JP2006167741A - Spherical molding sand - Google Patents

Spherical molding sand Download PDF

Info

Publication number
JP2006167741A
JP2006167741A JP2004361257A JP2004361257A JP2006167741A JP 2006167741 A JP2006167741 A JP 2006167741A JP 2004361257 A JP2004361257 A JP 2004361257A JP 2004361257 A JP2004361257 A JP 2004361257A JP 2006167741 A JP2006167741 A JP 2006167741A
Authority
JP
Japan
Prior art keywords
casting
sand
mold
spherical
foundry sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004361257A
Other languages
Japanese (ja)
Other versions
JP4421463B2 (en
Inventor
Masayuki Kato
雅之 加藤
Yoshimitsu Ina
由光 伊奈
Mikio Sakaguchi
阪口  美喜夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2004361257A priority Critical patent/JP4421463B2/en
Publication of JP2006167741A publication Critical patent/JP2006167741A/en
Application granted granted Critical
Publication of JP4421463B2 publication Critical patent/JP4421463B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mold Materials And Core Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a casting mold which can maintain its strength, and does not cause gas defects, and can produce a casting having a smooth surface even when the quantity of a binder added is small. <P>SOLUTION: The spherical molding sand is manufactured by the flame fusion process (Verneuil's method), and has a mean grain size of 0.03 to 0.1 mm. Preferably, the spherical molding sand contains Al<SB>2</SB>O<SB>3</SB>and/or SiO<SB>2</SB>as main components. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鋳鋼、鋳鉄、アルミニウム、銅およびこれらの合金等の鋳造用鋳型に使用される球状鋳物砂および鋳造用鋳型に関する。   The present invention relates to a spherical casting sand and a casting mold used for casting molds such as cast steel, cast iron, aluminum, copper and alloys thereof.

従来から鋳物砂として珪砂が広く使用されている。珪砂は鉱産物であるため形態が不定形であり、流動性に欠け、充填性が悪い。それゆえ、珪砂からなる鋳型の表面は荒く、従って、鋳造品(鋳物)の表面が荒れ、後工程である研磨工程への負荷が大きくなる。また、珪砂の構成鉱物である石英は鋳造時の熱負荷によりクリストバライト等へ結晶変態し、その時の体積変化により崩壊するため、珪砂は鋳物砂としての再生効率が低い。これらの問題を解決する手段として、球状鋳物砂(たとえば、特許文献1参照)や、高珪酸質球状鋳物砂およびその製造方法(たとえば、特許文献2参照)が開示されている。これらは、原料組成物を球形に造粒した後、ロータリーキルン等で焼成するものである。しかしながら、得られる鋳物砂の球形度は低く、そのため流動性および充填性は不充分であり、鋳物表面の荒れを改善する効果は小さい。また、焼結法であるため多くの開気孔が存在した吸水率の大きい多孔質のものしか得られない。その結果、鋳型の強度が不充分で、鋳型作製時に多量のバインダーを必要とするため、ガス欠陥が増え鋳物砂としての再生が困難となる。これを解決する方法として球状鋳物砂(たとえば、特許文献3)が開示されているが、得られる鋳物表面の平滑性については、更なる向上が望まれる。   Conventionally, silica sand has been widely used as foundry sand. Since silica sand is a mineral product, its form is irregular, lacks fluidity, and has poor filling properties. Therefore, the surface of the mold made of silica sand is rough, and therefore the surface of the cast product (casting) is rough, and the load on the polishing process, which is a subsequent process, is increased. In addition, quartz, which is a constituent mineral of silica sand, undergoes crystal transformation to cristobalite or the like due to the thermal load during casting and collapses due to volume change at that time, so that silica sand has low regeneration efficiency as foundry sand. As means for solving these problems, spherical casting sand (for example, see Patent Document 1), high silicic acid spherical casting sand and a method for producing the same (for example, see Patent Document 2) are disclosed. In these, the raw material composition is granulated into a spherical shape and then fired in a rotary kiln or the like. However, the spheroidity of the obtained foundry sand is low, so that the fluidity and filling properties are insufficient, and the effect of improving the roughness of the foundry surface is small. Moreover, since it is a sintering method, only a porous material having many open pores and high water absorption can be obtained. As a result, the strength of the mold is insufficient, and a large amount of binder is required at the time of producing the mold, which increases gas defects and makes it difficult to regenerate as foundry sand. As a method for solving this, spheroidal molding sand (for example, Patent Document 3) is disclosed, but the smoothness of the obtained casting surface is desired to be further improved.

一方、鋳造品の製造において、より、表面が平滑な鋳物を製造しようとすると、鋳物砂の平均粒子径を細かくしなければならないが、従来の鋳物砂の場合、細かくすればするほど鋳型強度が低下するため、バインダーを多量に入れる必要があった。特に有機バインダーにおいては、バインダーの熱分解ガスによるガス欠陥の懸念が大きくなっていた。すなわち、良好な鋳肌とガス欠陥のない鋳物を両立することが非常に困難であった。   On the other hand, in the production of castings, when trying to produce a casting with a smoother surface, the average particle diameter of the foundry sand must be made finer. In order to decrease, it was necessary to add a large amount of binder. In particular, in organic binders, there is a growing concern about gas defects due to the pyrolysis gas of the binder. That is, it was very difficult to achieve both a good casting surface and a casting without gas defects.

そのため、平滑な表面を持つ鋳物を作るためには、比較的粗い鋳物砂で鋳型を作成し、表面に塗型をする手法などが取られていたが、塗型工程は煩雑であるとともに、刷毛痕やタレが発生し、鋳物の外観を悪くする。
特開平4−367349号公報(第2頁) 特開平5−169184号公報(第2頁) 特開2004−202577号公報(第2頁)
Therefore, in order to make a casting with a smooth surface, a method has been used in which a mold is made with relatively rough foundry sand and a mold is applied to the surface. Scratches and sagging occur, deteriorating the appearance of the casting.
JP-A-4-367349 (page 2) JP-A-5-169184 (2nd page) JP 2004-202577 A (2nd page)

本発明は、バインダー添加量が少量でも鋳型強度が維持でき、ガス欠陥が発生せず、かつ表面が平滑な鋳物が得られる鋳型を提供することを課題とする。   An object of the present invention is to provide a mold that can maintain the mold strength even when the amount of the binder added is small, does not cause gas defects, and provides a casting with a smooth surface.

本発明者らは、火炎溶融法による球状鋳物砂について、鋭意検討の結果、極めて限定された範囲の平均粒子径を有するものが、従来技術と全く異なり、粒子径を細かくしても鋳型強度の低下が起きず、逆に鋳型強度に優れ、更にこのような鋳物砂を用いることで表面が更に平滑でかつガス欠陥のない鋳物を製造することが出来ることを見い出し、本発明を完成させるに至った。   As a result of intensive studies on the spherical casting sand by the flame melting method, the present inventors have a very limited range of average particle diameter, which is completely different from the prior art. It has been found that a casting with no reduction, conversely excellent mold strength, and using such foundry sand can be produced with a smoother surface and free from gas defects, thereby completing the present invention. It was.

本発明は、火炎溶融法にて製造された、平均粒子径が0.03〜0.1mmの球状鋳物砂に関する。   The present invention relates to a spherical casting sand produced by a flame melting method and having an average particle diameter of 0.03 to 0.1 mm.

また、本発明は、上記本発明の球状鋳物砂を用いて得られる鋳型、及び該鋳型を、塗型を形成せずに用いる鋳物の製造法、該鋳型を、肌砂として用いる鋳物の製造法に関する。   The present invention also relates to a mold obtained by using the spherical casting sand of the present invention, a casting production method using the casting mold without forming a mold, and a casting production method using the casting mold as skin sand. About.

本発明により、強度が高く、ガス欠陥が少なく、表面が平滑な鋳物が得られる鋳型を実現できる鋳物砂が提供される。   According to the present invention, there is provided a foundry sand capable of realizing a mold capable of obtaining a cast having a high strength, few gas defects, and a smooth surface.

本発明の球状鋳物砂は、平均粒子径が0.03〜0.1mmの範囲にある。平均粒子径は平滑な鋳物が得られる観点、及び混練砂の流動性の観点から、0.03〜0.07mmが好ましく、0.04〜0.07mmがより好ましい。   The spherical foundry sand of the present invention has an average particle diameter in the range of 0.03 to 0.1 mm. The average particle diameter is preferably 0.03 to 0.07 mm, more preferably 0.04 to 0.07 mm, from the viewpoint of obtaining a smooth casting and the flowability of the kneaded sand.

前記平均粒径は以下のようにして求めることができる。すなわち、球状鋳物砂粒子の粒子投影断面からの球形度=1の場合は直径(mm)を測定し、一方、球形度<1の場合は球状鋳物砂粒子の長軸径(mm)と短軸径(mm)を測定して(長軸径+短軸径)/2を求め、任意の100個の球状鋳物砂粒子につき、それぞれ得られた値を平均して平均粒径(mm)とする。長軸径と短軸径は、以下のように定義される。粒子を平面上に安定させ、その粒子の平面上への投影像を2本の平行線ではさんだとき、その平行線の間隔が最小となる粒子の幅を短軸径といい、一方、この平行線に直角な方向の2本の平行線で粒子をはさむときの距離を長軸径という。   The average particle diameter can be determined as follows. That is, the diameter (mm) is measured when the sphericity from the particle projection cross section of the spherical casting sand particles is 1, while the major axis diameter (mm) and the minor axis of the spherical casting sand particles are measured when the sphericity <1. The diameter (mm) is measured to determine (major axis diameter + minor axis diameter) / 2, and the average value of the average particle diameter (mm) is obtained for any 100 spherical cast sand particles. . The major axis diameter and the minor axis diameter are defined as follows. When the particle is stabilized on a plane and the projected image of the particle on the plane is sandwiched between two parallel lines, the width of the particle that minimizes the distance between the parallel lines is called the minor axis diameter. The distance when a particle is sandwiched between two parallel lines in a direction perpendicular to the line is called the major axis diameter.

なお、球状鋳物砂粒子の長軸径と短軸径は、光学顕微鏡またはデジタルスコープ(例えば、キーエンス社製、VH−8000型)により該粒子の像(写真)を得、得られた像を画像解析することにより求めることができる。また、球形度は、得られた像を画像解析することにより、該粒子の粒子投影断面の面積および該断面の周囲長を求め、次いで、〔粒子投影断面の面積(mm2 )と同じ面積の真円の円周長(mm)〕/〔粒子投影断面の周囲長(mm)〕を計算し、任意の50個の球状鋳物砂粒子につき、それぞれ得られた値を平均して求める。 In addition, the major axis diameter and minor axis diameter of the spherical casting sand particles are obtained by obtaining an image (photograph) of the particles with an optical microscope or a digital scope (for example, VH-8000 type, manufactured by Keyence Corporation). It can be obtained by analysis. The sphericity is obtained by image analysis of the obtained image to determine the area of the particle projection cross section of the particle and the perimeter of the cross section, and then [the area of the same area as the area of the particle projection cross section (mm 2 )] The circumference of the perfect circle (mm)] / [perimeter of the particle projection cross section (mm)] is calculated, and the obtained values are averaged for any of 50 spheroidal molding sand particles.

本発明の球状鋳物砂の形状である球状とは、球形度0.88以上、好ましくは0.90以上のものをいう。球状であるか否かについては、たとえば、後述の実施例に記載するように、鋳物砂を光学顕微鏡やデジタルスコープ(たとえば、キーエンス社製、VH−8000型)等で観察し、判定することができる。   The spherical shape which is the shape of the spherical casting sand of the present invention refers to a sphericity of 0.88 or more, preferably 0.90 or more. Whether or not it is spherical can be determined by observing the foundry sand with an optical microscope or a digital scope (for example, VH-8000, manufactured by Keyence Corporation), for example, as described in Examples below. it can.

更に強度向上、流動性の向上の観点から、本発明の球状鋳物砂は、その球形度が、0.95以上であるものが好ましく、0.98以上であるものがより好ましく、0.99以上であるものがさらに好ましい。   Further, from the viewpoint of improving strength and fluidity, the spherical casting sand of the present invention preferably has a sphericity of 0.95 or more, more preferably 0.98 or more, and 0.99 or more. Is more preferred.

本発明の球状鋳物砂の組成は、耐火性、熱膨張性の観点から、Al23及び/又はSiO2を主成分とするのが好ましい。ここで「主成分」とは、Al23及び/又はSiO2が合計量で鋳物砂全体の全成分中に60重量%以上含有されていることをいう。更に、耐火性の向上という観点から、それらの合計量として、球状鋳物砂の全成分中、好ましくは65〜100重量%、より好ましくは80〜100重量%である。 The composition of the spherical casting sand of the present invention is preferably composed mainly of Al 2 O 3 and / or SiO 2 from the viewpoint of fire resistance and thermal expansion. Here, the “main component” means that 60% by weight or more of Al 2 O 3 and / or SiO 2 is contained in a total amount in all the components of the foundry sand. Furthermore, from the viewpoint of improving fire resistance, the total amount thereof is preferably 65 to 100% by weight, more preferably 80 to 100% by weight, based on all components of the spherical casting sand.

また、Al23/SiO2重量比率は1〜15が好ましい。耐火性および鋳物砂の再生効率の向上の観点から、1.2〜12が更に好ましく、1.5〜9がより好ましい。 Further, the Al 2 O 3 / SiO 2 weight ratio is preferably 1 to 15. From the viewpoint of improvement in fire resistance and casting sand regeneration efficiency, 1.2 to 12 is more preferable, and 1.5 to 9 is more preferable.

なお、本発明の球状鋳物砂に主成分以外の成分として含まれ得るものとしては、たとえば、MgO、Fe23、TiO2、K2O、Na2O等の金属酸化物が挙げられる。Fe23とTiO2 が含まれる場合、それらの含有量としてはそれぞれ10重量%以下が好ましい。また、Fe23の含有量は10重量%以下が好ましい。K2OとNa2Oが含まれる場合、それらの含有量としては合計量として3重量%以下が好ましく、より好ましくは2重量%以下である。 Incidentally, as it may be included as a component other than the main component in the spherical molding sand of the present invention, for example, MgO, Fe 2 O 3, TiO 2, K 2 O, and metal oxides Na 2 O and the like. When Fe 2 O 3 and TiO 2 are contained, their content is preferably 10% by weight or less. Further, the content of Fe 2 O 3 is preferably 10% by weight or less. When K 2 O and Na 2 O are contained, the total content is preferably 3% by weight or less, more preferably 2% by weight or less.

また、本発明の球状鋳物砂の吸水率(重量%)としては、鋳型の製造の際に使用するバインダーの鋳物砂内部への吸収によるバインダー使用量の増加の抑制や、鋳型強度の向上等の観点から、3重量%以下が好ましく、0.8重量%以下がより好ましく、0.3重量%以下がさらに好ましい。吸水率はJIS A1109細骨材の吸水率測定方法に従って測定することができる。   In addition, the water absorption rate (% by weight) of the spherical casting sand of the present invention includes suppression of an increase in the amount of binder used due to absorption of the binder used in the production of the mold into the casting sand, improvement of the mold strength, etc. From the viewpoint, it is preferably 3% by weight or less, more preferably 0.8% by weight or less, and further preferably 0.3% by weight or less. The water absorption can be measured according to the method for measuring the water absorption of JIS A1109 fine aggregate.

なお、球状鋳物砂の吸水率は、火炎溶融法により該砂を調製した場合、該方法以外の焼成方法により調製した砂と比べて、同じ球形度であれば、通常、吸水率は低くなる。   In addition, the water absorption rate of spherical cast sand is usually lower when the sand is prepared by a flame melting method and the same sphericity as compared with sand prepared by a firing method other than the method.

一方、本発明の球状鋳物砂の球形度が0.98以上である場合、かかる球状鋳物砂が、珪砂等の流動性の低い公知の鋳物砂(球形度が0.98未満の鋳物砂)との混合物中に好ましくは50体積%以上含有されておれば、該混合物からなる鋳物砂は充分に本発明の所望の効果を発揮し得る。すなわち、前記のような公知の鋳物砂に本発明の球状鋳物砂を徐々に添加していけば、添加量に応じて本発明の所望の効果を発揮するようになるが、前記混合物からなる鋳物砂中に、前記所定の球形度を有する本発明の球状鋳物砂が50体積%以上含まれると、その効果はより顕著になる。なお、当該混合物からなる鋳物砂中の、球形度が0.98以上である本発明の球状鋳物砂の含有量としては、より好ましくは60体積%以上、さらに好ましくは80体積%以上である。従って、本発明の球状鋳物砂としては、その利用性に優れることから、球形度が0.98以上であるものが特に好適である。また、かかる球状鋳物砂を50体積%以上含む鋳物砂は、本発明の球状鋳物砂と同等の効果を発揮し得ることから、かかる鋳物砂も本発明に包含される。すなわち、本発明により、火炎溶融法にて製造された、平均粒子径が0.03〜0.1mm、球形度が0.98以上の球状鋳物砂を50体積%以上含有する鋳物砂が提供される。   On the other hand, when the sphericity of the spherical casting sand of the present invention is 0.98 or more, the spherical casting sand is a known casting sand having low fluidity such as silica sand (casting sand having a sphericity of less than 0.98). If it is contained in the mixture, preferably 50% by volume or more, the foundry sand made of the mixture can sufficiently exhibit the desired effect of the present invention. That is, if the spherical foundry sand of the present invention is gradually added to the known foundry sand as described above, the desired effect of the present invention will be exhibited depending on the amount added, but the cast comprising the above mixture. When the spherical cast sand of the present invention having the predetermined sphericity is contained in 50% by volume or more in sand, the effect becomes more remarkable. In addition, as content of the spherical foundry sand of this invention whose sphericity is 0.98 or more in the foundry sand which consists of the said mixture, More preferably, it is 60 volume% or more, More preferably, it is 80 volume% or more. Accordingly, as the spherical casting sand of the present invention, one having a sphericity of 0.98 or more is particularly suitable because of its excellent utility. In addition, since the foundry sand containing 50% by volume or more of such spherical sand can exhibit the same effect as the spherical sand of the present invention, such foundry sand is also included in the present invention. That is, according to the present invention, there is provided a casting sand containing 50% by volume or more of spherical casting sand having an average particle diameter of 0.03 to 0.1 mm and a sphericity of 0.98 or more, which is produced by a flame melting method. The

前記の通り、本発明の球状鋳物砂は、特開2004−202577号に例示されるような火炎溶融法により製造される。特に、本発明の球状鋳物砂の製造に当たっては、0.02〜0.12mmの平均粒径をもつ粉末粒子を出発原料とし、火炎中で溶融し球状化しても構わないし、異なる粒径の粉末粒子を火炎溶融処理した後、分級して得てもかまわない。   As described above, the spheroidal sand of the present invention is produced by a flame melting method as exemplified in JP-A No. 2004-202577. In particular, in the production of the spherical molding sand of the present invention, powder particles having an average particle diameter of 0.02 to 0.12 mm may be used as a starting material, and may be melted and spheroidized in a flame. The particles may be obtained by classification after flame melting.

出発原料としての粉末粒子を火炎中で溶融して球状化する工程では、上記のような出発原料を酸素等のキャリアガスに分散させ、火炎中に投入することによって溶融し、球状化を行うことができる(火炎溶融法)。好適な態様においては、下記火炎中に投入する。   In the process of melting and spheroidizing the powder particles as the starting material in the flame, the starting material as described above is dispersed in a carrier gas such as oxygen and melted by being put into the flame to be spheroidized. (Flame melting method). In a preferred embodiment, it is put into the following flame.

用いる火炎は、プロパン、ブタン、メタン、天然液化ガス、LPG、重油、灯油、軽油、微粉炭等の燃料を酸素と燃焼させることによって発生させることができる。また、粉末粒子は、N2不活性ガス等を電離させて生じるプラズマジェット火炎中でも好適に溶融し、球状化できる。 The flame to be used can be generated by burning a fuel such as propane, butane, methane, natural liquefied gas, LPG, heavy oil, kerosene, light oil, pulverized coal and the like with oxygen. Further, the powder particles can be suitably melted and spheroidized even in a plasma jet flame generated by ionizing N 2 inert gas or the like.

本発明の球状鋳物砂および該鋳物砂と公知の鋳物砂との混合物からなる鋳物砂(以下、これらの鋳物砂を本発明の鋳物砂と略記する)は、鋳鋼、鋳鉄、アルミニウム、マグネシウム、銅およびこれらの合金等の鋳型用途に好適に使用されうる。特に、アルミニウム、マグネシウム、銅合金等の非鉄金属、中でもアルミニウムにおいては、注湯温度が比較的低いため、特に、鋳物表面が平滑になる効果が大きいため好ましい。また、ダイキャスト、低圧鋳造、金型鋳造等の中子として主型に匹敵する鋳肌が得られるため好適に用いられる。また、金属、プラスチック等への充填材としても使用することができる。   The spherical sand of the present invention and the cast sand composed of a mixture of the foundry sand and known casting sand (hereinafter, these cast sands are abbreviated as the foundry sand of the present invention) are cast steel, cast iron, aluminum, magnesium, copper. And can be suitably used for mold applications such as alloys thereof. In particular, non-ferrous metals such as aluminum, magnesium, and copper alloys, particularly aluminum, are preferable because the pouring temperature is relatively low, and the effect of smoothing the casting surface is particularly large. Moreover, since the casting surface comparable to a main mold | type is obtained as cores, such as die-casting, low pressure casting, and die casting, it is used suitably. It can also be used as a filler for metals, plastics and the like.

本発明の鋳型組成物は、上記球状鋳物砂とそれらを結合するバインダーからなることが好ましい。バインダーとしては、粘土、水ガラス、シリカゾル、エチルシリケート、硫酸塩、リン酸塩、硝酸塩などの無機塩等の無機質バインダー、またはフラン樹脂、フェノール樹脂、フランフェノール樹脂、ウレタン樹脂、不飽和ポリエステル樹脂、アルキド樹脂等の有機質バインダーが好適に用いられる。硬化方法としては、自硬性法、熱硬化法、ガス硬化法等、従来公知の硬化方法が用いられるが、自硬性法、熱硬化法が好適に用いられる。これらバインダーと球状鋳物砂が混合され、公知の方法に従って鋳型が造型される。   The mold composition of the present invention preferably comprises the above spherical casting sand and a binder that binds them. As binder, inorganic binder such as inorganic salt such as clay, water glass, silica sol, ethyl silicate, sulfate, phosphate, nitrate, or furan resin, phenol resin, furan phenol resin, urethane resin, unsaturated polyester resin, An organic binder such as an alkyd resin is preferably used. As the curing method, a conventionally known curing method such as a self-curing method, a heat curing method, a gas curing method or the like is used, but a self-curing method or a heat curing method is preferably used. These binder and spherical casting sand are mixed, and a mold is formed according to a known method.

本発明の球状鋳物砂は、特定の平均粒子径を持ち、好ましくは特定の成分組成と大きな球形度を持つ点に大きな特徴の1つを有する。かかる構成を有することから、流動性に優れ、高強度かつ表面が平滑な鋳造用鋳型の製造が可能となる。また、従来に比べて少ないバインダー量で鋳型を製造することができ、再生が容易である。   The spherical foundry sand of the present invention has one of the major features in that it has a specific average particle size, and preferably has a specific component composition and high sphericity. With such a configuration, it is possible to produce a casting mold having excellent fluidity, high strength and a smooth surface. In addition, the mold can be manufactured with a smaller amount of binder than in the prior art, and is easy to regenerate.

しかも、本発明においては、鋳物砂が球形でかつ砂の表面が平滑なため、粒子径をより細かくしても鋳型強度が低下しない。むしろ、充填性が向上するため鋳型強度が高くなり、バインダー添加量を減らすことも出来、ガス欠陥の低減に寄与できるため好ましい。   Moreover, in the present invention, the casting sand is spherical and the surface of the sand is smooth. Therefore, even if the particle diameter is made finer, the mold strength does not decrease. Rather, it is preferable because the moldability is increased because the filling property is improved, the amount of the binder added can be reduced, and the gas defects can be reduced.

本発明の球状鋳物砂は、アルカリフェノール鋳型やシェルモールド法において好適に用いられる。   The spheroidal sand of the present invention is suitably used in alkali phenol molds and shell mold methods.

高強度の鋳造用鋳型を得る観点から、バインダーの使用量としては、本発明の鋳物砂100重量部に対して、バインダーを0.05〜5重量部使用するのが好適である。   From the viewpoint of obtaining a high-strength casting mold, it is preferable that the binder is used in an amount of 0.05 to 5 parts by weight with respect to 100 parts by weight of the foundry sand of the present invention.

本発明の球状鋳物砂を含む鋳物砂から得られた鋳型は、鋳物に接する面、すなわち肌砂として用いることで最大の効果を発現する。特に溶湯を充填するための鋳型の通気性という観点からは、鋳物に接しない面については火炎溶融法による鋳物砂を含めた従来公知の鋳物砂が用いられる。特に鋳物砂の平均粒径が0.05mm以下の場合、裏砂に平均粒径0.015mm以上の骨材を用いることが好ましい。   The mold obtained from the foundry sand containing the spherical foundry sand of the present invention exhibits the maximum effect when used as a surface in contact with the foundry, that is, skin sand. In particular, from the viewpoint of the air permeability of the mold for filling the molten metal, conventionally known foundry sand including the foundry sand by the flame melting method is used for the surface not in contact with the casting. In particular, when the average particle size of the foundry sand is 0.05 mm or less, it is preferable to use an aggregate having an average particle size of 0.015 mm or more for the back sand.

また、鋳物表面の平滑性が要求されない部分については、平均粒子径が0.150mm以上の従来公知の鋳物砂を用いても良い。   Moreover, you may use conventionally well-known foundry sand whose average particle diameter is 0.150 mm or more about the part in which the smoothness of a casting surface is not requested | required.

このようにして得られる鋳型組成物は、高強度であり、しかもその表面が平滑である。従って、この鋳造用鋳型で鋳造すると、表面荒れが小さく、後工程である研磨工程への負荷が小さい鋳物が得られる。塗型を用いずに、平滑な鋳物が得られるため、塗型の塗布工程の削減や塗型の塗布厚みのフレによる鋳物の寸法フレが少なくなる。また、形状によっては金型並みの表面平滑性が得られるため、高価な金型を作成する必要がなくなる。   The mold composition thus obtained has a high strength and a smooth surface. Therefore, when casting with this casting mold, it is possible to obtain a casting with a small surface roughness and a small load on the polishing step which is a subsequent step. Since a smooth casting can be obtained without using a coating mold, the dimensional fluttering of the casting due to the reduction in the coating process of the coating mold and the variation in the coating thickness of the coating mold is reduced. Further, depending on the shape, surface smoothness equivalent to that of a mold can be obtained, so that it is not necessary to create an expensive mold.

特に、機械加工が難しいガスやオイル・水などの流体と接する内面を持つ鋳物部品、例えば自動車のエグゾーストマニホールドやエンジン用部品やポンプ用部品、摺動面を持つ工作機械部品などに有用である。   In particular, it is useful for casting parts having inner surfaces that are in contact with fluids such as gas, oil, and water that are difficult to machine, such as automobile exhaust manifolds, engine parts, pump parts, machine tool parts having sliding surfaces, and the like.

また、前記鋳物をさらに適宜加工することにより、表面が平滑な構造物が得られる。当該構造物としては、たとえば、金型、エンジン部材、工作機械部材、建築部材、電器器具のフレーム等が挙げられる。   Moreover, a structure with a smooth surface can be obtained by further processing the casting appropriately. As the said structure, a metal mold | die, an engine member, a machine tool member, a building member, the frame of an electrical appliance, etc. are mentioned, for example.

以上のような、優れた性質を有する鋳造用鋳型、鋳物および構造物、それを用いた機械、設備等は、本発明に包含される。   Casting molds, castings and structures having excellent properties as described above, machines, equipment using the same, and the like are included in the present invention.

実施例1
Al23とSiO2を合計量で97重量%含有する、Al23/SiO2重量比率が1.7、含水率が0重量%、平均粒径が0.12mm、長軸径/短軸径比が1.5、のムライト粉末(柴田セラミックス製合成ムライト粉末)を出発原料とし、当該粉末を、酸素をキャリアガスとして用い、LPG(プロパンガス)を対酸素比(容量比)1.1で燃焼させた火炎(約2000℃)中に投入し、単分散した球状鋳物砂を得た。得られた鋳物砂は、Al23とSiO2を合計量で97重量%含有しており、Al23/SiO2重量比率が1.7、平均粒径が0.095mm、球形度が0.99、吸水率が0.3重量%、粒子密度が2.9g/cm3であった。該鋳物砂にアルカリフェノールバインダーを加え、混合し、自硬性鋳型造型法に従って硬化させ、鋳型組成物を得た。具体的には、該鋳物砂100重量部に対して、硬化剤QX130(花王クエーカー製、アルカリフェノール用硬化剤)を0.24重量部加え、ミキサーにて混合した後、カオーステップS660(花王クエーカー製、アルカリフェノール樹脂)を1.2重量部添加混合し、内径50mm×高さ50mmHの木型に充填して、24時間後木型より抜型し、鋳型強度を測定した。
Example 1
97% by weight of Al 2 O 3 and SiO 2 in total, Al 2 O 3 / SiO 2 weight ratio is 1.7, water content is 0% by weight, average particle size is 0.12 mm, major axis diameter / A mullite powder (synthetic mullite powder manufactured by Shibata Ceramics) having a minor axis diameter ratio of 1.5 is used as a starting material, the powder is used as a carrier gas, and LPG (propane gas) is used in an oxygen ratio (volume ratio) of 1 Was put into a flame (about 2000 ° C.) burned in 1. to obtain monodispersed spherical casting sand. The obtained foundry sand contains 97% by weight of Al 2 O 3 and SiO 2 in a total amount, the Al 2 O 3 / SiO 2 weight ratio is 1.7, the average particle size is 0.095 mm, and the sphericity Was 0.99, the water absorption was 0.3% by weight, and the particle density was 2.9 g / cm 3 . An alkali phenol binder was added to the foundry sand, mixed and cured according to a self-hardening mold making method to obtain a mold composition. Specifically, 0.24 parts by weight of a curing agent QX130 (manufactured by Kao Quaker Co., Ltd., an alkali phenol curing agent) is added to 100 parts by weight of the foundry sand, mixed with a mixer, and then Kaoh Step S660 (Kao Quaker). 1.2 parts by weight of an alkali phenol resin) were added and mixed, filled into a wooden mold having an inner diameter of 50 mm × height of 50 mmH, and then removed from the wooden mold after 24 hours, and the mold strength was measured.

また、本鋳型組成物を用いて、図1に示す形状の中子を金型を用いて作成し、図2に示すように主型(6号硅砂にて作成)にセットして、アルミニウム熔湯(成分AC4C)を注湯した。中子の鋳型と、鋳物の中子面の平滑性を表面粗さ測定器(サーフコーダSE−30H、小坂研究所製)により、表面粗さ(中心線平均粗さ:Ra)として測定した。Raが小さいほど表面平滑性に優れる。結果を表1に示す。   Also, using this mold composition, the core shown in FIG. 1 is prepared using a mold, and is set in a main mold (created with No. 6 cinnabar) as shown in FIG. Hot water (component AC4C) was poured. The smoothness of the core mold and the core surface of the casting was measured as surface roughness (centerline average roughness: Ra) with a surface roughness measuring instrument (Surfcoder SE-30H, manufactured by Kosaka Laboratory). The smaller the Ra, the better the surface smoothness. The results are shown in Table 1.

実施例2
実施例1で得た鋳物砂を篩い分けにて平均粒子径0.065mmに調整した鋳物砂を用いた以外は実施例1と同様に鋳物砂を得た。該鋳物砂を用いて実施例1と同様の評価を行った。結果を表1に示す。
Example 2
Foundry sand was obtained in the same manner as in Example 1 except that the foundry sand obtained in Example 1 was adjusted to an average particle size of 0.065 mm by sieving. Evaluation similar to Example 1 was performed using this foundry sand. The results are shown in Table 1.

実施例3
実施例1で得た鋳物砂を篩い分けにて平均粒子径0.055mmに調整した鋳物砂を用いた以外は実施例1と同様に鋳物砂を得た。該鋳物砂を用いて実施例1と同様の評価を行った。結果を表1に示す。
Example 3
Foundry sand was obtained in the same manner as in Example 1 except that the foundry sand obtained in Example 1 was adjusted to an average particle size of 0.055 mm by sieving. Evaluation similar to Example 1 was performed using this foundry sand. The results are shown in Table 1.

比較例1
原料の平均粒径を0.15mmとした以外は実施例1と同様に鋳物砂を得た。得られた鋳物砂の平均粒径は0.13mmであった。該鋳物砂を用いて実施例1と同様の評価を行った。結果を表1に示す。
Comparative Example 1
Foundry sand was obtained in the same manner as in Example 1 except that the average particle size of the raw materials was changed to 0.15 mm. The average particle size of the obtained foundry sand was 0.13 mm. Evaluation similar to Example 1 was performed using this foundry sand. The results are shown in Table 1.

比較例2、3
実施例1と同様の原料粉末を用い、スプレードライヤーを用いて球状に造粒した粒子を電気炉にて焼成することにより表1に示した平均粒子径を持つ球状鋳物砂を得た。該鋳物砂を用いて実施例1同様の評価を行った。結果を表1に示す。
Comparative Examples 2 and 3
Using the same raw material powder as in Example 1, spherically granulated particles using a spray dryer were baked in an electric furnace to obtain spherical foundry sand having an average particle diameter shown in Table 1. Evaluation similar to Example 1 was performed using the foundry sand. The results are shown in Table 1.

比較例4、5
市販のアルバニー珪砂を用い、適宜分級することで表1に示す粒子径の鋳物砂を得た。該鋳物砂を用いて実施例1同様の評価を行った。結果を表1に示す。
Comparative Examples 4 and 5
By using a commercially available Albany silica sand and appropriately classifying it, a casting sand having a particle size shown in Table 1 was obtained. Evaluation similar to Example 1 was performed using the foundry sand. The results are shown in Table 1.

Figure 2006167741
Figure 2006167741

これらの結果から、平均粒子径が0.1mm以下の火炎溶融法によって製造された球状鋳物砂を用いて鋳型を製造すると、非常に平滑な鋳物を得ることが出来、また、このような粒子径においても、他の製造法の鋳物砂と異なり、高い強度を維持できるため、バインダー添加量を多くする必要がなく、ガス欠陥が低減できることがわかる。なお、表1の結果を図3のグラフにまとめた。図3において、「実」は実施例を、「比」は比較例を意味する。   From these results, when a mold is produced using spherical casting sand produced by a flame melting method having an average particle diameter of 0.1 mm or less, a very smooth casting can be obtained. However, it can be seen that, unlike the casting sands of other manufacturing methods, high strength can be maintained, so that it is not necessary to increase the amount of binder added and gas defects can be reduced. In addition, the result of Table 1 was put together in the graph of FIG. In FIG. 3, “actual” means an example, and “ratio” means a comparative example.

実施例4
実施例2の平均粒子径0.065mmの鋳物砂を肌砂として、5号珪砂を裏砂として使用し、図2の形状の鋳型を作成した。肌砂の厚みは約1cm〜4cmになるようにした。本鋳型にてアルミニウム熔湯を注湯した。得られた鋳物は表面が非常に平滑でガス欠陥がなかった。
Example 4
The casting sand having the average particle size of 0.065 mm in Example 2 was used as skin sand, and No. 5 silica sand was used as backing sand, thereby producing a mold having the shape of FIG. The thickness of the skin sand was about 1 cm to 4 cm. The molten aluminum was poured with this mold. The resulting casting had a very smooth surface and no gas defects.

比較例6
比較例5に用いた平均粒径80μmの珪砂を肌砂として実施例4と同様の試験を行った。鋳型強度を十分にするため、樹脂の添加量は2.8%必要であった。得られた鋳物は表面がきれいな部分があったものの、ガス欠陥が発生していた。
Comparative Example 6
The same test as in Example 4 was performed using the silica sand having an average particle size of 80 μm used in Comparative Example 5 as skin sand. In order to ensure sufficient mold strength, the amount of resin added was 2.8%. Although the obtained casting had a portion with a clean surface, a gas defect occurred.

実施例5、6及び比較例7
実施例1、3及び比較例1の鋳物砂を用いて、RCSを製造した。具体的には、鋳物砂を150℃で加熱した後、鋳物砂100重量部に対してフェノール樹脂(AVライト、旭有機材工業株式会社)を1.0重量部添加して混練した。次いで、温度を105℃に下げ、この温度でヘキサメチレンテトラミン水溶液(濃度18重量%)(硬化剤)を鋳物砂100重量部に対して0.83重量部(固形分換算では0.15重量部)添加して混練し、更に冷風を吹き込みながら混練した。更に、流動性を高めるためにステアリン酸カルシウム(滑剤)を鋳物砂100重量部に対して0.05重量部添加して混練することによりRCSを得た。
Examples 5 and 6 and Comparative Example 7
RCS was manufactured using the foundry sands of Examples 1 and 3 and Comparative Example 1. Specifically, after casting sand was heated at 150 ° C., 1.0 part by weight of phenol resin (AV Light, Asahi Organic Materials Co., Ltd.) was added to 100 parts by weight of foundry sand and kneaded. Next, the temperature was lowered to 105 ° C., and at this temperature, the hexamethylenetetramine aqueous solution (concentration 18% by weight) (curing agent) was 0.83 parts by weight (100% by weight in terms of solid content) with respect to 100 parts by weight of foundry sand. ) Added and kneaded, and further kneaded while blowing cold air. Further, RCS was obtained by adding 0.05 parts by weight of calcium stearate (lubricant) to 100 parts by weight of foundry sand and kneading to improve fluidity.

得られたRCSを、図1に示す形状の中子用の金型に充填し、250℃、90秒で焼成し、中子鋳型を得た。鋳型の抗折力をJIS K−6910法に従って測定した。   The obtained RCS was filled in a core mold having the shape shown in FIG. 1 and fired at 250 ° C. for 90 seconds to obtain a core mold. The bending strength of the mold was measured according to JIS K-6910 method.

また、上記で得られた中子鋳型を図2に示すように主型(6号硅砂にて作成)にセットして、アルミニウム熔湯(成分AC4C)を注湯した。中子の鋳型と、鋳物の中子面の平滑性を表面粗さ測定器(サーフコーダSE−30H、小坂研究所製)により、表面粗さ(中心線平均粗さ:Ra)として測定した。Raが小さいほど表面平滑性に優れる。結果を表2に示す。   Further, the core mold obtained above was set in a main mold (created with No. 6 cinnabar) as shown in FIG. 2, and molten aluminum (component AC4C) was poured. The smoothness of the core mold and the core surface of the casting was measured as surface roughness (centerline average roughness: Ra) with a surface roughness measuring instrument (Surfcoder SE-30H, manufactured by Kosaka Laboratory). The smaller the Ra, the better the surface smoothness. The results are shown in Table 2.

Figure 2006167741
Figure 2006167741

実施例、比較例で用いた中子の概略図Schematic of core used in examples and comparative examples 図1の中子を用いたアルミニウム鋳造法の概略図Schematic of aluminum casting method using the core shown in FIG. 実施例、比較例の鋳物砂の平均粒子径と鋳型強度の関係をまとめたグラフA graph summarizing the relationship between the average particle size of the foundry sand of the examples and comparative examples and the mold strength

Claims (6)

火炎溶融法にて製造された、平均粒子径が0.03〜0.1mmの球状鋳物砂。 Spherical foundry sand having an average particle size of 0.03 to 0.1 mm manufactured by a flame melting method. Al23及び/又はSiO2を主成分として含有する請求項1記載の球状鋳物砂。 The spherical foundry sand according to claim 1, comprising Al 2 O 3 and / or SiO 2 as a main component. 請求項1又は2記載の球状鋳物砂を用いて得られる鋳型。 A mold obtained by using the spherical foundry sand according to claim 1 or 2. 請求項3記載の鋳型を、塗型を形成せずに用いる鋳物の製造法。 A method for producing a casting, wherein the mold according to claim 3 is used without forming a coating mold. 請求項3記載の鋳型を、肌砂として用いる鋳物の製造法。 The manufacturing method of the casting which uses the casting_mold | template of Claim 3 as skin sand. 鋳物がアルミニウム鋳物である請求項4又は5記載の鋳物の製造法。 The method for producing a casting according to claim 4 or 5, wherein the casting is an aluminum casting.
JP2004361257A 2004-12-14 2004-12-14 Spheroidal casting sand, mold obtained by using the same and method for producing casting Expired - Fee Related JP4421463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004361257A JP4421463B2 (en) 2004-12-14 2004-12-14 Spheroidal casting sand, mold obtained by using the same and method for producing casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004361257A JP4421463B2 (en) 2004-12-14 2004-12-14 Spheroidal casting sand, mold obtained by using the same and method for producing casting

Publications (2)

Publication Number Publication Date
JP2006167741A true JP2006167741A (en) 2006-06-29
JP4421463B2 JP4421463B2 (en) 2010-02-24

Family

ID=36669036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004361257A Expired - Fee Related JP4421463B2 (en) 2004-12-14 2004-12-14 Spheroidal casting sand, mold obtained by using the same and method for producing casting

Country Status (1)

Country Link
JP (1) JP4421463B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212650A (en) * 2005-02-02 2006-08-17 Kao Corp Method for manufacturing mold

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004202577A (en) * 2002-12-09 2004-07-22 Kao Corp Spherical molding sand

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004202577A (en) * 2002-12-09 2004-07-22 Kao Corp Spherical molding sand

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006212650A (en) * 2005-02-02 2006-08-17 Kao Corp Method for manufacturing mold

Also Published As

Publication number Publication date
JP4421463B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
JP4326916B2 (en) Spherical casting sand
KR100998461B1 (en) Spherical casting sand
EP1757382B1 (en) Resin coated sand
JP4603463B2 (en) Spherical casting sand
JP4425825B2 (en) Resin coated sand
EP1652828B1 (en) Ceramic particles
JP2008162825A (en) Spherical ceramic particles
JP6462347B2 (en) Mold sand and its manufacturing method
JP5600472B2 (en) Foundry sand, foundry sand composition, and casting mold obtained using the same
JP4776953B2 (en) Casting manufacturing method
JP5567353B2 (en) Spherical refractory particles, foundry sand comprising the same, and molds obtained using the same
JP4615370B2 (en) Foundry sand
JP4421463B2 (en) Spheroidal casting sand, mold obtained by using the same and method for producing casting
JP4754309B2 (en) Die casting core
JP4364717B2 (en) Foundry sand composition
WO2024053501A1 (en) Refractory aggregate for casting sand
JP2016064428A (en) Fire proof ceramic filler for initial layer slurry and precision casting mold using the same
JP4421466B2 (en) Slurry for casting mold and mold obtained using the same
JP6865424B1 (en) Molten wind crushing method Artificial sand and its manufacturing method
JP2006212650A (en) Method for manufacturing mold
JP2019030910A (en) Mold sand and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4421463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees