JP2006168031A - Kneading method of silica type compound - Google Patents

Kneading method of silica type compound Download PDF

Info

Publication number
JP2006168031A
JP2006168031A JP2004361205A JP2004361205A JP2006168031A JP 2006168031 A JP2006168031 A JP 2006168031A JP 2004361205 A JP2004361205 A JP 2004361205A JP 2004361205 A JP2004361205 A JP 2004361205A JP 2006168031 A JP2006168031 A JP 2006168031A
Authority
JP
Japan
Prior art keywords
kneading
compound
drop door
silica
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004361205A
Other languages
Japanese (ja)
Inventor
Shunsuke Maruyama
俊介 丸山
Kenji Katsushima
憲治 勝島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2004361205A priority Critical patent/JP2006168031A/en
Publication of JP2006168031A publication Critical patent/JP2006168031A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/26Component parts, details or accessories; Auxiliary operations for discharging, e.g. doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor

Abstract

<P>PROBLEM TO BE SOLVED: To provide a kneading method of a silica type compound capable of reconciling silica dispersibility and extrusion dimensional stability. <P>SOLUTION: In the kneading method of the silica type compound by kneading a compound prepared by compounding 30 PHR or above of silica with a diene type synthetic rubber or a blended rubber composed of a natural rubber and the diene type synthetic rubber, the compound is kneaded under a condition that the temperature of a drop door 5 at the time of start of kneading is 50°C or below, the shearing speed of a kneading rotor during kneading is 50-100/s, the pressure of a ram is 0.20-0.25 MPa, the temperature of cooling water is 15-25°C, and the flow rate of cooling water is 150 l/min or above in the kneading rotor, 200 l/min or above in a kneading casing and 20 l/min or above in the drop door 5 and kneading is completed when the compound during kneading reaches 145-155°C to discharge the compound from the drop door 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、シリカを配合したコンパウンドの混練方法に関し、更に詳しくは、シリカ分散性と押出寸法安定性を両立させるようにしたシリカ系コンパウンドの混練方法に関する。   The present invention relates to a method for kneading a compound containing silica, and more particularly, to a method for kneading a silica-based compound that achieves both silica dispersibility and extrusion dimensional stability.

近年、空気入りタイヤの転動抵抗やウェット性能を改善するため、シリカを配合したゴムコンパウンドがトレッド部の表面ゴム層に使用されるようになってきている。このようなタイヤに使用されるシリカ系コンパウンドは、回転する一対の混練ロータにより剪断変形を付与しながら排出口にドロップドアを設けた混練ケーシング内でコンパウンドを混練する際に、冷却水により混練ロータ、ドロップドア、混練ケーシングを冷却すると共に、コンパウンドにラム圧を加えながら混練し、混練終了後にドロップドアからコンパウンドを放出する密閉型のバッチ式混練機を使用して、混練するようにしている(例えば、特許文献1参照)。混練機から放出されたコンパウンドは、加硫系原料を加えてロール混合される。続いて押出機に供給され、そこで所定の寸法でシート状に押し出された後、冷却される。   In recent years, in order to improve rolling resistance and wet performance of pneumatic tires, rubber compounds containing silica have been used for the surface rubber layer of the tread portion. The silica-based compound used in such a tire is a kneading rotor that uses cooling water when kneading the compound in a kneading casing provided with a drop door at the outlet while applying shear deformation by a pair of rotating kneading rotors. The drop door and the kneading casing are cooled and kneaded while applying a ram pressure to the compound, and the mixture is kneaded by using a closed batch kneader that discharges the compound from the drop door after the kneading is finished ( For example, see Patent Document 1). The compound discharged from the kneader is roll-mixed with the addition of the vulcanizing material. Then, it is supplied to an extruder, where it is extruded into a sheet shape with a predetermined dimension, and then cooled.

混練されたシリカ系コンパウンドには、上記タイヤ性能との関係からシリカ分散性が良好なものが要求される。他方、押出機でシート状に押し出されたコンパウンドは冷却後に収縮するが、この収縮がなるべく少ないものが押出寸法安定性の点から求められている。   The kneaded silica-based compound is required to have good silica dispersibility in relation to the tire performance. On the other hand, the compound extruded into a sheet form by the extruder shrinks after cooling, but the one with as little shrinkage as possible is required from the viewpoint of extrusion dimensional stability.

しかしながら、混練機によりシリカの分散性を高めると押出機で押し出されたシート状のコンパウンドにおける収縮が大きくなり、シリカ分散性と押出寸法安定性を両立させるのが極めて難しいという問題があった。
特開2000−246731号公報
However, when the dispersibility of silica is increased by a kneader, shrinkage of the sheet-like compound extruded by the extruder increases, and there is a problem that it is extremely difficult to achieve both silica dispersibility and extrusion dimensional stability.
JP 2000-246731 A

本発明の目的は、シリカ分散性と押出寸法安定性を両立させることが可能なシリカ系コンパウンドの混練方法を提供することにある。   An object of the present invention is to provide a method for kneading a silica-based compound capable of achieving both silica dispersibility and extrusion dimensional stability.

上記目的を達成する本発明は、回転する一対の混練ロータにより剪断変形を付与しながら排出口にドロップドアを設けた混練ケーシング内でコンパウンドを混練する際に、冷却水を混練ロータ、ドロップドア、混練ケーシング内を循環させると共に、コンパウンドにラム圧を加えながら混練し、混練終了後にドロップドアからコンパウンドを放出する密閉型のバッチ式混練機を使用し、ジエン系合成ゴム、または天然ゴムとジエン系合成ゴムとをブレンドしたゴム100重量部に対して、シリカを30重量部以上配合した加硫系原料を配合する前のコンパウンドを混練するシリカ系コンパウンドの混練方法であって、混練開始時のドロップドアの温度を50℃以下、混練中における混練ロータの剪断速度を50〜100/s、ラム圧を0.20〜0.25MPa、冷却水の温度を15〜25℃、冷却水の流量を混練ロータで150l/分以上、混練ケーシングで200l/分以上、ドロップドアで20l/分以上とする条件下で前記コンパウンドを混練し、混練中のコンパウンドが145〜155℃の範囲に達した際に混練を終了してドロップドアから放出することを特徴とする。   The present invention that achieves the above object is to provide cooling water when kneading a compound in a kneading casing provided with a drop door at a discharge port while applying shear deformation by a pair of rotating kneading rotors, a kneading rotor, a drop door, Circulating the kneading casing, kneading while applying ram pressure to the compound, and using a closed batch kneader that discharges the compound from the drop door after kneading is completed. A silica compound kneading method for kneading a compound before blending a vulcanized raw material containing 30 parts by weight or more of silica with 100 parts by weight of a rubber blended with a synthetic rubber, and dropping at the start of kneading The temperature of the door is 50 ° C. or less, the shearing speed of the kneading rotor during kneading is 50-100 / s, and the ram pressure is 0.20. The compound is used under the conditions of 0.25 MPa, cooling water temperature of 15 to 25 ° C., cooling water flow rate of 150 l / min or more with a kneading rotor, 200 l / min or more with a kneading casing, and 20 l / min or more with a drop door. When kneading and the compound being kneaded reaches the range of 145 to 155 ° C., the kneading is finished and discharged from the drop door.

上述した本発明によれば、混練時の各条件を上記のように規定することにより、混練後におけるコンパウンドのシリカ分散性を高め、かつ押出後におけるコンパウンドの押出寸法安定性を向上することができるので、シリカ分散性と押出寸法安定性との両立が可能になる。   According to the present invention described above, by defining each condition during kneading as described above, the silica dispersibility of the compound after kneading can be enhanced, and the extrusion dimensional stability of the compound after extrusion can be improved. Therefore, both silica dispersibility and extrusion dimensional stability can be achieved.

以下、本発明の実施の形態について添付の図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明のシリカ系コンパウンドの混練方法に使用される密閉型のバッチ式混練機の一例を示し、1は断面めがね状の混練ケーシング2内の混練室3に配置された楕円形状の一対の混練ロータであり、図示する矢印方向に回転し、混練室3にホッパー4から投入されたコンパウンドに剪断変形を付与しながら混練するようになっている。混練ケーシング2の下部排出口に上下動可能なドロップドア5が設けられ、混練終了後にドロップドア5が降下して排出口を開口し、コンパウンドを外部に放出できるようになっている。   FIG. 1 shows an example of a closed batch kneader used in the silica compound kneading method of the present invention. Reference numeral 1 denotes an elliptical shape arranged in a kneading chamber 3 in a kneading casing 2 having a cross-sectional glasses shape. A pair of kneading rotors rotate in the direction of the arrow shown in the figure, and knead while applying shear deformation to the compound charged into the kneading chamber 3 from the hopper 4. A drop door 5 that can move up and down is provided at the lower discharge port of the kneading casing 2, and after the kneading is finished, the drop door 5 is lowered to open the discharge port so that the compound can be discharged to the outside.

6は混練中のコンパウンドに上から圧力(ラム圧)を加える加圧装置であり、シリンダ7内に上下に摺動自在に配設したピストン8にラム(突き棒)9が連結され、そのヘッド10で混練中のコンパウンドを押圧してラム圧を付与する。ピストン8の上下動は、シリンダ7内にポート11,12を介して給排される圧縮エアにより行われる。   Reference numeral 6 denotes a pressurizing device for applying pressure (ram pressure) to the compound being kneaded from above, and a ram (protrusion rod) 9 is connected to a piston 8 slidably disposed in the cylinder 7 up and down. At 10 the ram pressure is applied by pressing the compound being kneaded. The vertical movement of the piston 8 is performed by compressed air supplied to and discharged from the cylinder 7 via the ports 11 and 12.

混練ロータ1、混練ケーシング2、ドロップドア5には、それぞれ冷却水を循環させる冷却水循環路1a,2a,5aが形成され、この冷却水循環路1a,2a,5a内に冷却水を循環させることで、混練中のコンパウンドを冷却できるようになっている。また、ドロップドア5の頂部内面には、熱電対からなる温度センサー13が露出するように配置され、ドロップドア5の内面における温度を測定できるようにしている。この温度センサー13は、混練中はコンパウンドの温度を検出するが、コンパウンド排出後は、ドロップドアの温度の測定に利用できる。   The kneading rotor 1, the kneading casing 2 and the drop door 5 are formed with cooling water circulation paths 1a, 2a and 5a for circulating cooling water, respectively, and the cooling water is circulated in the cooling water circulation paths 1a, 2a and 5a. The compound being kneaded can be cooled. A temperature sensor 13 made of a thermocouple is exposed on the inner surface of the top of the drop door 5 so that the temperature on the inner surface of the drop door 5 can be measured. The temperature sensor 13 detects the temperature of the compound during kneading, but can be used for measuring the temperature of the drop door after discharging the compound.

本発明のシリカ系コンパウンドの混練方法は、上述したような密閉型混練機を使用し、ジエン系合成ゴム、または天然ゴムとジエン系合成ゴムとをブレンドしたゴム100重量部に対して、シリカを30重量部以上好ましくは30〜120重量部配合した加硫系原料を配合する前のコンパウンドの混合を以下のように行う
先ず、混練機を作動させ、一対の混練ロータ1を回転させると共に、冷却水を循環させる。温度センサー13による測定温度が50℃以下、即ち混練を開始する時のドロップドア5の温度が50℃以下であることを確認した後、ホッパー4から原料を混練室3に投入し、混練を開始する。
The silica compound kneading method of the present invention uses a closed kneader as described above, and silica is added to 100 parts by weight of diene synthetic rubber or rubber blended with natural rubber and diene synthetic rubber. Mixing of the compound before blending the vulcanized raw material blended by 30 parts by weight or more, preferably 30 to 120 parts by weight is performed as follows. First, the kneading machine is operated, and the pair of kneading rotors 1 are rotated and cooled. Circulate water. After confirming that the temperature measured by the temperature sensor 13 is 50 ° C. or less, that is, the temperature of the drop door 5 when starting kneading is 50 ° C. or less, the raw material is fed into the kneading chamber 3 from the hopper 4 and the kneading is started. To do.

混練中における混練ロータ1の剪断速度は50〜100/sの範囲である。また、原料を投入した後、ラム9のヘッド10により混練中のコンパウンドを押圧してラム圧を付与する。そのラム圧の範囲は0.20〜0.25MPaである。更に、混練中における冷却水温度は15〜25℃の範囲にし、各混練ロータ1の冷却水循環路1aの流量を150l/分以上、混練ケーシング2の全冷却水循環路2aの流量を200l/分以上、ドロップドア5の全冷却水循環路5aの流量を20l/分以上とする。   The shearing speed of the kneading rotor 1 during kneading is in the range of 50 to 100 / s. Further, after the raw materials are charged, the compound being kneaded is pressed by the head 10 of the ram 9 to apply the ram pressure. The range of the ram pressure is 0.20 to 0.25 MPa. Further, the temperature of the cooling water during kneading is in the range of 15 to 25 ° C., the flow rate of the cooling water circulation path 1a of each kneading rotor 1 is 150 l / min or more, and the flow rate of the total cooling water circulation path 2a of the kneading casing 2 is 200 l / min or more. The flow rate of the total cooling water circulation path 5a of the drop door 5 is set to 20 l / min or more.

混練中にコンパウンドが145〜155℃の範囲に達した時点で混練を終了し、ドロップドア5から混練されたコンパウンドを放出する。こうして放出されたコンパウンドは、次いでオープンロール等により、加硫系原料が添加される。   When the compound reaches the range of 145 to 155 ° C. during the kneading, the kneading is finished, and the kneaded compound is discharged from the drop door 5. Then, the vulcanized raw material is added to the released compound by an open roll or the like.

本発明者らは、シリカ分散性と押出寸法安定性を両立させるため鋭意検討し、通常用いられている密閉型のバッチ式混練機と押出機とを使用して実験を繰り返し行った結果、以下のことを発見した。   The inventors of the present invention diligently studied to make both silica dispersibility and extrusion dimensional stability compatible, and as a result of repeating experiments using a normally used closed batch kneader and an extruder, I discovered that.

即ち、押出機でシート状に押し出され、冷却されたコンパウンドは、その収縮度合いが混練機で混練されたコンパウンドの混練状態に密接な関係があり、混練機において、混練開始時のドロップドア5の温度、混練中における混練ロータ1の剪断速度、ラム9のヘッド10によりコンパウンドを押圧するラム圧、混練ロータ1内、混練ケーシング2内、及びドロップドア5内を循環する冷却水の温度及び流量、更に混練機からコンパウンドを放出する時の温度に大きく依存していることがわかった。   That is, the compound extruded and cooled in a sheet form by an extruder has a close relationship with the kneading state of the compound kneaded by the kneader, and the kneading machine uses the drop door 5 at the start of kneading. Temperature, shear rate of the kneading rotor 1 during kneading, ram pressure for pressing the compound by the head 10 of the ram 9, temperature and flow rate of cooling water circulating in the kneading rotor 1, kneading casing 2, and drop door 5; Further, it was found that the temperature greatly depends on the temperature at which the compound is discharged from the kneader.

混練時の各条件をそれぞれ変えて行った実験では、上述したように混練開始時のドロップドア5の温度が50℃以下、混練中における混練ロータ1の剪断速度が50〜100/s、ラム圧が0.20〜0.25MPa、15〜25℃の温度の冷却水の流量を混練ロータ1で150l/分以上、混練ケーシング2で200l/以上、ドロップドア5で20l/分以上、混練されたコンパウンドの放出時の温度が145〜155℃の条件を満たしていると、高いシリカ分散性を有するコンパウンドが得られ、かつ押出寸法安定性も良好にでき、シリカ分散性と押出寸法安定性を両立させることができるのである。   In an experiment conducted by changing each condition during kneading, as described above, the temperature of the drop door 5 at the start of kneading is 50 ° C. or less, the shear rate of the kneading rotor 1 during kneading is 50 to 100 / s, and the ram pressure. The flow rate of cooling water at a temperature of 0.20 to 0.25 MPa, 15 to 25 ° C. was kneaded with the kneading rotor 1 at 150 l / min or more, the kneading casing 2 with 200 l / min or more, and the drop door 5 with 20 l / min or more. When the temperature at the time of releasing the compound satisfies the condition of 145 to 155 ° C, a compound having high silica dispersibility can be obtained and extrusion dimensional stability can be improved, and both silica dispersibility and extrusion dimensional stability are compatible. It can be made.

ドロップドア5の温度が50℃を超えると、混練したコンパウンドを上記温度で放出した際にシリカの分散性が低下する。ドロップドア5の温度の下限値としては、冷却水供給装置の単純化の点から、20℃以上にするのがよい。   When the temperature of the drop door 5 exceeds 50 ° C., the dispersibility of silica is lowered when the kneaded compound is discharged at the above temperature. The lower limit value of the temperature of the drop door 5 is preferably 20 ° C. or more from the viewpoint of simplification of the cooling water supply device.

混練ロータ1の剪断速度が50/sより小さくても、シリカ分散性が低下する。逆に100/sより大きいと、押出寸法安定性が低下する。   Even if the shear rate of the kneading rotor 1 is less than 50 / s, the silica dispersibility is lowered. On the other hand, if it is greater than 100 / s, the extrusion dimensional stability decreases.

ラム圧が0.20MPa未満であると、押出寸法安定性が低下する。逆に0.25MPaを超えると、シリカ分散性が低下する。   When the ram pressure is less than 0.20 MPa, the extrusion dimensional stability is lowered. Conversely, when it exceeds 0.25 MPa, silica dispersibility will fall.

15〜25℃の冷却水の流量が、混練ロータ1、混練ケーシング2及びドロップドア5で上記値未満であると、シリカ分散性及び押出寸法安定性が低下する。15〜25℃の冷却水の流量は、好ましくは、混練ロータ1で150〜300l/分、混練ケーシング2で200〜300l/分、ドロップドア5で20〜30l/分の範囲にするのがよい。   When the flow rate of the cooling water of 15 to 25 ° C. is less than the above values in the kneading rotor 1, the kneading casing 2 and the drop door 5, silica dispersibility and extrusion dimensional stability are deteriorated. The flow rate of the cooling water at 15 to 25 ° C. is preferably in the range of 150 to 300 l / min for the kneading rotor 1, 200 to 300 l / min for the kneading casing 2, and 20 to 30 l / min for the drop door 5. .

放出時のコンパウンドの温度が145℃より低くても、シリカ分散性が低下する。逆に155℃より高いと、押出寸法安定性が低下する。   Even if the temperature of the compound at the time of release is lower than 145 ° C., silica dispersibility is lowered. On the other hand, when it is higher than 155 ° C., the extrusion dimensional stability is lowered.

表1に示す配合割合を有するコンパウンドA,Bを使用し、密閉型のバッチ式混練機において混練開始時のドロップドアの温度を表2に示す温度にして混練し、次いでオープンロールにより硫黄及び加硫促進剤を添加した。こうして得られたコンパウンドのシリカ分散性と押出寸法安定性を以下に示す測定条件により評価したところ、表2に示す結果を得た。   Using compounds A and B having the blending ratios shown in Table 1, knead in a closed batch kneader with the temperature of the drop door at the start of kneading shown in Table 2, and then sulfur and added by an open roll. A sulfur accelerator was added. When the silica dispersibility and extrusion dimensional stability of the compound thus obtained were evaluated under the following measurement conditions, the results shown in Table 2 were obtained.

なお、混練ロータの剪断速度は75/s、ラム圧は0.20MPa、冷却水温度は20℃、冷却水流量は混練ロータで200l/分、混練ケーシングで250l/分、ドロップドアで30l/分、混練されたコンパウンドの放出温度は150℃で一定である。   The shearing speed of the kneading rotor is 75 / s, the ram pressure is 0.20 MPa, the cooling water temperature is 20 ° C., the cooling water flow rate is 200 l / min for the kneading rotor, 250 l / min for the kneading casing, and 30 l / min for the drop door. The discharge temperature of the kneaded compound is constant at 150 ° C.

シリカ分散性
上記のようにして得られたコンパウンド内に2cm2 (投影面積)以上の白粒(シリカ粒)が残存する個数をカウントした。この数値が小さい程、シリカ分散性に優れている。
Silica dispersibility The number of remaining white grains (silica grains) of 2 cm 2 (projected area) or more in the compound obtained as described above was counted. The smaller this value, the better the silica dispersibility.

押出寸法安定性
上記のようにして得られたコンパウンドを押出機でシート状に押し出した直後の寸法500mmに対し、冷却後の寸法Aを測定し、収縮率C(%)を下記式により求めた。この数値が小さい程、寸法安定性に優れている。
C=100(500−A)/500
Extrusion dimensional stability The dimension A after cooling was measured with respect to the dimension 500 mm immediately after the compound obtained as described above was extruded into a sheet with an extruder, and the shrinkage ratio C (%) was obtained by the following formula. . The smaller this value, the better the dimensional stability.
C = 100 (500-A) / 500

Figure 2006168031
Figure 2006168031

Figure 2006168031
Figure 2006168031

表2から、混練開始時のドロップドアの温度を50℃以下にした本発明の混練方法1,2は、白粒の残りが少なくシリカ分散性に優れ、また押出寸法安定性も良好であることがわかる。   From Table 2, the kneading methods 1 and 2 of the present invention in which the temperature of the drop door at the start of kneading is 50 ° C. or less have little white grain residue, excellent silica dispersibility, and good extrusion dimensional stability. I understand.

表1に示すコンパウンドAを使用し、密閉型のバッチ式混練機において混練ロータの剪断速度を表3に示すように変えて混練して得られたコンパウンドのシリカ分散性と押出寸法安定性を実施例1と同様に評価したところ、表3に示す結果を得た。   Using compound A shown in Table 1, the silica dispersibility and extrusion dimensional stability of the compound obtained by kneading in a closed batch kneader by changing the shear rate of the kneading rotor as shown in Table 3 were carried out. When evaluated in the same manner as in Example 1, the results shown in Table 3 were obtained.

なお、混練開始時のドロップドアの温度を48℃にした他は、実施例1と同じ条件(混練ロータの剪断速度を除く)である。   The conditions are the same as in Example 1 (except for the shearing speed of the kneading rotor) except that the temperature of the drop door at the start of kneading was set to 48 ° C.

Figure 2006168031
Figure 2006168031

表3から、混練ロータの剪断速度を50〜100/sにした本発明の混練方法5〜7は、白粒の残りが少なくシリカ分散性に優れ、また押出寸法安定性も良好であることがわかる。   From Table 3, it can be seen that the kneading methods 5 to 7 of the present invention in which the shear rate of the kneading rotor is 50 to 100 / s have little white grain residue, excellent silica dispersibility, and good extrusion dimensional stability. Recognize.

表1に示すコンパウンドAを使用し、密閉型のバッチ式混練機においてラム圧を表4に示すように変えて混練して得られたコンパウンドのシリカ分散性と押出寸法安定性を実施例1と同様に評価したところ、表4に示す結果を得た。   Example 1 shows the silica dispersibility and extrusion dimensional stability of the compound obtained by kneading using compound A shown in Table 1 and changing the ram pressure as shown in Table 4 in a closed batch kneader. When evaluated in the same manner, the results shown in Table 4 were obtained.

なお、混練開始時のドロップドアの温度は実施例2と同じにし、ラム圧を除く他の条件は実施例1と同じである。   The temperature of the drop door at the start of kneading is the same as in Example 2, and the other conditions except for the ram pressure are the same as in Example 1.

Figure 2006168031
Figure 2006168031

表4から、ラム圧を0.20〜0.25MPaにした本発明の混練方法10〜12は、白粒の残りが少なくシリカ分散性に優れ、また押出寸法安定性も良好であることがわかる。   From Table 4, it can be seen that the kneading methods 10 to 12 of the present invention having a ram pressure of 0.20 to 0.25 MPa have little white grain residue and excellent silica dispersibility and good extrusion dimensional stability. .

表1に示すコンパウンドAを使用し、密閉型のバッチ式混練機において冷却水温度を表5に示すように変えて混練して得られたコンパウンドのシリカ分散性と押出寸法安定性を実施例1と同様に評価したところ、表5に示す結果を得た。   Example 1 shows the silica dispersibility and extrusion dimensional stability of the compound obtained by kneading using compound A shown in Table 1 and changing the cooling water temperature as shown in Table 5 in a closed batch kneader. As a result, the results shown in Table 5 were obtained.

なお、混練開始時のドロップドアの温度は実施例2と同じにし、冷却水温度を除く他の条件は実施例1と同じである。   The temperature of the drop door at the start of kneading is the same as in Example 2, and the other conditions except for the cooling water temperature are the same as in Example 1.

Figure 2006168031
Figure 2006168031

表5から、冷却水温度を15〜25℃にした本発明の混練方法15〜17は、白粒の残りが少なくシリカ分散性に優れ、また押出寸法安定性も良好であることがわかる。   From Table 5, it can be seen that the kneading methods 15 to 17 of the present invention in which the cooling water temperature is set to 15 to 25 ° C. have little white grains remaining and excellent silica dispersibility and excellent extrusion dimensional stability.


表1に示すコンパウンドAを使用し、密閉型がバッチ混練機において混練されたコンパウンドの冷却水量を表6に示すように変えて混練して得られたコンパウンドのシリカ分散性と押出寸法安定性を実施例1と同様に評価したことろ、表6に示す結果を得た。

Using compound A shown in Table 1, the silica dispersibility and extrusion dimensional stability of the compound obtained by kneading by changing the cooling water amount of the compound kneaded in a batch kneader as shown in Table 1 as shown in Table 6 Evaluation was conducted in the same manner as in Example 1, and the results shown in Table 6 were obtained.

なお、混練開始後のドロップドアの温度は実施例2と同じにし、冷却水量を除く他の条件は実施例1と同じである。   The temperature of the drop door after the start of kneading is the same as in Example 2, and the other conditions except for the cooling water amount are the same as in Example 1.

Figure 2006168031
Figure 2006168031

表6から、冷却水量を混練ロータで150l/分以上、混練ケーシングで200l/分以上、ドロップドアで20l/分以上にした本発明の混練方法23,24は白粒の残り残りが少なくシリカ分散性に優れ、また押出寸法安定性も良好であることがわかる。   From Table 6, the kneading methods 23 and 24 of the present invention in which the cooling water amount is 150 l / min or more with a kneading rotor, 200 l / min or more with a kneading casing, and 20 l / min or more with a drop door are less silica remaining and the silica dispersion It can be seen that it has excellent properties and has good extrusion dimensional stability.

表1に示すコンパウンドAを使用し、密閉型のバッチ式混練機において混練されたコンパウンドの放出温度を表7に示すように変えて混練して得られたコンパウンドのシリカ分散性と押出寸法安定性を実施例1と同様に評価したところ、表7に示す結果を得た。   Using compound A shown in Table 1 and changing the discharge temperature of the compound kneaded in a closed batch kneader as shown in Table 7, silica dispersibility and extrusion dimensional stability of the compound obtained by kneading Was evaluated in the same manner as in Example 1, and the results shown in Table 7 were obtained.

なお、混練開始時のドロップドアの温度は実施例2と同じにし、放出温度を除く他の条件は実施例1と同じである。   The temperature of the drop door at the start of kneading is the same as in Example 2, and the other conditions except the discharge temperature are the same as in Example 1.

Figure 2006168031
Figure 2006168031

表7から、コンパウンド放出時の温度を145〜155℃にした本発明の混練方法26〜28は、白粒の残りが少なくシリカ分散性に優れ、また押出寸法安定性も良好であることがわかる。   From Table 7, it can be seen that the kneading methods 26 to 28 of the present invention in which the temperature at the time of releasing the compound is set to 145 to 155 ° C. has little residual white grains and is excellent in silica dispersibility and also has good extrusion dimensional stability. .

本発明のシリカ系コンパウンドの混練方法に使用する密閉型のバッチ式混練機の一例を示す断面説明図である。It is sectional explanatory drawing which shows an example of the airtight batch type kneader used for the kneading | mixing method of the silica type compound of this invention.

符号の説明Explanation of symbols

1 混練ロータ
1a 冷却水循環路
2 混練ケーシング
2a 冷却水循環路
3 混練室
4 ホッパー
5 ドロップドア
5a 冷却水循環路
6 加圧装置
9 ラム
10 ヘッド
13 温度センサー
DESCRIPTION OF SYMBOLS 1 Kneading rotor 1a Cooling water circulation path 2 Kneading casing 2a Cooling water circulation path 3 Kneading chamber 4 Hopper 5 Drop door 5a Cooling water circulation path 6 Pressurizer 9 Ram 10 Head 13 Temperature sensor

Claims (1)

回転する一対の混練ロータにより剪断変形を付与しながら排出口にドロップドアを設けた混練ケーシング内でコンパウンドを混練する際に、冷却水を混練ロータ、ドロップドア、混練ケーシング内を循環させると共に、コンパウンドにラム圧を加えながら混練し、混練終了後にドロップドアからコンパウンドを放出する密閉型のバッチ式混練機を使用し、ジエン系合成ゴム、または天然ゴムとジエン系合成ゴムとをブレンドしたゴム100重量部に対して、シリカを30重量部以上配合した加硫系原料を配合する前のコンパウンドを混練するシリカ系コンパウンドの混練方法であって、
混練開始時のドロップドアの温度を50℃以下、混練中における混練ロータの剪断速度を50〜100/s、ラム圧を0.20〜0.25MPa、冷却水の温度を15〜25℃、冷却水の流量を混練ロータで150l/分以上、混練ケーシングで200l/分以上、ドロップドアで20l/分以上とする条件下で前記コンパウンドを混練し、混練中のコンパウンドが145〜155℃の範囲に達した際に混練を終了してドロップドアから放出するシリカ系コンパウンドの混練方法。
When kneading the compound in a kneading casing provided with a drop door at the discharge port while applying shear deformation by a pair of rotating kneading rotors, the cooling water is circulated in the kneading rotor, drop door, kneading casing and the compound. 100 weight of rubber blended with diene-based synthetic rubber or natural rubber and diene-based synthetic rubber using a closed batch kneader that kneads while applying ram pressure and releases the compound from the drop door after kneading is completed A silica compound kneading method for kneading a compound before blending a vulcanized raw material containing 30 parts by weight or more of silica with respect to parts,
The temperature of the drop door at the start of kneading is 50 ° C. or less, the shear rate of the kneading rotor during kneading is 50 to 100 / s, the ram pressure is 0.20 to 0.25 MPa, the temperature of the cooling water is 15 to 25 ° C., and the cooling is performed. The compound is kneaded under the condition that the flow rate of water is 150 l / min or more with a kneading rotor, 200 l / min or more with a kneading casing, and 20 l / min or more with a drop door, and the compound during kneading is in the range of 145 to 155 ° C. A method for kneading a silica-based compound in which the kneading is terminated and the mixture is discharged from the drop door.
JP2004361205A 2004-12-14 2004-12-14 Kneading method of silica type compound Pending JP2006168031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004361205A JP2006168031A (en) 2004-12-14 2004-12-14 Kneading method of silica type compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361205A JP2006168031A (en) 2004-12-14 2004-12-14 Kneading method of silica type compound

Publications (1)

Publication Number Publication Date
JP2006168031A true JP2006168031A (en) 2006-06-29

Family

ID=36669286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361205A Pending JP2006168031A (en) 2004-12-14 2004-12-14 Kneading method of silica type compound

Country Status (1)

Country Link
JP (1) JP2006168031A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089423A (en) * 2008-10-09 2010-04-22 Sumitomo Rubber Ind Ltd Method and device for kneading tire rubber
JP2018030286A (en) * 2016-08-24 2018-03-01 横浜ゴム株式会社 Method and device for kneading rubber material
CN108381805A (en) * 2018-01-11 2018-08-10 石家庄卓度橡塑设备有限公司 A kind of multiplication rubber mixing machine
JP2018197285A (en) * 2017-05-23 2018-12-13 住友ゴム工業株式会社 Method of producing rubber composition for tire
JP2018197286A (en) * 2017-05-23 2018-12-13 住友ゴム工業株式会社 Method of producing rubber composition for tire
CN114316385A (en) * 2021-12-23 2022-04-12 赛轮(沈阳)轮胎有限公司 Method for stabilizing shear rate of final rubber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010089423A (en) * 2008-10-09 2010-04-22 Sumitomo Rubber Ind Ltd Method and device for kneading tire rubber
JP2018030286A (en) * 2016-08-24 2018-03-01 横浜ゴム株式会社 Method and device for kneading rubber material
JP2018197285A (en) * 2017-05-23 2018-12-13 住友ゴム工業株式会社 Method of producing rubber composition for tire
JP2018197286A (en) * 2017-05-23 2018-12-13 住友ゴム工業株式会社 Method of producing rubber composition for tire
CN108381805A (en) * 2018-01-11 2018-08-10 石家庄卓度橡塑设备有限公司 A kind of multiplication rubber mixing machine
CN108381805B (en) * 2018-01-11 2024-04-02 石家庄卓度橡塑设备有限公司 Doubling rubber mixing machine
CN114316385A (en) * 2021-12-23 2022-04-12 赛轮(沈阳)轮胎有限公司 Method for stabilizing shear rate of final rubber

Similar Documents

Publication Publication Date Title
EP3359362B1 (en) Process for producing an elastomeric compound
EP3359361B1 (en) Process for producing an elastomeric compound
JP5204610B2 (en) Tire rubber kneading method and apparatus
EP2379294B1 (en) Process and plant for producing tyres
JP2010280905A (en) Elastomer composite blend and method for producing the same
JP2009041026A (en) New elastomer composite, method and apparatus
CN105646959B (en) A kind of rubber composition, preparation method and its application in 3D printing air core tyre
CA2900939C (en) Functionalized silica with elastomer binder
RU2735686C2 (en) Elastomer compositions for tire components and tires containing them
US20180290337A1 (en) Apparatus and method for making a rubber finish mixture containing at least one reactive additive
CN105899593A (en) Improvements in the mixing and processing of rubber compositions containing polar fillers
EP3180200B1 (en) Functionalized silica with elastomer binder
JP2006168031A (en) Kneading method of silica type compound
CN105431265B (en) The method that manufacture is used for wheel tyre
CN106459428A (en) Process for producing wet rubber masterbatch
JP2011068834A (en) Method for kneading rubber material and rubber composition
JP6345000B2 (en) Method for kneading rubber material for tire and method for manufacturing tire
JPS5942011B2 (en) Method for manufacturing rubber composition
JP6906752B2 (en) Rubber strip manufacturing method and manufacturing equipment
CN117261161A (en) Rubber filtering, exhausting and mixing integrated equipment and method
CN107955103A (en) A kind of washing machine inflow valve seal nitrile rubber and preparation method thereof
JP2018065890A (en) Method for producing rubber material for tire tread
JP2011148897A (en) Rubber composition for studless tire