JP2006166759A - Method and apparatus for collecting data predicting senile pneumonia onset risk - Google Patents
Method and apparatus for collecting data predicting senile pneumonia onset risk Download PDFInfo
- Publication number
- JP2006166759A JP2006166759A JP2004361894A JP2004361894A JP2006166759A JP 2006166759 A JP2006166759 A JP 2006166759A JP 2004361894 A JP2004361894 A JP 2004361894A JP 2004361894 A JP2004361894 A JP 2004361894A JP 2006166759 A JP2006166759 A JP 2006166759A
- Authority
- JP
- Japan
- Prior art keywords
- risk
- pneumonia
- predicting
- senile pneumonia
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本発明は、老人性肺炎の発症リスクを予測するデータを収集する方法に関する。 The present invention relates to a method for collecting data for predicting the risk of developing senile pneumonia.
老人性肺炎は、日本の社会環境の変化、高齢化と共に増加しており、高齢者肺炎は若年者の肺炎と異なり、抗生物質の進歩した現在においても死亡率が高いため、老人性肺炎の発症要因と予防法の解明は緊急を要している。 Senile pneumonia is increasing with changes in Japan's social environment and aging. Elderly pneumonia, unlike pneumonia in young people, has a high mortality rate even with the progress of antibiotics. Elucidation of factors and prevention methods is urgent.
脳血管障害は老人性肺炎の主要なリスクファクターとされているが、老人性肺炎の発症には、喫煙などの環境因子や高脂血症などの合併症、動脈硬化を引き起こしやすい遺伝因子が関与していると推定される。 Although cerebrovascular disorder is considered to be a major risk factor for senile pneumonia, environmental factors such as smoking, complications such as hyperlipidemia, and genetic factors that are likely to cause arteriosclerosis are involved in the development of senile pneumonia. It is estimated that
老人性肺炎の病因としては、アンジオテンシン変換酵素の遺伝子多型性が報告されている。 As an etiology of senile pneumonia, an angiotensin converting enzyme gene polymorphism has been reported.
しかし、これらの遺伝子多型性は老人性肺炎の10%程度にしか該当者がいないため、少なくとも日本ではアンジオテンシン変換酵素の遺伝子多型性が老人性肺炎の主要な病因であるとは解し難い。老人性肺炎に深くかかわる脳血管障害の発症には活性酸素が関与するため、抗酸化酵素の活性が老人性肺炎の発症に関与すると考えられている。しかし、活性酸素を不活性化する抗酸化酵素の遺伝子多型性と老人性肺炎との関係は不明であった。 However, since these gene polymorphisms are applicable only to about 10% of senile pneumonia, it is difficult to understand that the polymorphism of angiotensin converting enzyme is the main etiology of senile pneumonia at least in Japan. . Since active oxygen is involved in the development of cerebrovascular disorders deeply related to senile pneumonia, the activity of antioxidant enzymes is thought to be involved in the development of senile pneumonia. However, the relationship between polymorphisms of antioxidant enzymes that inactivate active oxygen and senile pneumonia was unclear.
本発明は、老人性肺炎の発症要因であるヘムオキシゲナーゼ-1をコードする遺伝子の上流に位置するGT反復配列の反復回数を測定することによって、被験者が老人性肺炎を発症するリスクを予測するデータを収集する方法に関する。さらに、本発明は、ヘムオキシゲナーゼ-1遺伝子のGT反復配列の反復回数を測定することによって、被験者が老人性肺炎を発症するリスクを予測するための装置にも関する。 The present invention is a data for predicting the risk that a subject will develop senile pneumonia by measuring the number of repeats of the GT repeat sequence located upstream of the gene encoding heme oxygenase-1 which is the onset factor of senile pneumonia. On how to collect. The present invention further relates to a device for predicting the risk of a subject developing senile pneumonia by measuring the number of repeats of the GT repeat of the heme oxygenase-1 gene.
上記課題を解決するために、本発明は、被験者が老人性肺炎を発症するリスクを予測するデータを収集する方法であって、(a)ヘムオキシゲナーゼ-1遺伝子の上流に位置するGT反復配列を含有する試料を前記被験者から準備する工程と、(b)前記試料中の前記GT反復配列の反復回数を決定する工程と、(c)反復回数が33回以上であれば、被験者が老人性肺炎を発症するリスクが高いと予測する工程とを具備する方法を提供する。 In order to solve the above problems, the present invention is a method for collecting data for predicting the risk that a subject will develop senile pneumonia, comprising: (a) a GT repeat sequence located upstream of a heme oxygenase-1 gene; Preparing a sample containing the subject from the subject, (b) determining the number of repetitions of the GT repeat sequence in the sample, and (c) if the number of repetitions is 33 or more, the subject is senile pneumonia And a step of predicting that the risk of developing is high.
本発明は、被験者の肺癌の発症リスクを予測するデータを収集するための方法に関する。 The present invention relates to a method for collecting data predicting the risk of developing lung cancer in a subject.
本発明は、ヘム代謝の初発反応を触媒するヘムオキシゲナーゼ-1(以下HO-1と略記する)の遺伝子の上流に位置するGT反復配列の多型が肺癌の発症に関与していることを明らかにした本発明者らの疫学的研究に基づいてなされたものである。 The present invention reveals that a GT repeat polymorphism located upstream of the gene of heme oxygenase-1 (hereinafter abbreviated as HO-1) that catalyzes the initial reaction of heme metabolism is involved in the development of lung cancer. It was made based on the epidemiological study of the present inventors.
より具体的には、本発明の方法は、HO-1遺伝子の上流に位置するGT反復配列の反復回数を測定することによって、被験者が肺癌を発症するリスクを予測する。 More specifically, the method of the present invention predicts the risk that a subject will develop lung cancer by measuring the number of GT repeat repeats located upstream of the HO-1 gene.
ここで、「GT反復配列」とは、グアニン(G)とチミン(T)からなる反復単位が繰り返し存在する反復配列をいい、「反復回数」とは、GT反復配列中に存在する反復単位GTの個数をいう。 Here, “GT repeat sequence” refers to a repeat sequence in which repeat units consisting of guanine (G) and thymine (T) are present repeatedly, and “number of repeats” refers to the repeat unit GT present in the GT repeat sequence. The number of
本発明の方法では、まず、HO-1遺伝子の上流域に位置するGT反復配列を含む試料を準備する。このような試料は、本発明の方法を適用すべき被験者から採取した任意の生体成分、例えば血液であり得、核酸の抽出処理を施すことが好ましい。生体成分から核酸を抽出する方法は、当業者に周知であり、例えばフェノール抽出、エタノール沈殿等によって行う。 In the method of the present invention, first, a sample containing a GT repeat sequence located in the upstream region of the HO-1 gene is prepared. Such a sample can be any biological component collected from a subject to which the method of the present invention is applied, such as blood, and is preferably subjected to a nucleic acid extraction process. Methods for extracting nucleic acids from biological components are well known to those skilled in the art, for example, phenol extraction, ethanol precipitation, and the like.
本発明の方法を適用すべき「被験者」はヒトを含む哺乳動物が好ましいが、GT配列の多型は哺乳類以外の多くの種について知られているので、HO-1を備えている動物種は全て「被験者」に含まれる。 “Subjects” to which the method of the present invention should be applied are preferably mammals including humans, but since GT sequence polymorphisms are known for many species other than mammals, All included in “subject”.
なお、本明細書において、「試料を準備する」とは、本方法を実施する者が自ら前記試料の調製を行う場合のみならず、既に調製された試料を入手する場合も含む。 In this specification, “preparing a sample” includes not only a case where a person who performs the method prepares the sample by himself but also a case where an already prepared sample is obtained.
試料を準備した後には、HO-1遺伝子の上流に位置するGT反復配列の反復回数を決定するする工程を実施する。HO-1遺伝子の上流の配列(配列番号1)及び任意の反復配列の反復回数を測定する方法は周知であるから、当業者であれば、GT反復配列の反復回数は容易に測定できる。 After the sample is prepared, a step of determining the number of repeats of the GT repeat sequence located upstream of the HO-1 gene is performed. Since a method for measuring the number of repeats of the sequence upstream of the HO-1 gene (SEQ ID NO: 1) and any repetitive sequence is well known, those skilled in the art can easily determine the number of repeats of the GT repeat sequence.
反復配列の反復回数を測定する方法としては、ポリメラーゼ連鎖反応(以下PCRと称する)を利用する方法が好ましい。PCRを用いてGT反復配列の反復回数を測定するには、GT反復配列の上流及び下流に存在するユニークな配列からなるプライマー対を用いてGT反復配列を増幅した後、PCR生成物を電気泳動にかけて移動度を測定し得る。あるいは、測定する試料の数が多い場合には、DNAチップによってGT反復配列の反復回数を決定してもよい。 As a method for measuring the number of repeats of a repetitive sequence, a method using a polymerase chain reaction (hereinafter referred to as PCR) is preferable. To measure the number of repeats of a GT repeat using PCR, amplify the GT repeat using a primer pair consisting of a unique sequence upstream and downstream of the GT repeat, and then electrophores the PCR product. To measure the mobility. Alternatively, when the number of samples to be measured is large, the number of GT repeat repeats may be determined by a DNA chip.
DNAチップを用いる場合には、CAの繰り返し単位からなるプローブが固相化されたチップにGT反復配列を含有する試料を注入した後、反復回数の差に応じた解離条件(解離温度等)の差を測定して、GT反復配列の反復回数を決定し得る。 In the case of using a DNA chip, after injecting a sample containing a GT repetitive sequence into a chip on which a probe composed of CA repeating units is immobilized, dissociation conditions (dissociation temperature, etc.) according to the difference in the number of repetitions The difference can be measured to determine the number of GT repeat repeats.
さらに、必要であれば、GT反復配列の塩基配列を決定することにより、反復回数を決定してもよい。 Furthermore, if necessary, the number of repetitions may be determined by determining the base sequence of the GT repetitive sequence.
下記の実施例において詳述されているように、HO-1遺伝子上流のGT反復配列の反復回数が33回以上である対立遺伝子を有する被験者は、老人性肺炎に罹患するリスクが高い。従って、GT反復配列の反復回数を測定することによって、被験者の老人性肺炎の発症リスクを予測することが可能になる。より詳細には、対象者に喫煙者および非喫煙者を含んだ場合、反復回数33回以上の対立遺伝子の存在と老人性肺炎の発症との関連を調べた疫学調査では、オッズ比は2.3であった(すなわち、反復回数33回以上の対立遺伝子を有する者が慢性肺気腫に罹患するリスクは、そうでない者の約2.3倍である)。 As detailed in the examples below, subjects with an allele whose GT repeats upstream of the HO-1 gene have 33 or more repeats are at increased risk of developing senile pneumonia. Therefore, the risk of developing senile pneumonia in a subject can be predicted by measuring the number of repetitions of the GT repeat sequence. More specifically, when the subject included smokers and non-smokers, an odds ratio of 2.3 was found in an epidemiological study that investigated the association between the presence of alleles with 33 or more repeats and the development of senile pneumonia. (I.e., those who have alleles with 33 or more repeats are about 2.3 times more likely to suffer from chronic emphysema).
さらに、本発明は、被験者が慢性肺気腫を発症するリスクを予測するためのデータを収集する方法にも関する。該方法の操作は、被験者の慢性肺気腫発症リスクを予測する方法の操作と同一である。該方法はデータを収集する方法であるから、該方法を実施する者は、医療機関に限定されない。 The present invention further relates to a method of collecting data for predicting a subject's risk of developing chronic emphysema. The operation of the method is the same as the operation of the method for predicting the risk of developing chronic emphysema in a subject. Since the method is a method of collecting data, a person who performs the method is not limited to a medical institution.
加えて、本発明は、HO-1遺伝子の上流に位置するGT反復配列を特異的にPCR増幅するためのDNA増幅手段、及び増幅された反復配列の反復回数を決定するためのDNAサイズ決定手段を具備する装置も提供する。 In addition, the present invention provides DNA amplification means for specifically PCR-amplifying a GT repeat sequence located upstream of the HO-1 gene, and DNA size determination means for determining the number of repeats of the amplified repeat sequence There is also provided an apparatus comprising:
前記DNA増幅手段は、被験者から採取した試料を収容するための反応セル、該反応セルを加熱するための加熱手段、及び前記反応手段の温度を調節するための温度調節手段を具備する。該DNA増幅手段及びその使用方法は、PCRにおいて通常使用されるサーマルサイクラーと同一のものであり、当業者に周知である。 The DNA amplification means includes a reaction cell for accommodating a sample collected from a subject, a heating means for heating the reaction cell, and a temperature adjusting means for adjusting the temperature of the reaction means. The DNA amplification means and the method for using the same are the same as the thermal cyclers usually used in PCR, and are well known to those skilled in the art.
増幅されたGT反復配列のサイズは、DNAサイズ決定手段によって決定する。DNAサイズ決定手段は、電気泳動用のゲル、ゲルろ過、及び自動ヌクレオチド配列決定装置であり得るが、これらに限定されない。決定されたサイズから、GT反復配列の反復回数を知ることができる。 The size of the amplified GT repeat sequence is determined by DNA sizing means. The DNA sizing means can be, but is not limited to, gels for electrophoresis, gel filtration, and automated nucleotide sequencers. From the determined size, the number of GT repeat repeats can be determined.
以下、実施例により本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
[実施例1]本実施例では、老人性肺炎の発症リスクを予測するデータを収集する方法について説明を加える。 [Example 1] In this example, a method for collecting data for predicting the risk of developing senile pneumonia will be described.
被験者(老人性肺炎患者200名、同様の喫煙歴・男女比を持つ非老人性肺炎患者200名)から末梢血を採取してDNAを抽出した後、これを鋳型としてPCRを行った。 Peripheral blood was collected from subjects (200 senile pneumonia patients, 200 non-senile pneumonia patients with similar smoking history and gender ratio), and DNA was extracted, and PCR was performed using this as a template.
HO-1遺伝子の上流に位置するGT反復配列(配列番号1の285〜344)を増幅するためのプライマーとして、プライマーpl-s(配列番号1の249〜268)とpl-as(配列番号1の356〜375)、及びプライマーp2-s(GACGCGTGCAAGCAGTCAGCAGAGGAT)とプライマーp2-as(配列番号1の591〜611)を作成した。 Primers pl-s (249 to 268 of SEQ ID NO: 1) and pl-as (SEQ ID NO: 1) were used as primers for amplifying the GT repeat sequence (285 to 344 of SEQ ID NO: 1) located upstream of the HO-1 gene. 356 to 375), primer p2-s (GACGCGTGCAAGCAGTCAGCAGAGGAT) and primer p2-as (591 to 611 of SEQ ID NO: 1) were prepared.
PCRによる増幅後、15%ポリアクリルアミドゲルの電気泳動を用いてPCR産物を増幅し、GT反復配列中の反復回数を決定した。 After amplification by PCR, the PCR product was amplified using electrophoresis on a 15% polyacrylamide gel to determine the number of repeats in the GT repeat sequence.
表1に結果を示す。 Table 1 shows the results.
該分布は、23、30、及び33の3ヶ所にピークを持っていた。そこで、GT反復配列の反復回数を27回未満、27回以上33回未満、33回以上という3つの群に分類し(以下、それぞれS、M、Lと表記する)、老人性肺炎との関連を調べた。さらに、L型対立遺伝子が少なくとも一つ存在する第I群(L/L、L/M、L/S)と、L型遺伝子が存在しない第II群(M/M、M/S、S/S)に分類し、老人性肺炎との関係を調べた。 The distribution had peaks at three locations of 23, 30, and 33. Therefore, the number of repeats of the GT repeat sequence is classified into three groups of less than 27, more than 27 and less than 33, and more than 33 (hereinafter referred to as S, M, and L, respectively), and the relationship with senile pneumonia I investigated. Furthermore, group I (L / L, L / M, L / S) where at least one L-type allele is present and group II (M / M, M / S, S / S) where no L-type gene is present S) and examined the relationship with senile pneumonia.
表1に示されているように、非老人性肺炎患者(コントロール)では、L型遺伝子とそれ以外の遺伝子(すなわちM型遺伝子とS型遺伝子)とのオッズは、38/(189+173)=38/362、老人性肺炎患者(ケース)では、79/159+162=79/321であり、オッズ比は(79/321)/(38/362)=2.3であった(p<0.0001)。従って、L型遺伝子を有する者は、そうでない者に比べて、老人性肺炎に罹患するリスクが約2.3倍高い。 As shown in Table 1, in non-senile pneumonia patients (control), the odds of the L-type gene and other genes (ie, M-type gene and S-type gene) are 38 / (189 + 173) = 38/362, in senile pneumonia patients (cases), 79/159 + 162 = 79/321, odds ratio was (79/321) / (38/362) = 2.3 (p <0.0001) . Thus, those with the L-type gene are about 2.3 times more likely to have senile pneumonia than those who do not.
以上の結果から、被験者が、HO-1の上流に位置するGT反復配列の反復回数が33回以上である対立遺伝子を少なくとも1つ有していれば、該被験者は老人性肺炎を発生するリスクが大きいと予測できる。 From the above results, if the subject has at least one allele having the number of repeats of the GT repeat sequence located upstream of HO-1 of 33 or more, the subject is at risk of developing senile pneumonia. Can be predicted to be large.
老人性肺炎は、日本の社会環境の変化、高齢化と共に増加しているが、本発明の老人性肺炎の発症リスクを予測するデータ収集方法によれば、被験者が老人性肺炎を発生するリスクを簡便且つ正確に予測できる。
Senile pneumonia is increasing with changes in the Japanese social environment and aging, but according to the data collection method for predicting the risk of developing senile pneumonia according to the present invention, the risk of the subject developing senile pneumonia is increased. Easy and accurate prediction.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004361894A JP2006166759A (en) | 2004-12-14 | 2004-12-14 | Method and apparatus for collecting data predicting senile pneumonia onset risk |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004361894A JP2006166759A (en) | 2004-12-14 | 2004-12-14 | Method and apparatus for collecting data predicting senile pneumonia onset risk |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006166759A true JP2006166759A (en) | 2006-06-29 |
Family
ID=36668125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004361894A Pending JP2006166759A (en) | 2004-12-14 | 2004-12-14 | Method and apparatus for collecting data predicting senile pneumonia onset risk |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006166759A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022059687A1 (en) * | 2020-09-18 | 2022-03-24 | 公立大学法人横浜市立大学 | Biomarker specific to pathosis of interstitial pneumonia |
-
2004
- 2004-12-14 JP JP2004361894A patent/JP2006166759A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022059687A1 (en) * | 2020-09-18 | 2022-03-24 | 公立大学法人横浜市立大学 | Biomarker specific to pathosis of interstitial pneumonia |
JP7076115B1 (en) * | 2020-09-18 | 2022-05-27 | 公立大学法人横浜市立大学 | Pathophysiologically specific biomarkers of interstitial pneumonia |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lo | Fetal Nucleic Acids in Maternal Plasma: Toward the Development of Noninvasive Prenatal Diagnosis of Fetal Chromosomal Aneuploidies | |
CN104131072A (en) | Method and system for individual recognition and paternity identification of unknown sample | |
Ghemrawi et al. | Pyrosequencing: Current forensic methodology and future applications—A review | |
WO2021230379A1 (en) | Method for detecting parkinson disease | |
CN112592981B (en) | Primer group, kit and method for DNA archive construction | |
CN101671736B (en) | Gene detection kit used for detecting cell chimerism or individual recognition | |
CN104073499B (en) | TMC1 gene mutation body and its application | |
Caggiano et al. | Tissue informative cell-free DNA methylation sites in amyotrophic lateral sclerosis | |
KR101921027B1 (en) | Kit for Diagnosing Charcot-Marie-Tooth | |
CN116042801A (en) | Reagent for detecting hypertrophic cardiomyopathy mutant genes TNNI3, ACTC1 and MYPN and application thereof | |
JP2006166759A (en) | Method and apparatus for collecting data predicting senile pneumonia onset risk | |
KR20180105597A (en) | Kit for Diagnosing Charcot-Marie-Tooth | |
JP3491034B2 (en) | How to collect data to predict the risk of developing chronic emphysema | |
CN112442528A (en) | LOXHD1 gene mutant and application thereof | |
KR20100090702A (en) | Mitochondrial dna deletion between about residues 12317-16254 for use in the detection of cancer | |
JP2021175381A (en) | Method for detecting infant atopic dermatitis | |
KR102585879B1 (en) | Single nucleotide polymorphism markers for determining of probability of skin hydration and use thereof | |
RU2799797C2 (en) | Method of obtaining molecular str markers of the human y chromosome for identifying an unknown individual and determining biological relationship by multiplex amplification, and a kit of oligonucleotides for implementing the method | |
KR20180105599A (en) | Kit for Diagnosing Charcot-Marie-Tooth | |
CN117683779B (en) | Gene mutant related to retinal cleavage disease and application thereof | |
RU2800083C2 (en) | Method for obtaining molecular single nucleotide markers for identifying an unknown individual by multiplex amplification for working with samples of degraded DNA, a kit for obtaining molecular markers | |
Manamperi et al. | STR polymorphisms in Sri Lanka: evaluation of forensic utility in identification of individuals and parentage testing | |
RU2818323C2 (en) | Method of producing full-length human mitochondrial dna sequence using set of oligonucleotides by multiplex amplification for working with degraded dna samples | |
EP4389915A1 (en) | Differential diagnosing of bipolar versus unipolar disorder in patient during depression phases using a to i rna editing znf267 gene | |
CN109536607B (en) | Application of MT-2A gene SNP locus in detection of susceptibility to heavy metal poisoning |