JP5029839B2 - Positive resist material and pattern forming method using the same - Google Patents
Positive resist material and pattern forming method using the same Download PDFInfo
- Publication number
- JP5029839B2 JP5029839B2 JP2008160536A JP2008160536A JP5029839B2 JP 5029839 B2 JP5029839 B2 JP 5029839B2 JP 2008160536 A JP2008160536 A JP 2008160536A JP 2008160536 A JP2008160536 A JP 2008160536A JP 5029839 B2 JP5029839 B2 JP 5029839B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- acid
- carbon atoms
- bis
- resist material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- JTJPMGFJESOFGE-UHFFFAOYSA-N O=C(C[IH2])Oc1ccccc1CI Chemical compound O=C(C[IH2])Oc1ccccc1CI JTJPMGFJESOFGE-UHFFFAOYSA-N 0.000 description 3
- 0 CC*(C)C(CC(C)(C)C)(C1CCC1)NC(OC)=O Chemical compound CC*(C)C(CC(C)(C)C)(C1CCC1)NC(OC)=O 0.000 description 2
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Materials For Photolithography (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
本発明は、ポジ型レジスト材料、特に化学増幅ポジ型レジスト材料のベース樹脂として好適な高分子化合物、これを用いたポジ型レジスト材料、及びパターン形成方法に関する。 The present invention relates to a polymer compound suitable as a base resin for a positive resist material, particularly a chemically amplified positive resist material, a positive resist material using the same, and a pattern forming method.
LSIの高集積化と高速度化に伴い、パターンルールの微細化が急速に進んでいる。特にフラッシュメモリー市場の拡大と記憶容量の増大化が微細化を牽引している。微細化の細線はArFリソグラフィーによる65nmノードのデバイスの量産が行われており、次世代のArF液浸リソグラフィーによる45nmノードの量産準備が進行中である。次次世代の32nmノードとしては、水よりも高屈折率の液体と高屈折率レンズ、高屈折率レジストを組み合わせた超高NAレンズによる液浸リソグラフィー、波長13.5nmの真空紫外光(EUV)リソグラフィー、ArFリソグラフィーの2重露光(ダブルパターニングリソグラフィー)などが候補であり、検討が進められている。 With the high integration and high speed of LSI, pattern rule miniaturization is progressing rapidly. In particular, the expansion of the flash memory market and the increase in storage capacity are leading to miniaturization. The fine line for miniaturization is mass production of 65 nm node devices by ArF lithography, and preparation for mass production of 45 nm nodes by next generation ArF immersion lithography is in progress. Next generation 32nm node includes immersion lithography with ultra high NA lens combining liquid with higher refractive index than water, high refractive index lens and high refractive index resist, vacuum ultraviolet light (EUV) with wavelength of 13.5nm Lithography, double exposure of ArF lithography (double patterning lithography), and the like are candidates and are being studied.
EBやX線などの非常に短波長な高エネルギー線においてはレジスト材料に用いられている炭化水素のような軽元素は吸収がほとんどなく、ポリヒドロキシスチレンベースのレジスト材料が検討されている。
EB用レジスト材料は、実用的にはマスク描画用途に用いられてきた。近年、マスク製作技術が問題視されるようになってきた。露光に用いられる光がg線の時代から縮小投影露光装置が用いられており、その縮小倍率は1/5であったが、チップサイズの拡大と、投影レンズの大口径化共に1/4倍率が用いられるようになってきたため、マスクの寸法ズレがウエハー上のパターンの寸法変化に与える影響が問題になっている。パターンの微細化と共に、マスクの寸法ズレの値よりもウエハー上の寸法ズレの方が大きくなってきていることが指摘されている。マスク寸法変化を分母、ウエハー上の寸法変化を分子として計算されたMask Error Enhancement Factor(MEEF)が求められている。45nm級のパターンでは、MEEFが4を超えることも珍しくない。縮小倍率が1/4でMEEFが4であれば、マスク制作に於いて実質等倍マスクと同等の精度が必要であることがいえる。
マスク製作用露光装置は線幅の精度を上げるため、レーザービームによる露光装置から電子ビーム(EB)による露光装置が用いられてきた。更にEBの電子銃における加速電圧を上げることによってよりいっそうの微細化が可能になることから、10keVから30keV、最近は50keVが主流であり、100keVの検討も進められている。
Light elements such as hydrocarbons used in resist materials are hardly absorbed by high energy rays such as EB and X-rays, and polyhydroxystyrene-based resist materials are being studied.
The resist material for EB has been practically used for mask drawing. In recent years, mask manufacturing techniques have become a problem. Reduced projection exposure apparatuses have been used since the light used for exposure was g-line, and the reduction magnification was 1/5. However, both the enlargement of the chip size and the enlargement of the projection lens have a 1/4 magnification. Therefore, the influence of the dimensional deviation of the mask on the dimensional change of the pattern on the wafer has become a problem. It has been pointed out that with the miniaturization of the pattern, the dimensional deviation on the wafer has become larger than the value of the dimensional deviation of the mask. There is a need for a mask error enhancement factor (MEEF) calculated using a mask dimensional change as a denominator and a dimensional change on a wafer as a numerator. It is not uncommon for MEEF to exceed 4 for 45 nm-class patterns. If the reduction ratio is 1/4 and the MEEF is 4, it can be said that the mask production requires the same accuracy as that of the substantially equal-size mask.
In order to increase the accuracy of the line width in the mask manufacturing exposure apparatus, an exposure apparatus using an electron beam (EB) has been used from an exposure apparatus using a laser beam. Furthermore, since further miniaturization is possible by increasing the acceleration voltage in the electron gun of EB, 10 keV to 30 keV, and recently 50 keV is the mainstream, and studies of 100 keV are also underway.
ここで、加速電圧の上昇と共に、レジスト膜の低感度化が問題になってきた。加速電圧が向上すると、レジスト膜内での前方散乱の影響が小さくなるため、電子描画エネルギーのコントラストが向上して解像度や寸法制御性が向上するが、レジスト膜内を素抜けの状態で電子が通過するため、レジスト膜の感度が低下する。マスク露光機は直描の一筆書きで露光するため、レジスト膜の感度低下は生産性の低下につながり好ましいことではない。高感度化の要求から、化学増幅型レジストが検討されている。 Here, as the acceleration voltage increases, lowering the sensitivity of the resist film has become a problem. When the acceleration voltage is improved, the influence of forward scattering in the resist film is reduced, so that the contrast of the electron drawing energy is improved and the resolution and dimensional controllability are improved. Since it passes, the sensitivity of the resist film decreases. Since the mask exposure machine exposes by direct drawing with a single stroke, a decrease in sensitivity of the resist film leads to a decrease in productivity, which is not preferable. Chemically amplified resists are being studied because of the demand for higher sensitivity.
マスク製作用EBリソグラフィーのパターンの微細化と共に、高アスペクト比による現像時のパターン倒れ防止のためにレジスト膜の薄膜化が進行している。光リソグラフィーの場合、レジスト膜の薄膜化が解像力向上に大きく寄与している。これはCMPなどの導入により、デバイスの平坦化が進行したためである。マスク作製の場合、基板は平坦であり、加工すべき基板(例えばCr、MoSi、SiO2)の膜厚は遮光率や位相差制御のために決まってしまっている。薄膜化するためにはレジスト膜のドライエッチング耐性を向上させる必要がある。 With the miniaturization of patterns in mask manufacturing EB lithography, the resist film is becoming thinner in order to prevent pattern collapse during development with a high aspect ratio. In the case of photolithography, the thinning of the resist film greatly contributes to the improvement of the resolution. This is because the planarization of the device has progressed with the introduction of CMP or the like. In the case of mask production, the substrate is flat, and the thickness of the substrate to be processed (for example, Cr, MoSi, SiO 2 ) is determined for light shielding rate and phase difference control. In order to reduce the thickness, it is necessary to improve the dry etching resistance of the resist film.
ここで、一般的にはレジスト膜の炭素の密度とドライエッチング耐性について相関があるといわれている。吸収の影響を受けないEB描画においては、エッチング耐性に優れるノボラックポリマーをベースとしたレジスト材料が開発されている。
特許第3865048号公報(特許文献1)に示されるインデン共重合、特開2006−169302号公報(特許文献2)に示されるアセナフチレン共重合は炭素密度が高いだけでなく、シクロオレフィン構造による剛直な主鎖構造によってエッチング耐性の向上が期待される。
また、特許第3963625号公報(特許文献3)、特開2006−96965号公報(特許文献4)に示されるバルキーなアセタールなどに示される環状構造を有するアセタール基による解像性の向上も示されている。
Here, it is generally said that there is a correlation between the carbon density of the resist film and the dry etching resistance. In EB drawing that is not affected by absorption, a resist material based on a novolak polymer having excellent etching resistance has been developed.
The indene copolymerization disclosed in Japanese Patent No. 3865048 (Patent Document 1) and the acenaphthylene copolymer disclosed in Japanese Patent Application Laid-Open No. 2006-169302 (Patent Document 2) are not only high in carbon density but also rigid due to the cycloolefin structure. The main chain structure is expected to improve etching resistance.
In addition, the resolution is improved by the acetal group having a cyclic structure shown in the bulky acetal shown in Japanese Patent No. 3963625 (Patent Document 3) and Japanese Patent Application Laid-Open No. 2006-96965 (Patent Document 4). ing.
また、F2露光と並んで70nm、あるいはそれ以降の微細加工における露光方法として期待される波長5〜20nmの難X線(EUV)露光において、炭素原子の吸収が少ないことが報告されている。炭素密度を上げることがドライエッチング耐性の向上だけでなく、軟X線波長領域における透過率向上にも効果的である(非特許文献1:N. Matsuzawa et. al. ; Jp. J. Appl. Phys. Vol.38 p7109−7113(1999))。
微細化の進行と共に、酸の拡散による像のぼけが問題になっている(非特許文献2:SPIE Vol.5039 p1(2003))。寸法サイズ45nm以降の微細パターンでの解像性を確保するためには、従来提案されている溶解コントラストの向上だけでなく、酸拡散の制御が重要であることが提案されている(非特許文献3:SPIE Vol.6520 65203L−1 (2007))。しかしながら、化学増幅型レジスト材料は、酸の拡散によって感度とコントラストを上げているため、ポストエクスポジュアーベーク(PEB)温度や時間を短くして酸拡散を極限まで抑えようとすると感度とコントラストが著しく低下する。
Further, it has been reported that the absorption of carbon atoms is small in difficult X-ray (EUV) exposure at a wavelength of 5 to 20 nm, which is expected as an exposure method in fine processing of 70 nm or later along with F 2 exposure. Increasing the carbon density is effective not only for improving dry etching resistance but also for improving transmittance in the soft X-ray wavelength region (Non-Patent Document 1: N. Matsuzawa et. Al .; Jp. J. Appl. Phys., Vol.38 p7109-7113 (1999)).
With the progress of miniaturization, blurring of images due to acid diffusion has become a problem (Non-patent Document 2: SPIE Vol. 5039 p1 (2003)). In order to ensure the resolution in a fine pattern with a size size of 45 nm or more, it is proposed that not only the conventionally proposed improvement in dissolution contrast but also the control of acid diffusion is important (Non-Patent Document). 3: SPIE Vol.6520 65203L-1 (2007)). However, chemically amplified resist materials have increased sensitivity and contrast due to acid diffusion. Therefore, reducing the post-exposure bake temperature (PEB) temperature and time to limit acid diffusion results in sensitivity and contrast. It drops significantly.
SPIE Vol.5753 p269 (2005)(非特許文献4)では、感度と解像度とラフネスのトライアングルトレードオフの関係が示されている。ここでは、露光マージン拡大のためには酸拡散を押さえることが必要であるが、酸拡散距離が50nm以下になると急激にラフネスが劣化することが報告されている。
バルキーな酸が発生する酸発生剤を添加して酸拡散を抑えることは有効である。そこで、ポリマーに酸発生剤を重合性オレフィンを有するオニウム塩の酸発生剤を共重合することが提案されている。特開平4−230645号公報(特許文献5)、特開2005−84365号公報(特許文献6)、特開2006−045311号公報(特許文献7)には特定のスルホン酸が発生する重合性オレフィンを有するスルホニウム塩、ヨードニウム塩が提案されている。特開2006−178317号公報(特許文献8)には、スルホン酸が主鎖に直結したスルホニウム塩が提案されている。
SPIE Vol. 5753 p269 (2005) (Non-patent Document 4) shows the relationship between sensitivity, resolution, and roughness triangle trade-off. Here, it is necessary to suppress acid diffusion in order to expand the exposure margin, but it has been reported that the roughness deteriorates rapidly when the acid diffusion distance is 50 nm or less.
It is effective to suppress acid diffusion by adding an acid generator that generates a bulky acid. Therefore, it has been proposed to copolymerize an acid generator of an onium salt having a polymerizable olefin with an acid generator. JP-A-4-230645 (Patent Document 5), JP-A-2005-84365 (Patent Document 6) and JP-A-2006-045311 (Patent Document 7) describe a polymerizable olefin that generates a specific sulfonic acid. A sulfonium salt and an iodonium salt having the above have been proposed. Japanese Unexamined Patent Publication No. 2006-178317 (Patent Document 8) proposes a sulfonium salt in which a sulfonic acid is directly bonded to the main chain.
感度とラフネスのトレードオフの関係が示されている。例えばSPIE Vol.3331 p531 (1998)(非特許文献5)では感度とラフネスの反比例の関係が示され、露光量増加によるショットノイズ低減によってレジスト材料のラフネスが低減することが予見されている。SPIE Vol.5374 p74 (2004)(非特許文献6)には、クエンチャーを増量したレジスト材料がラフネス低減に有効であるが、同時に感度も劣化するためにEUVの、感度とラフネスのトレードオフの関係があり、これを打破するために酸発生量子効率を高める必要性が示されている。 The relationship between sensitivity and roughness trade-off is shown. For example, SPIE Vol. 3331 p531 (1998) (Non-Patent Document 5) shows an inversely proportional relationship between sensitivity and roughness, and it is predicted that the roughness of the resist material will be reduced by reducing shot noise due to increased exposure. SPIE Vol. In 5374 p74 (2004) (Non-Patent Document 6), a resist material with an increased amount of quencher is effective in reducing roughness, but at the same time the sensitivity deteriorates, so there is a trade-off relationship between sensitivity and roughness of EUV. There is a need to increase the quantum efficiency of acid generation to overcome this.
SPIE Vol.5753 p361(2005)(非特許文献7)では電子ビーム露光における酸発生機構として、露光によるポリマー励起によってPAGに電子が移動し、酸が放出される機構が提案されている。EB、EUVのどちらもイオン化ポテンシャルエネルギーの閾値10eVよりも高く、ベースポリマーが容易にイオン化することが推定される。SPIE Vol.5753 p1034 (2005)(非特許文献8)ではポリ−4−ヒドロキシスチレンがポリ−4−メトキシスチレンよりもEB露光における酸発生効率が高い事が示され、ポリ−4−ヒドロキシスチレンがEBの照射によって効率よくPAGに電子を移動させていることが示唆されている。
そこで、電子移動による酸発生効率を高めるためにヒドロキシスチレン、酸拡散を小さく押さえるためにスルホン酸がポリマー主鎖に直結したPAGのメタクリレート、酸不安定基を有するメタクリレートを共重合した材料がSPIE Vol.6519 p6519F1−1(2007)(非特許文献9)に提案されている。
SPIE Vol. 5753 p361 (2005) (Non-Patent Document 7) proposes a mechanism in which electrons are transferred to the PAG due to polymer excitation by exposure and acid is released as an acid generation mechanism in electron beam exposure. Both EB and EUV are higher than the ionization potential energy threshold of 10 eV, and it is estimated that the base polymer is easily ionized. SPIE Vol. 5753 p1034 (2005) (Non-Patent Document 8) shows that poly-4-hydroxystyrene has higher acid generation efficiency in EB exposure than poly-4-methoxystyrene, and poly-4-hydroxystyrene is irradiated with EB. This suggests that electrons are efficiently transferred to the PAG.
Therefore, a material obtained by copolymerizing hydroxystyrene for enhancing acid generation efficiency by electron transfer, methacrylate of PAG in which sulfonic acid is directly bonded to the polymer main chain to suppress acid diffusion, and methacrylate having acid labile group is SPIE Vol. . 6519 p6519F1-1 (2007) (non-patent document 9).
本発明は上記事情に鑑みなされたもので、従来のポジ型レジスト材料を上回る高解像度、露光余裕度、小さい疎密寸法差、プロセス適応性を有し、露光後のパターン形状が良好であり、更に優れたエッチング耐性を示すポジ型レジスト材料、特に化学増幅ポジ型レジスト材料のベース樹脂として好適な高分子化合物、これを用いたポジ型レジスト材料、及びパターン形成方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has higher resolution, exposure margin, smaller density difference, process adaptability than conventional positive resist materials, good pattern shape after exposure, and It is an object of the present invention to provide a positive resist material exhibiting excellent etching resistance, particularly a polymer compound suitable as a base resin for a chemically amplified positive resist material, a positive resist material using the same, and a pattern forming method.
本発明者らは、近年要望される高感度及び高解像度、露光余裕度等を有し、エッチング形状が良好で、優れたエッチング耐性を示すポジ型レジスト材料を得るべく鋭意検討を重ねた結果、これには特定のフェノール性水酸基を有する繰り返し単位を含むポリマーをポジ型レジスト材料、特に化学増幅ポジ型レジスト材料のベース樹脂として用いれば極めて有効であることを知見し、本発明を完成させたものである。 As a result of intensive studies to obtain a positive resist material having high sensitivity and high resolution, exposure margin, etc. that have been recently requested, good etching shape, and excellent etching resistance, For this purpose, it has been found that it is extremely effective if a polymer containing a repeating unit having a specific phenolic hydroxyl group is used as a base resin of a positive resist material, particularly a chemically amplified positive resist material, and the present invention has been completed. It is.
以上のことから、本発明者らは、更に酸拡散を抑えて溶解コントラストとエッチング耐性を向上させるために酸不安定基で置換された(メタ)アクリレートとの共重合により得られるポリマーをポジ型レジスト材料、特に化学増幅ポジ型レジスト材料のベース樹脂として用いることにより、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有し、露光後のパターン形状が良好であり、更に優れたエッチング耐性を示す、特に超LSI製造用あるいはフォトマスクの微細パターン形成材料として好適なポジ型レジスト材料、特には化学増幅ポジ型レジスト材料が得られることを知見したものである。 In view of the above, the present inventors have developed a polymer obtained by copolymerization with (meth) acrylate substituted with an acid labile group in order to further suppress acid diffusion and improve dissolution contrast and etching resistance. By using it as a base resin for resist materials, especially chemically amplified positive resist materials, the alkali dissolution rate contrast before and after exposure is significantly high, it has high sensitivity and high resolution, and the pattern shape after exposure is good. Further, the present inventors have found that a positive resist material, particularly a chemically amplified positive resist material, which is excellent in etching resistance and suitable for use as a fine pattern forming material for VLSI manufacturing or for photomasks, can be obtained.
本発明のポジ型レジスト材料は、特に、レジスト膜の溶解コントラストが高く、高感度で高解像性を有し、露光余裕度があり、プロセス適応性に優れ、露光後のパターン形状が良好で、特に密パターンと疎パターンとの寸法差が小さく、より優れたエッチング耐性を示すものとなる。従って、これらの優れた特性を有することから実用性が極めて高く、超LSI用レジスト材料マスクパターン形成材料として非常に有効である。 The positive resist material of the present invention has particularly high resist contrast, high sensitivity and high resolution, exposure margin, excellent process adaptability, and good pattern shape after exposure. In particular, the dimensional difference between the dense pattern and the sparse pattern is small, and more excellent etching resistance is exhibited. Therefore, since it has these excellent characteristics, it is very practical and is very effective as a resist material mask pattern forming material for VLSI.
即ち、本発明は、下記ポジ型レジスト材料並びにこれを用いたパターン形成方法を提供する。
請求項1:
カルボキシル基の水素原子が酸不安定基で置換されている繰り返し単位と、一般式(1)で示される基を有する繰り返し単位を含む重量平均分子量が1,000〜500,000の範囲である高分子化合物をベース樹脂にしていることを特徴とするポジ型レジスト材料。
請求項2:
少なくとも一般式(1)の基を有する繰り返し単位が一般式(2)で示される重量平均分子量が1,000〜500,000の範囲である高分子化合物をベースにしていることを特徴とする請求項1記載のポジ型レジスト材料。
請求項3:
少なくとも一般式(a)で示される繰り返し単位と、一般式(b)で示される酸不安定基を有する繰り返し単位を共重合してなる一般式(3)で示される重量平均分子量が1,000〜500,000の範囲である高分子化合物をベース樹脂にしていることを特徴とする請求項2記載のポジ型レジスト材料。
請求項4:
少なくとも上記一般式(3)中の繰り返し単位aと、カルボキシル基の水酸基が酸不安定基で置換された繰り返し単位bに加えて、ヒドロキシ基、ラクトン環、エーテル基、エステル基、カルボニル基、又はシアノ基を有する密着性基の繰り返し単位cを共重合した重量平均分子量が1,000〜500,000の範囲である高分子化合物(ここで0<a<1.0、0<b<1.0、0<c≦0.9、0.2≦a+b+c≦1.0の範囲である。)をベース樹脂にしていることを特徴とする請求項3記載のポジ型レジスト材料。
請求項5:
更に、有機溶剤及び酸発生剤を含有する化学増幅型のレジスト材料であることを特徴とする請求項1乃至4のいずれか1項記載のポジ型レジスト材料。
請求項6:
更に、溶解阻止剤を含有するものであることを特徴とする請求項5記載のポジ型レジスト材料。
請求項7:
更に、添加剤として塩基性化合物及び/又は界面活性剤を配合してなることを特徴とする請求項5又は6記載のポジ型レジスト材料。
請求項8:
請求項1乃至7のいずれか1項に記載のポジ型レジスト材料を基板上に塗布する工程と、加熱処理後、高エネルギー線で露光する工程と、現像液を用いて現像する工程とを含むことを特徴とするパターン形成方法。
請求項9:
露光する高エネルギー線が、電子ビーム、波長3〜15nmの範囲の軟X線であることを特徴とする請求項8記載のパターン形成方法。
That is, the present invention provides the following positive resist material and a pattern forming method using the same.
Claim 1 :
A high weight average molecular weight in the range of 1,000 to 500,000 including a repeating unit in which a hydrogen atom of a carboxyl group is substituted with an acid labile group and a repeating unit having a group represented by the general formula (1) features and to Lupo di resist material that has a molecular compound based resin.
Claim 2 :
The repeating unit having at least a group of the general formula (1) is based on a polymer compound having a weight average molecular weight of 1,000 to 500,000 represented by the general formula (2). Item 3. A positive resist material according to Item 1 .
Claim 3 :
The weight average molecular weight represented by the general formula (3) obtained by copolymerizing at least the repeating unit represented by the general formula (a) and the repeating unit having an acid labile group represented by the general formula (b) is 1,000. 3. The positive resist material according to claim 2 , wherein the base resin is a polymer compound in the range of .about.500,000.
Claim 4 :
In addition to at least the repeating unit a in the general formula (3) and the repeating unit b in which the hydroxyl group of the carboxyl group is substituted with an acid labile group, a hydroxy group, a lactone ring, an ether group, an ester group, a carbonyl group, or A polymer compound having a weight average molecular weight in the range of 1,000 to 500,000 obtained by copolymerizing a repeating unit c of an adhesive group having a cyano group (where 0 <a <1.0, 0 <b <1. 4. The positive resist composition according to claim 3 , wherein the base resin is 0, 0 <c ≦ 0.9, 0.2 ≦ a + b + c ≦ 1.0.
Claim 5 :
Furthermore, the positive resist composition of any one of claims 1 to 4, characterized in that a resist material chemically amplified containing an organic solvent and an acid generator.
Claim 6 :
6. The positive resist material according to claim 5 , further comprising a dissolution inhibitor.
Claim 7 :
The positive resist composition according to claim 5 or 6 , further comprising a basic compound and / or a surfactant as an additive.
Claim 8 :
A step of coating the positive resist material according to any one of claims 1 to 7 on a substrate, a step of exposing to high energy rays after heat treatment, and a step of developing using a developer. The pattern formation method characterized by the above-mentioned.
Claim 9 :
9. The pattern forming method according to claim 8 , wherein the high energy rays to be exposed are electron beams and soft X-rays having a wavelength in the range of 3 to 15 nm.
以上のような本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料の用途としては、例えば、半導体回路形成におけるリソグラフィーだけでなく、マスク回路パターンの形成、あるいはマイクロマシーン、薄膜磁気ヘッド回路形成にも応用することができる。 Examples of the use of the positive resist material of the present invention as described above, particularly the chemically amplified positive resist material, include not only lithography in semiconductor circuit formation, but also mask circuit pattern formation, micromachines, and thin film magnetic head circuits. It can also be applied to formation.
本発明のポジ型レジスト材料は、露光前後のアルカリ溶解速度コントラストが大幅に高く、高感度で高解像性を有し、露光後のパターン形状が良好で、その上特に酸拡散速度を抑制し、優れたエッチング耐性を示す。従って、特に超LSI製造用あるいはフォトマスクの微細パターン形成材料、EUV露光用のパターン形成材料として好適なポジ型レジスト材料、特には化学増幅ポジ型レジスト材料を得ることができる。 The positive resist material of the present invention has a significantly high alkali dissolution rate contrast before and after exposure, high sensitivity and high resolution, good pattern shape after exposure, and particularly suppresses the acid diffusion rate. Excellent etching resistance. Therefore, it is possible to obtain a positive resist material, particularly a chemically amplified positive resist material, which is particularly suitable as a fine pattern forming material for VLSI manufacturing or a photomask, and a pattern forming material for EUV exposure.
以下、本発明につき更に詳しく説明する。
本発明に係るレジスト材料は、カルボキシル基の水素原子が酸不安定基で置換されている繰り返し単位と、ラクトン環とフェノール性水酸基を同一分子内に有する繰り返し単位、特に下記一般式(1)で示される基を有する繰り返し単位を含む樹脂をベース樹脂にしていることを特徴とする。
The resist material according to the present invention includes a repeating unit in which a hydrogen atom of a carboxyl group is substituted with an acid labile group, a repeating unit having a lactone ring and a phenolic hydroxyl group in the same molecule, particularly the following general formula (1) The base resin is a resin containing a repeating unit having the group shown.
一般式(1)で示される基は、好ましくは(メタ)アクリル酸のカルボキシル基の水素原子を置換したものであり、下記一般式(2)で示すことができる。
この場合、特にベース樹脂としては、少なくとも一般式(a)で示される繰り返し単位と、一般式(b)で示される酸不安定基を有する繰り返し単位を共重合してなる下記一般式(3)で示される重量平均分子量が1,000〜500,000の範囲である高分子化合物であることが好ましい。
一般式(a)に示される繰り返し単位を得るためのモノマーは具体的には下記に例示することができる。
本発明のポジ型レジスト材料中の繰り返し単位aとしては、ラクトンとフェノール性のヒドロキシ基を1つの繰り返し単位中に有することを特徴とする。フェノール基は、アルカリ溶解性を有し、現像液中の膨潤を防ぎ、EUV光やEB描画時にフェノキシラジカルを発生させPAGにエネルギー移動することによって酸の発生効率が高まり、増感作用を有するなどの長所があるが、酸拡散距離が大きくなることによる解像性低下の欠点がある。ラクトンは、アルカリ溶解性が無いため膨潤を引き起こし、増感作用がない欠点があるが、パターンの膜減りを防止し、酸拡散を抑制することによって解像性を向上させる長所がある。ラクトンとフェノール性のヒドロキシ基を組み合わせることによって、高感度でかつ高解像なレジスト用ベースポリマーを構築することができる。ラクトンとフェノールの組み合わせは、従来としてはラクトンを有する繰り返し単位とフェノール性水酸基を有する繰り返し単位とを共重合することによって得られていたが、本発明に於いては1つの繰り返し単位中にラクトンとフェノール性水酸基の両方を有するためにモノマーの数を減らすことができ、重合の再現性を上げることができ、ラインエッジラフネスを低減できるメリットがある。 The repeating unit a in the positive resist material of the present invention is characterized by having a lactone and a phenolic hydroxy group in one repeating unit. The phenol group has alkali solubility, prevents swelling in the developer, generates phenoxy radicals during EUV light and EB drawing, and increases energy generation efficiency by transferring energy to the PAG, and has a sensitizing action, etc. However, there is a drawback that the resolution is lowered due to an increase in the acid diffusion distance. Lactone has the disadvantage of causing swelling due to lack of alkali solubility and lacking sensitization, but has the advantage of improving resolution by preventing pattern loss and suppressing acid diffusion. By combining a lactone and a phenolic hydroxy group, a highly sensitive and high resolution base polymer for resist can be constructed. Conventionally, the combination of lactone and phenol has been obtained by copolymerizing a repeating unit having a lactone and a repeating unit having a phenolic hydroxyl group. In the present invention, a combination of a lactone and a phenol is included in one repeating unit. Since it has both phenolic hydroxyl groups, the number of monomers can be reduced, the reproducibility of polymerization can be increased, and the line edge roughness can be reduced.
一般式(3)中の酸不安定基を有する繰り返し単位bを得るためのモノマーとしては、下記一般式(4)で示すことができる。
酸不安定基(一般式(3)及び(4)中のR3の酸不安定基)は、種々選定されるが、同一でも異なっていてもよく、特に下記式(A−1)〜(A−3)で置換された基で示されるものが挙げられる。 The acid labile group (the acid labile group of R 3 in the general formulas (3) and (4)) is variously selected and may be the same or different. In particular, the following formulas (A-1) to ( Examples thereof include those represented by the group substituted by A-3).
式(A−1)において、R30は炭素数4〜20、好ましくは4〜15の三級アルキル基、各アルキル基がそれぞれ炭素数1〜6のトリアルキルシリル基、炭素数4〜20のオキソアルキル基又は上記一般式(A−3)で示される基を示し、三級アルキル基として具体的には、tert−ブチル基、tert−アミル基、1,1−ジエチルプロピル基、1−エチルシクロペンチル基、1−ブチルシクロペンチル基、1−エチルシクロヘキシル基、1−ブチルシクロヘキシル基、1−エチル−2−シクロペンテニル基、1−エチル−2−シクロヘキセニル基、2−メチル−2−アダマンチル基等が挙げられ、トリアルキルシリル基として具体的には、トリメチルシリル基、トリエチルシリル基、ジメチル−tert−ブチルシリル基等が挙げられ、オキソアルキル基として具体的には、3−オキソシクロヘキシル基、4−メチル−2−オキソオキサン−4−イル基、5−メチル−2−オキソオキソラン−5−イル基等が挙げられる。a1は0〜6の整数である。 In the formula (A-1), R 30 is a tertiary alkyl group having 4 to 20 carbon atoms, preferably 4 to 15 carbon atoms, each alkyl group is a trialkylsilyl group having 1 to 6 carbon atoms, and 4 to 20 carbon atoms. An oxoalkyl group or a group represented by the above general formula (A-3) is shown. Specific examples of the tertiary alkyl group include a tert-butyl group, a tert-amyl group, a 1,1-diethylpropyl group, and 1-ethyl. Cyclopentyl group, 1-butylcyclopentyl group, 1-ethylcyclohexyl group, 1-butylcyclohexyl group, 1-ethyl-2-cyclopentenyl group, 1-ethyl-2-cyclohexenyl group, 2-methyl-2-adamantyl group, etc. Specific examples of the trialkylsilyl group include a trimethylsilyl group, a triethylsilyl group, a dimethyl-tert-butylsilyl group, and the like. Specifically oxoalkyl group, 3-oxo-cyclohexyl group, 4-methyl-2-oxooxan-4-yl group, and 5-methyl-2-oxooxolan-5-yl group. a1 is an integer of 0-6.
式(A−2)において、R31、R32は水素原子又は炭素数1〜18、好ましくは1〜10の直鎖状、分岐状又は環状のアルキル基を示し、具体的にはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、シクロペンチル基、シクロヘキシル基、2−エチルヘキシル基、n−オクチル基等を例示できる。R33は炭素数1〜18、好ましくは1〜10の酸素原子等のヘテロ原子を有してもよい1価の炭化水素基を示し、直鎖状、分岐状もしくは環状のアルキル基、これらの水素原子の一部が水酸基、アルコキシ基、オキソ基、アミノ基、アルキルアミノ基等に置換されたものを挙げることができ、具体的には下記の置換アルキル基等が例示できる。 In the formula (A-2), R 31 and R 32 represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms, specifically a methyl group, Examples thereof include an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a cyclopentyl group, a cyclohexyl group, a 2-ethylhexyl group, and an n-octyl group. R 33 represents a monovalent hydrocarbon group which may have a hetero atom such as an oxygen atom having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms, a linear, branched or cyclic alkyl group, Examples include those in which a part of hydrogen atoms are substituted with a hydroxyl group, an alkoxy group, an oxo group, an amino group, an alkylamino group, and the like, and specific examples include the following substituted alkyl groups.
R31とR32、R31とR33、R32とR33とは結合してこれらが結合する炭素原子と共に環を形成してもよく、環を形成する場合にはR31、R32、R33はそれぞれ炭素数1〜18、好ましくは1〜10の直鎖状又は分岐状のアルキレン基を示し、好ましくは環の炭素数は3〜10、特に4〜10である。 R 31 and R 32 , R 31 and R 33 , and R 32 and R 33 may combine to form a ring together with the carbon atoms to which they are bonded, and in the case of forming a ring, R 31 , R 32 , R 33 represents a linear or branched alkylene group having 1 to 18 carbon atoms, preferably 1 to 10 carbon atoms, and preferably the ring has 3 to 10 carbon atoms, particularly 4 to 10 carbon atoms.
上記式(A−1)の酸不安定基としては、具体的にはtert−ブトキシカルボニル基、tert−ブトキシカルボニルメチル基、tert−アミロキシカルボニル基、tert−アミロキシカルボニルメチル基、1,1−ジエチルプロピルオキシカルボニル基、1,1−ジエチルプロピルオキシカルボニルメチル基、1−エチルシクロペンチルオキシカルボニル基、1−エチルシクロペンチルオキシカルボニルメチル基、1−エチル−2−シクロペンテニルオキシカルボニル基、1−エチル−2−シクロペンテニルオキシカルボニルメチル基、1−エトキシエトキシカルボニルメチル基、2−テトラヒドロピラニルオキシカルボニルメチル基、2−テトラヒドロフラニルオキシカルボニルメチル基等が例示できる。 Specific examples of the acid labile group of the above formula (A-1) include tert-butoxycarbonyl group, tert-butoxycarbonylmethyl group, tert-amyloxycarbonyl group, tert-amyloxycarbonylmethyl group, 1,1 -Diethylpropyloxycarbonyl group, 1,1-diethylpropyloxycarbonylmethyl group, 1-ethylcyclopentyloxycarbonyl group, 1-ethylcyclopentyloxycarbonylmethyl group, 1-ethyl-2-cyclopentenyloxycarbonyl group, 1-ethyl Examples include 2-cyclopentenyloxycarbonylmethyl group, 1-ethoxyethoxycarbonylmethyl group, 2-tetrahydropyranyloxycarbonylmethyl group, 2-tetrahydrofuranyloxycarbonylmethyl group and the like.
更に、下記式(A−1)−1〜(A−1)−10で示される置換基を挙げることもできる。 Furthermore, the substituent shown by following formula (A-1) -1-(A-1) -10 can also be mentioned.
ここで、R37は互いに同一又は異種の炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基、又は炭素数6〜20のアリール基、R38は水素原子、又は炭素数1〜10の直鎖状、分岐状もしくは環状のアルキル基である。
また、R39は互いに同一又は異種の炭素数2〜10の直鎖状、分岐状もしくは環状のアルキル基、又は炭素数6〜20のアリール基である。
a1は上記の通りである。
Here, R 37 is the same or different from each other, a linear, branched or cyclic alkyl group having 1 to 10 carbon atoms, or an aryl group having 6 to 20 carbon atoms, R 38 is a hydrogen atom, or 1 to 1 carbon atoms. 10 linear, branched or cyclic alkyl groups.
R 39 is a linear, branched or cyclic alkyl group having 2 to 10 carbon atoms that is the same or different from each other, or an aryl group having 6 to 20 carbon atoms.
a1 is as described above.
上記式(A−2)で示される酸不安定基のうち、直鎖状又は分岐状のものとしては、下記式(A−2)−1〜(A−2)−35のものを例示することができる。 Of the acid labile groups represented by the above formula (A-2), examples of the linear or branched groups include those of the following formulas (A-2) -1 to (A-2) -35. be able to.
上記式(A−2)で示される酸不安定基のうち、環状のものとしては、テトラヒドロフラン−2−イル基、2−メチルテトラヒドロフラン−2−イル基、テトラヒドロピラン−2−イル基、2−メチルテトラヒドロピラン−2−イル基等が挙げられる。 Among the acid labile groups represented by the above formula (A-2), the cyclic ones include tetrahydrofuran-2-yl group, 2-methyltetrahydrofuran-2-yl group, tetrahydropyran-2-yl group, 2- Examples thereof include a methyltetrahydropyran-2-yl group.
また、一般式(A−2a)あるいは(A−2b)で表される酸不安定基によってベース樹脂が分子間あるいは分子内架橋されていてもよい。 Further, the base resin may be intermolecularly or intramolecularly crosslinked by an acid labile group represented by the general formula (A-2a) or (A-2b).
式中、R40、R41は水素原子又は炭素数1〜8の直鎖状、分岐状又は環状のアルキル基を示す。又は、R40とR41は結合してこれらが結合する炭素原子と共に環を形成してもよく、環を形成する場合にはR40、R41は炭素数1〜8の直鎖状又は分岐状のアルキレン基を示す。R42は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基、b1、d1は0又は1〜10、好ましくは0又は1〜5の整数、c1は1〜7の整数である。Aは、(c1+1)価の炭素数1〜50の脂肪族もしくは脂環式飽和炭化水素基、芳香族炭化水素基又はヘテロ環基を示し、これらの基はヘテロ原子を介在してもよく、又はその炭素原子に結合する水素原子の一部が水酸基、カルボキシル基、カルボニル基又はフッ素原子によって置換されていてもよい。Bは−CO−O−、−NHCO−O−又は−NHCONH−を示す。 In the formula, R 40 and R 41 represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 8 carbon atoms. Alternatively, R 40 and R 41 may be bonded to form a ring together with the carbon atom to which they are bonded. When forming a ring, R 40 and R 41 are linear or branched having 1 to 8 carbon atoms. -Like alkylene group. R 42 is a straight-chain having 1 to 10 carbon atoms, branched or cyclic alkylene group, b1, d1 is 0 or 1 to 10, preferably 0 or an integer of 1 to 5, c1 is an integer of 1-7 . A represents a (c1 + 1) -valent aliphatic or alicyclic saturated hydrocarbon group having 1 to 50 carbon atoms, an aromatic hydrocarbon group or a heterocyclic group, and these groups may intervene a hetero atom, Alternatively, a part of hydrogen atoms bonded to the carbon atom may be substituted with a hydroxyl group, a carboxyl group, a carbonyl group, or a fluorine atom. B represents —CO—O—, —NHCO—O— or —NHCONH—.
この場合、好ましくは、Aは2〜4価の炭素数1〜20の直鎖状、分岐状又は環状のアルキレン基、アルキルトリイル基、アルキルテトライル基、炭素数6〜30のアリーレン基であり、これらの基はヘテロ原子を介在していてもよく、またその炭素原子に結合する水素原子の一部が水酸基、カルボキシル基、アシル基又はハロゲン原子によって置換されていてもよい。また、c1は好ましくは1〜3の整数である。 In this case, preferably, A is a divalent to tetravalent C1-20 linear, branched or cyclic alkylene group, an alkyltriyl group, an alkyltetrayl group, or an arylene group having 6 to 30 carbon atoms. In these groups, a hetero atom may be interposed, and a part of hydrogen atoms bonded to the carbon atom may be substituted with a hydroxyl group, a carboxyl group, an acyl group, or a halogen atom. C1 is preferably an integer of 1 to 3.
一般式(A−2a)、(A−2b)で示される架橋型アセタール基は、具体的には下記式(A−2)−36〜(A−2)−43のものが挙げられる。 Specific examples of the crosslinked acetal groups represented by the general formulas (A-2a) and (A-2b) include those represented by the following formulas (A-2) -36 to (A-2) -43.
次に、式(A−3)においてR34、R35、R36は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキル基等の1価炭化水素基であり、酸素、硫黄、窒素、フッ素などのヘテロ原子を含んでもよく、R34とR35、R34とR36、R35とR36とは互いに結合してこれらが結合する炭素原子と共に、炭素数3〜20の脂環を形成してもよい。 Next, in the formula (A-3), R 34 , R 35 and R 36 are monovalent hydrocarbon groups such as a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, oxygen, sulfur, It may contain heteroatoms such as nitrogen and fluorine, and R 34 and R 35 , R 34 and R 36 , R 35 and R 36 are bonded to each other, and together with the carbon atom to which they are bonded, a C 3-20 fat A ring may be formed.
式(A−3)に示される三級アルキル基としては、tert−ブチル基、トリエチルカルビル基、1−エチルノルボニル基、1−メチルシクロヘキシル基、1−エチルシクロペンチル基、2−(2−メチル)アダマンチル基、2−(2−エチル)アダマンチル基、tert−アミル基等を挙げることができる。 As the tertiary alkyl group represented by the formula (A-3), a tert-butyl group, a triethylcarbyl group, a 1-ethylnorbornyl group, a 1-methylcyclohexyl group, a 1-ethylcyclopentyl group, 2- (2- A methyl) adamantyl group, a 2- (2-ethyl) adamantyl group, a tert-amyl group, and the like.
また、三級アルキル基としては、下記に示す式(A−3)−1〜(A−3)−18を具体的に挙げることもできる。 Moreover, as a tertiary alkyl group, the formula (A-3) -1-(A-3) -18 shown below can also be specifically mentioned.
式(A−3)−1〜(A−3)−18中、R43は同一又は異種の炭素数1〜8の直鎖状、分岐状又は環状のアルキル基、又は炭素数6〜20のフェニル基等のアリール基を示す。R44、R46は水素原子、又は炭素数1〜20の直鎖状、分岐状又は環状のアルキル基を示す。R45は炭素数6〜20のフェニル基等のアリール基を示す。 In formulas (A-3) -1 to (A-3) -18, R 43 is the same or different, linear, branched or cyclic alkyl group having 1 to 8 carbon atoms, or having 6 to 20 carbon atoms. An aryl group such as a phenyl group is shown. R 44 and R 46 represent a hydrogen atom or a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms. R 45 represents an aryl group such as a phenyl group having 6 to 20 carbon atoms.
更に、下記式(A−3)−19、(A−3)−20に示すように、2価以上のアルキレン基、アリーレン基であるR47を含んで、ポリマーの分子内あるいは分子間が架橋されていてもよい。
式(A−3)−19、(A−3)−20中、R43は前述と同様、R47は炭素数1〜20の直鎖状、分岐状もしくは環状のアルキレン基、又はフェニレン基等のアリーレン基を示し、酸素原子や硫黄原子、窒素原子などのヘテロ原子を含んでいてもよい。e1は1〜3の整数である。 In formulas (A-3) -19 and (A-3) -20, R 43 is the same as described above, and R 47 is a linear, branched or cyclic alkylene group having 1 to 20 carbon atoms, a phenylene group, or the like. And may contain a hetero atom such as an oxygen atom, a sulfur atom or a nitrogen atom. e1 is an integer of 1 to 3.
式(A−1)、(A−2)、(A−3)中のR30、R33、R36は、フェニル基、p−メチルフェニル基、p−エチルフェニル基、p−メトキシフェニル基等のアルコキシ置換フェニル基等の非置換又は置換アリール基、ベンジル基、フェネチル基等のアラルキル基等や、これらの基に酸素原子を有する、あるいは炭素原子に結合する水素原子が水酸基に置換されたり、2個の水素原子が酸素原子で置換されてカルボニル基を形成する下記式で示されるようなアルキル基、あるいはオキソアルキル基を挙げることができる。 R 30 , R 33 , and R 36 in formulas (A-1), (A-2), and (A-3) are a phenyl group, a p-methylphenyl group, a p-ethylphenyl group, and a p-methoxyphenyl group. An unsubstituted or substituted aryl group such as an alkoxy-substituted phenyl group, an aralkyl group such as a benzyl group or a phenethyl group, or a hydrogen atom having an oxygen atom in these groups or bonded to a carbon atom is substituted with a hydroxyl group Examples thereof include an alkyl group represented by the following formula in which two hydrogen atoms are substituted with an oxygen atom to form a carbonyl group, or an oxoalkyl group.
特にA−3の酸不安定基としては、下記式(A−3)−21に示されるエキソ体構造を有する(メタ)アクリル酸エステルの繰り返し単位が好ましく挙げられる。
ここで、一般式A−3−21に示すエキソ構造を有する繰り返し単位を得るためのエステル体のモノマーとしては特開2000−327633号公報に示されている。具体的には下記に挙げることができるが、これらに限定されることはない。 Here, JP-A-2000-327633 discloses an ester monomer for obtaining a repeating unit having an exo structure represented by the general formula A-3-21. Specific examples include the following, but are not limited thereto.
次にA−3に示される酸不安定基としては、下記式(A−3)−22に示されるフランジイル、テトラヒドロフランジイル又はオキサノルボルナンジイルを有する(メタ)アクリル酸エステルの酸不安定基を挙げることができる。 Next, as the acid labile group represented by A-3, the acid labile group of (meth) acrylic acid ester having frangyl, tetrahydrofurandiyl or oxanorbornanediyl represented by the following formula (A-3) -22 Can be mentioned.
フランジイル、テトラヒドロフランジイル又はオキサノルボルナンジイルを有する酸不安定基で置換された繰り返し単位を得るためのモノマーは下記に例示される。なお、Acはアセチル基、Meはメチル基を示す。 Monomers for obtaining repeating units substituted with acid labile groups having frangyl, tetrahydrofuraniyl or oxanorbornanediyl are exemplified below. Ac represents an acetyl group and Me represents a methyl group.
また、本発明において、ベース樹脂は、少なくとも一般式(3)中の繰り返し単位aと、カルボキシル基の水酸基が酸不安定基で置換された繰り返し単位bに加えて、ヒドロキシ基、ラクトン環、エーテル基、エステル基、カルボニル基、又はシアノ基を有する密着性基の繰り返し単位cを共重合した重量平均分子量が1,000〜500,000の範囲である高分子化合物(ここで0<a<1.0、0<b<1.0、0<c≦0.9、0.2≦a+b+c≦1.0の範囲である。)であることが好ましい。 In the present invention, the base resin includes at least the repeating unit a in the general formula (3) and the repeating unit b in which the hydroxyl group of the carboxyl group is substituted with an acid labile group, in addition to a hydroxy group, a lactone ring, and an ether. A polymer compound having a weight average molecular weight in the range of 1,000 to 500,000 obtained by copolymerizing a repeating unit c of an adhesive group having a group, an ester group, a carbonyl group or a cyano group (where 0 <a <1 0.0, 0 <b <1.0, 0 <c ≦ 0.9, 0.2 ≦ a + b + c ≦ 1.0.).
ヒドロキシ基、ラクトン環、エーテル基、エステル基、カルボニル基、又はシアノ基を有する密着性基の繰り返し単位cを得るためのモノマーとしては、具体的には下記に例示することができる。 Specific examples of the monomer for obtaining the repeating unit c of the adhesive group having a hydroxy group, a lactone ring, an ether group, an ester group, a carbonyl group, or a cyano group can be given below.
ヒドロキシ基を有するモノマーの場合、重合時にヒドロキシ基をエトキシエトキシなどの酸によって脱保護しやすいアセタールで置換しておいて重合後に弱酸と水によって脱保護を行ってもよいし、アセチル基、ホルミル基、ピバロイル基等で置換しておいて重合後にアルカリ加水分解を行ってもよい。 In the case of a monomer having a hydroxy group, the hydroxy group may be substituted with an acetal that can be easily deprotected with an acid such as ethoxyethoxy during the polymerization, and then deprotected with a weak acid and water after the polymerization, or an acetyl group or a formyl group. Alternatively, it may be substituted with a pivaloyl group or the like and subjected to alkali hydrolysis after polymerization.
また、下記一般式(5)に示されるインデンd1、アセナフチレンd2、クロモンd3、クマリンd4、ノルボルナジエンd5などの繰り返し単位dと共重合することもできる。
下記一般式(6)に示される繰り返し単位eを追加共重合することもできる。
繰り返し単位a、b、c、d、e以外に共重合できる繰り返し単位fとしては、スチレン、ビニルナフタレン、ビニルアントラセン、ビニルピレン、メチレンインダンなどが挙げられる。
重合性オレフィンを有するオニウム塩の酸発生剤gを共重合することもできる。
特開平4−230645号公報、特開2005−84365号公報、特開2006−045311号公報には特定のスルホン酸が発生する重合性オレフィンを有するスルホニウム塩、ヨードニウム塩が提案されている。特開2006−178317号公報には、スルホン酸が主鎖に直結したスルホニウム塩が提案されている。
Examples of the repeating unit f that can be copolymerized in addition to the repeating units a, b, c, d, and e include styrene, vinyl naphthalene, vinyl anthracene, vinyl pyrene, and methylene indan.
An onium salt acid generator g having a polymerizable olefin may be copolymerized.
JP-A-4-230645, JP-A-2005-84365, and JP-A-2006-045311 propose sulfonium salts and iodonium salts having a polymerizable olefin that generates a specific sulfonic acid. Japanese Patent Application Laid-Open No. 2006-178317 proposes a sulfonium salt in which a sulfonic acid is directly bonded to the main chain.
本発明では、下記一般式(7)で示されるスルホニウム塩を持つ繰り返し単位g1、g2、g3を共重合することができる。
M-の非求核性対向イオンとしては、塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネート、ビス(トリフルオロメチルスルホニル)イミド、ビス(パーフルオロエチルスルホニル)イミド、ビス(パーフルオロブチルスルホニル)イミド等のイミド酸、トリス(トリフルオロメチルスルホニル)メチド、トリス(パーフルオロエチルスルホニル)メチドなどのメチド酸を挙げることができる。 Non-nucleophilic counter ions of M − include halide ions such as chloride ions and bromide ions, triflate, fluoroalkyl sulfonates such as 1,1,1-trifluoroethanesulfonate, nonafluorobutanesulfonate, tosylate, and benzene. Sulfonate, 4-fluorobenzene sulfonate, aryl sulfonate such as 1,2,3,4,5-pentafluorobenzene sulfonate, alkyl sulfonate such as mesylate and butane sulfonate, bis (trifluoromethylsulfonyl) imide, bis (perfluoroethyl) Mention acid such as imide) such as sulfonyl) imide, bis (perfluorobutylsulfonyl) imide, tris (trifluoromethylsulfonyl) methide, tris (perfluoroethylsulfonyl) methide It can be.
これら高分子化合物を合成するには、1つの方法としては、繰り返し単位a〜gを与えるモノマーのうち所望のモノマーを、有機溶剤中、ラジカル重合開始剤を加え加熱重合を行い、共重合体の高分子化合物を得ることができる。 In order to synthesize these polymer compounds, as one method, a desired monomer among the monomers giving the repeating units a to g is heated in an organic solvent with a radical polymerization initiator added, and the copolymer is heated. A polymer compound can be obtained.
重合時に使用する有機溶剤としてはトルエン、ベンゼン、テトラヒドロフラン、ジエチルエーテル、ジオキサン等が例示できる。重合開始剤としては、2,2’−アゾビスイソブチロニトリル(AIBN)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル2,2−アゾビス(2−メチルプロピオネート)、ベンゾイルパーオキシド、ラウロイルパーオキシド等が例示でき、好ましくは50〜80℃に加熱して重合できる。反応時間としては2〜100時間、好ましくは5〜20時間である。 Examples of the organic solvent used at the time of polymerization include toluene, benzene, tetrahydrofuran, diethyl ether, dioxane and the like. As polymerization initiators, 2,2′-azobisisobutyronitrile (AIBN), 2,2′-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2-azobis (2-methylpropionate) ), Benzoyl peroxide, lauroyl peroxide and the like, and preferably polymerized by heating to 50 to 80 ° C. The reaction time is 2 to 100 hours, preferably 5 to 20 hours.
ヒドロキシスチレン、ヒドロキシビニルナフタレンを共重合する場合は、ヒドロキシスチレン、ヒドロキシビニルナフタレンの代わりにアセトキシスチレン、アセトキシビニルナフタレンを用い、重合後上記アルカリ加水分解によってアセトキシ基を脱保護してポリヒドロキシスチレン、ヒドロキシポリビニルナフタレンにする方法もある。 When copolymerizing hydroxystyrene and hydroxyvinylnaphthalene, acetoxystyrene and acetoxyvinylnaphthalene are used in place of hydroxystyrene and hydroxyvinylnaphthalene, and after polymerization, the acetoxy group is deprotected by the above alkaline hydrolysis to produce polyhydroxystyrene and hydroxyhydroxyl. There is also a method of making polyvinyl naphthalene.
アルカリ加水分解時の塩基としては、アンモニア水、トリエチルアミン等が使用できる。また反応温度としては−20〜100℃、好ましくは0〜60℃であり、反応時間としては0.2〜100時間、好ましくは0.5〜20時間である。 Ammonia water, triethylamine, etc. can be used as the base during the alkali hydrolysis. The reaction temperature is −20 to 100 ° C., preferably 0 to 60 ° C., and the reaction time is 0.2 to 100 hours, preferably 0.5 to 20 hours.
ここで、繰り返し単位a〜cの割合は、0<a<1、0<b<1、0≦c≦0.9、特に0<c≦0.9、0.2≦a+b+c≦1.0であり、好ましくは0.05≦a≦0.9、0.1≦b≦0.8、0.1≦c≦0.8、0.3≦a+b+c≦1.0、より好ましくは0.1≦a≦0.8、0.15≦b≦0.7、0.15≦c≦0.7、0.4≦a+b+c≦1.0である。
この場合、繰り返し単位d〜gの割合は、0≦d+e+f+g≦0.8、特に0≦d+e+f+g≦0.7であることが好ましく、a+b+c+d+e+f+g=1である。
なお、例えば、a+b+c=1とは、繰り返し単位a、b、cを含む高分子化合物において、繰り返し単位a、b、cの合計量が全繰り返し単位の合計量に対して100モル%であることを示し、a+b+c<1とは、繰り返し単位a、b、cの合計量が全繰り返し単位の合計量に対して100モル%未満でa、b、c以外に他の繰り返し単位を有していることを示す。
Here, the ratio of the repeating units a to c is 0 <a <1, 0 <b <1, 0 ≦ c ≦ 0.9, particularly 0 <c ≦ 0.9, 0.2 ≦ a + b + c ≦ 1.0. Preferably, 0.05 ≦ a ≦ 0.9, 0.1 ≦ b ≦ 0.8, 0.1 ≦ c ≦ 0.8, 0.3 ≦ a + b + c ≦ 1.0, more preferably 0.8. 1 ≦ a ≦ 0.8, 0.15 ≦ b ≦ 0.7, 0.15 ≦ c ≦ 0.7, and 0.4 ≦ a + b + c ≦ 1.0.
In this case, the ratio of the repeating units d to g is preferably 0 ≦ d + e + f + g ≦ 0.8, particularly preferably 0 ≦ d + e + f + g ≦ 0.7, and a + b + c + d + e + f + g = 1.
For example, a + b + c = 1 means that in a polymer compound containing repeating units a, b, and c, the total amount of repeating units a, b, and c is 100 mol% with respect to the total amount of all repeating units. A + b + c <1 means that the total amount of the repeating units a, b and c is less than 100 mol% with respect to the total amount of all the repeating units and has other repeating units in addition to a, b and c. It shows that.
本発明のポジ型レジスト材料に用いられる高分子化合物は、それぞれ重量平均分子量が1,000〜500,000、好ましくは2,000〜30,000である必要がある。重量平均分子量が小さすぎるとレジスト材料が耐熱性に劣るものとなり、大きすぎるとアルカリ溶解性が低下し、パターン形成後に裾引き現象が生じ易くなってしまう。 The polymer compound used in the positive resist material of the present invention must have a weight average molecular weight of 1,000 to 500,000, preferably 2,000 to 30,000. If the weight average molecular weight is too small, the resist material is inferior in heat resistance. If the weight average molecular weight is too large, the alkali solubility is lowered, and a trailing phenomenon is likely to occur after pattern formation.
更に、本発明のポジ型レジスト材料に用いられる高分子化合物においては、多成分共重合体の分子量分布(Mw/Mn)が広い場合は低分子量や高分子量のポリマーが存在するために、露光後、パターン上に異物が見られたり、パターンの形状が悪化したりする。それ故、パターンルールが微細化するに従ってこのような分子量、分子量分布の影響が大きくなり易いことから、微細なパターン寸法に好適に用いられるレジスト材料を得るには、使用する多成分共重合体の分子量分布は1.0〜2.0、特に1.0〜1.5と狭分散であることが好ましい。
また、組成比率や分子量分布や分子量が異なる2つ以上のポリマーをブレンドすることも可能である。
Furthermore, in the high molecular compound used in the positive resist material of the present invention, when the molecular weight distribution (Mw / Mn) of the multi-component copolymer is wide, there is a low molecular weight or high molecular weight polymer. Foreign matter is seen on the pattern or the shape of the pattern is deteriorated. Therefore, since the influence of such molecular weight and molecular weight distribution tends to increase as the pattern rule becomes finer, in order to obtain a resist material suitably used for fine pattern dimensions, the multi-component copolymer to be used is obtained. The molecular weight distribution is preferably from 1.0 to 2.0, particularly preferably from 1.0 to 1.5 and narrow dispersion.
It is also possible to blend two or more polymers having different composition ratios, molecular weight distributions, and molecular weights.
本発明に用いられる高分子化合物は、ポジ型レジスト材料のベース樹脂として好適で、このような高分子化合物をベース樹脂とし、これに有機溶剤、酸発生剤、溶解阻止剤、塩基性化合物、界面活性剤等を目的に応じ適宜組み合わせて配合してポジ型レジスト材料を構成することによって、露光部では前記高分子化合物が触媒反応により現像液に対する溶解速度が加速されるので、極めて高感度のポジ型レジスト材料とすることができ、レジスト膜の溶解コントラスト及び解像性が高く、露光余裕度があり、プロセス適応性に優れ、露光後のパターン形状が良好でありながら、より優れたエッチング耐性を示し、特に酸拡散を抑制できることから粗密寸法差が小さく、これらのことから実用性が高く、超LSI用レジスト材料として非常に有効なものとすることができる。特に、酸発生剤を含有させ、酸触媒反応を利用した化学増幅ポジ型レジスト材料とすると、より高感度のものとすることができると共に、諸特性が一層優れたものとなり極めて有用なものとなる。 The polymer compound used in the present invention is suitable as a base resin for a positive resist material. Such a polymer compound is used as a base resin, and an organic solvent, an acid generator, a dissolution inhibitor, a basic compound, an interface. By combining the activator and the like appropriately in accordance with the purpose to form a positive resist material, the dissolution rate of the polymer compound in the developing solution is accelerated by a catalytic reaction in the exposed area, so that a highly sensitive positive resist is formed. Type resist material, resist film with high dissolution contrast and resolution, exposure margin, excellent process adaptability, good pattern shape after exposure, and better etching resistance In particular, since the acid diffusion can be suppressed, the difference in density between the layers is small, which makes it highly practical and very useful as a resist material for VLSI. It can be such things. In particular, when a chemically amplified positive resist material containing an acid generator and utilizing an acid catalyzed reaction is used, the sensitivity can be increased, and various characteristics are further improved and extremely useful. .
また、ポジ型レジスト材料に溶解阻止剤を配合することによって、露光部と未露光部との溶解速度の差を一層大きくすることができ解像度を一層向上させることができる。 Further, by adding a dissolution inhibitor to the positive resist material, the difference in dissolution rate between the exposed portion and the unexposed portion can be further increased, and the resolution can be further improved.
更に、塩基性化合物を添加することによって、例えばレジスト膜中での酸の拡散速度を抑制し解像度を一層向上させることができるし、界面活性剤を添加することによってレジスト材料の塗布性を一層向上あるいは制御することができる。 Furthermore, by adding a basic compound, for example, the acid diffusion rate in the resist film can be suppressed to further improve the resolution, and by adding a surfactant, the coatability of the resist material can be further improved. Alternatively, it can be controlled.
本発明のポジ型レジスト材料には、このように有機溶剤、高エネルギー線に感応して酸を発生する化合物(酸発生剤)、必要に応じて溶解阻止剤、塩基性化合物、界面活性剤、その他の成分を含有することができるが、本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料に使用される有機溶剤としては、ベース樹脂、酸発生剤、その他の添加剤等が溶解可能な有機溶剤であればいずれでもよい。 The positive resist material of the present invention includes an organic solvent, a compound that generates an acid in response to high energy rays (acid generator), a dissolution inhibitor, a basic compound, a surfactant, if necessary, Other components can be contained, but as the organic solvent used in the positive resist material of the present invention, particularly the chemically amplified positive resist material, a base resin, an acid generator, and other additives are dissolved. Any organic solvent can be used.
このような有機溶剤としては、例えば、シクロヘキサノン、メチル−2−n−アミルケトン等のケトン類、3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル、プロピオン酸tert−ブチル、プロピレングリコールモノtert−ブチルエーテルアセテート等のエステル類、γ−ブチルラクトン等のラクトン類が挙げられるが、これらに限定されるものではない。 Examples of such organic solvents include ketones such as cyclohexanone and methyl-2-n-amyl ketone, 3-methoxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol, 1-ethoxy- Alcohols such as 2-propanol, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, and other ethers, propylene glycol monomethyl ether acetate, propylene glycol mono Ethyl ether acetate, ethyl lactate, ethyl pyruvate, butyl acetate, methyl 3-methoxypropionate, 3-ethoxy Ethyl propionate, acetate tert- butyl, tert- butyl propionate, and propylene glycol monobutyl tert- butyl ether acetate, although lactones such as γ- butyl lactone, not being limited thereto.
これらの有機溶剤は、1種を単独で又は2種以上を混合して使用することができる。本発明では、これらの有機溶剤の中でもレジスト成分中の酸発生剤の溶解性が最も優れているジエチレングリコールジメチルエーテルや1−エトキシ−2−プロパノール、プロピレングリコールモノメチルエーテルアセテート及びその混合溶剤が好ましく使用される。 These organic solvents can be used individually by 1 type or in mixture of 2 or more types. In the present invention, among these organic solvents, diethylene glycol dimethyl ether, 1-ethoxy-2-propanol, propylene glycol monomethyl ether acetate, and mixed solvents thereof, which have the highest solubility of the acid generator in the resist component, are preferably used. .
有機溶剤の使用量は、ベース樹脂100部(質量部、以下同様)に対して200〜1,000部、特に400〜800部が好適である。 The amount of the organic solvent used is preferably 200 to 1,000 parts, particularly 400 to 800 parts, with respect to 100 parts (parts by mass) of the base resin.
本発明のポジ型レジスト材料に配合される酸発生剤としては、
(i)下記一般式(P1a−1)、(P1a−2)又は(P1b)のオニウム塩、
(ii)下記一般式(P2)のジアゾメタン誘導体、
(iii)下記一般式(P3)のグリオキシム誘導体、
(iv)下記一般式(P4)のビススルホン誘導体、
(v)下記一般式(P5)のN−ヒドロキシイミド化合物のスルホン酸エステル、
(vi)β−ケトスルホン酸誘導体、
(vii)ジスルホン誘導体、
(viii)ニトロベンジルスルホネート誘導体、
(ix)スルホン酸エステル誘導体
等が挙げられる。
As an acid generator blended in the positive resist material of the present invention,
(I) Onium salt of the following general formula (P1a-1), (P1a-2) or (P1b),
(Ii) a diazomethane derivative of the following general formula (P2):
(Iii) a glyoxime derivative of the following general formula (P3),
(Iv) a bissulfone derivative of the following general formula (P4),
(V) a sulfonic acid ester of an N-hydroxyimide compound of the following general formula (P5),
(Vi) β-ketosulfonic acid derivative,
(Vii) a disulfone derivative,
(Viii) a nitrobenzyl sulfonate derivative,
(Ix) sulfonic acid ester derivatives and the like.
上記R101a、R101b、R101cは互いに同一であっても異なっていてもよく、具体的にはアルキル基として、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、2−オキソシクロペンチル基、2−オキソシクロヘキシル基等が挙げられ、2−オキソプロピル基、2−シクロペンチル−2−オキソエチル基、2−シクロヘキシル−2−オキソエチル基、2−(4−メチルシクロヘキシル)−2−オキソエチル基等を挙げることができる。アリール基としては、フェニル基、ナフチル基等や、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としてはベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、2−フェニル−2−オキソエチル基、2−(1−ナフチル)−2−オキソエチル基、2−(2−ナフチル)−2−オキソエチル基等の2−アリール−2−オキソエチル基等が挙げられる。K-の非求核性対向イオンとしては塩化物イオン、臭化物イオン等のハライドイオン、トリフレート、1,1,1−トリフルオロエタンスルホネート、ノナフルオロブタンスルホネート等のフルオロアルキルスルホネート、トシレート、ベンゼンスルホネート、4−フルオロベンゼンスルホネート、1,2,3,4,5−ペンタフルオロベンゼンスルホネート等のアリールスルホネート、メシレート、ブタンスルホネート等のアルキルスルホネート、ビス(トリフルオロメチルスルホニル)イミド、ビス(パーフルオロエチルスルホニル)イミド、ビス(パーフルオロブチルスルホニル)イミド等のイミド酸、トリス(トリフルオロメチルスルホニル)メチド、トリス(パーフルオロエチルスルホニル)メチドなどのメチド酸、更には下記一般式K−1示されるα位がフルオロ置換されたスルホネート、K−1、K−2に示される、α、β位がフルオロ置換されたスルホネートが挙げられる。 R 101a , R 101b and R 101c may be the same as or different from each other. Specifically, as an alkyl group, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl Group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopropylmethyl group, 4-methylcyclohexyl group, cyclohexylmethyl group, norbornyl group, adamantyl group, etc. Is mentioned. Examples of the alkenyl group include a vinyl group, an allyl group, a propenyl group, a butenyl group, a hexenyl group, and a cyclohexenyl group. Examples of the oxoalkyl group include 2-oxocyclopentyl group, 2-oxocyclohexyl group, and the like. 2-oxopropyl group, 2-cyclopentyl-2-oxoethyl group, 2-cyclohexyl-2-oxoethyl group, 2- (4 -Methylcyclohexyl) -2-oxoethyl group and the like can be mentioned. Examples of the aryl group include a phenyl group, a naphthyl group, a p-methoxyphenyl group, an m-methoxyphenyl group, an o-methoxyphenyl group, an ethoxyphenyl group, a p-tert-butoxyphenyl group, and an m-tert-butoxyphenyl group. Alkylphenyl groups such as alkoxyphenyl groups, 2-methylphenyl groups, 3-methylphenyl groups, 4-methylphenyl groups, ethylphenyl groups, 4-tert-butylphenyl groups, 4-butylphenyl groups, dimethylphenyl groups, etc. Alkyl naphthyl groups such as methyl naphthyl group and ethyl naphthyl group, alkoxy naphthyl groups such as methoxy naphthyl group and ethoxy naphthyl group, dialkyl naphthyl groups such as dimethyl naphthyl group and diethyl naphthyl group, dimethoxy naphthyl group and diethoxy naphthyl group Dialkoxynaphthyl group And the like. Examples of the aralkyl group include a benzyl group, a phenylethyl group, and a phenethyl group. As the aryloxoalkyl group, 2-aryl-2-oxoethyl group such as 2-phenyl-2-oxoethyl group, 2- (1-naphthyl) -2-oxoethyl group, 2- (2-naphthyl) -2-oxoethyl group and the like Groups and the like. K - a non-nucleophilic counter chloride ions as the ion, halide ions such as bromide ion, triflate, 1,1,1-trifluoroethane sulfonate, fluoroalkyl sulfonate such as nonafluorobutanesulfonate, tosylate, benzenesulfonate , 4-fluorobenzenesulfonate, arylsulfonates such as 1,2,3,4,5-pentafluorobenzenesulfonate, alkylsulfonates such as mesylate and butanesulfonate, bis (trifluoromethylsulfonyl) imide, bis (perfluoroethylsulfonyl) ) Imido acids such as imide and bis (perfluorobutylsulfonyl) imide, methide acids such as tris (trifluoromethylsulfonyl) methide and tris (perfluoroethylsulfonyl) methide, and Sulfonate position alpha represented Formula K-1 is fluoro substituted, K-1, is shown in K-2, α, include sulfonates β-position is fluoro substituted.
一般式(K−1)中、R102は水素原子、炭素数1〜30の直鎖状、分岐状、環状のアルキル基、アシル基、炭素数2〜20のアルケニル基、炭素数6〜20のアリール基、アリーロキシ基であり、エーテル基、エステル基、カルボニル基、ラクトン環を有していてもよい。一般式(K−2)中のR103は水素原子、炭素数1〜20の直鎖状、分岐状、環状のアルキル基、炭素数2〜20のアルケニル基、炭素数6〜20のアリール基であり、エーテル基、エステル基、カルボニル基、ラクトン環を有していてもよい。 In general formula (K-1), R102 is a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 30 carbon atoms, an acyl group, an alkenyl group having 2 to 20 carbon atoms, or 6 to 20 carbon atoms. An aryl group and an aryloxy group, which may have an ether group, an ester group, a carbonyl group, or a lactone ring. R 103 in the general formula (K-2) is a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms. And may have an ether group, an ester group, a carbonyl group, or a lactone ring.
上記R102a、R102bとして具体的には、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロプロピルメチル基、4−メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。R103としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、へキシレン基、へプチレン基、オクチレン基、ノニレン基、1,4−シクロへキシレン基、1,2−シクロへキシレン基、1,3−シクロペンチレン基、1,4−シクロオクチレン基、1,4−シクロヘキサンジメチレン基等が挙げられる。R104a、R104bとしては、2−オキソプロピル基、2−オキソシクロペンチル基、2−オキソシクロヘキシル基、2−オキソシクロヘプチル基等が挙げられる。K-は式(P1a−1)及び(P1a−2)で説明したものと同様のものを挙げることができる。 Specific examples of R 102a and R 102b include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, a pentyl group, a hexyl group, a heptyl group, and an octyl group. , Cyclopentyl group, cyclohexyl group, cyclopropylmethyl group, 4-methylcyclohexyl group, cyclohexylmethyl group and the like. R 103 is methylene group, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, 1,4-cyclohexylene group, 1,2-cyclohexylene. Group, 1,3-cyclopentylene group, 1,4-cyclooctylene group, 1,4-cyclohexanedimethylene group and the like. Examples of R 104a and R 104b include a 2-oxopropyl group, a 2-oxocyclopentyl group, a 2-oxocyclohexyl group, and a 2-oxocycloheptyl group. K - is can be exemplified the same ones as described in the formulas (P1a-1) and (P1a-2).
R105、R106のアルキル基としてはメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、アミル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、ノルボルニル基、アダマンチル基等が挙げられる。ハロゲン化アルキル基としてはトリフルオロメチル基、1,1,1−トリフルオロエチル基、1,1,1−トリクロロエチル基、ノナフルオロブチル基等が挙げられる。アリール基としてはフェニル基、p−メトキシフェニル基、m−メトキシフェニル基、o−メトキシフェニル基、エトキシフェニル基、p−tert−ブトキシフェニル基、m−tert−ブトキシフェニル基等のアルコキシフェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、エチルフェニル基、4−tert−ブチルフェニル基、4−ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基が挙げられる。ハロゲン化アリール基としてはフルオロフェニル基、クロロフェニル基、1,2,3,4,5−ペンタフルオロフェニル基等が挙げられる。アラルキル基としてはベンジル基、フェネチル基等が挙げられる。 Examples of the alkyl group of R 105 and R 106 include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, amyl Group, cyclopentyl group, cyclohexyl group, cycloheptyl group, norbornyl group, adamantyl group and the like. Examples of the halogenated alkyl group include a trifluoromethyl group, a 1,1,1-trifluoroethyl group, a 1,1,1-trichloroethyl group, and a nonafluorobutyl group. As the aryl group, an alkoxyphenyl group such as a phenyl group, p-methoxyphenyl group, m-methoxyphenyl group, o-methoxyphenyl group, ethoxyphenyl group, p-tert-butoxyphenyl group, m-tert-butoxyphenyl group, Examples thereof include alkylphenyl groups such as 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, ethylphenyl group, 4-tert-butylphenyl group, 4-butylphenyl group, and dimethylphenyl group. Examples of the halogenated aryl group include a fluorophenyl group, a chlorophenyl group, and 1,2,3,4,5-pentafluorophenyl group. Examples of the aralkyl group include a benzyl group and a phenethyl group.
R107、R108、R109のアルキル基、ハロゲン化アルキル基、アリール基、ハロゲン化アリール基、アラルキル基としては、R105、R106で説明したものと同様の基が挙げられる。なお、R108、R109のアルキレン基としてはメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基等が挙げられる。 Examples of the alkyl group, halogenated alkyl group, aryl group, halogenated aryl group, and aralkyl group of R 107 , R 108 , and R 109 include the same groups as those described for R 105 and R 106 . Examples of the alkylene group for R 108 and R 109 include a methylene group, an ethylene group, a propylene group, a butylene group, and a hexylene group.
ここで、R110のアリーレン基としては、1,2−フェニレン基、1,8−ナフチレン基等が、アルキレン基としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、フェニルエチレン基、ノルボルナン−2,3−ジイル基等が、アルケニレン基としては、1,2−ビニレン基、1−フェニル−1,2−ビニレン基、5−ノルボルネン−2,3−ジイル基等が挙げられる。R111のアルキル基としては、R101a〜R101cと同様のものが、アルケニル基としては、ビニル基、1−プロペニル基、アリル基、1−ブテニル基、3−ブテニル基、イソプレニル基、1−ペンテニル基、3−ペンテニル基、4−ペンテニル基、ジメチルアリル基、1−ヘキセニル基、3−ヘキセニル基、5−ヘキセニル基、1−ヘプテニル基、3−ヘプテニル基、6−ヘプテニル基、7−オクテニル基等が、アルコキシアルキル基としては、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基、ペンチロキシメチル基、ヘキシロキシメチル基、ヘプチロキシメチル基、メトキシエチル基、エトキシエチル基、プロポキシエチル基、ブトキシエチル基、ペンチロキシエチル基、ヘキシロキシエチル基、メトキシプロピル基、エトキシプロピル基、プロポキシプロピル基、ブトキシプロピル基、メトキシブチル基、エトキシブチル基、プロポキシブチル基、メトキシペンチル基、エトキシペンチル基、メトキシヘキシル基、メトキシヘプチル基等が挙げられる。 Here, as the arylene group of R 110 , 1,2-phenylene group, 1,8-naphthylene group, etc., and as the alkylene group, methylene group, ethylene group, trimethylene group, tetramethylene group, phenylethylene group, norbornane Examples of the alkenylene group such as -2,3-diyl group include 1,2-vinylene group, 1-phenyl-1,2-vinylene group, 5-norbornene-2,3-diyl group and the like. The alkyl group for R 111 is the same as R 101a to R 101c, and the alkenyl group is a vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 3-butenyl group, isoprenyl group, 1- Pentenyl group, 3-pentenyl group, 4-pentenyl group, dimethylallyl group, 1-hexenyl group, 3-hexenyl group, 5-hexenyl group, 1-heptenyl group, 3-heptenyl group, 6-heptenyl group, 7-octenyl Groups such as alkoxyalkyl groups include methoxymethyl, ethoxymethyl, propoxymethyl, butoxymethyl, pentyloxymethyl, hexyloxymethyl, heptyloxymethyl, methoxyethyl, ethoxyethyl, Propoxyethyl, butoxyethyl, pentyloxyethyl, hexyloxyethyl, methoxypro Group, ethoxypropyl group, propoxypropyl group, butoxy propyl group, methoxybutyl group, ethoxybutyl group, propoxybutyl group, a methoxy pentyl group, an ethoxy pentyl group, a methoxy hexyl group, a methoxy heptyl group.
なお、更に置換されていてもよい炭素数1〜4のアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基等が、炭素数1〜4のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、tert−ブトキシ基等が、炭素数1〜4のアルキル基、アルコキシ基、ニトロ基又はアセチル基で置換されていてもよいフェニル基としては、フェニル基、トリル基、p−tert−ブトキシフェニル基、p−アセチルフェニル基、p−ニトロフェニル基等が、炭素数3〜5のヘテロ芳香族基としては、ピリジル基、フリル基等が挙げられる。 In addition, examples of the optionally substituted alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group. As the alkoxy group of ˜4, a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a tert-butoxy group and the like are an alkyl group having 1 to 4 carbon atoms, an alkoxy group, and a nitro group. As the phenyl group which may be substituted with an acetyl group, a phenyl group, a tolyl group, a p-tert-butoxyphenyl group, a p-acetylphenyl group, a p-nitrophenyl group, etc. are heterocycles having 3 to 5 carbon atoms. Examples of the aromatic group include a pyridyl group and a furyl group.
オニウム塩としては、例えばトリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、p−トルエンスルホン酸ジフェニルヨードニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)フェニルヨードニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸ビス(p−tert−ブトキシフェニル)フェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、ノナフルオロブタンスルホン酸トリフェニルスルホニウム、ブタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリメチルスルホニウム、p−トルエンスルホン酸トリメチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、p−トルエンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸ジメチルフェニルスルホニウム、p−トルエンスルホン酸ジメチルフェニルスルホニウム、トリフルオロメタンスルホン酸ジシクロヘキシルフェニルスルホニウム、p−トルエンスルホン酸ジシクロヘキシルフェニルスルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、エチレンビス[メチル(2−オキソシクロペンチル)スルホニウムトリフルオロメタンスルホナート]、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩を挙げることができる。 Examples of onium salts include diphenyliodonium trifluoromethanesulfonate, trifluoromethanesulfonic acid (p-tert-butoxyphenyl) phenyliodonium, p-toluenesulfonic acid diphenyliodonium, p-toluenesulfonic acid (p-tert-butoxyphenyl) phenyl. Iodonium, triphenylsulfonium trifluoromethanesulfonate, trifluoromethanesulfonate (p-tert-butoxyphenyl) diphenylsulfonium, bis (p-tert-butoxyphenyl) phenylsulfonium trifluoromethanesulfonate, tris (p-tert) trifluoromethanesulfonate -Butoxyphenyl) sulfonium, p-toluenesulfonic acid triphenylsulfonium, p-toluenesulfonic acid p-tert-butoxyphenyl) diphenylsulfonium, bis (p-tert-butoxyphenyl) phenylsulfonium p-toluenesulfonate, tris (p-tert-butoxyphenyl) sulfonium p-toluenesulfonate, triphenyl nonafluorobutanesulfonate Sulfonium, triphenylsulfonium butanesulfonate, trimethylsulfonium trifluoromethanesulfonate, trimethylsulfonium p-toluenesulfonate, cyclohexylmethyl trifluoromethanesulfonate (2-oxocyclohexyl) sulfonium, cyclohexylmethyl p-toluenesulfonate (2-oxocyclohexyl) ) Sulfonium, dimethylphenylsulfonium trifluoromethanesulfonate, di-p-toluenesulfonic acid Tylphenylsulfonium, dicyclohexylphenylsulfonium trifluoromethanesulfonate, dicyclohexylphenylsulfonium p-toluenesulfonate, trinaphthylsulfonium trifluoromethanesulfonate, (2-norbornyl) methyl (2-oxocyclohexyl) sulfonium trifluoromethanesulfonate, ethylenebis [ And onium salts such as methyl (2-oxocyclopentyl) sulfonium trifluoromethanesulfonate] and 1,2′-naphthylcarbonylmethyltetrahydrothiophenium triflate.
ジアゾメタン誘導体としては、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(キシレンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(シクロペンチルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン、ビス(n−アミルスルホニル)ジアゾメタン、ビス(イソアミルスルホニル)ジアゾメタン、ビス(sec−アミルスルホニル)ジアゾメタン、ビス(tert−アミルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン、1−シクロヘキシルスルホニル−1−(tert−アミルスルホニル)ジアゾメタン、1−tert−アミルスルホニル−1−(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体を挙げることができる。 Diazomethane derivatives include bis (benzenesulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, bis (xylenesulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (cyclopentylsulfonyl) diazomethane, bis (n-butylsulfonyl) diazomethane Bis (isobutylsulfonyl) diazomethane, bis (sec-butylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, bis (tert-butylsulfonyl) diazomethane, bis (n-amylsulfonyl) diazomethane Bis (isoamylsulfonyl) diazomethane, bis (sec-amylsulfonyl) diazomethane, bis (tert-amylsulfur) Nyl) diazomethane, 1-cyclohexylsulfonyl-1- (tert-butylsulfonyl) diazomethane, 1-cyclohexylsulfonyl-1- (tert-amylsulfonyl) diazomethane, 1-tert-amylsulfonyl-1- (tert-butylsulfonyl) diazomethane And the like.
グリオキシム誘導体としては、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(p−トルエンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(p−トルエンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(p−トルエンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジフェニルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジシクロヘキシルグリオキシム、ビス−O−(n−ブタンスルホニル)−2,3−ペンタンジオングリオキシム、ビス−O−(n−ブタンスルホニル)−2−メチル−3,4−ペンタンジオングリオキシム、ビス−O−(メタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(トリフルオロメタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(1,1,1−トリフルオロエタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(tert−ブタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(パーフルオロオクタンスルホニル)−α−ジメチルグリオキシム、ビス−O−(シクロヘキサンスルホニル)−α−ジメチルグリオキシム、ビス−O−(ベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−フルオロベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(p−tert−ブチルベンゼンスルホニル)−α−ジメチルグリオキシム、ビス−O−(キシレンスルホニル)−α−ジメチルグリオキシム、ビス−O−(カンファースルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体を挙げることができる。 Examples of glyoxime derivatives include bis-O- (p-toluenesulfonyl) -α-dimethylglyoxime, bis-O- (p-toluenesulfonyl) -α-diphenylglyoxime, bis-O- (p-toluenesulfonyl)- α-dicyclohexylglyoxime, bis-O- (p-toluenesulfonyl) -2,3-pentanedione glyoxime, bis-O- (p-toluenesulfonyl) -2-methyl-3,4-pentanedione glyoxime, Bis-O- (n-butanesulfonyl) -α-dimethylglyoxime, bis-O- (n-butanesulfonyl) -α-diphenylglyoxime, bis-O- (n-butanesulfonyl) -α-dicyclohexylglyoxime Bis-O- (n-butanesulfonyl) -2,3-pentanedione glyoxime, bis-O- ( -Butanesulfonyl) -2-methyl-3,4-pentanedione glyoxime, bis-O- (methanesulfonyl) -α-dimethylglyoxime, bis-O- (trifluoromethanesulfonyl) -α-dimethylglyoxime, bis -O- (1,1,1-trifluoroethanesulfonyl) -α-dimethylglyoxime, bis-O- (tert-butanesulfonyl) -α-dimethylglyoxime, bis-O- (perfluorooctanesulfonyl)- α-dimethylglyoxime, bis-O- (cyclohexanesulfonyl) -α-dimethylglyoxime, bis-O- (benzenesulfonyl) -α-dimethylglyoxime, bis-O- (p-fluorobenzenesulfonyl) -α- Dimethylglyoxime, bis-O- (p-tert-butylbenzenesulfonyl) α- dimethylglyoxime, bis -O- (xylene sulfonyl)-.alpha.-dimethylglyoxime, and bis -O- (camphorsulfonyl)-.alpha.-glyoxime derivatives such as dimethylglyoxime.
ビススルホン誘導体としては、ビスナフチルスルホニルメタン、ビストリフルオロメチルスルホニルメタン、ビスメチルスルホニルメタン、ビスエチルスルホニルメタン、ビスプロピルスルホニルメタン、ビスイソプロピルスルホニルメタン、ビス−p−トルエンスルホニルメタン、ビスベンゼンスルホニルメタン等のビススルホン誘導体を挙げることができる。 Examples of bissulfone derivatives include bisnaphthylsulfonylmethane, bistrifluoromethylsulfonylmethane, bismethylsulfonylmethane, bisethylsulfonylmethane, bispropylsulfonylmethane, bisisopropylsulfonylmethane, bis-p-toluenesulfonylmethane, and bisbenzenesulfonylmethane. Bissulfone derivatives can be mentioned.
β−ケトスルホン誘導体としては、2−シクロヘキシルカルボニル−2−(p−トルエンスルホニル)プロパン、2−イソプロピルカルボニル−2−(p−トルエンスルホニル)プロパン等のβ−ケトスルホン誘導体を挙げることができる。 Examples of β-ketosulfone derivatives include β-ketosulfone derivatives such as 2-cyclohexylcarbonyl-2- (p-toluenesulfonyl) propane and 2-isopropylcarbonyl-2- (p-toluenesulfonyl) propane.
ジスルホン誘導体としては、ジフェニルジスルホン誘導体、ジシクロヘキシルジスルホン誘導体等のジスルホン誘導体を挙げることができる。 Examples of the disulfone derivative include disulfone derivatives such as diphenyl disulfone derivatives and dicyclohexyl disulfone derivatives.
ニトロベンジルスルホネート誘導体としては、p−トルエンスルホン酸2,6−ジニトロベンジル、p−トルエンスルホン酸2,4−ジニトロベンジル等のニトロベンジルスルホネート誘導体を挙げることができる。 Examples of the nitrobenzyl sulfonate derivative include nitrobenzyl sulfonate derivatives such as 2,6-dinitrobenzyl p-toluenesulfonate and 2,4-dinitrobenzyl p-toluenesulfonate.
スルホン酸エステル誘導体としては、1,2,3−トリス(メタンスルホニルオキシ)ベンゼン、1,2,3−トリス(トリフルオロメタンスルホニルオキシ)ベンゼン、1,2,3−トリス(p−トルエンスルホニルオキシ)ベンゼン等のスルホン酸エステル誘導体を挙げることができる。 Examples of sulfonic acid ester derivatives include 1,2,3-tris (methanesulfonyloxy) benzene, 1,2,3-tris (trifluoromethanesulfonyloxy) benzene, 1,2,3-tris (p-toluenesulfonyloxy). Mention may be made of sulfonic acid ester derivatives such as benzene.
また、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミドエタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−オクタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシスクシンイミドp−メトキシベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド2−クロロエタンスルホン酸エステル、N−ヒドロキシスクシンイミドベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド−2,4,6−トリメチルベンゼンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ナフタレンスルホン酸エステル、N−ヒドロキシスクシンイミド2−ナフタレンスルホン酸エステル、N−ヒドロキシ−2−フェニルスクシンイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドメタンスルホン酸エステル、N−ヒドロキシマレイミドエタンスルホン酸エステル、N−ヒドロキシ−2−フェニルマレイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドメタンスルホン酸エステル、N−ヒドロキシグルタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドメタンスルホン酸エステル、N−ヒドロキシフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシフタルイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシフタルイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシ−5−ノルボルネン−2,3−ジカルボキシイミドp−トルエンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体を挙げることができる。 Further, N-hydroxysuccinimide methanesulfonic acid ester, N-hydroxysuccinimide trifluoromethanesulfonic acid ester, N-hydroxysuccinimide ethanesulfonic acid ester, N-hydroxysuccinimide 1-propanesulfonic acid ester, N-hydroxysuccinimide 2-propanesulfonic acid Ester, N-hydroxysuccinimide 1-pentanesulfonic acid ester, N-hydroxysuccinimide 1-octanesulfonic acid ester, N-hydroxysuccinimide p-toluenesulfonic acid ester, N-hydroxysuccinimide p-methoxybenzenesulfonic acid ester, N-hydroxy Succinimide 2-chloroethane sulfonate, N-hydroxysuccinimide benzene sulfonate N-hydroxysuccinimide-2,4,6-trimethylbenzenesulfonic acid ester, N-hydroxysuccinimide 1-naphthalenesulfonic acid ester, N-hydroxysuccinimide 2-naphthalenesulfonic acid ester, N-hydroxy-2-phenylsuccinimide methanesulfonic acid Ester, N-hydroxymaleimide methanesulfonate, N-hydroxymaleimide ethanesulfonate, N-hydroxy-2-phenylmaleimide methanesulfonate, N-hydroxyglutarimide methanesulfonate, N-hydroxyglutarimide benzenesulfone Acid ester, N-hydroxyphthalimidomethanesulfonic acid ester, N-hydroxyphthalimidobenzenesulfonic acid ester, N-hydroxyl Phthalimide trifluoromethanesulfonate, N-hydroxyphthalimide p-toluenesulfonate, N-hydroxynaphthalimide methanesulfonate, N-hydroxynaphthalimidebenzenesulfonate, N-hydroxy-5-norbornene-2,3- Dicarboximide methanesulfonate, N-hydroxy-5-norbornene-2,3-dicarboximide trifluoromethanesulfonate, N-hydroxy-5-norbornene-2,3-dicarboximide p-toluenesulfonate Examples thereof include sulfonic acid ester derivatives of N-hydroxyimide compounds.
特に、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、トリフルオロメタンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、p−トルエンスルホン酸トリフェニルスルホニウム、p−トルエンスルホン酸(p−tert−ブトキシフェニル)ジフェニルスルホニウム、p−トルエンスルホン酸トリス(p−tert−ブトキシフェニル)スルホニウム、トリフルオロメタンスルホン酸トリナフチルスルホニウム、トリフルオロメタンスルホン酸シクロヘキシルメチル(2−オキソシクロヘキシル)スルホニウム、トリフルオロメタンスルホン酸(2−ノルボニル)メチル(2−オキソシクロヘキシル)スルホニウム、1,2’−ナフチルカルボニルメチルテトラヒドロチオフェニウムトリフレート等のオニウム塩、ビス(ベンゼンスルホニル)ジアゾメタン、ビス(p−トルエンスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(n−ブチルスルホニル)ジアゾメタン、ビス(イソブチルスルホニル)ジアゾメタン、ビス(sec−ブチルスルホニル)ジアゾメタン、ビス(n−プロピルスルホニル)ジアゾメタン、ビス(イソプロピルスルホニル)ジアゾメタン、ビス(tert−ブチルスルホニル)ジアゾメタン等のジアゾメタン誘導体、ビス−O−(p−トルエンスルホニル)−α−ジメチルグリオキシム、ビス−O−(n−ブタンスルホニル)−α−ジメチルグリオキシム等のグリオキシム誘導体、ビスナフチルスルホニルメタン等のビススルホン誘導体、N−ヒドロキシスクシンイミドメタンスルホン酸エステル、N−ヒドロキシスクシンイミドトリフルオロメタンスルホン酸エステル、N−ヒドロキシスクシンイミド1−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド2−プロパンスルホン酸エステル、N−ヒドロキシスクシンイミド1−ペンタンスルホン酸エステル、N−ヒドロキシスクシンイミドp−トルエンスルホン酸エステル、N−ヒドロキシナフタルイミドメタンスルホン酸エステル、N−ヒドロキシナフタルイミドベンゼンスルホン酸エステル等のN−ヒドロキシイミド化合物のスルホン酸エステル誘導体が好ましく用いられる。 In particular, triphenylsulfonium trifluoromethanesulfonate, trifluoromethanesulfonate (p-tert-butoxyphenyl) diphenylsulfonium, tris (p-tert-butoxyphenyl) sulfonium trifluoromethanesulfonate, triphenylsulfonium p-toluenesulfonate, p -Toluenesulfonic acid (p-tert-butoxyphenyl) diphenylsulfonium, p-toluenesulfonic acid tris (p-tert-butoxyphenyl) sulfonium, trifluoromethanesulfonic acid trinaphthylsulfonium, trifluoromethanesulfonic acid cyclohexylmethyl (2-oxocyclohexyl) ) Sulfonium, (2-norbornyl) methyl (2-oxocyclohexyl) sulfonyl trifluoromethanesulfonate Onium salts such as 1,2′-naphthylcarbonylmethyltetrahydrothiophenium triflate, bis (benzenesulfonyl) diazomethane, bis (p-toluenesulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, bis (n-butylsulfonyl) Diazomethane derivatives such as diazomethane, bis (isobutylsulfonyl) diazomethane, bis (sec-butylsulfonyl) diazomethane, bis (n-propylsulfonyl) diazomethane, bis (isopropylsulfonyl) diazomethane, bis (tert-butylsulfonyl) diazomethane, bis-O Glyoxime derivatives such as-(p-toluenesulfonyl) -α-dimethylglyoxime and bis-O- (n-butanesulfonyl) -α-dimethylglyoxime, bisnaphthy Bissulfone derivatives such as sulfonylmethane, N-hydroxysuccinimide methanesulfonate, N-hydroxysuccinimide trifluoromethanesulfonate, N-hydroxysuccinimide 1-propanesulfonate, N-hydroxysuccinimide 2-propanesulfonate, N- Hydroxysuccinimide 1-pentanesulfonic acid ester, N-hydroxysuccinimide p-toluenesulfonic acid ester, N-hydroxynaphthalimide methanesulfonic acid ester, N-hydroxynaphthalimide benzenesulfonic acid ester, etc. Derivatives are preferably used.
更に、WO2004/074242 A2で示されるオキシムタイプの酸発生剤を添加することもできる。 Furthermore, an oxime type acid generator represented by WO2004 / 074242 A2 may be added.
なお、上記酸発生剤は1種を単独で又は2種以上を組み合わせて用いることができる。オニウム塩は矩形性向上効果に優れ、ジアゾメタン誘導体及びグリオキシム誘導体は定在波低減効果に優れるため、両者を組み合わせることによりプロファイルの微調整を行うことが可能である。 In addition, the said acid generator can be used individually by 1 type or in combination of 2 or more types. Since onium salts are excellent in rectangularity improving effect and diazomethane derivatives and glyoxime derivatives are excellent in standing wave reducing effect, it is possible to finely adjust the profile by combining both.
酸発生剤の添加量は、ベース樹脂100部に対して好ましくは0.1〜50部、より好ましくは0.5〜40部である。0.1部より少ないと露光時の酸発生量が少なく、感度及び解像力が劣る場合があり、50部を超えるとレジストの透過率が低下し、解像力が劣る場合がある。 The addition amount of the acid generator is preferably 0.1 to 50 parts, more preferably 0.5 to 40 parts with respect to 100 parts of the base resin. If the amount is less than 0.1 part, the amount of acid generated during exposure is small and the sensitivity and resolution may be inferior. If the amount exceeds 50 parts, the transmittance of the resist may be lowered and the resolution may be inferior.
次に、本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料に配合される溶解阻止剤としては、重量平均分子量が100〜1,000、好ましくは150〜800で、かつ分子内にフェノール性水酸基を2つ以上有する化合物の該フェノール性水酸基の水素原子を酸不安定基により全体として平均0〜100モル%の割合で置換した化合物又は分子内にカルボキシ基を有する化合物の該カルボキシ基の水素原子を酸不安定基により全体として平均50〜100モル%の割合で置換した化合物が好ましい。 Next, as a dissolution inhibitor to be blended in the positive resist material of the present invention, particularly a chemically amplified positive resist material, the weight average molecular weight is 100 to 1,000, preferably 150 to 800, and in the molecule. The compound having two or more phenolic hydroxyl groups, the hydrogen atom of the phenolic hydroxyl group substituted with an acid labile group in an average of 0 to 100 mol% as a whole, or the carboxy group of a compound having a carboxy group in the molecule A compound in which the hydrogen atoms are substituted with an acid labile group as a whole at an average ratio of 50 to 100 mol% is preferred.
なおフェノール性水酸基の水素原子の酸不安定基による置換率は、平均でフェノール性水酸基全体の0モル%以上、好ましくは30モル%以上であり、その上限は100モル%、より好ましくは80モル%である。カルボキシ基の水素原子の酸不安定基による置換率は、平均でカルボキシ基全体の50モル%以上、好ましくは70モル%以上であり、その上限は100モル%である。 The substitution rate of the hydrogen atom of the phenolic hydroxyl group by an acid labile group is on average 0 mol% or more, preferably 30 mol% or more of the entire phenolic hydroxyl group, and the upper limit is 100 mol%, more preferably 80 mol. %. The substitution rate of the hydrogen atom of the carboxy group with an acid labile group is 50 mol% or more, preferably 70 mol% or more of the entire carboxy group on average, and the upper limit is 100 mol%.
この場合、かかるフェノール性水酸基を2つ以上有する化合物又はカルボキシ基を有する化合物としては、下記式(D1)〜(D14)で示されるものが好ましい。 In this case, as the compound having two or more phenolic hydroxyl groups or the compound having a carboxy group, those represented by the following formulas (D1) to (D14) are preferable.
溶解阻止剤の酸不安定基としては一般式(1)に示される本発明の酸不安定基でもよいし、(A1)〜(A3)で示される従来型の酸不安定基でもよい。 The acid labile group of the dissolution inhibitor may be the acid labile group of the present invention represented by the general formula (1) or a conventional acid labile group represented by (A1) to (A3).
本発明のポジ型レジスト材料には、更に下記一般式BP−(1)で示される酸不安定基で置換された複数のビスフェノール基を有する化合物からなる溶解阻止剤を添加することができる。 To the positive resist material of the present invention, a dissolution inhibitor made of a compound having a plurality of bisphenol groups substituted with an acid labile group represented by the following general formula BP- (1) can be added.
一般式BP−(1)中の酸不安定基は、上述したR3の酸不安定基と同様のものから選ばれるものを用いることができる。一般式BP−(1)で示される化合物は、具体的には下記に例示することができる。 As the acid labile group in the general formula BP- (1), those selected from the same acid labile groups as those described above for R 3 can be used. Specific examples of the compound represented by the general formula BP- (1) are shown below.
本発明のポジ型レジスト材料には、特開平11−322656号公報記載の酸不安定基で置換されたカリックスアレーン類、カリックスレゾルシノール類からなる溶解阻止剤を添加することもできる。 To the positive resist material of the present invention, a dissolution inhibitor composed of calixarenes and calixresorcinols substituted with acid labile groups described in JP-A No. 11-322656 can be added.
溶解阻止剤の配合量は、ベース樹脂100部に対して0〜50部、好ましくは5〜50部、より好ましくは10〜30部であり、単独又は2種以上を混合して使用できる。配合量が少ないと解像性の向上がない場合があり、多すぎるとパターンの膜減りが生じ、解像度が低下する傾向がある。 The compounding quantity of a dissolution inhibitor is 0-50 parts with respect to 100 parts of base resins, Preferably it is 5-50 parts, More preferably, it is 10-30 parts, It can use individually or in mixture of 2 or more types. If the blending amount is small, the resolution may not be improved. If the blending amount is too large, the pattern film is reduced and the resolution tends to decrease.
更に、本発明のレジスト材料には、塩基性化合物を配合することができる。
塩基性化合物としては、酸発生剤より発生する酸がレジスト膜中に拡散する際の拡散速度を抑制することができる化合物が適している。塩基性化合物の配合により、レジスト膜中での酸の拡散速度が抑制されて解像度が向上し、露光後の感度変化を抑制したり、基板や環境依存性を少なくし、露光余裕度やパターンプロファイル等を向上することができる。
Furthermore, a basic compound can be mix | blended with the resist material of this invention.
As the basic compound, a compound capable of suppressing the diffusion rate when the acid generated from the acid generator diffuses into the resist film is suitable. By adding a basic compound, the acid diffusion rate in the resist film is suppressed and resolution is improved, sensitivity change after exposure is suppressed, and substrate and environment dependency is reduced, and exposure margin and pattern profile are reduced. Etc. can be improved.
このような塩基性化合物としては、第一級、第二級、第三級の脂肪族アミン類、混成アミン類、芳香族アミン類、複素環アミン類、カルボキシ基を有する含窒素化合物、スルホニル基を有する含窒素化合物、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物、アミド誘導体、イミド誘導体等が挙げられる。 Examples of such basic compounds include primary, secondary, and tertiary aliphatic amines, hybrid amines, aromatic amines, heterocyclic amines, nitrogen-containing compounds having a carboxy group, and sulfonyl groups. A nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyl group, a nitrogen-containing compound having a hydroxyphenyl group, an alcoholic nitrogen-containing compound, an amide derivative, an imide derivative, and the like.
具体的には、第一級の脂肪族アミン類として、アンモニア、メチルアミン、エチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、sec−ブチルアミン、tert−ブチルアミン、ペンチルアミン、tert−アミルアミン、シクロペンチルアミン、ヘキシルアミン、シクロヘキシルアミン、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ドデシルアミン、セチルアミン、メチレンジアミン、エチレンジアミン、テトラエチレンペンタミン等が例示され、第二級の脂肪族アミン類として、ジメチルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、ジ−n−ブチルアミン、ジイソブチルアミン、ジ−sec−ブチルアミン、ジペンチルアミン、ジシクロペンチルアミン、ジヘキシルアミン、ジシクロヘキシルアミン、ジヘプチルアミン、ジオクチルアミン、ジノニルアミン、ジデシルアミン、ジドデシルアミン、ジセチルアミン、N,N−ジメチルメチレンジアミン、N,N−ジメチルエチレンジアミン、N,N−ジメチルテトラエチレンペンタミン等が例示され、第三級の脂肪族アミン類として、トリメチルアミン、トリエチルアミン、トリ−n−プロピルアミン、トリイソプロピルアミン、トリ−n−ブチルアミン、トリイソブチルアミン、トリ−sec−ブチルアミン、トリペンチルアミン、トリシクロペンチルアミン、トリヘキシルアミン、トリシクロヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン、トリデシルアミン、トリドデシルアミン、トリセチルアミン、N,N,N’,N’−テトラメチルメチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチルテトラエチレンペンタミン等が例示される。 Specifically, primary aliphatic amines include ammonia, methylamine, ethylamine, n-propylamine, isopropylamine, n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, pentylamine, tert- Amylamine, cyclopentylamine, hexylamine, cyclohexylamine, heptylamine, octylamine, nonylamine, decylamine, dodecylamine, cetylamine, methylenediamine, ethylenediamine, tetraethylenepentamine, etc. are exemplified as secondary aliphatic amines. Dimethylamine, diethylamine, di-n-propylamine, diisopropylamine, di-n-butylamine, diisobutylamine, di-sec-butylamine, dipentylamine, disi Lopentylamine, dihexylamine, dicyclohexylamine, diheptylamine, dioctylamine, dinonylamine, didecylamine, didodecylamine, dicetylamine, N, N-dimethylmethylenediamine, N, N-dimethylethylenediamine, N, N-dimethyltetraethylenepenta Examples of tertiary aliphatic amines include trimethylamine, triethylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, triisobutylamine, tri-sec-butylamine, and tripentylamine. , Tricyclopentylamine, trihexylamine, tricyclohexylamine, triheptylamine, trioctylamine, trinonylamine, tridecylamine, tridodecylamine, Examples include cetylamine, N, N, N ′, N′-tetramethylmethylenediamine, N, N, N ′, N′-tetramethylethylenediamine, N, N, N ′, N′-tetramethyltetraethylenepentamine and the like. Is done.
また、混成アミン類としては、例えばジメチルエチルアミン、メチルエチルプロピルアミン、ベンジルアミン、フェネチルアミン、ベンジルジメチルアミン等が例示される。 Examples of hybrid amines include dimethylethylamine, methylethylpropylamine, benzylamine, phenethylamine, and benzyldimethylamine.
芳香族アミン類及び複素環アミン類の具体例としては、アニリン誘導体(例えばアニリン、N−メチルアニリン、N−エチルアニリン、N−プロピルアニリン、N,N−ジメチルアニリン、2−メチルアニリン、3−メチルアニリン、4−メチルアニリン、エチルアニリン、プロピルアニリン、トリメチルアニリン、2−ニトロアニリン、3−ニトロアニリン、4−ニトロアニリン、2,4−ジニトロアニリン、2,6−ジニトロアニリン、3,5−ジニトロアニリン、N,N−ジメチルトルイジン等)、ジフェニル(p−トリル)アミン、メチルジフェニルアミン、トリフェニルアミン、フェニレンジアミン、ナフチルアミン、ジアミノナフタレン、ピロール誘導体(例えばピロール、2H−ピロール、1−メチルピロール、2,4−ジメチルピロール、2,5−ジメチルピロール、N−メチルピロール等)、オキサゾール誘導体(例えばオキサゾール、イソオキサゾール等)、チアゾール誘導体(例えばチアゾール、イソチアゾール等)、イミダゾール誘導体(例えばイミダゾール、4−メチルイミダゾール、4−メチル−2−フェニルイミダゾール等)、ピラゾール誘導体、フラザン誘導体、ピロリン誘導体(例えばピロリン、2−メチル−1−ピロリン等)、ピロリジン誘導体(例えばピロリジン、N−メチルピロリジン、ピロリジノン、N−メチルピロリドン等)、イミダゾリン誘導体、イミダゾリジン誘導体、ピリジン誘導体(例えばピリジン、メチルピリジン、エチルピリジン、プロピルピリジン、ブチルピリジン、4−(1−ブチルペンチル)ピリジン、ジメチルピリジン、トリメチルピリジン、トリエチルピリジン、フェニルピリジン、3−メチル−2−フェニルピリジン、4−tert−ブチルピリジン、ジフェニルピリジン、ベンジルピリジン、メトキシピリジン、ブトキシピリジン、ジメトキシピリジン、1−メチル−2−ピリジン、4−ピロリジノピリジン、1−メチル−4−フェニルピリジン、2−(1−エチルプロピル)ピリジン、アミノピリジン、ジメチルアミノピリジン等)、ピリダジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピラゾリン誘導体、ピラゾリジン誘導体、ピペリジン誘導体、ピペラジン誘導体、モルホリン誘導体、インドール誘導体、イソインドール誘導体、1H−インダゾール誘導体、インドリン誘導体、キノリン誘導体(例えばキノリン、3−キノリンカルボニトリル等)、イソキノリン誘導体、シンノリン誘導体、キナゾリン誘導体、キノキサリン誘導体、フタラジン誘導体、プリン誘導体、プテリジン誘導体、カルバゾール誘導体、フェナントリジン誘導体、アクリジン誘導体、フェナジン誘導体、1,10−フェナントロリン誘導体、アデニン誘導体、アデノシン誘導体、グアニン誘導体、グアノシン誘導体、ウラシル誘導体、ウリジン誘導体等が例示される。 Specific examples of aromatic amines and heterocyclic amines include aniline derivatives (eg, aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N, N-dimethylaniline, 2-methylaniline, 3- Methylaniline, 4-methylaniline, ethylaniline, propylaniline, trimethylaniline, 2-nitroaniline, 3-nitroaniline, 4-nitroaniline, 2,4-dinitroaniline, 2,6-dinitroaniline, 3,5- Dinitroaniline, N, N-dimethyltoluidine, etc.), diphenyl (p-tolyl) amine, methyldiphenylamine, triphenylamine, phenylenediamine, naphthylamine, diaminonaphthalene, pyrrole derivatives (eg pyrrole, 2H-pyrrole, 1-methylpyrrole, 2,4-dim Lupyrrole, 2,5-dimethylpyrrole, N-methylpyrrole, etc.), oxazole derivatives (eg oxazole, isoxazole etc.), thiazole derivatives (eg thiazole, isothiazole etc.), imidazole derivatives (eg imidazole, 4-methylimidazole, 4 -Methyl-2-phenylimidazole, etc.), pyrazole derivatives, furazane derivatives, pyrroline derivatives (eg pyrroline, 2-methyl-1-pyrroline etc.), pyrrolidine derivatives (eg pyrrolidine, N-methylpyrrolidine, pyrrolidinone, N-methylpyrrolidone etc.) ), Imidazoline derivatives, imidazolidine derivatives, pyridine derivatives (eg pyridine, methylpyridine, ethylpyridine, propylpyridine, butylpyridine, 4- (1-butylpentyl) pyridine, dimethyl) Lysine, trimethylpyridine, triethylpyridine, phenylpyridine, 3-methyl-2-phenylpyridine, 4-tert-butylpyridine, diphenylpyridine, benzylpyridine, methoxypyridine, butoxypyridine, dimethoxypyridine, 1-methyl-2-pyridine, 4-pyrrolidinopyridine, 1-methyl-4-phenylpyridine, 2- (1-ethylpropyl) pyridine, aminopyridine, dimethylaminopyridine, etc.), pyridazine derivatives, pyrimidine derivatives, pyrazine derivatives, pyrazoline derivatives, pyrazolidine derivatives, piperidine Derivatives, piperazine derivatives, morpholine derivatives, indole derivatives, isoindole derivatives, 1H-indazole derivatives, indoline derivatives, quinoline derivatives (eg quinoline, 3-quinoline carbo Nitriles), isoquinoline derivatives, cinnoline derivatives, quinazoline derivatives, quinoxaline derivatives, phthalazine derivatives, purine derivatives, pteridine derivatives, carbazole derivatives, phenanthridine derivatives, acridine derivatives, phenazine derivatives, 1,10-phenanthroline derivatives, adenine derivatives, adenosine Examples include derivatives, guanine derivatives, guanosine derivatives, uracil derivatives, uridine derivatives and the like.
更に、カルボキシ基を有する含窒素化合物としては、例えばアミノ安息香酸、インドールカルボン酸、アミノ酸誘導体(例えばニコチン酸、アラニン、アルギニン、アスパラギン酸、グルタミン酸、グリシン、ヒスチジン、イソロイシン、グリシルロイシン、ロイシン、メチオニン、フェニルアラニン、スレオニン、リジン、3−アミノピラジン−2−カルボン酸、メトキシアラニン)等が例示され、スルホニル基を有する含窒素化合物として3−ピリジンスルホン酸、p−トルエンスルホン酸ピリジニウム等が例示され、水酸基を有する含窒素化合物、ヒドロキシフェニル基を有する含窒素化合物、アルコール性含窒素化合物としては、2−ヒドロキシピリジン、アミノクレゾール、2,4−キノリンジオール、3−インドールメタノールヒドレート、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、N−エチルジエタノールアミン、N,N−ジエチルエタノールアミン、トリイソプロパノールアミン、2,2’−イミノジエタノール、2−アミノエタノ−ル、3−アミノ−1−プロパノール、4−アミノ−1−ブタノール、4−(2−ヒドロキシエチル)モルホリン、2−(2−ヒドロキシエチル)ピリジン、1−(2−ヒドロキシエチル)ピペラジン、1−[2−(2−ヒドロキシエトキシ)エチル]ピペラジン、ピペリジンエタノール、1−(2−ヒドロキシエチル)ピロリジン、1−(2−ヒドロキシエチル)−2−ピロリジノン、3−ピペリジノ−1,2−プロパンジオール、3−ピロリジノ−1,2−プロパンジオール、8−ヒドロキシユロリジン、3−クイヌクリジノール、3−トロパノール、1−メチル−2−ピロリジンエタノール、1−アジリジンエタノール、N−(2−ヒドロキシエチル)フタルイミド、N−(2−ヒドロキシエチル)イソニコチンアミド等が例示される。アミド誘導体としては、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、プロピオンアミド、ベンズアミド等が例示される。イミド誘導体としては、フタルイミド、サクシンイミド、マレイミド等が例示される。 Furthermore, examples of the nitrogen-containing compound having a carboxy group include aminobenzoic acid, indolecarboxylic acid, amino acid derivatives (for example, nicotinic acid, alanine, arginine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, glycylleucine, leucine, methionine. , Phenylalanine, threonine, lysine, 3-aminopyrazine-2-carboxylic acid, methoxyalanine) and the like, and examples of the nitrogen-containing compound having a sulfonyl group include 3-pyridinesulfonic acid, pyridinium p-toluenesulfonate, and the like. Nitrogen-containing compounds having a hydroxyl group, nitrogen-containing compounds having a hydroxyphenyl group, and alcoholic nitrogen-containing compounds include 2-hydroxypyridine, aminocresol, 2,4-quinolinediol, and 3-indolemethanol. Drate, monoethanolamine, diethanolamine, triethanolamine, N-ethyldiethanolamine, N, N-diethylethanolamine, triisopropanolamine, 2,2'-iminodiethanol, 2-aminoethanol, 3-amino-1-propanol 4-amino-1-butanol, 4- (2-hydroxyethyl) morpholine, 2- (2-hydroxyethyl) pyridine, 1- (2-hydroxyethyl) piperazine, 1- [2- (2-hydroxyethoxy) Ethyl] piperazine, piperidineethanol, 1- (2-hydroxyethyl) pyrrolidine, 1- (2-hydroxyethyl) -2-pyrrolidinone, 3-piperidino-1,2-propanediol, 3-pyrrolidino-1,2-propane Diol, 8-hydroxyuroli , 3-cuincridinol, 3-tropanol, 1-methyl-2-pyrrolidineethanol, 1-aziridineethanol, N- (2-hydroxyethyl) phthalimide, N- (2-hydroxyethyl) isonicotinamide, etc. Illustrated. Examples of amide derivatives include formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide, propionamide, benzamide and the like. Examples of imide derivatives include phthalimide, succinimide, maleimide and the like.
更に、下記一般式(B)−1で示される塩基性化合物から選ばれる1種又は2種以上を配合することもできる。
N(X)n(Y)3-n (B)−1
(式中、nは1、2又は3である。側鎖Xは同一でも異なっていてもよく、下記一般式(X)−1〜(X)−3で表すことができる。側鎖Yは同一又は異種の、水素原子もしくは直鎖状、分岐状又は環状の炭素数1〜20のアルキル基を示し、エーテル基もしくはヒドロキシル基を含んでもよい。また、X同士が結合して環を形成してもよい。)
Furthermore, 1 type, or 2 or more types chosen from the basic compound shown by the following general formula (B) -1 can also be mix | blended.
N (X) n (Y) 3-n (B) -1
(In the formula, n is 1, 2 or 3. The side chain X may be the same or different and can be represented by the following general formulas (X) -1 to (X) -3. The side chain Y is It represents the same or different hydrogen atom or linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, and may contain an ether group or a hydroxyl group, and Xs may combine to form a ring. May be.)
ここで、R300、R302、R305は炭素数1〜4の直鎖状又は分岐状のアルキレン基であり、R301、R304は水素原子、炭素数1〜20の直鎖状、分岐状又は環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基、ラクトン環を1あるいは複数含んでいてもよい。R303は単結合、炭素数1〜4の直鎖状又は分岐状のアルキレン基であり、R306は炭素数1〜20の直鎖状、分岐状又は環状のアルキル基であり、ヒドロキシ基、エーテル基、エステル基、ラクトン環を1あるいは複数含んでいてもよい。 Here, R 300 , R 302 and R 305 are linear or branched alkylene groups having 1 to 4 carbon atoms, and R 301 and R 304 are hydrogen atoms, linear and branched chains having 1 to 20 carbon atoms. Or a cyclic alkyl group, which may contain one or a plurality of hydroxy groups, ether groups, ester groups and lactone rings. R 303 is a single bond, a linear or branched alkylene group having 1 to 4 carbon atoms, R 306 is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, a hydroxy group, One or a plurality of ether groups, ester groups and lactone rings may be contained.
上記一般式(B)−1で表される化合物は具体的には下記に例示される。
トリス(2−メトキシメトキシエチル)アミン、トリス{2−(2−メトキシエトキシ)エチル}アミン、トリス{2−(2−メトキシエトキシメトキシ)エチル}アミン、トリス{2−(1−メトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシエトキシ)エチル}アミン、トリス{2−(1−エトキシプロポキシ)エチル}アミン、トリス[2−{2−(2−ヒドロキシエトキシ)エトキシ}エチル]アミン、4,7,13,16,21,24−ヘキサオキサ−1,10−ジアザビシクロ[8.8.8]ヘキサコサン、4,7,13,18−テトラオキサ−1,10−ジアザビシクロ[8.5.5]エイコサン、1,4,10,13−テトラオキサ−7,16−ジアザビシクロオクタデカン、1−アザ−12−クラウン−4、1−アザ−15−クラウン−5、1−アザ−18−クラウン−6、トリス(2−ホルミルオキシエチル)アミン、トリス(2−アセトキシエチル)アミン、トリス(2−プロピオニルオキシエチル)アミン、トリス(2−ブチリルオキシエチル)アミン、トリス(2−イソブチリルオキシエチル)アミン、トリス(2−バレリルオキシエチル)アミン、トリス(2−ピバロイルオキシエチル)アミン、N,N−ビス(2−アセトキシエチル)2−(アセトキシアセトキシ)エチルアミン、トリス(2−メトキシカルボニルオキシエチル)アミン、トリス(2−tert−ブトキシカルボニルオキシエチル)アミン、トリス[2−(2−オキソプロポキシ)エチル]アミン、トリス[2−(メトキシカルボニルメチル)オキシエチル]アミン、トリス[2−(tert−ブトキシカルボニルメチルオキシ)エチル]アミン、トリス[2−(シクロヘキシルオキシカルボニルメチルオキシ)エチル]アミン、トリス(2−メトキシカルボニルエチル)アミン、トリス(2−エトキシカルボニルエチル)アミン、N,N−ビス(2−ヒドロキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(メトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(エトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−メトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−ヒドロキシエトキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−アセトキシエトキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(メトキシカルボニル)メトキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(2−オキソプロポキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−アセトキシエチル)2−(テトラヒドロフルフリルオキシカルボニル)エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−アセトキシエチル)2−[(2−オキソテトラヒドロフラン−3−イル)オキシカルボニル]エチルアミン、N,N−ビス(2−ヒドロキシエチル)2−(4−ヒドロキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(4−ホルミルオキシブトキシカルボニル)エチルアミン、N,N−ビス(2−ホルミルオキシエチル)2−(2−ホルミルオキシエトキシカルボニル)エチルアミン、N,N−ビス(2−メトキシエチル)2−(メトキシカルボニル)エチルアミン、N−(2−ヒドロキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−ヒドロキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(2−アセトキシエチル)ビス[2−(エトキシカルボニル)エチル]アミン、N−(3−ヒドロキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(3−アセトキシ−1−プロピル)ビス[2−(メトキシカルボニル)エチル]アミン、N−(2−メトキシエチル)ビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(メトキシカルボニル)エチル]アミン、N−ブチルビス[2−(2−メトキシエトキシカルボニル)エチル]アミン、N−メチルビス(2−アセトキシエチル)アミン、N−エチルビス(2−アセトキシエチル)アミン、N−メチルビス(2−ピバロイルオキシエチル)アミン、N−エチルビス[2−(メトキシカルボニルオキシ)エチル]アミン、N−エチルビス[2−(tert−ブトキシカルボニルオキシ)エチル]アミン、トリス(メトキシカルボニルメチル)アミン、トリス(エトキシカルボニルメチル)アミン、N−ブチルビス(メトキシカルボニルメチル)アミン、N−ヘキシルビス(メトキシカルボニルメチル)アミン、β−(ジエチルアミノ)−δ−バレロラクトンを例示できるが、これらに制限されない。
Specific examples of the compound represented by the general formula (B) -1 are given below.
Tris (2-methoxymethoxyethyl) amine, tris {2- (2-methoxyethoxy) ethyl} amine, tris {2- (2-methoxyethoxymethoxy) ethyl} amine, tris {2- (1-methoxyethoxy) ethyl } Amine, Tris {2- (1-ethoxyethoxy) ethyl} amine, Tris {2- (1-ethoxypropoxy) ethyl} amine, Tris [2- {2- (2-hydroxyethoxy) ethoxy} ethyl] amine, 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo [8.8.8] hexacosane, 4,7,13,18-tetraoxa-1,10-diazabicyclo [8.5.5] Eicosane, 1,4,10,13-tetraoxa-7,16-diazabicyclooctadecane, 1-aza-12-crown-4 1-aza-15-crown-5, 1-aza-18-crown-6, tris (2-formyloxyethyl) amine, tris (2-acetoxyethyl) amine, tris (2-propionyloxyethyl) amine, tris (2-butyryloxyethyl) amine, tris (2-isobutyryloxyethyl) amine, tris (2-valeryloxyethyl) amine, tris (2-pivaloyloxyethyl) amine, N, N-bis (2-acetoxyethyl) 2- (acetoxyacetoxy) ethylamine, tris (2-methoxycarbonyloxyethyl) amine, tris (2-tert-butoxycarbonyloxyethyl) amine, tris [2- (2-oxopropoxy) ethyl] Amine, tris [2- (methoxycarbonylmethyl) oxyethyl] amine Tris [2- (tert-butoxycarbonylmethyloxy) ethyl] amine, tris [2- (cyclohexyloxycarbonylmethyloxy) ethyl] amine, tris (2-methoxycarbonylethyl) amine, tris (2-ethoxycarbonylethyl) amine N, N-bis (2-hydroxyethyl) 2- (methoxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (methoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2- (ethoxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (ethoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2- (2-methoxyethoxycarbonyl) ethylamine, N , N-bis (2-acetoxyethyl) 2- (2-methoxyethoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2- (2-hydroxyethoxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (2-acetoxy) Ethoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2-[(methoxycarbonyl) methoxycarbonyl] ethylamine, N, N-bis (2-acetoxyethyl) 2-[(methoxycarbonyl) methoxycarbonyl] ethylamine N, N-bis (2-hydroxyethyl) 2- (2-oxopropoxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (2-oxopropoxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2- (tetrahydrofurfuryl Oxycarbonyl) ethylamine, N, N-bis (2-acetoxyethyl) 2- (tetrahydrofurfuryloxycarbonyl) ethylamine, N, N-bis (2-hydroxyethyl) 2-[(2-oxotetrahydrofuran-3-yl ) Oxycarbonyl] ethylamine, N, N-bis (2-acetoxyethyl) 2-[(2-oxotetrahydrofuran-3-yl) oxycarbonyl] ethylamine, N, N-bis (2-hydroxyethyl) 2- (4 -Hydroxybutoxycarbonyl) ethylamine, N, N-bis (2-formyloxyethyl) 2- (4-formyloxybutoxycarbonyl) ethylamine, N, N-bis (2-formyloxyethyl) 2- (2-formyloxy) Ethoxycarbonyl) ethylamine, N, N-bis (2- Toxiethyl) 2- (methoxycarbonyl) ethylamine, N- (2-hydroxyethyl) bis [2- (methoxycarbonyl) ethyl] amine, N- (2-acetoxyethyl) bis [2- (methoxycarbonyl) ethyl] amine, N- (2-hydroxyethyl) bis [2- (ethoxycarbonyl) ethyl] amine, N- (2-acetoxyethyl) bis [2- (ethoxycarbonyl) ethyl] amine, N- (3-hydroxy-1-propyl) ) Bis [2- (methoxycarbonyl) ethyl] amine, N- (3-acetoxy-1-propyl) bis [2- (methoxycarbonyl) ethyl] amine, N- (2-methoxyethyl) bis [2- (methoxy Carbonyl) ethyl] amine, N-butylbis [2- (methoxycarbonyl) ethyl] amine, N-butyl Rubis [2- (2-methoxyethoxycarbonyl) ethyl] amine, N-methylbis (2-acetoxyethyl) amine, N-ethylbis (2-acetoxyethyl) amine, N-methylbis (2-pivaloyloxyethyl) amine N-ethylbis [2- (methoxycarbonyloxy) ethyl] amine, N-ethylbis [2- (tert-butoxycarbonyloxy) ethyl] amine, tris (methoxycarbonylmethyl) amine, tris (ethoxycarbonylmethyl) amine, N -Butylbis (methoxycarbonylmethyl) amine, N-hexylbis (methoxycarbonylmethyl) amine, and β- (diethylamino) -δ-valerolactone can be exemplified, but are not limited thereto.
更に、下記一般式(B)−2に示される環状構造を持つ塩基性化合物の1種あるいは2種以上を添加することもできる。
上記式(B)−2としては具体的には、1−[2−(メトキシメトキシ)エチル]ピロリジン、1−[2−(メトキシメトキシ)エチル]ピペリジン、4−[2−(メトキシメトキシ)エチル]モルホリン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピロリジン、1−[2−[(2−メトキシエトキシ)メトキシ]エチル]ピペリジン、4−[2−[(2−メトキシエトキシ)メトキシ]エチル]モルホリン、酢酸2−(1−ピロリジニル)エチル、酢酸2−ピペリジノエチル、酢酸2−モルホリノエチル、ギ酸2−(1−ピロリジニル)エチル、プロピオン酸2−ピペリジノエチル、アセトキシ酢酸2−モルホリノエチル、メトキシ酢酸2−(1−ピロリジニル)エチル、4−[2−(メトキシカルボニルオキシ)エチル]モルホリン、1−[2−(t−ブトキシカルボニルオキシ)エチル]ピペリジン、4−[2−(2−メトキシエトキシカルボニルオキシ)エチル]モルホリン、3−(1−ピロリジニル)プロピオン酸メチル、3−ピペリジノプロピオン酸メチル、3−モルホリノプロピオン酸メチル、3−(チオモルホリノ)プロピオン酸メチル、2−メチル−3−(1−ピロリジニル)プロピオン酸メチル、3−モルホリノプロピオン酸エチル、3−ピペリジノプロピオン酸メトキシカルボニルメチル、3−(1−ピロリジニル)プロピオン酸2−ヒドロキシエチル、3−モルホリノプロピオン酸2−アセトキシエチル、3−(1−ピロリジニル)プロピオン酸2−オキソテトラヒドロフラン−3−イル、3−モルホリノプロピオン酸テトラヒドロフルフリル、3−ピペリジノプロピオン酸グリシジル、3−モルホリノプロピオン酸2−メトキシエチル、3−(1−ピロリジニル)プロピオン酸2−(2−メトキシエトキシ)エチル、3−モルホリノプロピオン酸ブチル、3−ピペリジノプロピオン酸シクロヘキシル、α−(1−ピロリジニル)メチル−γ−ブチロラクトン、β−ピペリジノ−γ−ブチロラクトン、β−モルホリノ−δ−バレロラクトン、1−ピロリジニル酢酸メチル、ピペリジノ酢酸メチル、モルホリノ酢酸メチル、チオモルホリノ酢酸メチル、1−ピロリジニル酢酸エチル、モルホリノ酢酸2−メトキシエチルで挙げることができる。 Specific examples of the formula (B) -2 include 1- [2- (methoxymethoxy) ethyl] pyrrolidine, 1- [2- (methoxymethoxy) ethyl] piperidine, 4- [2- (methoxymethoxy) ethyl. ] Morpholine, 1- [2-[(2-methoxyethoxy) methoxy] ethyl] pyrrolidine, 1- [2-[(2-methoxyethoxy) methoxy] ethyl] piperidine, 4- [2-[(2-methoxyethoxy) ) Methoxy] ethyl] morpholine, 2- (1-pyrrolidinyl) ethyl acetate, 2-piperidinoethyl acetate, 2-morpholinoethyl acetate, 2- (1-pyrrolidinyl) ethyl formate, 2-piperidinoethyl propionate, 2-morpholinoethyl acetoxyacetate , 2- (1-pyrrolidinyl) ethyl methoxyacetate, 4- [2- (methoxycarbonyloxy) ethyl Morpholine, 1- [2- (t-butoxycarbonyloxy) ethyl] piperidine, 4- [2- (2-methoxyethoxycarbonyloxy) ethyl] morpholine, methyl 3- (1-pyrrolidinyl) propionate, 3-piperidi Methyl nopropionate, methyl 3-morpholinopropionate, methyl 3- (thiomorpholino) propionate, methyl 2-methyl-3- (1-pyrrolidinyl) propionate, ethyl 3-morpholinopropionate, 3-piperidinopropion Methoxycarbonylmethyl acid, 2-hydroxyethyl 3- (1-pyrrolidinyl) propionate, 2-acetoxyethyl 3-morpholinopropionate, 2-oxotetrahydrofuran-3-yl 3- (1-pyrrolidinyl) propionate, 3-morpholino Propionic acid tetrahydrofur Ryl, glycidyl 3-piperidinopropionate, 2-methoxyethyl 3-morpholinopropionate, 2- (2-methoxyethoxy) ethyl 3- (1-pyrrolidinyl) propionate, butyl 3-morpholinopropionate, 3-pi Cyclohexyl peridinopropionate, α- (1-pyrrolidinyl) methyl-γ-butyrolactone, β-piperidino-γ-butyrolactone, β-morpholino-δ-valerolactone, methyl 1-pyrrolidinyl acetate, methyl piperidinoacetate, methyl morpholinoacetate, Mention may be made of methyl thiomorpholinoacetate, ethyl 1-pyrrolidinyl acetate, 2-methoxyethyl morpholinoacetate.
更に、下記一般式(B)−3〜(B)−6で表されるシアノ基を含む塩基性化合物を添加することができる。
シアノ基を含む塩基は、具体的には3−(ジエチルアミノ)プロピオノニトリル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオノニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオン酸メチル、N−(2−シアノエチル)−N−エチル−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ヒドロキシエチル)−3−アミノプロピオノニトリル、N−(2−アセトキシエチル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−ホルミルオキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(2−メトキシエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−[2−(メトキシメトキシ)エチル]−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ヒドロキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(3−アセトキシ−1−プロピル)−N−(2−シアノエチル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−(3−ホルミルオキシ−1−プロピル)−3−アミノプロピオノニトリル、N−(2−シアノエチル)−N−テトラヒドロフルフリル−3−アミノプロピオノニトリル、N,N−ビス(2−シアノエチル)−3−アミノプロピオノニトリル、ジエチルアミノアセトニトリル、N,N−ビス(2−ヒドロキシエチル)アミノアセトニトリル、N,N−ビス(2−アセトキシエチル)アミノアセトニトリル、N,N−ビス(2−ホルミルオキシエチル)アミノアセトニトリル、N,N−ビス(2−メトキシエチル)アミノアセトニトリル、N,N−ビス[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)−3−アミノプロピオン酸メチル、N−(2−アセトキシエチル)−N−シアノメチル−3−アミノプロピオン酸メチル、N−シアノメチル−N−(2−ヒドロキシエチル)アミノアセトニトリル、N−(2−アセトキシエチル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(2−ホルミルオキシエチル)アミノアセトニトリル、N−シアノメチル−N−(2−メトキシエチル)アミノアセトニトリル、N−シアノメチル−N−[2−(メトキシメトキシ)エチル]アミノアセトニトリル、N−(シアノメチル)−N−(3−ヒドロキシ−1−プロピル)アミノアセトニトリル、N−(3−アセトキシ−1−プロピル)−N−(シアノメチル)アミノアセトニトリル、N−シアノメチル−N−(3−ホルミルオキシ−1−プロピル)アミノアセトニトリル、N,N−ビス(シアノメチル)アミノアセトニトリル、1−ピロリジンプロピオノニトリル、1−ピペリジンプロピオノニトリル、4−モルホリンプロピオノニトリル、1−ピロリジンアセトニトリル、1−ピペリジンアセトニトリル、4−モルホリンアセトニトリル、3−ジエチルアミノプロピオン酸シアノメチル、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸シアノメチル、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸シアノメチル、3−ジエチルアミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ヒドロキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−アセトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−ホルミルオキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス(2−メトキシエチル)−3−アミノプロピオン酸(2−シアノエチル)、N,N−ビス[2−(メトキシメトキシ)エチル]−3−アミノプロピオン酸(2−シアノエチル)、1−ピロリジンプロピオン酸シアノメチル、1−ピペリジンプロピオン酸シアノメチル、4−モルホリンプロピオン酸シアノメチル、1−ピロリジンプロピオン酸(2−シアノエチル)、1−ピペリジンプロピオン酸(2−シアノエチル)、4−モルホリンプロピオン酸(2−シアノエチル)が例示される。 Specific examples of the base containing a cyano group include 3- (diethylamino) propiononitrile, N, N-bis (2-hydroxyethyl) -3-aminopropiononitrile, and N, N-bis (2-acetoxyethyl). -3-aminopropiononitrile, N, N-bis (2-formyloxyethyl) -3-aminopropiononitrile, N, N-bis (2-methoxyethyl) -3-aminopropiononitrile, N, N -Bis [2- (methoxymethoxy) ethyl] -3-aminopropiononitrile, methyl N- (2-cyanoethyl) -N- (2-methoxyethyl) -3-aminopropionate, N- (2-cyanoethyl) -N- (2-hydroxyethyl) -3-aminopropionic acid methyl, N- (2-acetoxyethyl) -N- (2-cyanoethyl) -3-aminopro Methyl onate, N- (2-cyanoethyl) -N-ethyl-3-aminopropiononitrile, N- (2-cyanoethyl) -N- (2-hydroxyethyl) -3-aminopropiononitrile, N- ( 2-acetoxyethyl) -N- (2-cyanoethyl) -3-aminopropiononitrile, N- (2-cyanoethyl) -N- (2-formyloxyethyl) -3-aminopropiononitrile, N- (2 -Cyanoethyl) -N- (2-methoxyethyl) -3-aminopropiononitrile, N- (2-cyanoethyl) -N- [2- (methoxymethoxy) ethyl] -3-aminopropiononitrile, N- ( 2-cyanoethyl) -N- (3-hydroxy-1-propyl) -3-aminopropiononitrile, N- (3-acetoxy-1-propyl) -N- (2 Cyanoethyl) -3-aminopropiononitrile, N- (2-cyanoethyl) -N- (3-formyloxy-1-propyl) -3-aminopropiononitrile, N- (2-cyanoethyl) -N-tetrahydrofur Furyl-3-aminopropiononitrile, N, N-bis (2-cyanoethyl) -3-aminopropiononitrile, diethylaminoacetonitrile, N, N-bis (2-hydroxyethyl) aminoacetonitrile, N, N-bis ( 2-acetoxyethyl) aminoacetonitrile, N, N-bis (2-formyloxyethyl) aminoacetonitrile, N, N-bis (2-methoxyethyl) aminoacetonitrile, N, N-bis [2- (methoxymethoxy) ethyl Aminoacetonitrile, N-cyanomethyl-N- (2-methoxyethyl) ) Methyl 3-aminopropionate, methyl N-cyanomethyl-N- (2-hydroxyethyl) -3-aminopropionate, methyl N- (2-acetoxyethyl) -N-cyanomethyl-3-aminopropionate, N -Cyanomethyl-N- (2-hydroxyethyl) aminoacetonitrile, N- (2-acetoxyethyl) -N- (cyanomethyl) aminoacetonitrile, N-cyanomethyl-N- (2-formyloxyethyl) aminoacetonitrile, N-cyanomethyl -N- (2-methoxyethyl) aminoacetonitrile, N-cyanomethyl-N- [2- (methoxymethoxy) ethyl] aminoacetonitrile, N- (cyanomethyl) -N- (3-hydroxy-1-propyl) aminoacetonitrile, N- (3-acetoxy-1-propyl) -N (Cyanomethyl) aminoacetonitrile, N-cyanomethyl-N- (3-formyloxy-1-propyl) aminoacetonitrile, N, N-bis (cyanomethyl) aminoacetonitrile, 1-pyrrolidinepropiononitrile, 1-piperidinepropiononitrile, 4-morpholinepropiononitrile, 1-pyrrolidineacetonitrile, 1-piperidineacetonitrile, 4-morpholineacetonitrile, cyanomethyl 3-diethylaminopropionate, cyanomethyl N, N-bis (2-hydroxyethyl) -3-aminopropionate, N, Cyanomethyl N-bis (2-acetoxyethyl) -3-aminopropionate, cyanomethyl N, N-bis (2-formyloxyethyl) -3-aminopropionate, N, N-bis (2-methoxyethyl) Cyanomethyl 3-aminopropionate, N, N-bis [2- (methoxymethoxy) ethyl] -3-aminopropionate cyanomethyl, 3-diethylaminopropionic acid (2-cyanoethyl), N, N-bis (2-hydroxyethyl) ) -3-Aminopropionic acid (2-cyanoethyl), N, N-bis (2-acetoxyethyl) -3-aminopropionic acid (2-cyanoethyl), N, N-bis (2-formyloxyethyl) -3 Aminopropionic acid (2-cyanoethyl), N, N-bis (2-methoxyethyl) -3-aminopropionic acid (2-cyanoethyl), N, N-bis [2- (methoxymethoxy) ethyl] -3- Aminopropionic acid (2-cyanoethyl), 1-pyrrolidinepropionate cyanomethyl, 1-piperidinepropionate cyano Examples include methyl, cyanomethyl 4-morpholine propionate, 1-pyrrolidinepropionic acid (2-cyanoethyl), 1-piperidinepropionic acid (2-cyanoethyl), 4-morpholine propionic acid (2-cyanoethyl).
なお、本発明の塩基化合物の配合量はベース樹脂100部に対して0.001〜2部、特に0.01〜1部が好適である。配合量が0.001部より少ないと配合効果がなく、2部を超えると感度が低下しすぎる場合がある。 In addition, the compounding quantity of the base compound of this invention is 0.001-2 parts with respect to 100 parts of base resins, Especially 0.01-1 part is suitable. If the blending amount is less than 0.001 part, there is no blending effect, and if it exceeds 2 parts, the sensitivity may be too low.
本発明のポジ型レジスト材料に添加することができる分子内に≡C−COOHで示される基有する化合物としては、例えば下記I群及びII群から選ばれる1種又は2種以上の化合物を使用することができるが、これらに限定されるものではない。本成分の配合により、レジストのPED安定性が向上し、窒化膜基板上でのエッジラフネスが改善されるのである。 As the compound having a group represented by ≡C—COOH in the molecule that can be added to the positive resist material of the present invention, for example, one or more compounds selected from the following groups I and II are used. However, it is not limited to these. By blending this component, the PED stability of the resist is improved, and the edge roughness on the nitride film substrate is improved.
[I群]
下記一般式(A1)〜(A10)で示される化合物のフェノール性水酸基の水素原子の一部又は全部を−R401−COOH(R401は炭素数1〜10の直鎖状又は分岐状のアルキレン基)により置換してなり、かつ分子中のフェノール性水酸基(C)と≡C−COOHで示される基(D)とのモル比率がC/(C+D)=0.1〜1.0である化合物。
[Group I]
A part or all of the hydrogen atoms of the phenolic hydroxyl groups of the compounds represented by the following general formulas (A1) to (A10) are converted to —R 401 —COOH (where R 401 is a linear or branched alkylene having 1 to 10 carbon atoms). The molar ratio of the phenolic hydroxyl group (C) in the molecule to the group (D) represented by ≡C—COOH is C / (C + D) = 0.1 to 1.0. Compound.
[II群]
下記一般式(A11)〜(A15)で示される化合物。
Compounds represented by the following general formulas (A11) to (A15).
本成分として、具体的には下記一般式(AI−1)〜(AI−14)及び(AII−1)〜(AII−10)で示される化合物を挙げることができるが、これらに限定されるものではない。 Specific examples of this component include, but are not limited to, compounds represented by the following general formulas (AI-1) to (AI-14) and (AII-1) to (AII-10). It is not a thing.
なお、上記分子内に≡C−COOHで示される基を有する化合物は、1種を単独で又は2種以上を組み合わせて用いることができる。 In addition, the compound which has group shown by (≡C-COOH) in the said molecule | numerator can be used individually by 1 type or in combination of 2 or more types.
上記分子内に≡C−COOHで示される基を有する化合物の添加量は、ベース樹脂100部に対して0〜5部、好ましくは0.1〜5部、より好ましくは0.1〜3部、更に好ましくは0.1〜2部である。5部より多いとレジスト材料の解像性が低下する場合がある。 The amount of the compound having a group represented by ≡C—COOH in the molecule is 0 to 5 parts, preferably 0.1 to 5 parts, more preferably 0.1 to 3 parts, relative to 100 parts of the base resin. More preferably, it is 0.1 to 2 parts. If it exceeds 5 parts, the resolution of the resist material may be lowered.
本発明に添加される界面活性剤の例としては、特に限定されるものではないが、ポリオキシエチレンラウリルエーテル、ポリエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレインエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシエチレンオクチルフェノールエーテル、ポリオキシエチレンノニルフェノール等のポリオキシエチレンアルキルアリルエーテル類、ポリオキシエチレンポリオキシプロピレンブロックコポリマー類、ソルビタンモノラウレート、ソルビタンモノバルミテート、ソルビタンモノステアレート等のソルビタン脂肪酸エステル類、ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノバルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート、ポリオキシエチレンソルビタントリステアレート等のポリオキシエチレンソルビタン脂肪酸エステルのノニオン系界面活性剤、エフトップEF301、EF303、EF352((株)トーケムプロダクツ製)、メガファックF171、F172、F173(DIC(株)製)、フロラードFC430、FC431、FC−4430(住友スリーエム(株)製)、アサヒガードAG710、サーフロンS−381、S−382、SC101、SC102,SC103、SC104、SC105、SC106、サーフィノールE1004、KH−10、KH−20、KH−30、KH−40(旭硝子(株)製)等のフッ素系界面活性剤、オルガノシロキサンポリマーKP−341、X−70−092、X−70−093(信越化学工業(株)製)、アクリル酸系又はメタクリル酸系ポリフローNo.75,No.95(共栄社油脂化学工業(株)製)が挙げられ、中でもFC430、FC−4430、サーフロンS−381、サーフィノールE1004、KH−20、KH−30が好適である。これらは1種単独であるいは2種以上の組み合わせで用いることができる。 Examples of the surfactant added to the present invention are not particularly limited, but polyoxyethylene alkyl such as polyoxyethylene lauryl ether, polyethylene stearyl ether, polyoxyethylene cetyl ether, polyoxyethylene olein ether, etc. Ethers, polyoxyethylene alkyl allyl ethers such as polyoxyethylene octylphenol ether, polyoxyethylene nonylphenol, polyoxyethylene polyoxypropylene block copolymers, sorbitan monolaurate, sorbitan monovalmitate, sorbitan monostearate, etc. Sorbitan fatty acid esters, polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monovalmitate, polyoxyethylene sorbita Nonionic surfactants of polyoxyethylene sorbitan fatty acid esters such as monostearate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbitan tristearate, F-top EF301, EF303, EF352 (manufactured by Tochem Products) Megafuck F171, F172, F173 (manufactured by DIC Corporation), Florard FC430, FC431, FC-4430 (manufactured by Sumitomo 3M Corporation), Asahi Guard AG710, Surflon S-381, S-382, SC101, SC102, SC103 , SC104, SC105, SC106, Surfinol E1004, KH-10, KH-20, KH-30, KH-40 (manufactured by Asahi Glass Co., Ltd.), etc., fluorosiloxane surfactants, organosiloxane polymer KP- 41, X-70-092, X-70-093 (Shin-Etsu Chemical Co., Ltd.), acrylic acid or methacrylic acid Polyflow No. 75, no. 95 (manufactured by Kyoeisha Yushi Chemical Co., Ltd.), among which FC430, FC-4430, Surflon S-381, Surfynol E1004, KH-20, and KH-30 are preferred. These can be used alone or in combination of two or more.
本発明のポジ型レジスト材料、特には化学増幅ポジ型レジスト材料中の界面活性剤の添加量としては、レジスト材料中のベース樹脂100部に対して2部以下、好ましくは1部以下である。 The addition amount of the surfactant in the positive resist material of the present invention, particularly the chemically amplified positive resist material, is 2 parts or less, preferably 1 part or less with respect to 100 parts of the base resin in the resist material.
本発明のポジ型レジスト材料、例えば有機溶剤と、一般式(1)で示される高分子化合物と、酸発生剤、塩基性化合物を含む化学増幅ポジ型レジスト材料を種々の集積回路製造に用いる場合は、特に限定されないが、公知のリソグラフィー技術を適用することができる。 When the positive resist material of the present invention, for example, a chemically amplified positive resist material containing an organic solvent, a polymer compound represented by the general formula (1), an acid generator, and a basic compound is used for manufacturing various integrated circuits. Although there is no particular limitation, a known lithography technique can be applied.
例えば、本発明のポジ型レジスト材料を、集積回路製造用の基板(Si,SiO2,SiN,SiON,TiN,WSi,BPSG,SOG,有機反射防止膜等)あるいはマスク回路製造用の基板(Cr、CrO、CrON、MoSi等)上にスピンコート、ロールコート、フローコート、ディップコート、スプレーコート、ドクターコート等の適当な塗布方法により塗布膜厚が0.1〜2.0μmとなるように塗布する。これをホットプレート上で60〜150℃、10秒〜30分間、好ましくは80〜120℃、30秒〜20分間プリベークする。次いで、紫外線、遠紫外線、電子線、X線、エキシマレーザー、γ線、シンクロトロン放射線、真空紫外線(軟X線)等の高エネルギー線から選ばれる光源で目的とするパターンを所定のマスクを通じてもしくは直接露光を行う。露光量は1〜200mJ/cm2程度、好ましくは10〜100mJ/cm2、又は0.1〜100μC、好ましくは0.5〜50μC程度となるように露光することが好ましい。次に、ホットプレート上で60〜150℃、10秒〜30分間、好ましくは80〜120℃、30秒〜20分間ポストエクスポージャベーク(PEB)する。 For example, the positive resist material of the present invention is applied to an integrated circuit manufacturing substrate (Si, SiO 2 , SiN, SiON, TiN, WSi, BPSG, SOG, organic antireflection film, etc.) or a mask circuit manufacturing substrate (Cr , CrO, CrON, MoSi, etc.) by a suitable coating method such as spin coating, roll coating, flow coating, dip coating, spray coating, doctor coating, etc., so that the coating film thickness is 0.1 to 2.0 μm. To do. This is pre-baked on a hot plate at 60 to 150 ° C. for 10 seconds to 30 minutes, preferably 80 to 120 ° C. for 30 seconds to 20 minutes. Next, a target pattern is passed through a predetermined mask with a light source selected from high energy rays such as ultraviolet rays, far ultraviolet rays, electron beams, X-rays, excimer lasers, γ rays, synchrotron radiation, and vacuum ultraviolet rays (soft X-rays). Direct exposure is performed. It is preferable to expose so that the exposure amount is about 1 to 200 mJ / cm 2 , preferably 10 to 100 mJ / cm 2 , or 0.1 to 100 μC, and preferably about 0.5 to 50 μC. Next, post-exposure baking (PEB) is performed on a hot plate at 60 to 150 ° C. for 10 seconds to 30 minutes, preferably 80 to 120 ° C. for 30 seconds to 20 minutes.
更に、0.1〜5質量%、好ましくは2〜3質量%のテトラメチルアンモニウムヒドロキシド(TMAH)等のアルカリ水溶液の現像液を用い、3秒〜3分間、好ましくは5秒〜2分間、浸漬(dip)法、パドル(puddle)法、スプレー(spray)法等の常法により現像することにより、光を照射した部分は現像液に溶解し、露光されなかった部分は溶解せず、基板上に目的のポジ型のパターンが形成される。なお、本発明のレジスト材料は、特に高エネルギー線の中でも電子線、真空紫外線(軟X線)、X線、γ線、シンクロトロン放射線による微細パターニングに最適である。 Further, 0.1 to 5% by mass, preferably 2 to 3% by mass of a developer of an alkaline aqueous solution such as tetramethylammonium hydroxide (TMAH) is used for 3 seconds to 3 minutes, preferably 5 seconds to 2 minutes. By developing by a conventional method such as a dip method, a paddle method, or a spray method, a portion irradiated with light is dissolved in the developer, and a portion not exposed to light is not dissolved. The desired positive pattern is formed on the top. The resist material of the present invention is particularly suitable for fine patterning using electron beams, vacuum ultraviolet rays (soft X-rays), X-rays, γ rays, and synchrotron radiation among high energy rays.
以下、合成例、比較合成例及び実施例、比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 EXAMPLES Hereinafter, although a synthesis example, a comparative synthesis example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
[合成例1]
2Lのフラスコにメタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル8.2g、モノマー1を17.4g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:モノマー1:=0.30:0.70
重量平均分子量(Mw)=8,700
分子量分布(Mw/Mn)=1.88
この高分子化合物を(ポリマー1)とする。
[Synthesis Example 1]
In a 2-L flask, methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl 8.2 g, monomer 1 17.4 g, and tetrahydrofuran 40 g as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 1.2 g of AIBN (azobisisobutyronitrile) was added as a polymerization initiator, and the temperature was raised to 60 ° C. and reacted for 15 hours. This reaction solution was precipitated in 1 L of isopropyl alcohol, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain a white polymer.
When the obtained polymer was measured by 13 C, 1 H-NMR and GPC, the following analysis results were obtained.
Copolymer composition ratio (molar ratio)
Methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl: monomer 1: = 0.30: 0.70
Weight average molecular weight (Mw) = 8,700
Molecular weight distribution (Mw / Mn) = 1.88
This polymer compound is referred to as (Polymer 1).
[合成例2]
2Lのフラスコにメタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル8.2g、モノマー1を7.5g、メタクリル酸テトラヒドロ−2−オキソフラン−3−イル6.8g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:モノマー1:メタクリル酸テトラヒドロ−2−オキソフラン−3−イル=0.30:0.30:0.40
重量平均分子量(Mw)=8,900
分子量分布(Mw/Mn)=1.77
この高分子化合物を(ポリマー2)とする。
[Synthesis Example 2]
In a 2-L flask, methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl 8.2g, monomer 1 7.5g, tetrahydro-2-oxofuran-3-yl methacrylate 6.8g, tetrahydrofuran 40g as solvent was added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 1.2 g of AIBN (azobisisobutyronitrile) was added as a polymerization initiator, and the temperature was raised to 60 ° C. and reacted for 15 hours. This reaction solution was precipitated in 1 L of isopropyl alcohol, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain a white polymer.
When the obtained polymer was measured by 13 C, 1 H-NMR and GPC, the following analysis results were obtained.
Copolymer composition ratio (molar ratio)
Methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl: monomer 1: tetrahydro-2-oxofuran-3-yl methacrylate = 0.30: 0.30: 0.40
Weight average molecular weight (Mw) = 8,900
Molecular weight distribution (Mw / Mn) = 1.77
This polymer compound is referred to as (Polymer 2).
[合成例3]
2Lのフラスコにメタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル8.2g、モノマー1を7.5g、メタクリル酸5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イル13.3g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:モノマー1:メタクリル酸5−オキソ−4−オキサトリシクロ[4.2.1.03,7]ノナン−2−イル=0.30:0.30:0.40
重量平均分子量(Mw)=8,700
分子量分布(Mw/Mn)=1.79
この高分子化合物を(ポリマー3)とする。
[Synthesis Example 3]
In a 2-L flask, methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl 8.2 g, monomer 1 7.5 g, methacrylate 5-oxo-4-oxatricyclo [4.2.1.0 3,7 ] nonan-2-yl 13.3 g, solvent As a result, 40 g of tetrahydrofuran was added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 1.2 g of AIBN (azobisisobutyronitrile) was added as a polymerization initiator, and the temperature was raised to 60 ° C. and reacted for 15 hours. This reaction solution was precipitated in 1 L of isopropyl alcohol, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain a white polymer.
When the obtained polymer was measured by 13 C, 1 H-NMR and GPC, the following analysis results were obtained.
Copolymer composition ratio (molar ratio)
Methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl: monomer 1: 5-oxo-4-oxatricyclomethacrylate [4.2.1.0 3,7 ] nonan-2-yl = 0.30: 0.30: 0.40
Weight average molecular weight (Mw) = 8,700
Molecular weight distribution (Mw / Mn) = 1.79
This polymer compound is referred to as (Polymer 3).
[合成例4]
2Lのフラスコに2Lのフラスコにメタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル8.2g、モノマー2を9.3g、メタクリル酸1−ヒドロキシナフタレン−5−イル4.6g、メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]ノナン−9−イル4.5g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:モノマー2:メタクリル酸1−ヒドロキシナフタレン−5−イル:メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]ノナン−9−イル=0.30:0.30:0.20:0.20
重量平均分子量(Mw)=7,700
分子量分布(Mw/Mn)=1.74
この高分子化合物を(ポリマー4)とする。
[Synthesis Example 4]
In a 2 L flask, add 3-ethyl-3-exotetracyclomethacrylate [4.4.0.1 2,5 . 1 7,10 ] dodecanyl 8.2 g, monomer 2 9.3 g, 1-hydroxynaphthalen-5-yl methacrylate 4.6 g, methacrylate 3-oxo-2,7-dioxatricyclo [4.2. 1.0 4,8 ] nonan-9-yl 4.5 g and tetrahydrofuran 40 g as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 1.2 g of AIBN (azobisisobutyronitrile) was added as a polymerization initiator, and the temperature was raised to 60 ° C. and reacted for 15 hours. This reaction solution was precipitated in 1 L of isopropyl alcohol, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain a white polymer.
When the obtained polymer was measured by 13 C, 1 H-NMR and GPC, the following analysis results were obtained.
Copolymer composition ratio (molar ratio)
Methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl: monomer 2: 1-hydroxynaphthalen-5-yl methacrylate: 3-oxo-2,7-dioxatricyclo [4.2.1.0 4,8 ] nonane-9 methacrylate -Ile = 0.30: 0.30: 0.20: 0.20
Weight average molecular weight (Mw) = 7,700
Molecular weight distribution (Mw / Mn) = 1.74
This polymer compound is referred to as (Polymer 4).
[合成例5]
2Lのフラスコに2Lのフラスコにメタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル8.2g、モノマー3を10.8g、メタクリル酸テトラヒドロ−2−オキソフラン−3−イル6.8g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:モノマー3:メタクリル酸テトラヒドロ−2−オキソフラン−3−イル=0.30:0.30:0.40
重量平均分子量(Mw)=8,100
分子量分布(Mw/Mn)=1.82
この高分子化合物を(ポリマー5)とする。
[Synthesis Example 5]
In a 2 L flask, add 3-ethyl-3-exotetracyclomethacrylate [4.4.0.1 2,5 . 1 7,10 ] dodecanyl 8.2 g, monomer 3 10.8 g, tetrahydro-2-oxofuran-3-yl methacrylate 6.8 g, and tetrahydrofuran 40 g as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 1.2 g of AIBN (azobisisobutyronitrile) was added as a polymerization initiator, and the temperature was raised to 60 ° C. and reacted for 15 hours. This reaction solution was precipitated in 1 L of isopropyl alcohol, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain a white polymer.
When the obtained polymer was measured by 13 C, 1 H-NMR and GPC, the following analysis results were obtained.
Copolymer composition ratio (molar ratio)
Methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl: monomer 3: tetrahydro-2-oxofuran-3-yl methacrylate = 0.30: 0.30: 0.40
Weight average molecular weight (Mw) = 8,100
Molecular weight distribution (Mw / Mn) = 1.82
This polymer compound is referred to as (Polymer 5).
[合成例6]
2Lのフラスコにメタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル8.2g、モノマー1を9.9g、クマロン1.6g、メタクリル酸テトラヒドロ−2−オキソフラン−3−イル5.1g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:モノマー1:クマロン:メタクリル酸テトラヒドロ−2−オキソフラン−3−イル=0.30:0.40:0.1:0.20
重量平均分子量(Mw)=7,100
分子量分布(Mw/Mn)=1.86
この高分子化合物を(ポリマー6)とする。
[Synthesis Example 6]
In a 2-L flask, methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl 8.2 g, monomer 1 9.9 g, coumarone 1.6 g, tetrahydro-2-oxofuran-3-yl methacrylate 5.1 g, and tetrahydrofuran 40 g as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 1.2 g of AIBN (azobisisobutyronitrile) was added as a polymerization initiator, and the temperature was raised to 60 ° C. and reacted for 15 hours. This reaction solution was precipitated in 1 L of isopropyl alcohol, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain a white polymer.
When the obtained polymer was measured by 13 C, 1 H-NMR and GPC, the following analysis results were obtained.
Copolymer composition ratio (molar ratio)
Methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl: monomer 1: coumarone: tetrahydro-2-oxofuran-3-yl methacrylate = 0.30: 0.40: 0.1: 0.20
Weight average molecular weight (Mw) = 7,100
Molecular weight distribution (Mw / Mn) = 1.86
This polymer compound is referred to as (Polymer 6).
[合成例7]
2Lのフラスコにメタクリル酸−2−エチル−2−アダマンタン7.4g、モノマー1を7.5g、メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]ノナン−9−イル6.7g、PAGモノマー1を6.5g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−2−エチル−2−アダマンタン:モノマー1:メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]ノナン−9−イル:PAGモノマー1=0.30:0.30:0.30:0.10
重量平均分子量(Mw)=7,200
分子量分布(Mw/Mn)=1.80
この高分子化合物を(ポリマー7)とする。
[Synthesis Example 7]
In a 2 L flask, 7.4 g of 2-ethyl-2-adamantane methacrylate, 7.5 g of monomer 1, 3-oxo-2,7-dioxatricyclo methacrylate [4.2.1.0 4,8 6.7 g of nonan-9-yl, 6.5 g of PAG monomer 1 and 40 g of tetrahydrofuran as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 1.2 g of AIBN (azobisisobutyronitrile) was added as a polymerization initiator, and the temperature was raised to 60 ° C. and reacted for 15 hours. This reaction solution was precipitated in 1 L of isopropyl alcohol, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain a white polymer.
When the obtained polymer was measured by 13 C, 1 H-NMR and GPC, the following analysis results were obtained.
Copolymer composition ratio (molar ratio)
2-ethyl-2-adamantane methacrylate: monomer 1: 3-oxo-2,7-dioxatricyclo [4.2.1.0 4,8 ] nonan-9-yl methacrylate: PAG monomer 1 = 0.30: 0.30: 0.30: 0.10
Weight average molecular weight (Mw) = 7,200
Molecular weight distribution (Mw / Mn) = 1.80
This polymer compound is referred to as (Polymer 7).
[合成例8]
2Lのフラスコにメタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル8.2g、モノマー1を14.9g、PAGモノマー2を5.7g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:モノマー1:PAGモノマー2=0.30:0.60:0.10
重量平均分子量(Mw)=7,800
分子量分布(Mw/Mn)=1.71
この高分子化合物を(ポリマー8)とする。
[Synthesis Example 8]
In a 2-L flask, methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl 8.2 g, monomer 1 14.9 g, PAG monomer 2 5.7 g, and tetrahydrofuran 40 g as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 1.2 g of AIBN (azobisisobutyronitrile) was added as a polymerization initiator, and the temperature was raised to 60 ° C. and reacted for 15 hours. This reaction solution was precipitated in 1 L of isopropyl alcohol, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain a white polymer.
When the obtained polymer was measured by 13 C, 1 H-NMR and GPC, the following analysis results were obtained.
Copolymer composition ratio (molar ratio)
Methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl: monomer 1: PAG monomer 2 = 0.30: 0.60: 0.10
Weight average molecular weight (Mw) = 7,800
Molecular weight distribution (Mw / Mn) = 1.71
This polymer compound is referred to as (Polymer 8).
[合成例9]
2Lのフラスコにメタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル8.2、モノマー1を14.9g、PAGモノマー3を5.6g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:モノマー1:PAGモノマー3=0.30:0.60:0.10
重量平均分子量(Mw)=7,800
分子量分布(Mw/Mn)=1.83
この高分子化合物を(ポリマー9)とする。
[Synthesis Example 9]
In a 2-L flask, methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl 8.2, monomer 1 14.9 g, PAG monomer 3 5.6 g and tetrahydrofuran 40 g as solvent. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 1.2 g of AIBN (azobisisobutyronitrile) was added as a polymerization initiator, and the temperature was raised to 60 ° C. and reacted for 15 hours. This reaction solution was precipitated in 1 L of isopropyl alcohol, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain a white polymer.
When the obtained polymer was measured by 13 C, 1 H-NMR and GPC, the following analysis results were obtained.
Copolymer composition ratio (molar ratio)
Methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl: monomer 1: PAG monomer 3 = 0.30: 0.60: 0.10
Weight average molecular weight (Mw) = 7,800
Molecular weight distribution (Mw / Mn) = 1.83
This polymer compound is referred to as (Polymer 9).
[合成例10]
2Lのフラスコにメタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル8.2、モノマー1を7.5g、メタクリル酸−2,7−ジヒドロ−2−オキソベンゾ[C]フラン−5−イル6.5g、PAGモノマー3を5.6g、溶媒としてテトラヒドロフランを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素ブローを3回繰り返した。室温まで昇温後、重合開始剤としてAIBN(アゾビスイソブチロニトリル)を1.2g加え、60℃まで昇温後、15時間反応させた。この反応溶液をイソプロピルアルコール1L溶液中に沈殿させ、得られた白色固体を濾過後、60℃で減圧乾燥し、白色重合体を得た。
得られた重合体を13C,1H−NMR、及び、GPC測定したところ、以下の分析結果となった。
共重合組成比(モル比)
メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:モノマー1::メタクリル酸−2,7−ジヒドロ−2−オキソベンゾ[C]フラン−5−イル:PAGモノマー3=0.30:0.30:0.30:0.10
重量平均分子量(Mw)=7,800
分子量分布(Mw/Mn)=1.77
この高分子化合物を(ポリマー10)とする。
[Synthesis Example 10]
In a 2-L flask, methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl 8.2, monomer 1 7.5 g, methacrylic acid-2,7-dihydro-2-oxobenzo [C] furan-5-yl 6.5 g, PAG monomer 3 5.6 g, solvent As a result, 40 g of tetrahydrofuran was added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen blowing were repeated three times. After raising the temperature to room temperature, 1.2 g of AIBN (azobisisobutyronitrile) was added as a polymerization initiator, and the temperature was raised to 60 ° C. and reacted for 15 hours. This reaction solution was precipitated in 1 L of isopropyl alcohol, and the resulting white solid was filtered and dried under reduced pressure at 60 ° C. to obtain a white polymer.
When the obtained polymer was measured by 13 C, 1 H-NMR and GPC, the following analysis results were obtained.
Copolymer composition ratio (molar ratio)
Methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl: monomer 1 :: methacrylic acid-2,7-dihydro-2-oxobenzo [C] furan-5-yl: PAG monomer 3 = 0.30: 0.30: 0.30: 0. 10
Weight average molecular weight (Mw) = 7,800
Molecular weight distribution (Mw / Mn) = 1.77
This polymer compound is referred to as (Polymer 10).
モノマー2:4−ビニル安息香酸(6−ヒドロキシクマリン−3−イル)
モノマー3:5−ビニルナフタレン−1−カルボン酸(6−ヒドロキシクマリン−3−イル)
PAGモノマー1:4−メタクリル酸オキシフェニルジフェニルスルホニウム パーフルオロブタンスルホネート
PAGモノマー2:トリフェニルスルホニウム 2,3,5,6−テトラフルオロ−4−メタクリロイルオキシベンゼンスルホナート
PAGモノマー3:トリフェニルスルホニウム 1,1,3,3,3−ペンタフルオロ−2−メタクリロイルオキシプロパン−1−スルホネート
Monomer 2: 4-vinylbenzoic acid (6-hydroxycoumarin-3-yl)
Monomer 3: 5-vinylnaphthalene-1-carboxylic acid (6-hydroxycoumarin-3-yl)
PAG monomer 1: 4-oxyphenyldiphenylsulfonium methacrylate perfluorobutanesulfonate PAG monomer 2: triphenylsulfonium 2,3,5,6-tetrafluoro-4-methacryloyloxybenzenesulfonate PAG monomer 3: triphenylsulfonium 1, 1,3,3,3-pentafluoro-2-methacryloyloxypropane-1-sulfonate
[比較合成例1]
上記合成例と同様の方法で下記ポリマーを合成した。
共重合組成比(モル比)
ヒドロキシスチレン:メタクリル酸1−エチルシクロペンチルエステル:インデン=0.75:0.15:0.10
重量平均分子量(Mw)=8,100
分子量分布(Mw/Mn)=1.79
この高分子化合物を(比較ポリマー1)とする。
[Comparative Synthesis Example 1]
The following polymers were synthesized by the same method as in the above synthesis example.
Copolymer composition ratio (molar ratio)
Hydroxystyrene: Methacrylic acid 1-ethylcyclopentyl ester: Indene = 0.75: 0.15: 0.10
Weight average molecular weight (Mw) = 8,100
Molecular weight distribution (Mw / Mn) = 1.79
This polymer compound is referred to as (Comparative Polymer 1).
[比較合成例2]
上記合成例と同様の方法で下記ポリマーを合成した。
共重合組成比(モル比)
メタクリル酸1−エチルシクロペンチル:メタクリル酸3−ヒドロキシ−1−アダマンチル:メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]ノナン−9−イル:メタクリル酸3,5−ビス(ヘキサフルオロ−2−ヒドロキシ−2−プロピル)シクロヘキシル=0.30:0.20:0.40:0.10
重量平均分子量(Mw)=8,200
この高分子化合物を(比較ポリマー2)とする。
[Comparative Synthesis Example 2]
The following polymers were synthesized by the same method as in the above synthesis example.
Copolymer composition ratio (molar ratio)
1-ethylcyclopentyl methacrylate: 3-hydroxy-1-adamantyl methacrylate: 3-oxo-2,7-dioxatricyclo [4.2.1.0 4,8 ] nonan-9-yl methacrylate: methacryl Acid 3,5-bis (hexafluoro-2-hydroxy-2-propyl) cyclohexyl = 0.30: 0.20: 0.40: 0.10
Weight average molecular weight (Mw) = 8,200
This polymer compound is referred to as (Comparative Polymer 2).
[比較合成例3]
上記合成例と同様の方法で下記ポリマーを合成した。
共重合組成比(モル比)
メタクリル酸−3−エチル−3−エキソテトラシクロ[4.4.0.12,5.17,10]ドデカニル:4−ヒドロキシスチレン:メタクリル酸3−オキソ−2,7−ジオキサトリシクロ[4.2.1.04,8]ノナン−9−イル=0.30:0.40:0.30
重量平均分子量(Mw)=8,300
分子量分布(Mw/Mn)=1.82
この高分子化合物を(比較例ポリマー3)とする。
[Comparative Synthesis Example 3]
The following polymers were synthesized by the same method as in the above synthesis example.
Copolymer composition ratio (molar ratio)
Methacrylic acid-3-ethyl-3-exotetracyclo [4.4.0.1 2,5 . 1 7,10 ] dodecanyl: 4-hydroxystyrene: methacrylate 3-oxo-2,7-dioxatricyclo [4.2.1.0 4,8 ] nonan-9-yl = 0.30: 0. 40: 0.30
Weight average molecular weight (Mw) = 8,300
Molecular weight distribution (Mw / Mn) = 1.82
This polymer compound is referred to as “Comparative Example Polymer 3”.
[実施例、比較例]
上記で合成した高分子化合物を用いて、界面活性剤として住友スリーエム(株)製界面活性剤のFC−4430を100ppmを溶解させた溶媒に表1に示される組成で溶解させた溶液を、0.2μmサイズのフィルターで濾過してポジ型レジスト材料を調製した。
表1中の各組成は次の通りである。
ポリマー1〜10:合成例1〜10
比較ポリマー1〜3:比較合成例1〜3
有機溶剤:PGMEA(プロピレングリコールモノメチルエーテルアセテート)
EL(乳酸エチル)
CyH(シクロヘキサノン)
酸発生剤:PAG1、PAG2、PAG3(下記構造式参照)
塩基性化合物:Amine1、Amine2、Amine3(下記構造式参照)
溶解阻止剤:DRI1、DRI2(下記構造式参照)
[Examples and Comparative Examples]
Using the polymer compound synthesized above, a solution obtained by dissolving Sumitomo 3M Surfactant FC-4430 as a surfactant in a solvent in which 100 ppm was dissolved with a composition shown in Table 1 was used. A positive resist material was prepared by filtration through a 2 μm size filter.
Each composition in Table 1 is as follows.
Polymers 1 to 10: Synthesis examples 1 to 10
Comparative polymers 1-3: Comparative synthesis examples 1-3
Organic solvent: PGMEA (propylene glycol monomethyl ether acetate)
EL (ethyl lactate)
CyH (cyclohexanone)
Acid generator: PAG1, PAG2, PAG3 (see structural formula below)
Basic compounds: Amine1, Amine2, Amine3 (see the structural formula below)
Dissolution inhibitor: DRI1, DRI2 (see structural formula below)
電子ビーム描画評価
描画評価では、上記で合成した高分子化合物を用いて、表1に示される組成で溶解させた溶液を、0.2μmサイズのフィルターで濾過してポジ型レジスト材料を調製した。
得られたポジ型レジスト材料を直径6インチφのSi基板上に、クリーントラックMark5(東京エレクトロン社製)を用いてスピンコートし、ホットプレート上で110℃で60秒間プリベークして100nmのレジスト膜を作製した。これに、日立製作所HL−800Dを用いてHV電圧50keVで真空チャンバー内描画を行った。
描画後直ちにクリーントラックMark5(東京エレクトロン社製)を用いてホットプレート上で100℃で60秒間ポストエクスポージャベーク(PEB)を行い、2.38質量%のTMAH水溶液で30秒間パドル現像を行い、ポジ型のパターンを得た。
得られたレジストパターンを次のように評価した。
100nmのラインアンドスペースを1:1で解像する露光量における、最小の寸法を解像力とし、100nmLSのエッジラフネスをSEMで測定した。
レジスト組成とEB露光における感度、解像度の結果を表1に示す。
Electron Beam Drawing Evaluation In the drawing evaluation, a positive resist material was prepared by filtering a solution dissolved in the composition shown in Table 1 using a polymer compound synthesized as described above with a 0.2 μm size filter.
The obtained positive resist material is spin-coated on a Si substrate having a diameter of 6 inches using a clean track Mark 5 (manufactured by Tokyo Electron), and pre-baked on a hot plate at 110 ° C. for 60 seconds to form a 100 nm resist film Was made. For this, drawing in a vacuum chamber was performed at an HV voltage of 50 keV using a Hitachi HL-800D.
Immediately after drawing, post-exposure baking (PEB) was performed on a hot plate at 100 ° C. for 60 seconds using a clean track Mark 5 (manufactured by Tokyo Electron), and paddle development was performed for 30 seconds with a 2.38 mass% TMAH aqueous solution. A positive pattern was obtained.
The obtained resist pattern was evaluated as follows.
The minimum dimension at the exposure amount for resolving 100 nm line and space at 1: 1 was taken as the resolving power, and the edge roughness of 100 nm LS was measured by SEM.
Table 1 shows the results of resist composition, sensitivity and resolution in EB exposure.
耐ドライエッチング性評価
耐ドライエッチング性の試験では、上記各ポリマー2gにPGMEA10gを溶解させて0.2μmサイズのフィルターで濾過したポリマー溶液をSi基板にスピンコートで製膜し、300nmの厚さの膜にし、以下のような条件で評価した。
(1)CHF3/CF4系ガスでのエッチング試験
東京エレクトロン株式会社製ドライエッチング装置TE−8500Pを用い、エッチング前後のポリマー膜の膜厚差を求めた。
エッチング条件は下記に示す通りである。
チャンバー圧力 40.0Pa
RFパワー 1,000W
ギャップ 9mm
CHF3ガス流量 30ml/min
CF4ガス流量 30ml/min
Arガス流量 100ml/min
時間 60sec
この評価では、膜厚差の少ないもの、即ち減少量が少ないもののエッチング耐性があることを示している。
耐ドライエッチング性の結果を表2に示す。
Evaluation of dry etching resistance In the dry etching resistance test, 10 g of PGMEA was dissolved in 2 g of each of the above polymers, and a polymer solution filtered through a 0.2 μm size filter was formed on a Si substrate by spin coating. Films were evaluated under the following conditions.
(1) Etching test with CHF 3 / CF 4 gas Using a dry etching apparatus TE-8500P manufactured by Tokyo Electron Co., Ltd., the difference in film thickness of the polymer film before and after etching was determined.
Etching conditions are as shown below.
Chamber pressure 40.0Pa
RF power 1,000W
Gap 9mm
CHF 3 gas flow rate 30ml / min
CF 4 gas flow rate 30ml / min
Ar gas flow rate 100ml / min
60 sec
This evaluation shows that the film having a small difference in film thickness, that is, a film having a small decrease, has etching resistance.
The results of dry etching resistance are shown in Table 2.
表1,2の結果より、本発明の高分子化合物を用いたレジスト材料は、十分な解像力と感度とラフネスを満たし、エッチング後の膜厚差が小さいことより、優れた耐ドライエッチング性を有していることがわかった。 From the results shown in Tables 1 and 2, the resist material using the polymer compound of the present invention satisfies the sufficient resolution, sensitivity and roughness, and has excellent dry etching resistance due to the small film thickness difference after etching. I found out.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008160536A JP5029839B2 (en) | 2008-06-19 | 2008-06-19 | Positive resist material and pattern forming method using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008160536A JP5029839B2 (en) | 2008-06-19 | 2008-06-19 | Positive resist material and pattern forming method using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010002599A JP2010002599A (en) | 2010-01-07 |
JP5029839B2 true JP5029839B2 (en) | 2012-09-19 |
Family
ID=41584391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008160536A Active JP5029839B2 (en) | 2008-06-19 | 2008-06-19 | Positive resist material and pattern forming method using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5029839B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120012792A (en) | 2009-04-15 | 2012-02-10 | 제이에스알 가부시끼가이샤 | Radiation-sensitive resin composition, polymer used therein, and compound used therein |
WO2010119910A1 (en) * | 2009-04-15 | 2010-10-21 | Jsr株式会社 | Radiation-sensitive resin composition, polymer used therein, and compound used therein |
JP5402651B2 (en) * | 2010-01-08 | 2014-01-29 | 信越化学工業株式会社 | Positive resist material and pattern forming method using the same |
JP5407892B2 (en) * | 2010-01-21 | 2014-02-05 | 信越化学工業株式会社 | Positive resist material and pattern forming method using the same |
JP5216032B2 (en) | 2010-02-02 | 2013-06-19 | 信越化学工業株式会社 | Novel sulfonium salt, polymer compound, method for producing polymer compound, resist material and pattern forming method |
WO2011104127A1 (en) | 2010-02-24 | 2011-09-01 | Basf Se | Latent acids and their use |
JP5387605B2 (en) | 2010-04-07 | 2014-01-15 | 信越化学工業株式会社 | Fluorine-containing monomer, polymer compound, resist material, and pattern forming method |
JP5491450B2 (en) | 2011-05-30 | 2014-05-14 | 信越化学工業株式会社 | A polymer compound, a chemically amplified resist material, and a pattern forming method using the chemically amplified resist material. |
WO2013047117A1 (en) * | 2011-09-29 | 2013-04-04 | Jsr株式会社 | Photoresist composition, method for forming resist pattern, and polymer |
JP6052207B2 (en) | 2014-03-04 | 2016-12-27 | 信越化学工業株式会社 | Positive resist material and pattern forming method using the same |
JP6044566B2 (en) * | 2014-03-04 | 2016-12-14 | 信越化学工業株式会社 | Positive resist material and pattern forming method using the same |
JP6761462B2 (en) * | 2016-03-30 | 2020-09-23 | 富士フイルム株式会社 | Actinic light-sensitive or radiation-sensitive resin composition, pattern forming method, and manufacturing method of electronic device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3990607B2 (en) * | 2002-07-29 | 2007-10-17 | 信越化学工業株式会社 | Chemically amplified resist material and pattern manufacturing method |
JP4305637B2 (en) * | 2003-06-19 | 2009-07-29 | 信越化学工業株式会社 | Polymer compound, positive resist material, and pattern forming method using the same |
-
2008
- 2008-06-19 JP JP2008160536A patent/JP5029839B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2010002599A (en) | 2010-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5237173B2 (en) | Polymerizable compound, polymer compound, positive resist material and pattern forming method using the same | |
JP4025162B2 (en) | Polymer compound, positive resist material, and pattern forming method using the same | |
JP4697443B2 (en) | Positive resist material and pattern forming method using the same | |
JP4642452B2 (en) | Positive resist material and pattern forming method using the same | |
JP4662049B2 (en) | Positive resist material and pattern forming method using the same | |
JP5054042B2 (en) | Positive resist material and pattern forming method using the same | |
JP4579811B2 (en) | Resist material and pattern forming method using the same | |
JP5054041B2 (en) | Positive resist material and pattern forming method using the same | |
JP4636276B2 (en) | Positive resist material and pattern forming method using the same | |
JP4539847B2 (en) | Positive resist material and pattern forming method using the same | |
JP5029839B2 (en) | Positive resist material and pattern forming method using the same | |
JP4434985B2 (en) | Resist material and pattern forming method using the same | |
JP4666177B2 (en) | Polymer compound, chemically amplified positive resist material, and pattern forming method | |
JP5223168B2 (en) | Chemically amplified positive resist material and pattern forming method using the same | |
JP5398966B2 (en) | Polymer compound, positive resist material, and pattern forming method using the same | |
JP5019075B2 (en) | Positive resist material and pattern forming method using the same | |
JP4305637B2 (en) | Polymer compound, positive resist material, and pattern forming method using the same | |
JP5067523B2 (en) | Chemically amplified positive resist material and pattern forming method using the same | |
JP5182468B2 (en) | Polymer compound, positive resist material, and pattern forming method using the same | |
JP4302585B2 (en) | Polymerizable compound, polymer compound, positive resist material and pattern forming method using the same | |
JP5051387B2 (en) | Positive resist material and pattern forming method using the same | |
JP4247164B2 (en) | Polymer compound, positive resist material, and pattern forming method using the same | |
JP4769410B2 (en) | Polymer compound, positive resist material, and pattern forming method using the same | |
JP4241535B2 (en) | Polymer compound, positive resist material, and pattern forming method using the same | |
JP4008322B2 (en) | Polymer compound, positive resist material, and pattern forming method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100521 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120113 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120216 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120530 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120612 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5029839 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150706 Year of fee payment: 3 |