトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシプロポキシ)エチル}アミン、トリス[2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル]アミン、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]ヘキサコサン、4,7,13,18−テトラオキサ−1,10−ジアザビシクロ[8.5.5]エイコサン、1,4,10,13−テトラオキサ−7,16−ジアザビシクロオクタデカン、1−アザ−12−クラウン−4、1−アザ−15−クラウン−5、1−アザ−18−クラウン−6、トリス(2−ホルミルオキシエチル)アミン、トリス(2−アセトキシエチル)アミン、トリス(2−プロピオニルオキシエチル)アミン、トリス(2−ブチリルオキシエチル)アミン、トリス(2−イソブチリルオキシエチル)アミン、トリス(2−バレリルオキシエチル)アミン、トリス(2−ピバロイルオキシエチル)アミン、N,N−ビス(2−アセトキシエチル)2−(アセトキシアセトキシ)エチルアミン、トリス(2−メトキシカルボニルオキシエチル)アミン、トリス(2−tert−ブトキシカルボニルオキシエチル)アミン、トリス[2−(2−オキソプロポキシ)エチル]アミン、トリス[2−(メトキシカルボニルメチル)オキシエチル]アミン、トリス[2−(tert−ブトキシカルボニルメチルオキシ)エチル]アミン、トリス[2−(シクロヘキシルオキシカルボニルメチルオキシ)エチル]アミン、トリス(2−メトキシカルボニルエチル)アミン、トリス(2−エトキシカルボニルエチル)アミン、N,N−ビス(2−ヒドロキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−ヒドロキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−アセトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(4−ヒドロキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(4−ホルミルオキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(2−ホルミルオキシエトキシカルボニル)エチルアミン、N,N−ビス(2−メトキシエチル)2−(メトキシカルボニル)エチルアミン、N−(2−ヒドロキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−ヒドロキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(3−ヒドロキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(3−アセトキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−メトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(2−メトキシエトキシカルボニル)エチル]アミン、N−メチルビス(2−アセトキシエチル)アミン、N−エチルビス(2−アセトキシエチル)アミン、N−メチルビス(2−ピバロイルオキシエチル)アミン、N−エチルビス[2−(メトキシカルボニルオキシ)エチル]アミン、N−エチルビス[2−(tert−ブトキシカルボニルオキシ)エチル]アミン、トリス(メトキシカルボニルメチル)アミン、トリス(エトキシカルボニルメチル)アミン、N−ブチルビス(メトキシカルボニルメチル)アミン、N−ヘキシルビス(メトキシカルボニルメチル)アミン、β−(ジエチルアミノ)−δ−バレロラクトンを例示できるが、これらに制限されない。
Specific examples of the compound represented by formula (B) -1 are given below.
Tris (2-methoxymethoxyethyl) amine, tris {2- (2-methoxyethoxy) ethyl} amine, tris {2- (2-methoxyethoxymethoxy) ethyl} amine, tris {2- (1-methoxyethoxy) ethyl } Amine, Tris {2- (1-ethoxyethoxy) ethyl} amine, Tris {2- (1-ethoxypropoxy) ethyl} amine, Tris [2- {2- (2-hydroxyethoxy) ethoxy} ethyl] amine, 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo [8.8.8] hexacosane, 4,7,13,18-tetraoxa-1,10-diazabicyclo [8.5.5] Eicosane, 1,4,10,13-tetraoxa-7,16-diazabicyclooctadecane, 1-aza-12-crown-4 1-aza-15-crown-5, 1-aza-18-crown-6, tris (2-formyloxyethyl) amine, tris (2-acetoxyethyl) amine, tris (2-propionyloxyethyl) amine, tris (2-butyryloxyethyl) amine, tris (2-isobutyryloxyethyl) amine, tris (2-valeryloxyethyl) amine, tris (2-pivaloyloxyethyl) amine, N, N-bis (2-acetoxyethyl) 2- (acetoxyacetoxy) ethylamine, tris (2-methoxycarbonyloxyethyl) amine, tris (2-tert-butoxycarbonyloxyethyl) amine, tris [2- (2-oxopropoxy) ethyl] Amine, tris [2- (methoxycarbonylmethyl) oxyethyl] amine Tris [2- (tert-butoxycarbonylmethyloxy) ethyl] amine, tris [2- (cyclohexyloxycarbonylmethyloxy) ethyl] amine, tris (2-methoxycarbonylethyl) amine, tris (2-ethoxycarbonylethyl) amine N, N-bis (2-hydroxyethyl) 2- (methoxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (methoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2- (ethoxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (ethoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2- (2-methoxyethoxycarbonyl) ethylamine, N , N-bis (2-acetoxyethyl) 2- (2-methoxyethoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2- (2-hydroxyethoxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (2-acetoxy) Ethoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2-[(methoxycarbonyl) methoxycarbonyl] ethylamine, N, N-bis (2-acetoxyethyl) 2-[(methoxycarbonyl) methoxycarbonyl] ethylamine N, N-bis (2-hydroxyethyl) 2- (2-oxopropoxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (2-oxopropoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2- (tetrahydrofurfuryl Oxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (tetrahydrofurfuryloxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2-[(2-oxotetrahydrofuran-3-yl ) Oxycarbonyl] ethylamine, N, N-bis (2-acetoxyethyl) 2-[(2-oxotetrahydrofuran-3-yl) oxycarbonyl] ethylamine, N, N-bis (2-hydroxyethyl) 2- (4 -Hydroxybutoxycarbonyl) ethylamine, N, N-bis (2-formyloxyethyl) 2- (4-formyloxybutoxycarbonyl) ethylamine, N, N-bis (2-formyloxyethyl) 2- (2-formyloxy) Ethoxycarbonyl) ethylamine, N, N-bis (2- Toxiethyl) 2- (methoxycarbonyl) ethylamine, N- (2-hydroxyethyl) bis [2- (methoxycarbonyl) ethyl] amine, N- (2-acetoxyethyl) bis [2- (methoxycarbonyl) ethyl] amine, N- (2-hydroxyethyl) bis [2- (ethoxycarbonyl) ethyl] amine, N- (2-acetoxyethyl) bis [2- (ethoxycarbonyl) ethyl] amine, N- (3-hydroxy-1-propyl) ) Bis [2- (methoxycarbonyl) ethyl] amine, N- (3-acetoxy-1-propyl) bis [2- (methoxycarbonyl) ethyl] amine, N- (2-methoxyethyl) bis [2- (methoxy Carbonyl) ethyl] amine, N-butylbis [2- (methoxycarbonyl) ethyl] amine, N-butyl Rubis [2- (2-methoxyethoxycarbonyl) ethyl] amine, N-methylbis (2-acetoxyethyl) amine, N-ethylbis (2-acetoxyethyl) amine, N-methylbis (2-pivaloyloxyethyl) amine N-ethylbis [2- (methoxycarbonyloxy) ethyl] amine, N-ethylbis [2- (tert-butoxycarbonyloxy) ethyl] amine, tris (methoxycarbonylmethyl) amine, tris (ethoxycarbonylmethyl) amine, N -Butylbis (methoxycarbonylmethyl) amine, N-hexylbis (methoxycarbonylmethyl) amine, and β- (diethylamino) -δ-valerolactone can be exemplified, but are not limited thereto.

更に下記一般式(B)−2に示される環状構造を持つ塩基性化合物の1種あるいは2種以上を添加することもできる。

Figure 2006169302
(上式中、Xは前述の通り、R307は炭素数2〜20の直鎖状又は分岐状のアルキレン基であり、カルボニル基、エーテル基、エステル基、又はスルフィドを1個あるいは複数個含んでいても良い。) Furthermore, 1 type, or 2 or more types of the basic compound which has the cyclic structure shown by the following general formula (B) -2 can also be added.
Figure 2006169302
(In the above formula, X is as described above, and R 307 is a linear or branched alkylene group having 2 to 20 carbon atoms and contains one or more carbonyl groups, ether groups, ester groups, or sulfides. You may leave.)

(B)−2は、具体的には、1−[2−(メトキシメトキシ)エチル]ピロリジン、1−[2−(メトキシメトキシ)エチル]ピペリジン、4−[2−(メトキシメトキシ)エチル]モルホリン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピロリジン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピペリジン、4−[2−[(2−メトキシエトキシ)メトキシ]エチル]モルホリン、酢酸2−(1−ピロリジニル)エチル、酢酸2−ピペリジノエチル、酢酸2−モルホリノエチル、ギ酸2−(1−ピロリジニル)エチル、プロピオン酸2−ピペリジノエチル、アセトキシ酢酸2−モルホリノエチル、メトキシ酢酸2−(1−ピロリジニル)エチル、4−[2−(メトキシカルボニルオキシ)エチル]モルホリン、1−[2−(t−ブトキシカルボニルオキシ)エチル]ピペリジン、4−[2−(2−メトキシエトキシカルボニルオキシ)エチル]モルホリン、3−(1−ピロリジニル)プロピオン酸メチル、3−ピペリジノプロピオン酸メチル、3−モルホリノプロピオン酸メチル、3−(チオモルホリノ)プロピオン酸メチル、2−メチル−3−(1−ピロリジニル)プロピオン酸メチル、3−モルホリノプロピオン酸エチル、3−ピペリジノプロピオン酸メトキシカルボニルメチル、3−(1−ピロリジニル)プロピオン酸2−ヒドロキシエチル、3−モルホリノプロピオン酸2−アセトキシエチル、3−(1−ピロリジニル)プロピオン酸2−オキソテトラヒドロフラン−3−イル、3−モルホリノプロピオン酸テトラヒドロフルフリル、3−ピペリジノプロピオン酸グリシジル、3−モルホリノプロピオン酸2−メトキシエチル、3−(1−ピロリジニル)プロピオン酸2−(2−メトキシエトキシ)エチル、3−モルホリノプロピオン酸ブチル、3−ピペリジノプロピオン酸シクロヘキシル、α−(1−ピロリジニル)メチル−γ−ブチロラクトン、β−ピペリジノ−γ−ブチロラクトン、β−モルホリノ−δ−バレロラクトン、1−ピロリジニル酢酸メチル、ピペリジノ酢酸メチル、モルホリノ酢酸メチル、チオモルホリノ酢酸メチル、1−ピロリジニル酢酸エチル、モルホリノ酢酸2−メトキシエチル等を挙げることができる。   (B) -2 is specifically 1- [2- (methoxymethoxy) ethyl] pyrrolidine, 1- [2- (methoxymethoxy) ethyl] piperidine, 4- [2- (methoxymethoxy) ethyl] morpholine. , 1- [2-[(2-methoxyethoxy) methoxy] ethyl] pyrrolidine, 1- [2-[(2-methoxyethoxy) methoxy] ethyl] piperidine, 4- [2-[(2-methoxyethoxy) methoxy ] Ethyl] morpholine, 2- (1-pyrrolidinyl) ethyl acetate, 2-piperidinoethyl acetate, 2-morpholinoethyl acetate, 2- (1-pyrrolidinyl) ethyl formate, 2-piperidinoethyl propionate, 2-morpholinoethyl acetoxyacetate, methoxy 2- (1-pyrrolidinyl) ethyl acetate, 4- [2- (methoxycarbonyloxy) ethyl] morpholine 1- [2- (t-butoxycarbonyloxy) ethyl] piperidine, 4- [2- (2-methoxyethoxycarbonyloxy) ethyl] morpholine, methyl 3- (1-pyrrolidinyl) propionate, 3-piperidino Methyl propionate, methyl 3-morpholinopropionate, methyl 3- (thiomorpholino) propionate, methyl 2-methyl-3- (1-pyrrolidinyl) propionate, ethyl 3-morpholinopropionate, 3-piperidinopropionic acid Methoxycarbonylmethyl, 2-hydroxyethyl 3- (1-pyrrolidinyl) propionate, 2-acetoxyethyl 3-morpholinopropionate, 2-oxotetrahydrofuran-3-yl 3- (1-pyrrolidinyl) propionate, 3-morpholinopropion Tetrahydrofurfuryl acid, 3 Glycidyl piperidinopropionate, 2-methoxyethyl 3-morpholinopropionate, 2- (2-methoxyethoxy) ethyl 3- (1-pyrrolidinyl) propionate, butyl 3-morpholinopropionate, 3-piperidinopropionic acid Cyclohexyl, α- (1-pyrrolidinyl) methyl-γ-butyrolactone, β-piperidino-γ-butyrolactone, β-morpholino-δ-valerolactone, methyl 1-pyrrolidinyl acetate, methyl piperidinoacetate, methyl morpholinoacetate, methyl thiomorpholinoacetate , Ethyl 1-pyrrolidinyl acetate, 2-methoxyethyl morpholinoacetate and the like.

更に、一般式(B)−3〜(B)−6で表されるシアノ基を含む塩基性化合物を添加することができる。

Figure 2006169302
(上式中、X、R307、nは前述の通り、R308、R309は同一又は異種の炭素数1〜4の直鎖状、分岐状のアルキレン基である。) Furthermore, a basic compound containing a cyano group represented by general formulas (B) -3 to (B) -6 can be added.
Figure 2006169302
(In the above formula, X, R 307 and n are as described above, and R 308 and R 309 are the same or different linear and branched alkylene groups having 1 to 4 carbon atoms.)

シアノ基を含む塩基は、具体的には3−(ジエチルアミノ)プロピオノニトリル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−エチル−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ヒドロキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(3−アセトキシ−1−プロピル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ホルミルオキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−テトラヒドロフルフリル−3−アミノプロピオノニトリル、N,N−ビス(2−シアノエチル)−3−アミノプロピオノニトリル、ジエチルアミノアセトニトリル、N,N−ビス(2−ヒドロキシエチル)アミノアセトニトリル、N,N−ビス(2−アセトキシエチル)アミノアセトニトリル、N,N−ビス(2−ホルミルオキシエチル)アミノアセトニトリル、N,N−ビス(2−メトキシエチル)アミノアセトニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−シアノメチル−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)アミノアセトニトリル、N−(2−アセトキシエチル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(2−ホルミルオキシエチル)アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)アミノアセトニトリル、N−シアノメチル−N−[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−(シアノメチル)−N−(3−ヒドロキシ−1−プロピル)アミノアセトニトリル、N−(3−アセトキシ−1−プロピル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(3−ホルミルオキシ−1−プロピル)アミノアセトニトリル、N,N−ビス(シアノメチル)アミノアセトニトリル、1−ピロリジンプロピオノニトリル、1−ピペリジンプロピオノニトリル、4−モルホリンプロピオノニトリル、1−ピロリジンアセトニトリル、1−ピペリジンアセトニトリル、4−モルホリンアセトニトリル、3−ジエチルアミノプロピオン酸シアノメチル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸シアノメチル、3−ジエチルアミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸(2−シアノエチル)、1−ピロリジンプロピオン酸シアノメチル、1−ピペリジンプロピオン酸シアノメチル、4−モルホリンプロピオン酸シアノメチル、1−ピロリジンプロピオン酸(2−シアノエチル)、1−ピペリジンプロピオン酸(2−シアノエチル)、4−モルホリンプロピオン酸(2−シアノエチル)等が例示される。   Specific examples of the base containing a cyano group include 3- (diethylamino) propiononitrile, N, N-bis (2-hydroxyethyl) -3-aminopropiononitrile, and N, N-bis (2-acetoxyethyl). -3-aminopropiononitrile, N, N-bis (2-formyloxyethyl) -3-aminopropiononitrile, N, N-bis (2-methoxyethyl) -3-aminopropiononitrile, N, N -Bis [2- (methoxymethoxy) ethyl] -3-aminopropiononitrile, methyl N- (2-cyanoethyl) -N- (2-methoxyethyl) -3-aminopropionate, N- (2-cyanoethyl) -N- (2-hydroxyethyl) -3-aminopropionic acid methyl, N- (2-acetoxyethyl) -N- (2-cyanoethyl) -3-aminopro Methyl onate, N- (2-cyanoethyl) -N-ethyl-3-aminopropiononitrile, N- (2-cyanoethyl) -N- (2-hydroxyethyl) -3-aminopropiononitrile, N- ( 2-acetoxyethyl) -N- (2-cyanoethyl) -3-aminopropiononitrile, N- (2-cyanoethyl) -N- (2-formyloxyethyl) -3-aminopropiononitrile, N- (2 -Cyanoethyl) -N- (2-methoxyethyl) -3-aminopropiononitrile, N- (2-cyanoethyl) -N- [2- (methoxymethoxy) ethyl] -3-aminopropiononitrile, N- ( 2-cyanoethyl) -N- (3-hydroxy-1-propyl) -3-aminopropiononitrile, N- (3-acetoxy-1-propyl) -N- (2 Cyanoethyl) -3-aminopropiononitrile, N- (2-cyanoethyl) -N- (3-formyloxy-1-propyl) -3-aminopropiononitrile, N- (2-cyanoethyl) -N-tetrahydrofur Furyl-3-aminopropiononitrile, N, N-bis (2-cyanoethyl) -3-aminopropiononitrile, diethylaminoacetonitrile, N, N-bis (2-hydroxyethyl) aminoacetonitrile, N, N-bis ( 2-acetoxyethyl) aminoacetonitrile, N, N-bis (2-formyloxyethyl) aminoacetonitrile, N, N-bis (2-methoxyethyl) aminoacetonitrile, N, N-bis [2- (methoxymethoxy) ethyl Aminoacetonitrile, N-cyanomethyl-N- (2-methoxyethyl) ) Methyl 3-aminopropionate, methyl N-cyanomethyl-N- (2-hydroxyethyl) -3-aminopropionate, methyl N- (2-acetoxyethyl) -N-cyanomethyl-3-aminopropionate, N -Cyanomethyl-N- (2-hydroxyethyl) aminoacetonitrile, N- (2-acetoxyethyl) -N- (cyanomethyl) aminoacetonitrile, N-cyanomethyl-N- (2-formyloxyethyl) aminoacetonitrile, N-cyanomethyl -N- (2-methoxyethyl) aminoacetonitrile, N-cyanomethyl-N- [2- (methoxymethoxy) ethyl] aminoacetonitrile, N- (cyanomethyl) -N- (3-hydroxy-1-propyl) aminoacetonitrile, N- (3-acetoxy-1-propyl) -N (Cyanomethyl) aminoacetonitrile, N-cyanomethyl-N- (3-formyloxy-1-propyl) aminoacetonitrile, N, N-bis (cyanomethyl) aminoacetonitrile, 1-pyrrolidinepropiononitrile, 1-piperidinepropiononitrile, 4-morpholinepropiononitrile, 1-pyrrolidineacetonitrile, 1-piperidineacetonitrile, 4-morpholineacetonitrile, cyanomethyl 3-diethylaminopropionate, cyanomethyl N, N-bis (2-hydroxyethyl) -3-aminopropionate, N, Cyanomethyl N-bis (2-acetoxyethyl) -3-aminopropionate, cyanomethyl N, N-bis (2-formyloxyethyl) -3-aminopropionate, N, N-bis (2-methoxyethyl) Cyanomethyl 3-aminopropionate, N, N-bis [2- (methoxymethoxy) ethyl] -3-aminopropionate cyanomethyl, 3-diethylaminopropionic acid (2-cyanoethyl), N, N-bis (2-hydroxyethyl) ) -3-Aminopropionic acid (2-cyanoethyl), N, N-bis (2-acetoxyethyl) -3-aminopropionic acid (2-cyanoethyl), N, N-bis (2-formyloxyethyl) -3 Aminopropionic acid (2-cyanoethyl), N, N-bis (2-methoxyethyl) -3-aminopropionic acid (2-cyanoethyl), N, N-bis [2- (methoxymethoxy) ethyl] -3- Aminopropionic acid (2-cyanoethyl), 1-pyrrolidinepropionate cyanomethyl, 1-piperidinepropionate cyano Examples include methyl, cyanomethyl 4-morpholine propionate, 1-pyrrolidinepropionic acid (2-cyanoethyl), 1-piperidinepropionic acid (2-cyanoethyl), 4-morpholine propionic acid (2-cyanoethyl), and the like.

なお、本発明における塩基性化合物の配合量は、全ベース樹脂100質量部に対して0.001〜2質量部、特に0.01〜1質量部が好適である。配合量が0.001質量部より少ないと配合効果がなく、2質量部を超えると感度が低下しすぎる場合がある。   In addition, the compounding quantity of the basic compound in this invention is 0.001-2 mass part with respect to 100 mass parts of all base resins, Especially 0.01-1 mass part is suitable. If the blending amount is less than 0.001 part by mass, there is no blending effect, and if it exceeds 2 parts by mass, the sensitivity may decrease too much.

本発明のポジ型レジスト材料に添加することができる分子内に≡C−COOHで示される基を有する化合物としては、例えば下記I群及びII群から選ばれる1種又は2種以上の化合物を使用することができるが、これらに限定されるものではない。本成分の配合により、レジストのPED安定性が向上し、窒化膜基板上でのエッジラフネスが改善される。   As the compound having a group represented by ≡C—COOH in the molecule that can be added to the positive resist material of the present invention, for example, one or more compounds selected from the following groups I and II are used. However, the present invention is not limited to these. By blending this component, the PED stability of the resist is improved, and the edge roughness on the nitride film substrate is improved.

〔I群〕
下記一般式(A1)〜(A10)で示される化合物のフェノール性水酸基の水素原子の一部又は全部を−R401−COOH(R401は炭素数1〜10の直鎖状又は分岐状のアルキレン基)により置換してなり、かつ分子中のフェノール性水酸基(C)と≡C−COOHで示される基(D)とのモル比率がC/(C+D)=0.1〜1.0である化合物。
[Group I]
A part or all of the hydrogen atoms of the phenolic hydroxyl groups of the compounds represented by the following general formulas (A1) to (A10) are converted to —R 401 —COOH (where R 401 is a linear or branched alkylene having 1 to 10 carbon atoms). The molar ratio of the phenolic hydroxyl group (C) in the molecule to the group (D) represented by ≡C—COOH is C / (C + D) = 0.1 to 1.0. Compound.

Figure 2006169302
Figure 2006169302

但し、式中R408は、水素原子又はメチル基を示す。R402、R403は、それぞれ水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基を示す。R404は、水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基、あるいは−(R409)h−COOR´基(R´は水素原子又は−R409−COOH)を示す。R405は、−(CH2i−(iは2〜10の整数を表す。)、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す、R406は、炭素数1〜10のアルキレン基、炭素数6〜10のアリーレン基、カルボニル基、スルホニル基、酸素原子又は硫黄原子を示す。R407は、水素原子又は炭素数1〜8の直鎖状又は分岐状のアルキル基、アルケニル基、それぞれ水酸基で置換されたフェニル基又はナフチル基を示す。R409は、炭素数1〜10の直鎖状又は分岐状のアルキル基又はアルケニル基又は−R411−COOH基を示す。R410は、水素原子、炭素数1〜8の直鎖状又は分岐状のアルキル基又はアルケニル基又は−R411−COOH基を示す。R411は、炭素数1〜10の直鎖状又は分岐状のアルキレン基を示す。uは0又は1である。hは1〜4の整数である。jは0〜3、s1〜4、t1〜4は、それぞれs1+t1=8、s2+t2=5、s3+t3=4、s4+t4=6を満足し、かつ各フェニル骨格中に少なくとも1つの水酸基を有するような数である。uは1〜4の整数である。κは式(A6)の化合物を重量平均分子量1,000〜5,000とする数である。λは式(A7)の化合物を重量平均分子量1,000〜10,000とする数である。 However, in the formula, R 408 represents a hydrogen atom or a methyl group. R 402 and R 403 each represent a hydrogen atom or a linear or branched alkyl group or alkenyl group having 1 to 8 carbon atoms. R 404 represents a hydrogen atom, a linear or branched alkyl group or alkenyl group having 1 to 8 carbon atoms, or a — (R 409 ) h-COOR ′ group (R ′ is a hydrogen atom or —R 409 —COOH). Indicates. R 405 represents — (CH 2 ) i — (i represents an integer of 2 to 10), an arylene group having 6 to 10 carbon atoms, a carbonyl group, a sulfonyl group, an oxygen atom, or a sulfur atom, R 406 represents , An alkylene group having 1 to 10 carbon atoms, an arylene group having 6 to 10 carbon atoms, a carbonyl group, a sulfonyl group, an oxygen atom or a sulfur atom. R 407 represents a hydrogen atom, a linear or branched alkyl group having 1 to 8 carbon atoms, an alkenyl group, a phenyl group or a naphthyl group each substituted with a hydroxyl group. R 409 represents a linear or branched alkyl group, alkenyl group or —R 411 —COOH group having 1 to 10 carbon atoms. R 410 represents a hydrogen atom, a linear or branched alkyl group or alkenyl group having 1 to 8 carbon atoms, or a —R 411 —COOH group. R 411 represents a linear or branched alkylene group having 1 to 10 carbon atoms. u is 0 or 1. h is an integer of 1 to 4. j is 0 to 3, s1 to 4, and t1 to 4 are numbers satisfying s1 + t1 = 8, s2 + t2 = 5, s3 + t3 = 4, s4 + t4 = 6, respectively, and having at least one hydroxyl group in each phenyl skeleton It is. u is an integer of 1-4. κ is a number that makes the compound of formula (A6) a weight average molecular weight of 1,000 to 5,000. λ is a number that makes the compound of formula (A7) a weight average molecular weight of 1,000 to 10,000.

〔II群〕
下記一般式(A11)〜(A15)で示される化合物。
[Group II]
Compounds represented by the following general formulas (A11) to (A15).

Figure 2006169302
Figure 2006169302

402、R403、R411は、上記と同様の意味を示す。R412は、水素原子又は水酸基を示す。s5とt5は、s5≧0、t5≧0で、s5+t5=5を満足する数である。h´は0又は1である。 R 402 , R 403 , and R 411 have the same meaning as described above. R 412 represents a hydrogen atom or a hydroxyl group. s5 and t5 are numbers satisfying s5 + t5 = 5 with s5 ≧ 0 and t5 ≧ 0. h ′ is 0 or 1.

本成分として、具体的には下記一般式AI−1〜14及びAII―1〜10で示される化合物を挙げることができる。ただし、これらに限定されるものではない。   Specific examples of this component include compounds represented by the following general formulas AI-1 to 14 and AII-1 to 10. However, it is not limited to these.

Figure 2006169302
Figure 2006169302

Figure 2006169302
Figure 2006169302

上式中、R´´は水素原子又はCH2COOH基を示し、各化合物においてR´´の10〜100モル%はCH2COOH基である。λ、κは、上記と同様の意味を示す。 In the above formula, R ″ represents a hydrogen atom or a CH 2 COOH group, and in each compound, 10 to 100 mol% of R ″ is a CH 2 COOH group. λ and κ have the same meaning as described above.

なお、上記分子内に≡C−COOHで示される基を有する化合物の添加量は、ベース樹脂100質量部に対して0〜5質量部、好ましくは0.1〜5質量部、より好ましくは0.1〜3質量部、更に好ましくは0.1〜2質量部である。5質量部より多いとレジスト材料の解像度が低下する場合がある。   The amount of the compound having a group represented by ≡C—COOH in the molecule is 0 to 5 parts by mass, preferably 0.1 to 5 parts by mass, and more preferably 0 to 100 parts by mass of the base resin. 0.1-3 parts by mass, more preferably 0.1-2 parts by mass. If it exceeds 5 parts by mass, the resolution of the resist material may be lowered.

本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料中には、更に、塗布性を向上させる等のための界面活性剤を加えることができる。
界面活性剤の例としては、特に限定されるものではないが、ポリオキシエチレンラウリルエーテル、ポリエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレインエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノール等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレンポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノバルミテート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノバルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステルのノニオン系界面活性剤、エフトップEF301、EF303、EF352(トーケムプトダクツ社)、メガファックF171、F172、F173(大日本インキ化学工業社)、フロラードFC430、FC431(住友スリーエム社)、アサヒガードAG710、サーフロンS−381、S―382、SC101、SC102,SC103、SC104、SC105、SC106、サーフィノールE1004、KH−10、KH−20、KH−30、KH−40(旭硝子社)等のフッ素系界面活性剤、オルガノシロキサンポリマ−KP−341、X−70−092、X−70−093(信越化学工業社)、アクリル酸系又はメタクリル酸系ポリフローNo.75,No.95(共栄社油脂化学工業社)が挙げられ、中でもFC430、サーフロンS−381、サーフィノールE1004、KH−20、KH−30が好適である。これらは単独あるいは2種以上の組み合わせで用いることができる。
In the positive resist material of the present invention, particularly a chemically amplified positive resist material, a surfactant for improving the coating property can be further added.
Examples of the surfactant include, but are not limited to, polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene olein ether, and polyoxyethylene Polyoxyethylene alkyl allyl ethers such as octylphenol ether and polyoxyethylene nonylphenol, polyoxyethylene polyoxypropylene block copolymers, sorbitan fatty acid esters such as sorbitan monolaurate, sorbitan monovalmitate, sorbitan monostearate, poly Oxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monovalmitate, polyoxyethylene sorbitan monostearate Nonionic surfactants of polyoxyethylene sorbitan fatty acid esters such as polyoxyethylene sorbitan trioleate and polyoxyethylene sorbitan tristearate, EFTOP EF301, EF303, EF352 (Tochemputtoc), MegaFuck F171, F172, F173 (Dainippon Ink Chemical Co., Ltd.), Florard FC430, FC431 (Sumitomo 3M), Asahi Guard AG710, Surflon S-381, S-382, SC101, SC102, SC103, SC104, SC105, SC106, Surfinol E1004, KH -10, KH-20, KH-30, KH-40 (Asahi Glass Co., Ltd.) and other fluorine-based surfactants, organosiloxane polymers-KP-341, X-70-092, X-70-093 ( Etsu Chemical Co., Ltd.), acrylic acid-based or methacrylic acid-based Polyflow No. 75, no. 95 (Kyoeisha Yushi Chemical Co., Ltd.), among which FC430, Surflon S-381, Surfynol E1004, KH-20, KH-30 are preferred. These can be used alone or in combination of two or more.

本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料中の界面活性剤の添加量としては、レジスト材料組成物中の固形分100質量部に対して2質量部以下、好ましくは1質量部以下である。   The addition amount of the surfactant in the positive resist material of the present invention, particularly the chemically amplified positive resist material, is 2 parts by mass or less, preferably 1 mass with respect to 100 parts by mass of the solid content in the resist material composition. Or less.

本発明のポジ型レジスト材料、例えば有機溶剤と、一般式(1)で示される高分子化合物と、酸発生剤、塩基性化合物を含む化学増幅ポジ型レジスト材料を種々の集積回路製造に用いる場合は、特に限定されないが公知のリソグラフィー技術を適用することができる。
例えば、本発明のポジ型レジスト材料を、集積回路製造用の基板(Si、SiO2、SiN、SiON、TiN、WSi、BPSG、SOG、有機反射防止膜等)あるいはマスク回路製造用の基板(Cr、CrO、CrON、MoSi等)上にスピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の適当な塗布方法により塗布膜厚が好ましくは0.1〜2.0μmとなるように塗布する。これをホットプレート上で、好ましくは60〜150℃、1〜30分間、より好ましくは80〜120℃、1〜20分間プリベークする。次いで、紫外線、遠紫外線、電子線、X線、エキシマレーザー、γ線、シンクロトロン放射線等の高エネルギー線から選ばれる光源、好ましくは300nm以下の露光波長で目的とするパターンを所定のマスクを通じてもしくは直接露光を行う。露光量は、光露光の場合は、好ましくは1〜200mJ/cm2程度、より好ましくは10〜100mJ/cm2程度となるように露光することがよく、電子線露光の場合は、好ましくは0.1〜100μC/cm2程度、より好ましくは0.2〜50μC/cm2程度となるように露光することがよい。次に、ホットプレート上で、好ましくは60〜150℃、1〜30分間、より好ましくは80〜120℃、1〜20分間ポストエクスポージャベーク(PEB)する。
When the positive resist material of the present invention, for example, a chemically amplified positive resist material containing an organic solvent, a polymer compound represented by the general formula (1), an acid generator, and a basic compound is used for manufacturing various integrated circuits. Although not particularly limited, a known lithography technique can be applied.
For example, the positive resist material of the present invention is applied to a substrate for manufacturing an integrated circuit (Si, SiO 2 , SiN, SiON, TiN, WSi, BPSG, SOG, organic antireflection film, etc.) or a substrate for manufacturing a mask circuit (Cr , CrO, CrON, MoSi, etc.) by an appropriate coating method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor coating, etc., so that the coating film thickness is preferably 0.1 to 2.0 μm. Apply to. This is preferably pre-baked on a hot plate at 60 to 150 ° C. for 1 to 30 minutes, more preferably at 80 to 120 ° C. for 1 to 20 minutes. Next, a light source selected from high energy rays such as ultraviolet rays, far ultraviolet rays, electron beams, X-rays, excimer lasers, γ rays, synchrotron radiation, etc. Direct exposure is performed. In the case of light exposure, the exposure is preferably about 1 to 200 mJ / cm 2 , more preferably about 10 to 100 mJ / cm 2, and in the case of electron beam exposure, preferably 0. .1~100μC / cm 2 or so, more preferably it is exposed so that 0.2~50μC / cm 2 approximately. Next, post-exposure baking (PEB) is preferably performed on a hot plate at 60 to 150 ° C. for 1 to 30 minutes, more preferably at 80 to 120 ° C. for 1 to 20 minutes.

更に、好ましくは0.1〜5質量%、より好ましくは2〜3質量%テトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ水溶液の現像液を用い、好ましくは0.1〜3分間、より好ましくは0.5〜2分間、浸漬(dip)法、パドル(puddle)法、又はスプレー(spray)法等の常法により現像することにより、光を照射した部分は現像液に溶解し、露光されなかった部分は溶解せず、基板上に目的のポジ型のパターンが形成される。なお、本発明のレジスト材料は、特に高エネルギー線の中でも254〜193nmの遠紫外線、157nmの真空紫外線、電子線、軟X線、X線、エキシマレーザー、γ線、シンクロトロン放射線による微細パターニングに最適である。   Furthermore, it is preferably 0.1 to 5% by mass, more preferably 2 to 3% by mass, using an aqueous developer such as tetramethylammonium hydroxide (TMAH), preferably 0.1 to 3 minutes, more preferably By developing by a conventional method such as a dip method, a paddle method, or a spray method for 0.5 to 2 minutes, a portion irradiated with light dissolves in the developer and is not exposed. The desired portion is not dissolved, and the desired positive pattern is formed on the substrate. The resist material of the present invention is particularly suitable for fine patterning by far ultraviolet rays of 254 to 193 nm, vacuum ultraviolet rays of 157 nm, electron beams, soft X-rays, X-rays, excimer lasers, γ rays and synchrotron radiation among high energy rays. Is optimal.

以下、合成例、比較合成例、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。
(合成例1)
1Lのフラスコにアセナフチレン25.6g、4−アセトキシスチレン106g、4−t−ブトキシスチレン38.0g、溶媒としてトルエンを200g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチルニトリル)を4.1g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール4.5L、水0.5Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体32gを得た。このポリマーをメタノール0.5L、テトラヒドロフラン1.0Lに再度溶解し、トリエチルアミン70g、水15gを加え、脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン0.5Lに溶解し、上記と同様の沈殿、濾過、乾燥を行い、白色重合体128gを得た。
EXAMPLES Hereinafter, although a synthesis example, a comparative synthesis example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
(Synthesis Example 1)
To a 1 L flask, 25.6 g of acenaphthylene, 106 g of 4-acetoxystyrene, 38.0 g of 4-t-butoxystyrene, and 200 g of toluene as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen flow were repeated three times. After raising the temperature to room temperature, 4.1 g of AIBN (azobisisobutylnitrile) was added as a polymerization initiator, and the temperature was raised to 60 ° C. and reacted for 15 hours. The reaction solution was concentrated to 1/2 and precipitated in a mixed solution of 4.5 L of methanol and 0.5 L of water, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain 32 g of a white polymer. It was. This polymer was dissolved again in 0.5 L of methanol and 1.0 L of tetrahydrofuran, 70 g of triethylamine and 15 g of water were added to perform a deprotection reaction, and neutralized with acetic acid. The reaction solution was concentrated and then dissolved in 0.5 L of acetone, and precipitation, filtration and drying were performed in the same manner as above to obtain 128 g of a white polymer.

得られた重合体を13C−NMR、1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
アセナフチレン:4−ヒドロキシスチレン:4−t−ブトキシスチレン=12.3:65.7:22.0
重量平均分子量(Mw)=4400
分子量分布(Mw/Mn)=1.82
この高分子化合物を(ポリマー1)とする。
The obtained polymer was subjected to 13 C-NMR, 1 H-NMR and GPC measurement, and the following analysis results were obtained.
Copolymerization composition ratio Acenaphthylene: 4-hydroxystyrene: 4-t-butoxystyrene = 12.3: 65.7: 22.0
Weight average molecular weight (Mw) = 4400
Molecular weight distribution (Mw / Mn) = 1.82
This polymer compound is referred to as (Polymer 1).

(合成例2)
1Lのフラスコにアセナフチレン25.6g、4−アセトキシスチレン106g、4−t−アミロキシスチレン38.0g、溶媒としてトルエンを200g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチルニトリル)を4.1g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール4.5L、水0.5Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体32gを得た。このポリマーをメタノール0.5L、テトラヒドロフラン1.0Lに再度溶解し、トリエチルアミン70g、水15gを加え、脱保護反応を行い、酢酸を用いて中和した。反応溶液を濃縮後、アセトン0.5Lに溶解し、上記と同様の沈殿、濾過、乾燥を行い、白色重合体123gを得た。
(Synthesis Example 2)
25.6 g of acenaphthylene, 106 g of 4-acetoxystyrene, 38.0 g of 4-t-amyloxystyrene and 200 g of toluene as a solvent were added to a 1 L flask. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen flow were repeated three times. After raising the temperature to room temperature, 4.1 g of AIBN (azobisisobutylnitrile) was added as a polymerization initiator, and the temperature was raised to 60 ° C. and reacted for 15 hours. The reaction solution was concentrated to 1/2 and precipitated in a mixed solution of 4.5 L of methanol and 0.5 L of water, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain 32 g of a white polymer. It was. This polymer was dissolved again in 0.5 L of methanol and 1.0 L of tetrahydrofuran, 70 g of triethylamine and 15 g of water were added to perform a deprotection reaction, and neutralized with acetic acid. The reaction solution was concentrated and then dissolved in 0.5 L of acetone, and precipitation, filtration and drying were performed in the same manner as above to obtain 123 g of a white polymer.

得られた重合体を13C−NMR、1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
アセナフチレン:4−ヒドロキシスチレン:4−t−アミロキシスチレン=13.0:67.0:20.0
重量平均分子量(Mw)=3800
分子量分布(Mw/Mn)=1.72
この高分子化合物を(ポリマー2)とする。
The obtained polymer was subjected to 13 C-NMR, 1 H-NMR and GPC measurement, and the following analysis results were obtained.
Copolymerization composition ratio Acenaphthylene: 4-hydroxystyrene: 4-t-amyloxystyrene = 13.0: 67.0: 20.0
Weight average molecular weight (Mw) = 3800
Molecular weight distribution (Mw / Mn) = 1.72
This polymer compound is referred to as (Polymer 2).

(合成例3)
1Lのフラスコにアセナフチレン60.8g、4−ヒドロキシスチレン72g、溶媒として1,2−ジクロロエタンを80g添加した。この反応容器を窒素雰囲気下、重合開始剤としてトリフルオロホウ素1g加え、60℃まで昇温後、15時間反応させた。この反応溶液を1/2まで濃縮し、メタノール2.5L、水0.2Lの混合溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体102gを得た。
(Synthesis Example 3)
To a 1 L flask, 60.8 g of acenaphthylene, 72 g of 4-hydroxystyrene and 80 g of 1,2-dichloroethane as a solvent were added. In a nitrogen atmosphere, 1 g of trifluoroboron was added as a polymerization initiator to the reaction vessel, and the temperature was raised to 60 ° C., followed by reaction for 15 hours. The reaction solution was concentrated to 1/2, precipitated in a mixed solution of 2.5 L of methanol and 0.2 L of water, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain 102 g of a white polymer. It was.

得られた重合体を13C−NMR、1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
アセナフチレン:4−ヒドロキシスチレン=40.4:59.6
重量平均分子量(Mw)=4300
分子量分布(Mw/Mn)=1.77
この高分子化合物を(ポリマー3)とする。
The obtained polymer was subjected to 13 C-NMR, 1 H-NMR and GPC measurement, and the following analysis results were obtained.
Copolymerization composition ratio Acenaphthylene: 4-hydroxystyrene = 40.4: 59.6
Weight average molecular weight (Mw) = 4300
Molecular weight distribution (Mw / Mn) = 1.77
This polymer compound is referred to as (Polymer 3).

(合成例4)
ポリマー3の40gをピリジン400mlに溶解させ、45℃で撹拌しながら二炭酸ジ−tert−ブチル22.6gを添加した。1時間反応させた後、水3Lに反応液を滴下したところ、白色固体が得られた。これを濾過後、アセトン100mlに溶解させ、水5Lに滴下し、濾過後、真空乾燥させ、ポリマー4を得た。
共重合組成比
アセナフチレン:4−ヒドロキシスチレン:4−tブトキシカルボニルスチレン=40.4:47.1:12.5
重量平均分子量(Mw)=4400
分子量分布(Mw/Mn)=1.77
この高分子化合物を(ポリマー4)とする
(Synthesis Example 4)
40 g of polymer 3 was dissolved in 400 ml of pyridine, and 22.6 g of di-tert-butyl dicarbonate was added with stirring at 45 ° C. After making it react for 1 hour, when the reaction liquid was dripped at 3 L of water, white solid was obtained. This was filtered, dissolved in 100 ml of acetone, added dropwise to 5 L of water, filtered, and dried in vacuo to obtain polymer 4.
Copolymerization composition ratio Acenaphthylene: 4-hydroxystyrene: 4-tbutoxycarbonylstyrene = 40.4: 47.1: 12.5
Weight average molecular weight (Mw) = 4400
Molecular weight distribution (Mw / Mn) = 1.77
This polymer compound is referred to as (Polymer 4).

(比較合成例1)
上記合成例と同様の方法で2成分ポリマーを合成した。その品名、分析結果を以下に示す。
ヒドロキシスチレン:メタクリル酸1−エチルシクロペンチルエステル=71:29
重量平均分子量(Mw)=16,100
分子量分布(Mw/Mn)=1.70
この高分子化合物を(比較ポリマー1)とする。
(Comparative Synthesis Example 1)
A two-component polymer was synthesized in the same manner as in the above synthesis example. The product names and analysis results are shown below.
Hydroxystyrene: Methacrylic acid 1-ethylcyclopentyl ester = 71: 29
Weight average molecular weight (Mw) = 16,100
Molecular weight distribution (Mw / Mn) = 1.70
This polymer compound is referred to as (Comparative Polymer 1).

(比較合成例2)
2Lのフラスコを用いて、ポリヒドロキシスチレン(Mw=11000,Mw/Mn=1.08)40gをテトラヒドロフラン400mLに溶解し、メタンスルホン酸1.4g、エチルビニルエーテル12.3gを加え、室温下1時間反応し、アンモニア水(30%)2.5gを加え反応を停止させ、この反応溶液を酢酸水5Lを用いて晶出沈殿させ、さらに2回の水洗を行ない、得られた白色固体を濾過後、40℃で減圧乾燥し、白色重合体47gを得た。
(Comparative Synthesis Example 2)
Using a 2 L flask, 40 g of polyhydroxystyrene (Mw = 11000, Mw / Mn = 1.08) was dissolved in 400 mL of tetrahydrofuran, and 1.4 g of methanesulfonic acid and 12.3 g of ethyl vinyl ether were added. The reaction was stopped by adding 2.5 g of aqueous ammonia (30%), the reaction solution was crystallized and precipitated with 5 L of acetic acid water, washed twice with water, and the resulting white solid was filtered. And dried under reduced pressure at 40 ° C. to obtain 47 g of a white polymer.

得られた重合体を13C−NMR、1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比
ヒドロキシスチレン:p−エトキシエトキシスチレン=63.5:36.5
重量平均分子量(Mw)=13000
分子量分布(Mw/Mn)=1.10
この高分子化合物を(比較ポリマー2)とする。
The obtained polymer was subjected to 13 C-NMR, 1 H-NMR and GPC measurement, and the following analysis results were obtained.
Copolymerization composition ratio Hydroxystyrene: p-ethoxyethoxystyrene = 63.5: 36.5
Weight average molecular weight (Mw) = 13000
Molecular weight distribution (Mw / Mn) = 1.10
This polymer compound is referred to as (Comparative Polymer 2).

実施例1〜6と比較例1〜2
上記で合成した高分子化合物を用いて、下記表1に示される組成で溶解させた溶液を、0.2μmサイズのフィルターでろ過してポジ型レジスト材料を調整した。
表1中の各組成は次の通りである。
Examples 1-6 and Comparative Examples 1-2
Using the polymer compound synthesized above, a solution dissolved in the composition shown in Table 1 below was filtered through a 0.2 μm size filter to prepare a positive resist material.
Each composition in Table 1 is as follows.

ポリマー1、2、4:合成例1、2、4より、
比較ポリマー1、比較ポリマー2:比較合成例1、比較合成例2より、
有機溶剤:PGMEA(プロピレングリコールメチルエーテルアセテート)
酸発生剤:PAG1、PAG2(下記構造式参照)
Polymers 1, 2, and 4: From Synthesis Examples 1, 2, and 4,
Comparative polymer 1 and comparative polymer 2: From comparative synthesis example 1 and comparative synthesis example 2,
Organic solvent: PGMEA (propylene glycol methyl ether acetate)
Acid generator: PAG1, PAG2 (see structural formula below)

Figure 2006169302
Figure 2006169302

塩基性化合物:TMMEA(下記構造式参照)

Figure 2006169302
Basic compound: TMMEA (see the following structural formula)
Figure 2006169302

溶解阻止剤:DRI1(下記構造式参照)

Figure 2006169302
Dissolution inhibitor: DRI1 (see structural formula below)
Figure 2006169302

有機溶剤:PGMEA(プロピレングリコールモノメチルエーテルアセテート)、
EL(エチルラクテート(乳酸エチル))
Organic solvent: PGMEA (propylene glycol monomethyl ether acetate),
EL (ethyl lactate (ethyl lactate))

<電子ビーム描画評価>
描画評価では、上記で合成した高分子化合物を用いて、表1に示される組成で溶解させた溶液を、0.2μmサイズのフィルターで濾過してポジ型レジスト材料を調製した。
得られたポジ型レジスト材料を、ヘキサメチルジシラザン(HMDS)のベーパー処理した直径6インチφのSi基板上に、クリーントラックMark5(東京エレクトロン社製)を用いてスピンコートし、ホットプレート上で110℃で90秒間プリベークして200nmのレジスト膜を作製した。これに、日立製作所社HL−800Dを用いてHV電圧50keVで真空チャンバー内描画を行った。
描画後直ちにクリーントラックMark5(東京エレクトロン社製)を用いてホットプレート上で110℃で90秒間ポストエクスポージャベーク(PEB)を行い、2.38質量%のTMAH水溶液で30秒間パドル現像を行い、ポジ型のパターンを得た。
得られたレジストパターンを次のように評価した。
0.12μmのラインアンドスペースを1:1で解像する露光量をレジストの感度とし、エッジラフネスをSEMで観察した。
レジスト組成とEB露光における感度、解像度の結果を表1に示す。
<Electron beam drawing evaluation>
In the drawing evaluation, a positive resist material was prepared by filtering a solution dissolved in the composition shown in Table 1 using a polymer compound synthesized above with a 0.2 μm size filter.
The obtained positive resist material was spin-coated using a clean track Mark5 (manufactured by Tokyo Electron) on a 6-inch diameter Si substrate treated with a vapor of hexamethyldisilazane (HMDS) and heated on a hot plate. A 200 nm resist film was prepared by pre-baking at 110 ° C. for 90 seconds. For this, drawing in a vacuum chamber was performed with an HV voltage of 50 keV using Hitachi Ltd. HL-800D.
Immediately after drawing, post-exposure baking (PEB) was performed at 110 ° C. for 90 seconds on a hot plate using a clean track Mark 5 (manufactured by Tokyo Electron), and paddle development was performed for 30 seconds with a 2.38 mass% TMAH aqueous solution. A positive pattern was obtained.
The obtained resist pattern was evaluated as follows.
The exposure amount for resolving 0.12 μm line and space at 1: 1 was taken as the sensitivity of the resist, and the edge roughness was observed by SEM.
Table 1 shows the results of resist composition, sensitivity and resolution in EB exposure.

Figure 2006169302
Figure 2006169302

実施例7〜9と比較例3〜4
<耐ドライエッチング性評価>
耐ドライエッチング性の試験では、上記各ポリマー2gにPGMEA10gを溶解させて0.2μmサイズのフィルターで濾過したポリマー溶液をSi基板にスピンコートで製膜し、200nmの厚さの膜にし、以下のような2系統の条件で評価した。
Examples 7-9 and Comparative Examples 3-4
<Dry etching resistance evaluation>
In the dry etching resistance test, 10 g of PGMEA was dissolved in 2 g of each of the above polymers, and a polymer solution filtered through a 0.2 μm size filter was formed on a Si substrate by spin coating to form a film having a thickness of 200 nm. Evaluation was carried out under such two conditions.

(1)CHF3/CF4系ガスでのエッチング試験
東京エレクトロン社製ドライエッチング装置TE−8500Pを用い、エッチング前後のポリマー膜の膜厚差を求めた。
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 1,000W
ギャップ 9mm
CHF3ガス流量 30ml/min
CF4ガス流量 30ml/min
Arガス流量 100ml/min
時間 60sec
(1) Etching test with CHF 3 / CF 4 gas Using a dry etching apparatus TE-8500P manufactured by Tokyo Electron Co., Ltd., the difference in film thickness of the polymer film before and after etching was determined.
Etching conditions are as shown below.
Chamber pressure 40.0Pa
RF power 1,000W
Gap 9mm
CHF 3 gas flow rate 30ml / min
CF 4 gas flow rate 30ml / min
Ar gas flow rate 100ml / min
60 sec

(2)Cl2/BCl3系ガスでのエッチング試験
日電アネルバ株式会社製ドライエッチング装置L−507D−Lを用い、エッチング前後のポリマー膜の膜厚差を求めた。
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 300W
ギャップ 9mm
Cl2ガス流量 30ml/min
BCl3ガス流量 30ml/min
CHF3ガス流量 100ml/min
2ガス流量 2ml/min
時間 60sec
(2) Cl 2 / BCl 3 system using an etching test Nichiden Anelva Co., Ltd. dry etching apparatus L-507D-L Gas was calculated the difference between the film thickness of before and after etching of the polymer film.
Etching conditions are as shown below.
Chamber pressure 40.0Pa
RF power 300W
Gap 9mm
Cl 2 gas flow rate 30ml / min
BCl 3 gas flow rate 30ml / min
CHF 3 gas flow rate 100ml / min
O 2 gas flow rate 2ml / min
60 sec

この評価では、膜厚差の少ないもの、すなわち減少量が少ないものがエッチング耐性があることを示している。
結果を表2に示した。
This evaluation shows that a film having a small difference in film thickness, that is, a film having a small decrease amount has etching resistance.
The results are shown in Table 2.

Figure 2006169302
Figure 2006169302

表1〜2の結果より、本発明の高分子化合物を用いたレジスト材料は、十分な解像力と感度を満たし、露光後のパターン形状が良好であり、エッチング後の膜厚差が小さいことより、優れた耐ドライエッチング性を有していることがわかる。   From the results of Tables 1 and 2, the resist material using the polymer compound of the present invention satisfies sufficient resolution and sensitivity, the pattern shape after exposure is good, and the film thickness difference after etching is small. It can be seen that it has excellent dry etching resistance.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
例えば、上記ではポジ型レジスト材料に酸発生剤、塩基性化合物、溶解阻止剤、有機溶剤を配合して化学増幅ポジ型レジスト材料を構成する場合について例を挙げて説明したが、本発明はこれには限定されず、これらの添加剤等を配合するのは任意であり、必要に応じ界面活性剤その他の添加剤等を配合してもよいし、一部組成の省略等も有り得る。
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
For example, in the above description, the case where a chemically amplified positive resist material is formed by mixing a positive resist material with an acid generator, a basic compound, a dissolution inhibitor, and an organic solvent has been described. However, it is optional to add these additives and the like, and if necessary, surfactants and other additives may be added, or a part of the composition may be omitted.

Claims (6)

少なくとも、下記一般式(1)で示される共重合による繰り返し単位を含んでなり、重量平均分子量が1,000〜500,000の範囲にある高分子化合物。
Figure 2006169302
(上式中、R1は同一又は非同一の水素原子、ヒドロキシ基、炭素数1〜4の直鎖状もしくは分岐状のアルキル基、アセトキシ基、ヒドロキシメチル基、ハロゲン原子、もしくは−OR4(式中、R4は炭素数1〜6の直鎖状もしくは分岐状のアルキル基、又は酸不安定基を表す。)を表し、mは0又は1〜6の正の整数であり、nは1〜5の整数であり、R2は水素原子又はメチル基を表し、R3は同一又は非同一の酸不安定基もしくは水素原子を表すが、R3とR4が併存するときはそのうちの少なくとも一つが酸不安定基であり、R4が存在しないときはR3のうちの少なくとも一つが酸不安定基であり、pとqはモル分率を表し各々1未満の正数であり、p+q≦1の関係を満たす。)
A polymer compound comprising at least a repeating unit by copolymerization represented by the following general formula (1) and having a weight average molecular weight in the range of 1,000 to 500,000.
Figure 2006169302
(In the above formula, R 1 is the same or non-identical hydrogen atom, hydroxy group, linear or branched alkyl group having 1 to 4 carbon atoms, acetoxy group, hydroxymethyl group, halogen atom, or —OR 4 ( In the formula, R 4 represents a linear or branched alkyl group having 1 to 6 carbon atoms or an acid labile group.), M is 0 or a positive integer of 1 to 6, and n is An integer of 1 to 5, R 2 represents a hydrogen atom or a methyl group, R 3 represents the same or non-identical acid labile group or a hydrogen atom, and when R 3 and R 4 coexist, At least one is an acid labile group, and when R 4 is not present, at least one of R 3 is an acid labile group, p and q each represents a mole fraction and is a positive number less than 1; (P + q ≦ 1 is satisfied)
請求項1に記載の高分子化合物をベース樹脂として含んでなるポジ型レジスト材料。   A positive resist material comprising the polymer compound according to claim 1 as a base resin. さらに有機溶剤及び酸発生剤を含んでなり化学増幅型である請求項2に記載のポジ型レジスト材料。   The positive resist composition according to claim 2, further comprising an organic solvent and an acid generator, and is of a chemical amplification type. さらに溶解阻止剤を含んでなる請求項2又は請求項3に記載のポジ型レジスト材料。   The positive resist material according to claim 2 or 3, further comprising a dissolution inhibitor. さらに塩基性化合物及び/又は界面活性剤を含んでなる請求項2〜4のいずれかに記載のポジ型レジスト材料。   The positive resist material according to claim 2, further comprising a basic compound and / or a surfactant. 請求項2〜5のいずれかに記載のポジ型レジスト材料を基板上に塗布する工程と、得られた塗膜を加熱処理する工程と、該加熱処理された塗膜を高エネルギー線で露光する工程と、露光された塗膜を現像液を用いて現像する工程とを含んでなるパターン形成方法。   A step of applying the positive resist material according to claim 2 on a substrate, a step of heat-treating the obtained coating film, and exposing the heat-treated coating film with a high energy beam A pattern forming method comprising a step and a step of developing the exposed coating film using a developer.
JP2004360713A 2004-12-14 2004-12-14 Positive resist material and pattern forming method using the same Active JP4642452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360713A JP4642452B2 (en) 2004-12-14 2004-12-14 Positive resist material and pattern forming method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360713A JP4642452B2 (en) 2004-12-14 2004-12-14 Positive resist material and pattern forming method using the same

Publications (2)

Publication Number Publication Date
JP2006169302A true JP2006169302A (en) 2006-06-29
JP4642452B2 JP4642452B2 (en) 2011-03-02

Family

ID=36670405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360713A Active JP4642452B2 (en) 2004-12-14 2004-12-14 Positive resist material and pattern forming method using the same

Country Status (1)

Country Link
JP (1) JP4642452B2 (en)

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050568A (en) * 2006-07-24 2008-03-06 Shin Etsu Chem Co Ltd Polymeric compound, positive resist material, and pattern forming method using the same
JP2008095009A (en) * 2006-10-13 2008-04-24 Shin Etsu Chem Co Ltd Polymeric compound, resist material, and method of pattern formation using the resist material
JP2010020173A (en) * 2008-07-11 2010-01-28 Shin-Etsu Chemical Co Ltd Chemically-amplified positive resist composition and patterning process thereof
JP2010039474A (en) * 2008-07-11 2010-02-18 Shin-Etsu Chemical Co Ltd Resist patterning process and method of manufacturing photomask
JP2010170094A (en) * 2008-12-25 2010-08-05 Shin-Etsu Chemical Co Ltd Chemically amplified positive resist composition and resist patterning process
CN101893824A (en) * 2009-05-18 2010-11-24 信越化学工业株式会社 Negative resist composition, patterning process, and testing process and preparation process of negative resist composition
CN101900939A (en) * 2009-05-29 2010-12-01 信越化学工业株式会社 Negative resist composition and patterning process using the same
EP2270596A2 (en) 2009-07-01 2011-01-05 Shin-Etsu Chemical Co., Ltd. Positive resist compostion and pattern forming process
US7887991B2 (en) 2008-02-08 2011-02-15 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process using the same
US7923195B2 (en) 2008-02-08 2011-04-12 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process using the same
EP2333610A1 (en) 2009-12-10 2011-06-15 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process
EP2345934A2 (en) 2010-01-13 2011-07-20 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process
US8129086B2 (en) 2008-06-03 2012-03-06 Shin-Etsu Chemical Co., Ltd. Polymerizable compound, polymer, positive resist composition, and patterning process using the same
US8129099B2 (en) 2008-02-14 2012-03-06 Shin-Etsu Chemical Co., Ltd. Double patterning process
KR101156488B1 (en) 2008-12-22 2012-06-18 제일모직주식회사 Composition for foaming hardmask layers and Method of producing patterned materials using the same
US8211618B2 (en) 2009-03-09 2012-07-03 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8450042B2 (en) 2009-03-09 2013-05-28 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8470509B2 (en) 2009-12-01 2013-06-25 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process
US8501384B2 (en) 2010-01-08 2013-08-06 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8574817B2 (en) 2011-10-03 2013-11-05 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8623590B2 (en) 2010-11-02 2014-01-07 Shin-Etsu Chemical Co., Ltd. Pattern forming process
US8632939B2 (en) 2010-02-26 2014-01-21 Shin-Etsu Chemical Co., Ltd. Polymer, chemically amplified positive resist composition and pattern forming process
US8735046B2 (en) 2010-11-29 2014-05-27 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
KR20140079292A (en) 2012-12-18 2014-06-26 신에쓰 가가꾸 고교 가부시끼가이샤 Negative resist composition and patterning process using the same
KR20140097016A (en) 2013-01-29 2014-08-06 신에쓰 가가꾸 고교 가부시끼가이샤 Negative resist composition and patterning process
US8808966B2 (en) 2011-07-27 2014-08-19 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8841061B2 (en) 2011-10-03 2014-09-23 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8911929B2 (en) 2012-11-21 2014-12-16 Shin-Etsu Chemical Co., Ltd. Developer and patterning process
KR20140145085A (en) 2013-06-12 2014-12-22 신에쓰 가가꾸 고교 가부시끼가이샤 Developer for photosensitive resist material and patterning process
US9017918B2 (en) 2010-06-01 2015-04-28 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, chemically amplified positive resist composition, and patterning process
US9023586B2 (en) 2012-12-18 2015-05-05 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process using same
US9040223B2 (en) 2012-12-26 2015-05-26 Shin-Etsu Chemical Co., Ltd. Resist composition, patterning process and polymer
US9057959B2 (en) 2013-06-19 2015-06-16 Shin-Etsu Chemical Co., Ltd. Developer for photosensitive resist material and patterning process
US9075308B2 (en) 2012-08-13 2015-07-07 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US9086625B2 (en) 2012-09-05 2015-07-21 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
KR20150096298A (en) 2014-02-14 2015-08-24 삼성전자주식회사 Resist protection material and method of forming a pattern
US9152050B2 (en) 2012-09-05 2015-10-06 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9164392B2 (en) 2013-04-10 2015-10-20 Shin-Etsu Chemical Co., Ltd. Developer and patterning process
US9201300B2 (en) 2012-12-20 2015-12-01 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9250523B2 (en) 2012-09-05 2016-02-02 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9310683B2 (en) 2012-04-26 2016-04-12 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, positive resist composition and patterning process
US9316915B2 (en) 2013-11-28 2016-04-19 Shin-Etsu Chemical Co., Ltd. Negative resist composition and pattern forming process
US9360753B2 (en) 2011-07-25 2016-06-07 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
KR20160084294A (en) 2015-01-05 2016-07-13 신에쓰 가가꾸 고교 가부시끼가이샤 Developer and patterning process
KR20160150046A (en) 2015-06-19 2016-12-28 신에쓰 가가꾸 고교 가부시끼가이샤 Polymer, chemically amplified positive resist composition and patterning process
KR20170007129A (en) 2015-07-09 2017-01-18 신에쓰 가가꾸 고교 가부시끼가이샤 Monomer, polymer, positive resist composition, and patterning processs
US10191372B2 (en) 2016-05-31 2019-01-29 Shin-Etsu Chemical Co., Ltd. Polymer, positive resist composition, and pattern forming process
US10377842B2 (en) 2016-06-08 2019-08-13 Shin-Etsu Chemical Co., Ltd. Polymer, negative resist composition, and pattern forming process
KR20220117833A (en) 2021-02-17 2022-08-24 신에쓰 가가꾸 고교 가부시끼가이샤 Nagative resist composition and pattern forming process
KR20240036465A (en) 2022-09-12 2024-03-20 신에쓰 가가꾸 고교 가부시끼가이샤 Polymer, resist composition, and patterning process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192539A (en) * 2000-01-13 2001-07-17 Jsr Corp Thermosetting resin composition, its cured item, and circuit board including the cured item
JP2002244297A (en) * 2001-02-21 2002-08-30 Shin Etsu Chem Co Ltd Resist material and pattern forming method
JP2004115630A (en) * 2002-09-25 2004-04-15 Shin Etsu Chem Co Ltd Polymer compound, positive-type resist material and pattern forming method using the same
JP2005330366A (en) * 2004-05-19 2005-12-02 Jsr Corp Copolymer and radiation-sensitive resin composition
JP2005330369A (en) * 2004-05-19 2005-12-02 Jsr Corp Copolymer and radiation-sensitive resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192539A (en) * 2000-01-13 2001-07-17 Jsr Corp Thermosetting resin composition, its cured item, and circuit board including the cured item
JP2002244297A (en) * 2001-02-21 2002-08-30 Shin Etsu Chem Co Ltd Resist material and pattern forming method
JP2004115630A (en) * 2002-09-25 2004-04-15 Shin Etsu Chem Co Ltd Polymer compound, positive-type resist material and pattern forming method using the same
JP2005330366A (en) * 2004-05-19 2005-12-02 Jsr Corp Copolymer and radiation-sensitive resin composition
JP2005330369A (en) * 2004-05-19 2005-12-02 Jsr Corp Copolymer and radiation-sensitive resin composition

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008050568A (en) * 2006-07-24 2008-03-06 Shin Etsu Chem Co Ltd Polymeric compound, positive resist material, and pattern forming method using the same
TWI385183B (en) * 2006-10-13 2013-02-11 Shinetsu Chemical Co Novel polymer, resist composition and patterning process using the same
JP2008095009A (en) * 2006-10-13 2008-04-24 Shin Etsu Chem Co Ltd Polymeric compound, resist material, and method of pattern formation using the resist material
US7923195B2 (en) 2008-02-08 2011-04-12 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process using the same
US7887991B2 (en) 2008-02-08 2011-02-15 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process using the same
US8129099B2 (en) 2008-02-14 2012-03-06 Shin-Etsu Chemical Co., Ltd. Double patterning process
US8129086B2 (en) 2008-06-03 2012-03-06 Shin-Etsu Chemical Co., Ltd. Polymerizable compound, polymer, positive resist composition, and patterning process using the same
JP2010039474A (en) * 2008-07-11 2010-02-18 Shin-Etsu Chemical Co Ltd Resist patterning process and method of manufacturing photomask
JP4575479B2 (en) * 2008-07-11 2010-11-04 信越化学工業株式会社 Chemically amplified positive resist composition and pattern forming method
JP2010020173A (en) * 2008-07-11 2010-01-28 Shin-Etsu Chemical Co Ltd Chemically-amplified positive resist composition and patterning process thereof
KR101156488B1 (en) 2008-12-22 2012-06-18 제일모직주식회사 Composition for foaming hardmask layers and Method of producing patterned materials using the same
JP2010170094A (en) * 2008-12-25 2010-08-05 Shin-Etsu Chemical Co Ltd Chemically amplified positive resist composition and resist patterning process
US8450042B2 (en) 2009-03-09 2013-05-28 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8211618B2 (en) 2009-03-09 2012-07-03 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
CN101893824B (en) * 2009-05-18 2013-10-09 信越化学工业株式会社 Negative resist composition, patterning process, and testing process and preparation process of negative resist composition
CN101893824A (en) * 2009-05-18 2010-11-24 信越化学工业株式会社 Negative resist composition, patterning process, and testing process and preparation process of negative resist composition
US8557509B2 (en) 2009-05-18 2013-10-15 Shin-Etsu Chemical Co., Ltd. Negative resist composition, patterning process, and testing process and preparation process of negative resist composition
CN101900939B (en) * 2009-05-29 2013-10-09 信越化学工业株式会社 Negative resist composition and patterning process using the same
KR20100129223A (en) 2009-05-29 2010-12-08 신에쓰 가가꾸 고교 가부시끼가이샤 Negative resist composition and patterning process using the same
US8361692B2 (en) 2009-05-29 2013-01-29 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process using the same
EP2256552A1 (en) 2009-05-29 2010-12-01 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process using the same
CN101900939A (en) * 2009-05-29 2010-12-01 信越化学工业株式会社 Negative resist composition and patterning process using the same
EP2270596A3 (en) * 2009-07-01 2011-03-30 Shin-Etsu Chemical Co., Ltd. Positive resist compostion and pattern forming process
EP2270596A2 (en) 2009-07-01 2011-01-05 Shin-Etsu Chemical Co., Ltd. Positive resist compostion and pattern forming process
US8389201B2 (en) 2009-07-01 2013-03-05 Shin-Etsu Chemical Co., Ltd. Positive resist composition and pattern forming process
US8470509B2 (en) 2009-12-01 2013-06-25 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process
US8828645B2 (en) 2009-12-10 2014-09-09 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process
KR20110066098A (en) 2009-12-10 2011-06-16 신에쓰 가가꾸 고교 가부시끼가이샤 Negative resist composition and patterning process
EP2333610A1 (en) 2009-12-10 2011-06-15 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process
KR20160110320A (en) 2009-12-10 2016-09-21 신에쓰 가가꾸 고교 가부시끼가이샤 Negative resist composition and patterning process
US8603724B2 (en) 2009-12-10 2013-12-10 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process
US8501384B2 (en) 2010-01-08 2013-08-06 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8597868B2 (en) 2010-01-13 2013-12-03 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process
EP2345934A2 (en) 2010-01-13 2011-07-20 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process
US8632939B2 (en) 2010-02-26 2014-01-21 Shin-Etsu Chemical Co., Ltd. Polymer, chemically amplified positive resist composition and pattern forming process
US9017918B2 (en) 2010-06-01 2015-04-28 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, chemically amplified positive resist composition, and patterning process
US8623590B2 (en) 2010-11-02 2014-01-07 Shin-Etsu Chemical Co., Ltd. Pattern forming process
US8735046B2 (en) 2010-11-29 2014-05-27 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US9360753B2 (en) 2011-07-25 2016-06-07 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US8808966B2 (en) 2011-07-27 2014-08-19 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8574817B2 (en) 2011-10-03 2013-11-05 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US8841061B2 (en) 2011-10-03 2014-09-23 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US9310683B2 (en) 2012-04-26 2016-04-12 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, positive resist composition and patterning process
US9075308B2 (en) 2012-08-13 2015-07-07 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process
US9152050B2 (en) 2012-09-05 2015-10-06 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9250523B2 (en) 2012-09-05 2016-02-02 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9086625B2 (en) 2012-09-05 2015-07-21 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US8911929B2 (en) 2012-11-21 2014-12-16 Shin-Etsu Chemical Co., Ltd. Developer and patterning process
KR20140079292A (en) 2012-12-18 2014-06-26 신에쓰 가가꾸 고교 가부시끼가이샤 Negative resist composition and patterning process using the same
US9017923B2 (en) 2012-12-18 2015-04-28 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process using the same
US9023586B2 (en) 2012-12-18 2015-05-05 Shin-Etsu Chemical Co., Ltd. Positive resist composition and patterning process using same
US9201300B2 (en) 2012-12-20 2015-12-01 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9040223B2 (en) 2012-12-26 2015-05-26 Shin-Etsu Chemical Co., Ltd. Resist composition, patterning process and polymer
US9023587B2 (en) 2013-01-29 2015-05-05 Shin-Etsu Chemical Co., Ltd. Negative resist composition and patterning process
KR20140097016A (en) 2013-01-29 2014-08-06 신에쓰 가가꾸 고교 가부시끼가이샤 Negative resist composition and patterning process
US9164392B2 (en) 2013-04-10 2015-10-20 Shin-Etsu Chemical Co., Ltd. Developer and patterning process
KR20140145085A (en) 2013-06-12 2014-12-22 신에쓰 가가꾸 고교 가부시끼가이샤 Developer for photosensitive resist material and patterning process
US9052602B2 (en) 2013-06-12 2015-06-09 Shin-Etsu Chemical Co., Ltd. Developer for photosensitive resist material and patterning process
US9057959B2 (en) 2013-06-19 2015-06-16 Shin-Etsu Chemical Co., Ltd. Developer for photosensitive resist material and patterning process
US9316915B2 (en) 2013-11-28 2016-04-19 Shin-Etsu Chemical Co., Ltd. Negative resist composition and pattern forming process
KR20150096298A (en) 2014-02-14 2015-08-24 삼성전자주식회사 Resist protection material and method of forming a pattern
KR20160084294A (en) 2015-01-05 2016-07-13 신에쓰 가가꾸 고교 가부시끼가이샤 Developer and patterning process
US9645498B2 (en) 2015-01-05 2017-05-09 Shin-Etsu Chemical Co., Ltd. Developer and patterning process using the same
US9810983B2 (en) 2015-06-19 2017-11-07 Shin-Etsu Chemical Co., Ltd. Polymer, chemically amplified positive resist composition and patterning process
KR20160150046A (en) 2015-06-19 2016-12-28 신에쓰 가가꾸 고교 가부시끼가이샤 Polymer, chemically amplified positive resist composition and patterning process
KR20170007129A (en) 2015-07-09 2017-01-18 신에쓰 가가꾸 고교 가부시끼가이샤 Monomer, polymer, positive resist composition, and patterning processs
US9829792B2 (en) 2015-07-09 2017-11-28 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, positive resist composition, and patterning process
US10191372B2 (en) 2016-05-31 2019-01-29 Shin-Etsu Chemical Co., Ltd. Polymer, positive resist composition, and pattern forming process
US10377842B2 (en) 2016-06-08 2019-08-13 Shin-Etsu Chemical Co., Ltd. Polymer, negative resist composition, and pattern forming process
KR20220117833A (en) 2021-02-17 2022-08-24 신에쓰 가가꾸 고교 가부시끼가이샤 Nagative resist composition and pattern forming process
KR20240036465A (en) 2022-09-12 2024-03-20 신에쓰 가가꾸 고교 가부시끼가이샤 Polymer, resist composition, and patterning process

Also Published As

Publication number Publication date
JP4642452B2 (en) 2011-03-02

Similar Documents

Publication Publication Date Title
JP4642452B2 (en) Positive resist material and pattern forming method using the same
JP4025162B2 (en) Polymer compound, positive resist material, and pattern forming method using the same
JP4697443B2 (en) Positive resist material and pattern forming method using the same
JP4662049B2 (en) Positive resist material and pattern forming method using the same
JP4539847B2 (en) Positive resist material and pattern forming method using the same
JP4636276B2 (en) Positive resist material and pattern forming method using the same
JP4424500B2 (en) Positive resist material and pattern forming method
JP5054042B2 (en) Positive resist material and pattern forming method using the same
JP5054041B2 (en) Positive resist material and pattern forming method using the same
JP4666177B2 (en) Polymer compound, chemically amplified positive resist material, and pattern forming method
JP4822020B2 (en) Positive resist material and pattern forming method using the same
JP5398966B2 (en) Polymer compound, positive resist material, and pattern forming method using the same
JP5223168B2 (en) Chemically amplified positive resist material and pattern forming method using the same
JP5029839B2 (en) Positive resist material and pattern forming method using the same
JP5148090B2 (en) Resist material and pattern forming method using the same
JP5019075B2 (en) Positive resist material and pattern forming method using the same
JP4305637B2 (en) Polymer compound, positive resist material, and pattern forming method using the same
JP5182468B2 (en) Polymer compound, positive resist material, and pattern forming method using the same
JP5067523B2 (en) Chemically amplified positive resist material and pattern forming method using the same
JP4302585B2 (en) Polymerizable compound, polymer compound, positive resist material and pattern forming method using the same
JP5051387B2 (en) Positive resist material and pattern forming method using the same
JP4328951B2 (en) Resist material and pattern forming method
JP4769410B2 (en) Polymer compound, positive resist material, and pattern forming method using the same
JP4247164B2 (en) Polymer compound, positive resist material, and pattern forming method using the same
JP4133376B2 (en) Polymer compound, positive resist material, and pattern forming method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101201

R150 Certificate of patent or registration of utility model

Ref document number: 4642452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3