JP5204610B2 - Tire rubber kneading method and apparatus - Google Patents

Tire rubber kneading method and apparatus Download PDF

Info

Publication number
JP5204610B2
JP5204610B2 JP2008263050A JP2008263050A JP5204610B2 JP 5204610 B2 JP5204610 B2 JP 5204610B2 JP 2008263050 A JP2008263050 A JP 2008263050A JP 2008263050 A JP2008263050 A JP 2008263050A JP 5204610 B2 JP5204610 B2 JP 5204610B2
Authority
JP
Japan
Prior art keywords
rubber
kneading
kneaded
temperature
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008263050A
Other languages
Japanese (ja)
Other versions
JP2010089423A (en
Inventor
俊一 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2008263050A priority Critical patent/JP5204610B2/en
Publication of JP2010089423A publication Critical patent/JP2010089423A/en
Application granted granted Critical
Publication of JP5204610B2 publication Critical patent/JP5204610B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/06Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices
    • B29B7/10Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary
    • B29B7/18Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/183Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type with movable mixing or kneading devices rotary with more than one shaft having a casing closely surrounding the rotors, e.g. of Banbury type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/24Component parts, details or accessories; Auxiliary operations for feeding
    • B29B7/246Component parts, details or accessories; Auxiliary operations for feeding in mixers having more than one rotor and a casing closely surrounding the rotors, e.g. with feeding plungers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/26Component parts, details or accessories; Auxiliary operations for discharging, e.g. doors
    • B29B7/263Component parts, details or accessories; Auxiliary operations for discharging, e.g. doors from the underside in mixers having more than one rotor and a a casing closely surrounding the rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/02Mixing; Kneading non-continuous, with mechanical mixing or kneading devices, i.e. batch type
    • B29B7/22Component parts, details or accessories; Auxiliary operations
    • B29B7/28Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control
    • B29B7/286Component parts, details or accessories; Auxiliary operations for measuring, controlling or regulating, e.g. viscosity control measuring properties of the mixture, e.g. temperature, density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/484Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws with two shafts provided with screws, e.g. one screw being shorter than the other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7461Combinations of dissimilar mixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7485Systems, i.e. flow charts or diagrams; Plants with consecutive mixers, e.g. with premixing some of the components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/35Extrusion nozzles or dies with rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/385Plasticisers, homogenisers or feeders comprising two or more stages using two or more serially arranged screws in separate barrels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/52Screws with an outer diameter varying along the longitudinal axis, e.g. for obtaining different thread clearance
    • B29C48/525Conical screws

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Tires In General (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Description

本発明は、シリカ配合のタイヤ用ゴムを得るにあたり、シリカとシランカプリング剤とのカプリング反応を高めてゴム物性を向上しうるタイヤ用ゴムの混練方法及び装置に関する。   The present invention relates to a method and an apparatus for kneading tire rubber, which can improve rubber physical properties by increasing the coupling reaction between silica and a silane coupling agent in obtaining a silica-blended tire rubber.

近年、空気入りタイヤの転がり抵抗やウエットグリップ性能を改善するために、カーボンブラックに代えてシリカをゴムの補強剤として用いることが提案されている。この場合、シリカの分散性を高めかつシリカとゴムとを結合させるためにシランカプリング剤がシリカと共に使用される。   In recent years, in order to improve rolling resistance and wet grip performance of pneumatic tires, it has been proposed to use silica as a rubber reinforcing agent instead of carbon black. In this case, a silane coupling agent is used with the silica to enhance the dispersibility of the silica and bond the silica and rubber.

これは、補強剤としての微粒子状のシリカは、その表面にシラノール基を有するが、このシラノール基が親水性であり親油性であるゴムとは反発するため、ゴムとの混合が難しい。しかもシリカ自体、前記シラノール基の水素結合によって互いに凝集する傾向があるため、分散性に劣るからである。これに対して、シランカプリング剤は、その分子構造を図7(A)の(ア)に示すように、アルコキシ基(OR部)と、Y部とから構成されており、Y部としてはゴムとの親和性に優れる例えばポリスルフィド基などが含まれる。前記アルコキシ基は、(イ)のように水分の共存下で加水分解して水酸基(OH基)となり、アルコール(R−OH)を生成するとともに、さらに(ウ)のようにOH基同士が脱水縮合により結合する。これら生成した成分は、OH基については、図7(B)に示すように、シリカ表面のシラノール基と脱水縮合反応(シリカとシランカップリング剤とのカップリング反応)して、シリカ表面のシラノール基を減少させシリカの凝集を抑える。他方、Y部においては、ゴムとの親和性を発揮する。これにより、ゴム中のシリカの分散性を高めるとともに、加硫後においてゴムとシリカを強固に結合させうる。   This is because particulate silica as a reinforcing agent has a silanol group on its surface, but this silanol group is repelled from a hydrophilic and oleophilic rubber, and is therefore difficult to mix with rubber. Moreover, since silica itself tends to aggregate with each other due to the hydrogen bond of the silanol group, the dispersibility is poor. On the other hand, the silane coupling agent is composed of an alkoxy group (OR portion) and a Y portion, as shown in FIG. For example, a polysulfide group or the like having excellent affinity with the alkenyl group is included. The alkoxy group is hydrolyzed in the presence of moisture as in (a) to form a hydroxyl group (OH group) to produce an alcohol (R—OH), and further, OH groups are dehydrated as in (c). Bond by condensation. As shown in FIG. 7B, these generated components are subjected to a dehydration condensation reaction with a silanol group on the silica surface (coupling reaction between silica and a silane coupling agent) to form a silanol on the silica surface. Decrease groups and suppress silica aggregation. On the other hand, the Y portion exhibits affinity with rubber. Thereby, while dispersibility of the silica in rubber | gum is improved, rubber | gum and a silica can be combined firmly after vulcanization.

他方、前記シリカ配合のタイヤ用ゴムを製造する場合、従来のカーボンブラック配合の場合に準じて、図8に示す下記の方法にて製造している。具体的には、バンバリーミキサーである密閉式ゴム混合機a1に、原料ゴムと第1の薬品(シリカとシランカプリング剤と少なくとも含みかつ加硫剤を含まない。)とを投入し、剪断力を付与して混練りすることにより第1の混練ゴムg1を形成する。この段階をマスター練りという。しかる後、この密閉式ゴム混合機a1から排出される塊状の第1の混練ゴムg1は、ローラヘッド押出し機b等に供給して長尺シート状に加工され、かつ加硫温度以下に冷却される。しかる後、この冷却された第1の混練ゴムg1と、第2の薬品(加硫剤を含む)とを、密閉式ゴム混合機a2に投入し、加硫温度以下の低温度で混練りすることにより最終のゴム組成物g2を形成する。この段階をファイナル練りという。なお最終のゴム組成物g2は、ローラヘッド押出し機b等を介して長尺シート状に加工され、かつ冷却されて一時貯留された後、例えばトレッドゴム、サイドウォールゴム等のタイヤ用ゴムとするための最終のゴム押出し成形工程へと搬送される。   On the other hand, when manufacturing the rubber | gum for tires of the said silica mixing, it manufactures with the following method shown in FIG. 8 according to the case of the conventional carbon black mixing | blending. Specifically, a raw rubber and a first chemical (containing at least silica and a silane coupling agent and not containing a vulcanizing agent) are charged into a sealed rubber mixer a1 that is a Banbury mixer, and shear force is applied. By applying and kneading, the first kneaded rubber g1 is formed. This stage is called master training. Thereafter, the lump-like first kneaded rubber g1 discharged from the hermetic rubber mixer a1 is supplied to a roller head extruder b or the like to be processed into a long sheet and cooled to a vulcanization temperature or lower. The Thereafter, the cooled first kneaded rubber g1 and the second chemical (including the vulcanizing agent) are charged into the closed rubber mixer a2 and kneaded at a low temperature not higher than the vulcanization temperature. This forms the final rubber composition g2. This stage is called final training. The final rubber composition g2 is processed into a long sheet through a roller head extruder b or the like, and after being cooled and temporarily stored, for example, tire rubber such as tread rubber or sidewall rubber is used. For the final rubber extrusion process.

ここで、シリカと、加硫剤とを別工程で混練りする理由は、シリカの分散に当たって強い混練り作業が要求されるため、混練り温度が加硫温度を大きく上回ってしまうからである。従って、マスター練りでは、シリカの分散を主目的として、高圧下での強い混練りを行い、逆にファイナル練りでは、加硫剤の分散を主目的として、加硫温度以下の低温での弱い混練りが行われている。   Here, the reason why the silica and the vulcanizing agent are kneaded in separate steps is that a strong kneading operation is required for dispersing the silica, so that the kneading temperature greatly exceeds the vulcanization temperature. Therefore, in master kneading, strong kneading under high pressure is performed mainly for dispersion of silica, and conversely, in final kneading, weak mixing at a low temperature below the vulcanization temperature is performed mainly for dispersion of vulcanizing agent. Kneading is done.

しかし本発明者の研究の結果、密閉式ゴム混合機のみでマスター練りを行った場合、シリカを均一に分散させることが難しく、例えば低発熱性、ウエットグリップ性能、耐摩耗性能等の所望のゴム物性を充分に発揮できないことが判明した。これは、シリカを分散させる場合、前述の如く、シリカをシランカップリング剤とカップリング反応させて、ゴムとの親和性を高めることが特に重要であるが、密閉式ゴム混合機で混練りする場合、高圧かつ剪断力が強いため、ゴムの温度が短時間で大幅に上昇してしまい、しかもその温度が一定でないため混練りの間にカップリング反応が充分に行われないためと推測される。   However, as a result of the inventor's research, when master kneading is carried out only with a sealed rubber mixer, it is difficult to uniformly disperse silica. For example, desired rubber such as low heat build-up, wet grip performance, and wear resistance performance It was found that the physical properties could not be fully exhibited. In the case of dispersing silica, it is particularly important to increase the affinity with rubber by coupling the silica with a silane coupling agent as described above, but kneading with a closed rubber mixer. In this case, since the high pressure and the shearing force are strong, the temperature of the rubber rises significantly in a short time, and it is presumed that the coupling reaction is not sufficiently performed during kneading because the temperature is not constant. .

そこで、本発明者がさらに研究した結果、前記マスター練りを、密閉式ゴム混合機を用いた一次混練ステップと、2軸混練機を用いた二次混練ステップとに分離し、この二次混練ステップにおいて所定の温度と時間をかけながら混練りすることが、カップリング反応を高めてシリカを均一に分散させるために有効であることを見出し得た。   Therefore, as a result of further studies by the present inventors, the master kneading is separated into a primary kneading step using a closed rubber mixer and a secondary kneading step using a biaxial kneader, and this secondary kneading step. It has been found that kneading while taking a predetermined temperature and time is effective for enhancing the coupling reaction and uniformly dispersing the silica.

本発明は、混練り中のシリカとシランカプリング剤とのカプリング反応を高めて、より均一なシリカの分散を図ることが可能となり、シリカ配合ゴムのゴム物性を向上させうるタイヤ用ゴムの混練方法及び装置を提供することを目的としている。   The present invention relates to a method for kneading a rubber for a tire which can enhance the coupling reaction between silica and a silane coupling agent during kneading to achieve more uniform dispersion of silica and improve the rubber physical properties of the silica-containing rubber. And to provide an apparatus.

なお2軸混練機を用いて混練りを行うものとして以下の特許文献1がある。   In addition, there exists the following patent document 1 as what kneads | mixes using a biaxial kneader.

特開2005−53190号公報JP 2005-53190 A

前記目的を達成するために、本願請求項1の発明は、タイヤ用の原料ゴム、及び20phr以上のシリカと該シリカに対する比率が3〜35質量%のシランカプリング剤とを少なくとも含みかつ加硫剤を含まない第1の薬品を混練りして第1の混練ゴムを形成するタイヤ用ゴムの混練方法であって、
密閉式ゴム混合機により、前記原料ゴムと第1の薬品とを剪断力を付与して混練りすることにより第1の混練ゴムを形成する一次混練ステップと、
前記密閉式ゴム混合機の排出口から塊状に排出される第1の混練ゴムを、スクリューフィーダを用いて長尺体に成形しながら2軸混練機の投入口まで搬送しかつ投入する搬送投入ステップと、
投入された前記第1の混練ゴムを前記2軸混練機により剪断力を付与して混練りすることにより第2の混練ゴムを形成し、かつ該第2の混練ゴムを前記2軸混練機の吐出口から吐出する二次混練ステップとを含むとともに、
前記二次混練ステップは、第1の混練ゴムを、120〜200℃の範囲の二次混練温度T2に温度制御しながら剪断を付与して混練りする二次混練り工程と、この二次混練り工程後のゴムを120℃よりも低温度に冷却する冷却工程とを有することを特徴としている。
In order to achieve the above object, the invention of claim 1 of the present invention includes a raw material rubber for tires, and at least a silica of 20 phr or more and a silane coupling agent having a ratio of 3 to 35% by mass with respect to the silica and a vulcanizing agent. A kneading method of a rubber for tires that kneads a first chemical that does not contain to form a first kneaded rubber,
A primary kneading step of forming a first kneaded rubber by kneading the raw rubber and the first chemical with a shearing force by a hermetic rubber mixer;
Conveying and feeding step of feeding and feeding the first kneaded rubber discharged in a lump form from the outlet of the hermetic rubber mixer to the inlet of the biaxial kneader while forming into a long body using a screw feeder When,
The input first kneaded rubber is kneaded by applying a shearing force to the biaxial kneader to form a second kneaded rubber, and the second kneaded rubber is used in the biaxial kneader. A secondary kneading step for discharging from the discharge port,
The secondary kneading step includes a secondary kneading step in which the first kneaded rubber is kneaded by applying shear while controlling the temperature at a secondary kneading temperature T2 in the range of 120 to 200 ° C., and this secondary mixing. And a cooling step of cooling the rubber after the kneading step to a temperature lower than 120 ° C.

又請求項2の発明では、前記第1の混練ゴムは、前記密閉式ゴム混合機の排出口から排出された時の温度T1が120〜200℃の範囲であることを特徴としている。   The invention of claim 2 is characterized in that the first kneaded rubber has a temperature T1 in the range of 120 to 200 ° C. when discharged from the discharge port of the hermetic rubber mixer.

又請求項3の発明では、前記二次混練り工程は、この二次混練り工程の工程時間Jが30秒〜8分であることを特徴としている。   In the invention of claim 3, the secondary kneading step is characterized in that the process time J of the secondary kneading step is 30 seconds to 8 minutes.

又請求項4の発明では、前記二次混練り工程は、この二次混練り工程の工程時間Jと、前記二次混練温度T2との積J×T2が60〜1600(℃・分)であることを特徴としている。   In the invention of claim 4, the secondary kneading step is such that the product J × T2 of the process time J of the secondary kneading step and the secondary kneading temperature T2 is 60 to 1600 (° C./min). It is characterized by being.

又請求項5の発明では、タイヤ用の原料ゴム、及び20phr以上のシリカと該シリカに対する比率が3〜35質量%のシランカプリング剤とを少なくとも含みかつ加硫剤を含まない第1の薬品を混練りして第1の混練ゴムを形成するタイヤ用ゴムの混練装置であって、
前記原料ゴムと第1の薬品とを剪断力を付与して混練りすることにより第1の混練ゴムを形成する密閉式ゴム混合機と、
前記密閉式ゴム混合機の排出口から塊状に排出される第1の混練ゴムを受け取り、かつ受け取った第1の混練ゴムを長尺体に成形しながら2軸混練機の投入口まで搬送しかつ投入するスクリューフィーダと、
投入された前記第1の混練ゴムを剪断力を付与して混練りすることにより第2の混練ゴムを形成する2軸混練機とを含み、
しかも前記2軸混練機は、投入された前記第1の混練ゴムを下流側に送り込むフィードゾーンと、送り込まれたゴムに剪断を付与して混練りする二次混練りゾーンと、混練りされたゴムを120℃よりも低温度に冷却する冷却ゾーンとを具えるとともに、前記2軸混練機は、前記二次混練りゾーンにおけるゴムの温度を120〜200℃の範囲の二次混練温度T2に制御する温度制御手段をさらに具えることを特徴としている。
In the invention of claim 5, the raw material rubber for tires and the first chemical containing at least 20 phr of silica and a silane coupling agent having a ratio of 3 to 35% by mass with respect to the silica and not containing a vulcanizing agent are included. A tire rubber kneading apparatus for kneading to form a first kneaded rubber,
A hermetic rubber mixer that forms a first kneaded rubber by kneading the raw rubber and the first chemical by applying a shearing force;
Receiving the first kneaded rubber discharged in a lump form from the discharge port of the hermetic rubber mixer, and conveying the received first kneaded rubber to the input port of the biaxial kneader while forming a long body; A screw feeder to be charged,
A biaxial kneader that forms a second kneaded rubber by kneading the first kneaded rubber charged with a shearing force,
In addition, the biaxial kneader was kneaded with a feed zone for feeding the first kneaded rubber charged to the downstream side, and a secondary kneading zone for applying shear to the fed rubber and kneading. A cooling zone for cooling the rubber to a temperature lower than 120 ° C., and the biaxial kneader has a secondary kneading temperature T2 in the range of 120 to 200 ° C. A temperature control means for controlling is further provided.

本発明は叙上の如く、原料ゴムと第1の薬品(シリカとシランカプリング剤とを含みかつ加硫剤を含まない。)とのマスター練りにおいて、このマスター練りを、密閉式ゴム混合機を用いた一次混練ステップと、2軸混練機を用いた二次混練ステップとに分離している。   In the present invention, as described above, in the master kneading of the raw rubber and the first chemical (containing silica and silane coupling agent and not containing the vulcanizing agent), this master kneading is carried out by using a sealed rubber mixer. The primary kneading step used and the secondary kneading step using a biaxial kneader are separated.

前記一次混練ステップでは、密閉式ゴム混合機により高い混練エネルギーが付与され、原料ゴムの粉砕→可塑化→粒塊化→一体化→流動化、及び第1の薬品の混合、分散が行われる。このステップでは、ゴムの温度が短時間で大幅に上昇し、しかもその温度が一定でなく不均一であるため、シリカとシランカプリング剤とのカップリング反応は、充分には行われていない。   In the primary kneading step, high kneading energy is imparted by the closed rubber mixer, and the raw rubber is pulverized → plasticized → agglomerated → integrated → fluidized, and the first chemical is mixed and dispersed. In this step, the temperature of the rubber rises significantly in a short time, and since the temperature is not constant and non-uniform, the coupling reaction between silica and the silane coupling agent is not sufficiently performed.

これに対して、2軸混練機を用いた二次混練ステップでは、第1の混練ゴムを、所定の混練温度T2に温度制御しながら混練りする二次混練り工程を含む。この工程では、第1の混練ゴムに、所定の混練温度T2と時間をかけながら混練りすることができる。そのため、カップリング反応を高めてシリカを均一に分散させることが可能となり、シリカ配合ゴムのゴム物性を向上させることができる。   On the other hand, the secondary kneading step using the biaxial kneader includes a secondary kneading step of kneading the first kneaded rubber while controlling the temperature to a predetermined kneading temperature T2. In this step, the first kneaded rubber can be kneaded while taking a predetermined kneading temperature T2 and time. Therefore, it becomes possible to enhance the coupling reaction and uniformly disperse the silica, thereby improving the rubber physical properties of the silica-containing rubber.

以下、本発明の実施の一形態を、図示例とともに説明する。図1は本発明のタイヤ用ゴムの混練方法を実施するための混練装置の一例を概念的に示す略側面図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic side view conceptually showing an example of a kneading apparatus for carrying out the tire rubber kneading method of the present invention.

本実施形態の混練装置1は、前述のマスター練りを行うための混練装置であって、原料ゴムと第1の薬品とを剪断力を付与して混練りすることにより第1の混練ゴムG1を形成する密閉式ゴム混合機2、この密閉式ゴム混合機2から排出される塊状の第1の混練ゴムG1を長尺体に成形しながら2軸混練機3の投入口4まで搬送かつ投入するスクリューフィーダ5、及び投入された前記第1の混練ゴムG1にさらに剪断力を付与して混練りすることにより第2の混練ゴムG2を形成する2軸混練機3を含んで構成される。   The kneading apparatus 1 of the present embodiment is a kneading apparatus for performing the above-described master kneading, and kneading the raw rubber and the first chemical with a shearing force to knead the first kneaded rubber G1. The sealed rubber mixer 2 to be formed and the lump-like first kneaded rubber G1 discharged from the sealed rubber mixer 2 are conveyed and charged to the inlet 4 of the biaxial kneader 3 while being formed into a long body. The screw feeder 5 and the biaxial kneader 3 that forms the second kneaded rubber G2 by further applying a shearing force to the charged first kneaded rubber G1 and kneading are configured.

ここで、前記第1の薬品とは、シリカとシランカプリング剤とを少なくとも含み、かつ加硫剤を含まない薬品から構成される。本例では、第1の薬品が、シリカ、シランカプリング剤、及び微粉体状をなし分散性に劣るカーボンブラックからなる場合を例示するが、これ以外にも、例えば軟化剤(オイル、ワックス)、老化防止剤、ステアリン酸、亜鉛華など、通常ゴム工業で使用される添加剤を適宜含ませることができる。   Here, the first chemical is composed of a chemical containing at least silica and a silane coupling agent and not containing a vulcanizing agent. In this example, the case where the first chemical is composed of silica, a silane coupling agent, and carbon black having a fine powder form and inferior dispersibility is exemplified, but besides this, for example, a softener (oil, wax), Additives usually used in the rubber industry such as anti-aging agent, stearic acid, zinc white and the like can be appropriately included.

又シリカは、このシリカ特有の低発熱性や良ウエットグリップ性等のゴム物性を発揮させるために、原料ゴム100質量部に対して20質量部以上配合される。又、シランカプリング剤は、シリカとのカプリング反応を適正に行うために、シリカに対する質量比率として3〜35質量%配合される。なおシリカの配合量が多すぎると、本発明の混練装置1及び混練方法を用いたとしても、均一に分散することが難しく、従ってシリカ配合量の上限は100質量部以下が好ましい。又シランカプリング剤は、その配合量が3質量%を下回ると、カプリング反応が不充分となって、シリカの分散性が損ねられ、逆に35質量%を上回ると、シランカプリング剤が必要以上に反応して、ゴムが硬くなり過ぎてしまうという問題を招く。   Silica is blended in an amount of 20 parts by mass or more with respect to 100 parts by mass of the raw rubber in order to exhibit rubber physical properties such as low heat build-up and good wet grip properties unique to this silica. Further, the silane coupling agent is blended in an amount of 3 to 35% by mass with respect to silica in order to appropriately perform a coupling reaction with silica. In addition, when there are too many compounding quantities of silica, even if it uses the kneading apparatus 1 and the kneading method of this invention, it will be difficult to disperse | distribute uniformly, Therefore The upper limit of a silica compounding quantity is 100 mass parts or less. If the amount of the silane coupling agent is less than 3% by mass, the coupling reaction becomes insufficient and the dispersibility of the silica is impaired. Conversely, if the amount exceeds 35% by mass, the silane coupling agent is more than necessary. The reaction causes the problem that the rubber becomes too hard.

なおシリカとしては、通常ゴム業界で使用されるものであれば特に限定されないが、例えば、窒素吸着比表面積(BET)が150〜250m/gの範囲、かつフタル酸ジブチル(DBP)吸油量が180ml/100g以上のコロイダル特性を示すものが、ゴムへの補強効果、及びゴム加工性等の点で好ましい。又シランカップリング剤も、通常ゴム業界で使用される、例えば、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(2−トリエトキシシリルプロピル)テトラスルフィド、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシランなどが好適に採用しうる。又原料ゴムも、通常ゴム業界で使用される、例えば、天然ゴム(NR)、及びポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)等のジエン系合成ゴムなどが好適であり、特にシリカ用に変性した変性BR、変性SBRがより好ましく採用しうる。 The silica is not particularly limited as long as it is usually used in the rubber industry. For example, the nitrogen adsorption specific surface area (BET) is in the range of 150 to 250 m 2 / g, and the dibutyl phthalate (DBP) oil absorption is What shows the colloidal characteristic of 180 ml / 100g or more is preferable at points, such as a reinforcement effect to rubber | gum and rubber processability. Silane coupling agents are also commonly used in the rubber industry, for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylpropyl). Tetrasulfide, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyltrimethoxysilane and the like can be suitably employed. The raw rubber is also usually used in the rubber industry, for example, natural rubber (NR), and diene synthetic rubber such as polyisoprene rubber (IR), polybutadiene rubber (BR), styrene butadiene rubber (SBR), etc. In particular, modified BR and modified SBR modified for silica can be more preferably employed.

次に、前記密閉式ゴム混合機2は、本例では、所謂バンバリーミキサーであって、図2に略示する如く、並列する一対の撹拌ロータ6,6を配した混合室7を具え、該混合室7内に投入される原料ゴムと第1の薬品とを剪断力を付与して混練りし、第1の混練ゴムG1として前記混合室7の下端に設けた開閉自在な排出口8から塊状で排出する。   Next, the sealed rubber mixer 2 is a so-called Banbury mixer in this example, and includes a mixing chamber 7 provided with a pair of agitating rotors 6 and 6 arranged in parallel, as schematically shown in FIG. The raw rubber and the first chemical introduced into the mixing chamber 7 are kneaded by applying a shearing force, and the first kneading rubber G1 is provided from an openable / closable discharge port 8 provided at the lower end of the mixing chamber 7. Dump in bulk.

前記撹拌ロータ6は、回転可能に枢支される基軸の周囲に撹拌羽根を例えば螺旋状に設けた周知構成をなし、混合機本体9に設けた前記混合室7内に配設されるとともに、モータ等により互いに同方向、或いは逆方向に回転駆動される。前記混合室7は、前記一対の撹拌ロータ6,6と同心な2つの円周面を連ねた断面ひょうたん状をなすともに、そのくびれ部分には、前記原料ゴム及び第1の薬品(総称して原料ゴム等と呼ぶ場合がある。)を投入する投入口10に通じる縦孔11の下端が接続される。又縦孔11には、シリンダ等により昇降可能に支持されるフローティングウェイト12が配される。このフローティングウェイト12は、前記混合室7内に投入された原料ゴム等を加圧し撹拌ロータ6による撹拌効率、混練効率を向上させる。なお前記投入口10には、前記原料ゴム等を搬入する搬入コンベヤ13が隣設されている。   The stirring rotor 6 has a known configuration in which a stirring blade is provided, for example, in a spiral shape around a base shaft that is rotatably supported, and is disposed in the mixing chamber 7 provided in the mixer main body 9. They are driven to rotate in the same direction or in opposite directions by a motor or the like. The mixing chamber 7 has a cross-sectional gourd shape in which two circumferential surfaces concentric with the pair of stirring rotors 6 and 6 are connected, and the constricted portion includes the raw rubber and the first chemical (generically named The lower end of the vertical hole 11 leading to the insertion port 10 for introducing the material rubber may be called raw material rubber or the like. The vertical hole 11 is provided with a floating weight 12 supported so as to be movable up and down by a cylinder or the like. The floating weight 12 pressurizes the raw rubber or the like put into the mixing chamber 7 and improves the stirring efficiency and kneading efficiency by the stirring rotor 6. The loading port 10 is provided with a carry-in conveyor 13 for carrying the raw rubber and the like next to it.

又前記混合機本体9には、前記排出口8を開閉するドロップドア14が設けられ、その開放により、混練りされた第1の混練ゴムG1を排出口8から塊状で排出、落下させる。   The mixer main body 9 is provided with a drop door 14 that opens and closes the discharge port 8, and the kneaded first kneaded rubber G <b> 1 is discharged and dropped from the discharge port 8 as a lump by opening the drop door 14.

次に、前記スクリューフィーダ5は、前記塊状の第1の混練ゴムG1を、長尺体に成形して2軸混練機3に連続的かつ自動的に供給することを目的としている。従って、スクリューフィーダ5では、剪断力を有する混練り機能は不要であり、周知構造のスクリュー式ゴム押出機が採用できる。本例では、スクリューフィーダ5として所謂2軸テーパー押出機20が採用される。具体的には、図3に略示する如く、2軸テーパー押出機20は、後端側に、前記密閉式ゴム混合機2からの塊状の第1の混練ゴムG1を受け取る大口の投入口20aを設けたケーシング21と、このケーシング21内に回動可能に水平支持される2本のテーパースクリュ軸22とを有する。   Next, the screw feeder 5 is intended to continuously and automatically supply the lump-like first kneaded rubber G1 to a biaxial kneader 3 by forming it into a long body. Therefore, the screw feeder 5 does not require a kneading function having a shearing force, and a screw type rubber extruder having a well-known structure can be employed. In this example, a so-called biaxial taper extruder 20 is employed as the screw feeder 5. Specifically, as schematically shown in FIG. 3, the biaxial taper extruder 20 has a large inlet 20a for receiving the first kneaded rubber G1 from the hermetic rubber mixer 2 on the rear end side. And two taper screw shafts 22 horizontally supported rotatably in the casing 21.

前記テーパースクリュ軸22は、各軸心が前端に向かって互いに近づくように配列するとともに、各テーパースクリュ軸22のテーパ軸部22aの周囲には、螺旋状に連続して巻回する羽根部22bが形成される。なお螺旋の向き、および回転方向は、テーパースクリュ軸22,22間で互いに相違し、これにより、落下投入された第1の混練ゴムG1を、テーパースクリュ軸22,22間で確実に噛み込むとともに、噛み込んだゴムを羽根部22bの間に巻き込みならが前方に押進せしめ、長尺体に成形しながら前端の吐出口23から連続的に押し出しうる。なおスクリューフィーダ5としては、所謂1軸のスクリュー式ゴム押出機を採用することもできる。   The taper screw shafts 22 are arranged so that the respective shaft centers approach each other toward the front end, and the blade portions 22b wound continuously around the taper shaft portions 22a of the respective taper screw shafts 22 in a spiral manner. Is formed. The direction of the spiral and the direction of rotation are different from each other between the taper screw shafts 22 and 22, so that the first kneaded rubber G <b> 1 dropped and charged can be surely caught between the taper screw shafts 22 and 22. If the caught rubber is caught between the blade portions 22b, it can be pushed forward and continuously extruded from the discharge port 23 at the front end while being formed into a long body. In addition, as the screw feeder 5, what is called a uniaxial screw type rubber extruder can also be employ | adopted.

次に、前記2軸混練機3では、前記スクリューフィーダ5を介して密閉式ゴム混合機2から受け取る第1の混練ゴムG1に対して、さらに混練りを加えつつシリカとシランカプリング剤とのカップリング反応を高めることで、シリカをより均一に分散させる。   Next, in the biaxial kneader 3, a cup of silica and a silane coupling agent is added to the first kneaded rubber G1 received from the closed rubber mixer 2 via the screw feeder 5 while further kneading. By increasing the ring reaction, silica is more uniformly dispersed.

そのために、前記2軸混練機3は、受け取った前記第1の混練ゴムG1を下流側に送り込むフィードゾーンY1と、送り込まれたゴムに剪断を付与して混練りする二次混練りゾーンY2と、混練りされたゴムを120℃よりも低温度に冷却する冷却ゾーンY3とを具えるとともに、前記二次混練りゾーンY2におけるゴムの温度を120〜200℃の範囲の二次混練温度T2に制御する温度制御手段30が設けられる。   For this purpose, the biaxial kneader 3 includes a feed zone Y1 for feeding the received first kneaded rubber G1 downstream, and a secondary kneading zone Y2 for imparting shear to the fed rubber and kneading. And a cooling zone Y3 for cooling the kneaded rubber to a temperature lower than 120 ° C, and the temperature of the rubber in the secondary kneading zone Y2 is set to a secondary kneading temperature T2 in the range of 120 to 200 ° C. A temperature control means 30 for controlling is provided.

具体的には、前記2軸混練機3は、後端側に投入口4を有しかつ前端側に吐出口32を有するシリンダ33と、このシリンダ33の内腔H内に互いに平行に配される2本の撹拌軸34,34とを具える。なお前記内腔Hは、前記撹拌軸34,34と同心な2つの円周面を連ねた断面ひょうたん状(図4(B)に示す)をなす。又各前記撹拌軸34は、前記内腔Hと同心にのびる基軸部36と、その周囲に形成される羽根部37とを有し、モータ駆動によって、互いに同速度かつ同方向に回転する。   Specifically, the biaxial kneader 3 is arranged in parallel with each other in a cylinder 33 having a charging port 4 on the rear end side and a discharge port 32 on the front end side, and in a lumen H of the cylinder 33. Two stirring shafts 34, 34. The lumen H has a cross-sectional gourd shape (shown in FIG. 4B) in which two circumferential surfaces concentric with the stirring shafts 34, 34 are connected. Each of the agitation shafts 34 has a base shaft portion 36 concentric with the lumen H and a blade portion 37 formed around the same, and are rotated at the same speed and in the same direction by driving a motor.

前記羽根部37は、前記フィードゾーンY1では、図4に示すように、前記基軸部36の周囲を螺旋状に連続して巻回するスクリュー状の螺旋羽根37Aとして形成される。この螺旋羽根37Aは、前記投入口4の下方を通って前方側(下流側)にのびる。これにより、前記投入口4に投入された第1の混練ゴムG1を、螺旋羽根37Aの間に巻き込んで下流側の二次混練りゾーンY2へと送り込む。   As shown in FIG. 4, the blade portion 37 is formed as a screw-shaped spiral blade 37 </ b> A that continuously winds around the base shaft portion 36 in the feed zone Y <b> 1. The spiral blade 37 </ b> A extends under the insertion port 4 and extends forward (downstream). As a result, the first kneading rubber G1 charged into the charging port 4 is wound between the spiral blades 37A and sent to the secondary kneading zone Y2 on the downstream side.

又前記二次混練りゾーンY2では、前記羽根部37は、非連続な複数のパドル37Bとして形成される。前記パドル37Bは断面略楕円形状をなし、軸芯方向に隣り合うパドル37Bは、その位相角が、例えば45°或いは90°など適宜に違えて配される。従って、二次混練りゾーンY2では、ゴムは、パドル37Bの回転に伴って、圧縮、引き延ばしの体積変化を受けると同時に、パドル37B,37B間で剪断力が付与され、混練、分散が行われる。なお一方の撹拌軸34に配されるパドル37Bと、他方の撹拌軸34に配されるパドル37Bとは、位相角が90°相違し、かつ本例では、一方のパドル37Bの先端が、他方のパドル37Bをこするように回転する。なお前記パドル37Bの断面形状としては、他に、略三角形状、略十字状等、種々の形状のものが採用しうる。   In the secondary kneading zone Y2, the blade portion 37 is formed as a plurality of discontinuous paddles 37B. The paddle 37B has a substantially elliptical cross section, and the paddles 37B adjacent to each other in the axial direction are arranged with the phase angle appropriately changed, for example, 45 ° or 90 °. Accordingly, in the secondary kneading zone Y2, the rubber is subjected to compression and expansion volume changes as the paddle 37B rotates, and at the same time, a shearing force is applied between the paddles 37B and 37B to perform kneading and dispersion. . The paddle 37B disposed on one stirring shaft 34 and the paddle 37B disposed on the other stirring shaft 34 have a phase angle of 90 °, and in this example, the tip of one paddle 37B is the other Rotate to rub the paddle 37B. In addition, as the cross-sectional shape of the paddle 37B, various shapes such as a substantially triangular shape and a substantially cross shape can be adopted.

又本例では、前記二次混練りゾーンY2においてゴムを加圧しうるよう、図5に示すように、二次混練りゾーンY2の下流端に、加圧壁38と、ゴムを上流側に向かって付勢する逆流螺旋羽根37Cとが配される。前記加圧壁38は、前記撹拌軸34の基軸部36とシリンダ33の内周面との間の間隔Dを減じて、下流側へのゴムの移動を妨げる。又前記逆流螺旋羽根37Cは、前記螺旋羽根37Aの螺旋とは逆向きをなし、ゴムを上流側に付勢する。これらによって、二次混練りゾーンY2のゴムを適度に加圧しうる。本例では、前記加圧壁38は、上下の分割片38a,38aからなり、各前記分割片38aが、例えば前記シリンダ33に設ける昇降手段39によって上下に移動して前記間隔Dを調節することにより、前記二次混練りゾーンY2のゴム圧力を自在に調整しうる。   Further, in this example, as shown in FIG. 5, the pressure wall 38 and the rubber are directed toward the upstream side at the downstream end of the secondary kneading zone Y2 so that the rubber can be pressurized in the secondary kneading zone Y2. The counterflow spiral blades 37C that are energized are arranged. The pressurizing wall 38 reduces the distance D between the base shaft portion 36 of the stirring shaft 34 and the inner peripheral surface of the cylinder 33 and prevents the rubber from moving downstream. The reverse flow spiral blade 37C has a reverse direction to the spiral of the spiral blade 37A and biases the rubber upstream. With these, the rubber in the secondary kneading zone Y2 can be appropriately pressurized. In this example, the pressurizing wall 38 is composed of upper and lower divided pieces 38a, 38a, and each divided piece 38a is moved up and down by, for example, lifting means 39 provided in the cylinder 33 to adjust the distance D. Thus, the rubber pressure in the secondary kneading zone Y2 can be freely adjusted.

ここで、前記二次混練りゾーンY2における混練りの際、ゴムの温度を120〜200℃の範囲の二次混練温度T2に制御することが重要であり、これによりカプリング反応を高めてシリカの分散性を向上せしめ、より均一な分散を達成する。そのために、前記2軸混練機3に温度制御手段30が設けられる。   Here, when kneading in the secondary kneading zone Y2, it is important to control the temperature of the rubber to a secondary kneading temperature T2 in the range of 120 to 200 ° C., thereby enhancing the coupling reaction. Improve dispersibility and achieve more uniform dispersion. For this purpose, a temperature control means 30 is provided in the biaxial kneader 3.

前記温度制御手段30は、図4(A)に示すように、本例では前記シリンダ33かつ二次混練りゾーンY2の領域に配されるジャケット40を含み、このジャケット40内を流過する熱媒の温度、及び/又は熱媒の流量を調節することにより、ゴムの温度を二次混練温度T2に精度良くコントロールしうる。   As shown in FIG. 4 (A), the temperature control means 30 includes a jacket 40 disposed in the region of the cylinder 33 and the secondary kneading zone Y2 in this example, and heat that flows through the jacket 40. By adjusting the temperature of the medium and / or the flow rate of the heat medium, the temperature of the rubber can be accurately controlled to the secondary kneading temperature T2.

次に、前記冷却ゾーンY3では、前記二次混練りゾーンY2にて混練りされた二次混練温度T2のゴムを、120℃よりも低い温度に冷却して前端の吐出口32から吐出する。そのために、冷却ゾーンY3では、前記羽根部37は、フィードゾーンY1の前記螺旋羽根37Aと同方向に巻回する螺旋羽根37Dとして形成されるとともに、該冷却ゾーンY3には冷却手段(図示しない)が配される。この冷却手段は、前記シリンダ33かつ冷却ゾーンY3の領域に配されるジャケットを含み、該ジャケット内に冷媒を流過させることにより、ゴムを冷却させる。   Next, in the cooling zone Y3, the rubber at the secondary kneading temperature T2 kneaded in the secondary kneading zone Y2 is cooled to a temperature lower than 120 ° C. and discharged from the discharge port 32 at the front end. Therefore, in the cooling zone Y3, the blade portion 37 is formed as a spiral blade 37D wound in the same direction as the spiral blade 37A in the feed zone Y1, and cooling means (not shown) is provided in the cooling zone Y3. Is arranged. This cooling means includes a jacket disposed in the region of the cylinder 33 and the cooling zone Y3, and cools the rubber by allowing a coolant to flow through the jacket.

又前記2軸混練機3では、第2の混練ゴムG2をより冷却させるため、図1のように前記吐出口32に例えばローラヘッド41を設け、該第2の混練ゴムG2をシート状に押し出すことが好ましい。なお本例では、2軸混練機3の下流側には、例えば複数本の冷却ローラを有する冷却装置が設置され、前記シート状の第2の混練ゴムG2を該冷却装置に通すことにより、さらに冷却している。   Further, in the biaxial kneader 3, for example, a roller head 41 is provided at the discharge port 32 as shown in FIG. 1 to further cool the second kneaded rubber G2, and the second kneaded rubber G2 is extruded into a sheet shape. It is preferable. In this example, on the downstream side of the biaxial kneader 3, for example, a cooling device having a plurality of cooling rollers is installed, and by passing the sheet-like second kneading rubber G2 through the cooling device, It is cooling.

又前述した如く、シリカとシランカプリング剤とのカプリング反応の過程で、アルコール(R−OH)、例えばメタノールが生成される。従って本例では、前記冷却ゾーンY3に、メタノール等を除去する脱メタノール器42を設けている。なお脱メタノール器42としては、触媒やフィルタ等を用いた周知の種々の構造のものが採用しうる。   As described above, alcohol (R—OH) such as methanol is generated in the process of coupling reaction between silica and a silane coupling agent. Therefore, in this example, the methanol removal unit 42 for removing methanol and the like is provided in the cooling zone Y3. As the demethanolizer 42, various well-known structures using a catalyst, a filter, or the like can be used.

次に、この混練装置1を用いた混練方法を説明する。前記混練方法は、図6のフローチャートに示すように、
(1)前記密閉式ゴム混合機2によって前記原料ゴムと第1の薬品とを剪断力を付与して混練りすることにより、第1の混練ゴムG1を形成する一次混練ステップと、
(2)前記密閉式ゴム混合機2から排出される塊状の第1の混練ゴムG1を、前記スクリューフィーダ5を用いて長尺体に成形しながら2軸混練機3の投入口4まで搬送しかつ投入する搬送投入ステップと、
(3)投入された前記第1の混練ゴムG1を、前記2軸混練機3によって剪断力を付与して混練りすることにより第2の混練ゴムG2を形成し、かつ該第2の混練ゴムG2を前記2軸混練機3の吐出口32から吐出する二次混練ステップとを含んで構成される。
Next, a kneading method using the kneading apparatus 1 will be described. As shown in the flowchart of FIG.
(1) A primary kneading step of forming the first kneaded rubber G1 by kneading the raw rubber and the first chemical with a shearing force by the sealed rubber mixer 2;
(2) The massive first kneaded rubber G1 discharged from the closed rubber mixer 2 is conveyed to the inlet 4 of the biaxial kneader 3 while being molded into a long body using the screw feeder 5. And a transfer loading step for loading,
(3) The second kneaded rubber G2 is formed by kneading the charged first kneaded rubber G1 with the biaxial kneader 3 while applying a shearing force, and the second kneaded rubber G2 is formed. And a secondary kneading step for discharging G2 from the discharge port 32 of the biaxial kneader 3.

そして、前記二次混練ステップでは、前述した如く、第1の混練ゴムG1を、120〜200℃の範囲の二次混練温度T2に温度制御しながら剪断を付与して混練りする二次混練り工程を有する。   In the secondary kneading step, as described above, the first kneading rubber G1 is kneaded by applying shear while controlling the temperature to the secondary kneading temperature T2 in the range of 120 to 200 ° C. Process.

このように、第1の混練ゴムG1を、前記二次混練温度T2に温度制御しながら混練りすることで、カプリング反応を高めてシリカの分散性を向上せしめ、より均一な分散を達成できる。なお前記二次混練温度T2が120℃を下回る場合、及び200℃を上回る場合には、カプリング反応が起こり難くなり、シリカの分散性を向上し得なくなる。従って、前記二次混練温度T2の下限値は、140℃以上、さらには150℃以上が好ましく、又上限値は180℃以下、さらには170℃以下が好ましい。又カプリング反応を高めるためには、前記二次混練温度T2が前記範囲内で安定していることも好ましく、従って、運転中の二次混練温度T2の変動巾を±5℃以下に抑えることも望ましい。   Thus, by kneading the first kneaded rubber G1 while controlling the temperature to the secondary kneading temperature T2, the coupling reaction is enhanced and the dispersibility of the silica is improved, so that more uniform dispersion can be achieved. When the secondary kneading temperature T2 is lower than 120 ° C. or higher than 200 ° C., the coupling reaction hardly occurs and the dispersibility of silica cannot be improved. Accordingly, the lower limit value of the secondary kneading temperature T2 is preferably 140 ° C. or higher, more preferably 150 ° C. or higher, and the upper limit value is preferably 180 ° C. or lower, more preferably 170 ° C. or lower. In order to enhance the coupling reaction, it is also preferable that the secondary kneading temperature T2 is stable within the above range. Therefore, the fluctuation range of the secondary kneading temperature T2 during operation can be suppressed to ± 5 ° C. or less. desirable.

又前記二次混練り工程では、その工程時間Jが30秒〜8分の範囲であるのが好ましく、30秒未満では、工程時間Jが不足してカプリング反応を充分に行うことができない。又8分を越えると、さらなるカプリング反応が見込めず、時間の不必要な超過、即ち生産性の低下を招く。このような観点から工程時間Jの下限は1分以上がさらに好ましく、又上限は5分以下がさらに好ましい。又カプリング反応のためには、前記工程時間Jと前記二次混練温度T2との積J×T2が60〜1600(℃・分)の範囲であることも好ましい。この積J×T2が60(℃・分)未満では、カプリング反応が不充分となり、逆に1600(℃・分)を越えると、さらなるカプリング反応が見込めず、時間の不必要な超過を招く。このような観点から積J×T2の下限は100(℃・分)以上がさらに好ましく、又上限は1200(℃・分)以下がさらに好ましい。なお前記二次混練温度T2が変動する場合には、工程時間Jを例えば横軸、二次混練温度T2を例えば縦軸にとった二次混練温度T2の曲線yを求め、この曲線yを工程時間Jで積分した値を、前記積J×T2として採用する。なお二次混練温度T2は、前述の温度制御手段30により自在に制御できる。又前記工程時間Jは、前記2軸混練機3における撹拌軸34の回転速度の調整、及び加圧壁38による間隔Dの調整により制御することができる。   In the secondary kneading step, the process time J is preferably in the range of 30 seconds to 8 minutes, and if it is less than 30 seconds, the process time J is insufficient and the coupling reaction cannot be performed sufficiently. On the other hand, if it exceeds 8 minutes, no further coupling reaction can be expected, leading to an unnecessary excess of time, that is, a reduction in productivity. From such a viewpoint, the lower limit of the process time J is more preferably 1 minute or more, and the upper limit is more preferably 5 minutes or less. For the coupling reaction, the product J × T2 of the process time J and the secondary kneading temperature T2 is preferably in the range of 60 to 1600 (° C./min). If the product J × T2 is less than 60 (° C. · min), the coupling reaction is insufficient. Conversely, if it exceeds 1600 (° C. · min), no further coupling reaction can be expected, leading to an unnecessary excess of time. From such a viewpoint, the lower limit of the product J × T2 is more preferably 100 (° C./min) or more, and the upper limit is more preferably 1200 (° C./min) or less. When the secondary kneading temperature T2 fluctuates, a curve y of the secondary kneading temperature T2 is obtained with the process time J as the horizontal axis and the secondary kneading temperature T2 as the vertical axis, for example, and this curve y is used as the process. The value integrated at time J is adopted as the product J × T2. The secondary kneading temperature T2 can be freely controlled by the temperature control means 30 described above. The process time J can be controlled by adjusting the rotational speed of the stirring shaft 34 in the biaxial kneader 3 and adjusting the distance D by the pressure wall 38.

又前記混練方法では、前記密閉式ゴム混合機2の排出口8から排出された時の第1の混練ゴムG1の温度T1が、120〜200℃の範囲であることが好ましい。この温度T1が120℃を下回ると、前記二次混練り工程においてゴムを二次混練温度T2まで上昇させるまでに時間が長く必要となり、生産性の低下を招く。又温度T1が200℃を下回ると、ゴムの温度を二次混練温度T2まで下げるために、例えばスクリューフィーダ5による押出し、搬送時間を長くすることが必要となり、同様に生産性の低下を招く。   In the kneading method, the temperature T1 of the first kneaded rubber G1 when discharged from the discharge port 8 of the hermetic rubber mixer 2 is preferably in the range of 120 to 200 ° C. When this temperature T1 is less than 120 ° C., it takes a long time to raise the rubber to the secondary kneading temperature T2 in the secondary kneading step, resulting in a decrease in productivity. On the other hand, when the temperature T1 is lower than 200 ° C., in order to lower the rubber temperature to the secondary kneading temperature T2, for example, it is necessary to lengthen the extrusion by the screw feeder 5 and the conveying time.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

本発明の混練装置、かつ混練方法を用い、表1の配合のゴム組成物を形成した。そして各ゴム組成物を用いてシート状の試験サンプルを作成し、この試験サンプルの加硫後のゴム物性を互いに比較した。又各ゴム組成物をトレッドゴムとして用いた生タイヤを加硫成形して、試験用の乗用車用タイヤ(サイズ195/65R15)を試作し、各タイヤの性能を互いに比較した。   Using the kneading apparatus and the kneading method of the present invention, a rubber composition having the composition shown in Table 1 was formed. And the sheet-like test sample was created using each rubber composition, and the rubber physical properties after vulcanization of this test sample were compared with each other. In addition, raw tires using each rubber composition as a tread rubber were vulcanized and molded to produce trial passenger car tires (size 195 / 65R15), and the performances of the tires were compared with each other.

比較例1(従来例)では、下記の混練方法(1)〜(3)にてゴム組成物を形成した。
(1) バンバリーミキサー(密閉式ゴム混合機)に、原料ゴムと、第1の薬品(シリカ、シランカプリング剤、カーボンブラック)とを投入し、これらを混練りして一次混練ゴムを形成した。混練時間は5分、排出時のゴムの温度は165℃であった。これをローラヘッド押出し機でシート状に加工し、かつ温度40℃まで冷却した。
(2) 前記冷却したシート状の一次混練ゴムと、第2の薬品(オイル、ワックス、老化防止剤、ステアリン酸、亜鉛華)とを、バンバリーミキサー(密閉式ゴム混合機)に投入し、これらを混練りして二次混練ゴムを形成した。混練時間は5分、排出時のゴムの温度は150℃であった。これをローラヘッド押出し機でシート状に加工し、かつ温度40℃まで冷却した。
(3) 前記冷却した二次混練ゴムと、第3の薬品(加硫剤(硫黄)、加硫促進剤)とを、バンバリーミキサー(密閉式ゴム混合機)に投入し、これらを混練りして最終の混練ゴムを形成した。混練時間は3分、排出時のゴムの温度は100℃であった。これをローラヘッド押出し機でシート状に加工し、かつ温度40℃まで冷却した。
In Comparative Example 1 (conventional example), a rubber composition was formed by the following kneading methods (1) to (3).
(1) A raw rubber and a first chemical (silica, silane coupling agent, carbon black) were charged into a Banbury mixer (sealed rubber mixer), and these were kneaded to form a primary kneaded rubber. The kneading time was 5 minutes, and the temperature of the rubber at the time of discharging was 165 ° C. This was processed into a sheet by a roller head extruder and cooled to a temperature of 40 ° C.
(2) Put the cooled sheet-like primary kneaded rubber and the second chemical (oil, wax, anti-aging agent, stearic acid, zinc white) into a Banbury mixer (sealed rubber mixer), Were kneaded to form a secondary kneaded rubber. The kneading time was 5 minutes, and the temperature of the rubber at the time of discharging was 150 ° C. This was processed into a sheet by a roller head extruder and cooled to a temperature of 40 ° C.
(3) The cooled secondary kneaded rubber and the third chemical (vulcanizing agent (sulfur), vulcanization accelerator) are put into a Banbury mixer (sealed rubber mixer) and kneaded. Thus, the final kneaded rubber was formed. The kneading time was 3 minutes, and the temperature of the rubber at the time of discharging was 100 ° C. This was processed into a sheet by a roller head extruder and cooled to a temperature of 40 ° C.

他の比較例、及び実施例では、下記の混練方法(4)〜(6)にてゴム組成物を形成した。
(4)
(4−1) バンバリーミキサー(密閉式ゴム混合機)に、原料ゴムと、第1の薬品(シリカ、シランカプリング剤、カーボンブラック)とを投入し、これらを混練りして第1の混練ゴムを形成した(一次混練ステップ)。混練時間は5分、排出時のゴムの温度は165℃であった。
(4−2) 前記第1の混練ゴムを冷却することなく、スクリューフィーダを用いて2軸混練機に投入する(搬送投入ステップ)。
(4−3) 投入された第1の混練ゴムを、2軸混練機により、二次混練温度T2に温度制御しながら混練し、第2の混練ゴムとして吐出口から吐出する(二次混練ステップ)。二次混練工程時間Jは2分、二次混練温度T2は150℃で一定であった。なお吐出される第2の混練ゴムは、シート状に加工され、かつ温度40℃まで冷却された。このシート状の第2の混練ゴムは、前記比較例1(従来例)におけるシート状の一次混練ゴムに相当する。
(5) 上記(2)と実質的に同様であり、前記冷却したシート状の一次混練ゴム(第2の混練ゴム)と、第2の薬品(オイル、ワックス、老化防止剤、ステアリン酸、亜鉛華)とを、バンバリーミキサー(密閉式ゴム混合機)に投入し、これらを混練りして二次混練ゴムを形成した。混練時間は5分、排出時のゴムの温度は150℃であった。これをローラヘッド押出し機でシート状に加工し、かつ温度40℃まで冷却した。
(6) 上記(3)と実質的に同様であり、 前記冷却した二次混練ゴムと、第3の薬品(加硫剤(硫黄)、加硫促進剤)とを、バンバリーミキサー(密閉式ゴム混合機)に投入し、これらを混練りして最終の混練ゴムを形成した。混練時間は3分、排出時のゴムの温度は100℃であった。これをローラヘッド押出し機でシート状に加工し、かつ温度40℃まで冷却した。
In other comparative examples and examples, rubber compositions were formed by the following kneading methods (4) to (6).
(4)
(4-1) Raw material rubber and first chemical (silica, silane coupling agent, carbon black) are charged into a Banbury mixer (sealed rubber mixer), and these are kneaded to produce a first kneaded rubber. (Primary kneading step). The kneading time was 5 minutes, and the temperature of the rubber at the time of discharging was 165 ° C.
(4-2) The first kneaded rubber is charged into a biaxial kneader using a screw feeder without cooling (conveying charging step).
(4-3) The charged first kneaded rubber is kneaded by a biaxial kneader while controlling the temperature to the secondary kneading temperature T2, and discharged from the discharge port as a second kneaded rubber (secondary kneading step). ). The secondary kneading process time J was 2 minutes, and the secondary kneading temperature T2 was constant at 150 ° C. The second kneaded rubber to be discharged was processed into a sheet shape and cooled to a temperature of 40 ° C. This sheet-like second kneaded rubber corresponds to the sheet-like primary kneaded rubber in Comparative Example 1 (conventional example).
(5) Substantially the same as (2) above, the cooled sheet-like primary kneaded rubber (second kneaded rubber) and the second chemical (oil, wax, anti-aging agent, stearic acid, zinc) Were added to a Banbury mixer (sealed rubber mixer) and kneaded to form a secondary kneaded rubber. The kneading time was 5 minutes, and the temperature of the rubber at the time of discharging was 150 ° C. This was processed into a sheet by a roller head extruder and cooled to a temperature of 40 ° C.
(6) Substantially the same as (3) above, the cooled secondary kneaded rubber and the third chemical (vulcanizing agent (sulfur), vulcanization accelerator) are combined with a Banbury mixer (sealed rubber) The resulting mixture was kneaded to form a final kneaded rubber. The kneading time was 3 minutes, and the temperature of the rubber at the time of discharging was 100 ° C. This was processed into a sheet by a roller head extruder and cooled to a temperature of 40 ° C.

前記第2の薬品、前記第3の薬品の配合量は、以下の通りであって、各ゴム組成物ともに同一である。
「第2の薬品」
オイル−−−26phr
ワックス−−−2phr
老化防止剤−−−2phr
ステアリン−−−3phr
酸亜鉛華−−−5phr
「第3の薬品」
硫黄−−−2phr
加硫促進剤Cz−−−2phr
加硫促進剤DPG−−−1phr
The compounding amounts of the second chemical and the third chemical are as follows, and are the same for each rubber composition.
"Second chemical"
Oil --- 26phr
Wax--2 phr
Anti-aging agent--2 phr
Stearin--3 phr
Zinc acid flower--5phr
"Third medicine"
Sulfur--2 phr
Vulcanization accelerator Cz--2phr
Vulcanization accelerator DPG--1 phr

試験サンプルのゴム物性において、
・ ゴム硬度Hsは、JIS−K6253に準じてデュロメータータイプAにより、23℃で測定したデュロメータA硬さ:
・ 引張強度TB(引張強さ)、引張破断強度EB(切断時引張応力)は、JISK6251「加硫ゴム及び熱可塑性ゴム−引張特性の求め方」「加硫ゴムの引張試験方法」に記載の試験方法に準じて測定した値:
・ 複素弾性率E*、損失正接tanδは、JIS−K6394の規定に準じて、次に示される条件で(株)岩本製作所製の「粘弾性スペクトロメータ」を用いて測定し、それぞれ比較例100とする指数で評価した。初期歪み(10%)、振幅(±1%)、周波数(10Hz)、変形モード(引張)、測定温度(70℃)。
複素弾性率E*は、指数の大きい方が、高弾性であり、損失正接tanδは、指数の大きい方が発熱性が高い。
In the rubber physical properties of the test sample,
The rubber hardness Hs is a durometer A hardness measured at 23 ° C. by durometer type A according to JIS-K6253.
・ Tensile strength TB (tensile strength) and tensile breaking strength EB (tensile stress at cutting) are described in JIS K6251 “Vulcanized rubber and thermoplastic rubber-Determination of tensile properties” and “Tensile test method for vulcanized rubber”. Value measured according to the test method:
The complex elastic modulus E * and loss tangent tan δ were measured using “Viscoelastic Spectrometer” manufactured by Iwamoto Seisakusho under the conditions shown below in accordance with JIS-K6394. It was evaluated with the index. Initial strain (10%), amplitude (± 1%), frequency (10 Hz), deformation mode (tensile), measurement temperature (70 ° C.).
The complex elastic modulus E * has a higher elasticity when the index is larger, and the loss tangent tanδ has a higher exothermic property when the index is larger.

タイヤの性能において、
・ドライ性能は、タイヤをリム(15×6J)、内圧(200kPa)の条件にて、乗用車(2000cc、FF車)の全輪に装着し、ドライなアスファルト路面のテストコースを走行し、操縦安定性(ハンドル応答性、剛性感、グリップ等)をドライバーの官能評価により比較例1を3とする5段階で評価した。指数の大きい方が良好である。
・ウエット性能は、上記車両を用い、ウエットなアスファルト路面のテストコースを走行し、操縦安定性(ハンドル応答性、剛性感、グリップ等)を、ドライバーの官能評価により比較例1を3とする4段階で評価した。指数の大きい方が良好である。
・耐摩耗性は、上記車両を用い、ドライなアスファルト路面のテストコースを3000km走行した時のトレッドゴムの摩耗量を、タイヤ赤道に最も近い周方向溝にて測定し、比較例100とする指数で評価した。指数の大きい方が良好である。
In terms of tire performance,
・ For dry performance, tires are mounted on all wheels of a passenger car (2000cc, FF car) under the conditions of rim (15 × 6J) and internal pressure (200kPa), driving on a dry asphalt road test course, and stable operation The properties (handle responsiveness, rigidity, grip, etc.) were evaluated in five stages, with Comparative Example 1 taken as 3 by sensory evaluation of the driver. A larger index is better.
-Wet performance is determined by driving the test vehicle on a wet asphalt road surface using the above vehicle, handling stability (steering response, rigidity, grip, etc.), and Comparative Example 1 as 3 based on sensory evaluation of the driver 4 Rated by stage. A larger index is better.
・ Abrasion resistance is an index of Comparative Example 100 measured by measuring the wear amount of tread rubber when running on a dry asphalt road test course 3000 km in the circumferential groove closest to the tire equator. It was evaluated with. A larger index is better.

Figure 0005204610
Figure 0005204610
Figure 0005204610
Figure 0005204610

本発明の混練装置の一実施例を概念的に示す略側面図である。1 is a schematic side view conceptually showing an embodiment of a kneading apparatus of the present invention. 密閉式ゴム混合機を拡大して示す断面図である。It is sectional drawing which expands and shows a sealing-type rubber mixer. (A)は、スクリューフィーダが2軸テーパー押出機である場合の平面図、(B)は、その断面図である。(A) is a top view in case a screw feeder is a biaxial taper extruder, (B) is the sectional drawing. (A)は、2軸混練機のフィードゾーンおよび二次混練りゾーンの一部を示す平面図、(B)は、そのI−I断面図である。(A) is a top view which shows a part of feed zone and secondary kneading zone of a biaxial kneader, (B) is the II sectional drawing. 加圧壁と、逆流螺旋羽根とを示す側部断面図である。It is side part sectional drawing which shows a pressurization wall and a backflow spiral blade. 混練方法を示すフローチャートである。It is a flowchart which shows the kneading | mixing method. (A)、(B)は、シランカプリング剤によるゴム中のシリカの分散の機構を説明する概念図である。(A), (B) is a conceptual diagram explaining the mechanism of dispersion | distribution of the silica in rubber | gum by a silane coupling agent. タイヤ用ゴムにおける従来の混練り方法を説明する概念図である。It is a conceptual diagram explaining the conventional kneading | mixing method in the rubber | gum for tires.

符号の説明Explanation of symbols

1 混練装置
2 密閉式ゴム混合機
4 投入口
5 スクリューフィーダ
3 2軸混練機
8 排出口
30 温度制御手段
G1 第1の混練ゴム
G2 第2の混練ゴム
Y1 フィードゾーン
Y2 二次混練りゾーン
Y3 冷却ゾーン
DESCRIPTION OF SYMBOLS 1 Kneading apparatus 2 Sealed rubber mixer 4 Input port 5 Screw feeder 3 Twin screw kneader 8 Discharge port 30 Temperature control means G1 First kneading rubber G2 Second kneading rubber Y1 Feed zone Y2 Secondary kneading zone Y3 Cooling zone

Claims (5)

タイヤ用の原料ゴム、及び20phr以上のシリカと該シリカに対する比率が3〜35質量%のシランカプリング剤とを少なくとも含みかつ加硫剤を含まない第1の薬品を混練りして第1の混練ゴムを形成するタイヤ用ゴムの混練方法であって、
密閉式ゴム混合機により、前記原料ゴムと第1の薬品とを剪断力を付与して混練りすることにより第1の混練ゴムを形成する一次混練ステップと、
前記密閉式ゴム混合機の排出口から塊状に排出される第1の混練ゴムを、スクリューフィーダを用いて長尺体に成形しながら2軸混練機の投入口まで搬送しかつ投入する搬送投入ステップと、
投入された前記第1の混練ゴムを前記2軸混練機により剪断力を付与して混練りすることにより第2の混練ゴムを形成し、かつ該第2の混練ゴムを前記2軸混練機の吐出口から吐出する二次混練ステップとを含むとともに、
前記二次混練ステップは、第1の混練ゴムを、120〜200℃の範囲の二次混練温度T2に温度制御しながら剪断を付与して混練りする二次混練り工程と、この二次混練り工程後のゴムを120℃よりも低温度に冷却する冷却工程とを有することを特徴とするタイヤ用ゴムの混練方法。
First kneaded by kneading a raw material rubber for tire and a first chemical containing at least 20 phr of silica and a silane coupling agent having a ratio of 3 to 35 mass% with respect to the silica and not containing a vulcanizing agent. A method of kneading rubber for tires to form rubber,
A primary kneading step of forming a first kneaded rubber by kneading the raw rubber and the first chemical with a shearing force by a hermetic rubber mixer;
Conveying and feeding step of feeding and feeding the first kneaded rubber discharged in a lump form from the outlet of the hermetic rubber mixer to the inlet of the biaxial kneader while forming into a long body using a screw feeder When,
The input first kneaded rubber is kneaded by applying a shearing force to the biaxial kneader to form a second kneaded rubber, and the second kneaded rubber is used in the biaxial kneader. A secondary kneading step for discharging from the discharge port,
The secondary kneading step includes a secondary kneading step in which the first kneaded rubber is kneaded by applying shear while controlling the temperature at a secondary kneading temperature T2 in the range of 120 to 200 ° C., and this secondary mixing. And a cooling step of cooling the rubber after the kneading step to a temperature lower than 120 ° C.
前記第1の混練ゴムは、前記密閉式ゴム混合機の排出口から排出された時の温度T1が120〜200℃の範囲であることを特徴とする請求項1記載のタイヤ用ゴムの混練方法。   2. The method for kneading tire rubber according to claim 1, wherein the first kneaded rubber has a temperature T1 in a range of 120 to 200 ° C. when discharged from an outlet of the hermetic rubber mixer. . 前記二次混練り工程は、この二次混練り工程の工程時間Jが30秒〜8分であることを特徴とする請求項2記載のタイヤ用ゴムの混練方法。   3. The method for kneading tire rubber according to claim 2, wherein the secondary kneading step has a process time J of the secondary kneading step of 30 seconds to 8 minutes. 前記二次混練り工程は、この二次混練り工程の工程時間Jと、前記二次混練温度T2との積J×T2が60〜1600(℃・分)であることを特徴とする請求項1〜3の何れかに記載のタイヤ用ゴムの混練方法。   The secondary kneading step is characterized in that a product J x T2 of a process time J of the secondary kneading step and the secondary kneading temperature T2 is 60 to 1600 (° C / min). The method for kneading rubber for tires according to any one of 1 to 3. タイヤ用の原料ゴム、及び20phr以上のシリカと該シリカに対する比率が3〜35質量%のシランカプリング剤とを少なくとも含みかつ加硫剤を含まない第1の薬品を混練りして第1の混練ゴムを形成するタイヤ用ゴムの混練装置であって、
前記原料ゴムと第1の薬品とを剪断力を付与して混練りすることにより第1の混練ゴムを形成する密閉式ゴム混合機と、
前記密閉式ゴム混合機の排出口から塊状に排出される第1の混練ゴムを受け取り、かつ受け取った第1の混練ゴムを長尺体に成形しながら2軸混練機の投入口まで搬送しかつ投入するスクリューフィーダと、
投入された前記第1の混練ゴムを剪断力を付与して混練りすることにより第2の混練ゴムを形成する2軸混練機とを含み、
しかも前記2軸混練機は、投入された前記第1の混練ゴムを下流側に送り込むフィードゾーンと、送り込まれたゴムに剪断を付与して混練りする二次混練りゾーンと、混練りされたゴムを120℃よりも低温度に冷却する冷却ゾーンとを具えるとともに、前記2軸混練機は、前記二次混練りゾーンにおけるゴムの温度を120〜200℃の範囲の二次混練温度T2に制御する温度制御手段をさらに具えることを特徴とするタイヤ用ゴムの混練装置。
First kneaded by kneading a raw material rubber for tire and a first chemical containing at least 20 phr of silica and a silane coupling agent having a ratio of 3 to 35 mass% with respect to the silica and not containing a vulcanizing agent. A tire rubber kneading device for forming rubber,
A hermetic rubber mixer that forms a first kneaded rubber by kneading the raw rubber and the first chemical by applying a shearing force;
Receiving the first kneaded rubber discharged in a lump form from the discharge port of the hermetic rubber mixer, and conveying the received first kneaded rubber to the input port of the biaxial kneader while forming a long body; A screw feeder to be charged,
A biaxial kneader that forms a second kneaded rubber by kneading the first kneaded rubber charged with a shearing force,
In addition, the biaxial kneader was kneaded with a feed zone for feeding the first kneaded rubber charged to the downstream side, and a secondary kneading zone for applying shear to the fed rubber and kneading. A cooling zone for cooling the rubber to a temperature lower than 120 ° C., and the biaxial kneader has a secondary kneading temperature T2 in the range of 120 to 200 ° C. A tire rubber kneading apparatus, further comprising temperature control means for controlling.
JP2008263050A 2008-10-09 2008-10-09 Tire rubber kneading method and apparatus Expired - Fee Related JP5204610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008263050A JP5204610B2 (en) 2008-10-09 2008-10-09 Tire rubber kneading method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008263050A JP5204610B2 (en) 2008-10-09 2008-10-09 Tire rubber kneading method and apparatus

Publications (2)

Publication Number Publication Date
JP2010089423A JP2010089423A (en) 2010-04-22
JP5204610B2 true JP5204610B2 (en) 2013-06-05

Family

ID=42252609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008263050A Expired - Fee Related JP5204610B2 (en) 2008-10-09 2008-10-09 Tire rubber kneading method and apparatus

Country Status (1)

Country Link
JP (1) JP5204610B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3755513B1 (en) 2018-02-20 2023-07-05 COLMEC S.p.A. Method for operating a twin-screw mixer-extruder, including a presser body for defining a controlled volume of a compounding chamber

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5232203B2 (en) 2010-08-24 2013-07-10 住友ゴム工業株式会社 Rubber composition for tire, method for producing the same, and studless tire
JP5276649B2 (en) * 2010-12-06 2013-08-28 住友ゴム工業株式会社 Method for producing rubber composition
WO2013063729A1 (en) * 2011-11-01 2013-05-10 烟台华鹏机械有限公司 Vertical-type continuous mixing-kneading machine
JP5956156B2 (en) * 2012-01-05 2016-07-27 株式会社ブリヂストン Multi-screw kneading extruder and method for producing wet masterbatch
JP6000177B2 (en) * 2013-03-27 2016-09-28 株式会社神戸製鋼所 Kneading machine and kneading method
JP6736899B2 (en) * 2016-02-05 2020-08-05 住友ゴム工業株式会社 Rubber member manufacturing method
JP6915284B2 (en) * 2017-01-30 2021-08-04 住友ゴム工業株式会社 Manufacturing method of rubber composition for tires
KR101847358B1 (en) * 2017-12-08 2018-04-10 주식회사 한미이엔지 Manufacturing apparatus of foam-agent master batch and foam-agent master batch manufactur by using the apparatus
KR101847180B1 (en) * 2017-12-08 2018-04-09 허수범 Manufacturing apparatus of foam-agent master batch and foam-agent master batch manufactur by using the apparatus
JP2019116023A (en) * 2017-12-27 2019-07-18 住友ゴム工業株式会社 Rubber extrusion apparatus and rubber extrusion method
IT201900020757A1 (en) * 2019-11-11 2021-05-11 Bridgestone Europe Nv Sa APPARATUS AND METHOD FOR THE PRODUCTION OF A RUBBER COMPOUND USED FOR THE MANUFACTURE OF A RUBBER PRODUCT OR A TIRE
DE102020202090A1 (en) * 2020-02-19 2021-08-19 Continental Reifen Deutschland Gmbh Device for producing silica-containing rubber mixtures, method for producing a rubber mixture and corresponding uses of the device
FR3109905A1 (en) * 2020-05-06 2021-11-12 Compagnie Generale Des Etablissements Michelin Manufacturing of Rubber Mixtures in a Rubber Mixture Manufacturing Line Incorporating One or More Twin-Screw Mixing and Extrusion Machine (s)
FR3109904B1 (en) * 2020-05-06 2022-04-15 Michelin & Cie Manufacture of Rubber Compounds in a Rubber Compound Manufacturing Line Incorporating Twin-Screw Mixing and Extrusion Machine(s)
US20230330895A1 (en) * 2020-06-16 2023-10-19 Compagnie Generale Des Etablissements Michelin Production of rubber mixtures in a rubber mixture production line incorporating one or more twin-screw mixing and extrusion machines
EP4164847B1 (en) * 2020-06-16 2024-08-14 Compagnie Generale Des Etablissements Michelin Rubber mixture production line comprising at least three conical twin-screw mixers, and related method
CN111844498A (en) * 2020-07-22 2020-10-30 安徽金利塑业股份有限公司 Straw raw material stirring conveying system
CN118219449B (en) * 2024-05-23 2024-08-02 潍坊顺福昌橡塑有限公司 Tire tread base rubber composition and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3118535B2 (en) * 1993-07-01 2000-12-18 株式会社東洋設計 Extrusion equipment
JP4346351B2 (en) * 2003-05-28 2009-10-21 横浜ゴム株式会社 Method and equipment for kneading rubber composition
JP4243979B2 (en) * 2003-06-02 2009-03-25 横浜ゴム株式会社 Method for kneading silica-containing rubber composition
JP2006123272A (en) * 2004-10-27 2006-05-18 Yokohama Rubber Co Ltd:The Method for kneading unvulcanized rubber
JP2006168031A (en) * 2004-12-14 2006-06-29 Yokohama Rubber Co Ltd:The Kneading method of silica type compound
JP4813826B2 (en) * 2005-06-09 2011-11-09 三菱重工業株式会社 Biaxial feeder, sheeting apparatus and kneading system using the same
JP2007203616A (en) * 2006-02-02 2007-08-16 Yokohama Rubber Co Ltd:The Kneading system for rubber material blended with silica
JP4928315B2 (en) * 2007-03-16 2012-05-09 住友ゴム工業株式会社 Continuous mixing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3755513B1 (en) 2018-02-20 2023-07-05 COLMEC S.p.A. Method for operating a twin-screw mixer-extruder, including a presser body for defining a controlled volume of a compounding chamber

Also Published As

Publication number Publication date
JP2010089423A (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP5204610B2 (en) Tire rubber kneading method and apparatus
TWI789597B (en) Methods of preparing a composite having elastomer and filler
JP4750269B2 (en) Elastomer composite blend and method for producing the same
JP5843868B2 (en) Elastomer composite material containing silica-containing filler and method for producing the same
JP5913978B2 (en) Rubber composition and pneumatic tire
CN111527132B (en) Process for preparing elastomeric compounds and elastomeric compounds
JP5063919B2 (en) Method for producing paper fiber masterbatch and method for producing paper fiber masterbatch and rubber composition for tire
WO2022125683A1 (en) Methods of preparing a composite comprising never-dried natural rubber and filler
CN111372791A (en) Microbeads comprising nanosized silicate fibres having an acicular morphology, their preparation, elastomeric compositions comprising them and vehicle tyres
CN106459428B (en) The manufacturing method of rubber wet masterbatch
JP5567302B2 (en) Silica-containing rubber kneading system and kneading method
JP2023554610A (en) Method for preparing formulations containing elastomers and fillers
JP2022001626A (en) Manufacturing method of rubber composition and kneader
CN114643658B (en) Method for producing rubber composition and method for producing tire
JP7572232B2 (en) Method for producing rubber composition and method for producing tire
JP7371454B2 (en) Rubber composition manufacturing method and tire manufacturing method
EP4201627B1 (en) Rubber composition manufacturing method, and related tire manufacturing method
US20240043665A1 (en) Tyre for vehicle wheels
WO2023107991A1 (en) Methods of preparing a composite having resins
CN114643657A (en) Method for producing rubber composition and method for producing tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5204610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees