KR20180105597A - Kit for Diagnosing Charcot-Marie-Tooth - Google Patents

Kit for Diagnosing Charcot-Marie-Tooth Download PDF

Info

Publication number
KR20180105597A
KR20180105597A KR1020180094643A KR20180094643A KR20180105597A KR 20180105597 A KR20180105597 A KR 20180105597A KR 1020180094643 A KR1020180094643 A KR 1020180094643A KR 20180094643 A KR20180094643 A KR 20180094643A KR 20180105597 A KR20180105597 A KR 20180105597A
Authority
KR
South Korea
Prior art keywords
gene
marie
present
charcot
wild
Prior art date
Application number
KR1020180094643A
Other languages
Korean (ko)
Other versions
KR101929163B1 (en
Inventor
최병옥
홍영빈
정기화
Original Assignee
사회복지법인 삼성생명공익재단
성균관대학교산학협력단
공주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 사회복지법인 삼성생명공익재단, 성균관대학교산학협력단, 공주대학교 산학협력단 filed Critical 사회복지법인 삼성생명공익재단
Priority to KR1020180094643A priority Critical patent/KR101929163B1/en
Publication of KR20180105597A publication Critical patent/KR20180105597A/en
Application granted granted Critical
Publication of KR101929163B1 publication Critical patent/KR101929163B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided are a kit for diagnosing a gene causing a Charcot-Marie-Tooth disease based on next-generation sequencing, and a diagnosis method. According to the present invention, a one-step diagnosis system is built by simplifying an existing identification algorithm of a gene causing a Charcot-Marie-Tooth disease, thereby saving cost and time while increasing the identification efficiency of the gene, and also identifying new gene mutation in the Charcot-Marie-Tooth disease.

Description

샤르코-마리-투스 질환 진단용 키트{Kit for Diagnosing Charcot-Marie-Tooth}Kit for Diagnosing Charcot-Marie-Tooth}

본 발명은 샤르코-마리-투스 질환 진단용 키트에 관한 것이다.The present invention relates to a kit for diagnosing Charcoal-Marie-tus disease.

샤르코-마리-투스(Charcot-Marie-Tooth; CMT) 질환 또는 유전운동감각신경병(Hereditary motor and sensory neuropathy; HMSN)은 원위유전운동신경병(distal Hereditary Motor Neuropathy; dHMN), 유전감각신경병(Hereditary Sensory Neuropathy; HSN) 및 압박마비유전신경병(Hereditary Neuropathy with a liability to pressure palsy; HNPP)과 같이 임상적으로 이질적 질환(heterogeneous disease)이다. 유전적으로, CMT 질환의 원인으로 여러 종류의 70개 이상 유전자가 보고되었다(Rossor AM, et al. Nat Rev Neurol. 2013;9:562-71, http://www.molgen.ua.ac.be/cmtmutations/).Charcot-Marie-Tooth (CMT) disease or hereditary motor and sensory neuropathy (HMSN) is distal hereditary motor neuropathy (dHMN), hereditary sensory neuropathy. ; HSN) and Hereditary Neuropathy with a liability to pressure palsy (HNPP). Genetically, more than 70 genes of several types have been reported as the cause of CMT disease (Rossor AM, et al. Nat Rev Neurol. 2013;9:562-71, http://www.molgen.ua.ac.be /cmtmutations/ ).

CMT의 유전적 진단은 주요 원인 유전자의 직접 시퀀싱에 의존적이나, 이는 어려운 과정에도 불구하고 낮은 분리 효율을 갖는다. 차세대 시퀀싱(Next-generation Sequenceing; NGS) 기술에 기반한 엑손시퀀싱(Whole Exome Sequencing; WES)의 등장으로 다양한 질환, 특히 CMT와 같은 이질적 질환의 유전적 연구가 확대 및 가속화되고 있다.The genetic diagnosis of CMT relies on direct sequencing of the main causative gene, but this has a low separation efficiency despite a difficult process. With the advent of Whole Exome Sequencing (WES) based on Next-generation Sequencing (NGS) technology, genetic studies of various diseases, especially heterogeneous diseases such as CMT, are expanding and accelerating.

본 명세서 전체에 걸쳐 다수의 논문 및 특허문헌이 참조되고 그 인용이 표시되어 있다. 인용된 논문 및 특허문헌의 개시 내용은 그 전체로서 본 명세서에 참조로 삽입되어 본 발명이 속하는 기술 분야의 수준 및 본 발명의 내용이 보다 명확하게 설명된다.Throughout this specification, a number of papers and patent documents are referenced and citations are indicated. The disclosure contents of the cited papers and patent documents are incorporated by reference in this specification as a whole, and the level of the technical field to which the present invention belongs and the contents of the present invention are more clearly described.

본 발명자들은 기존의 다단계로 구성된 샤르코-마리-투스(Charcot-Marie-Tooth) 질환의 원인 유전자 동정 알고리즘을 단순화하고, 동정 효율을 높이면서 비용 및 시간을 절감할 수 있는 새로운 진단 키트를 개발하고자 노력하였다. 그 결과, 샤르코-마리-투스 질환의 원인 유전자 및 밀접한 관련이 있는 유전자로 구성된 샤르코-마리-투스 질환의 원인 유전자 진단용 키트를 개발하고, 신규 원인 유전자 변이를 규명함으로써 본 발명을 완성하였다.The present inventors have tried to develop a new diagnostic kit that can reduce cost and time while simplifying the algorithm for identifying the causative genes of Charcot-Marie-Tooth disease, which is composed of multiple steps, and increasing identification efficiency. I did. As a result, the present invention was completed by developing a kit for diagnosing the causative gene of Sharko-Marie-tus disease, which is composed of the causative gene of Sharko-Marie-tus disease and genes that are closely related, and by identifying a new causal gene mutation.

따라서, 본 발명의 목적은 샤르코-마리-투스 질환의 원인 유전자 진단용 키트를 제공한다.Accordingly, an object of the present invention is to provide a kit for diagnosing the cause of the Charcoal-Marie-tus disease.

본 발명의 다른 목적은 샤르코-마리-투스 질환의 원인 유전자 진단 방법을 제공한다.Another object of the present invention is to provide a method for diagnosing the cause of the Charcoal-Marie-tus disease.

본 발명의 또 다른 목적은 샤르코-마리-투스 질환의 진단 마커용 변이유전자를 제공한다.Another object of the present invention is to provide a mutant gene for a diagnostic marker of Charcoal-Marie-tus disease.

본 발명의 다른 목적 및 이점은 하기의 발명의 상세한 설명, 청구범위 및 도면에 의해 보다 명확하게 된다.Other objects and advantages of the present invention will become more apparent by the following detailed description, claims and drawings.

본 발명의 일 양태에 따르면, 본 발명은 AARS[진뱅크(GenBank) 접근번호 NM_001605], AIEM1(NM_004208), ARIIGER10(NM_014629), ATL1(NM_015915), ATL3(NM_015459), BSCL2(NM_032667), C12orf65(NM_152269), CCT5(NM_012073), CTDP1(NM_004715), DCTN1(NM_004082), DHTKD1(NM_018706), DNAJB2(NM_006736), DNM2(NM_004945), DNMT1(NM_001379), DST(NM_001723), DYNC1H1(NM_001376), EGR2(NM_000399), FAM134B(NM_001034850), FBLN5(NM_006329), FGD4(NM_139241), FIG4(NM_014845), GAN(NM_022041), GARS(NM_002047), GDAP1(NM_018972), GJB1(NM_000166), GNB4(NM_021629), HADHB(NM_000183), HARS(NM_002109), HINT1(NM_005340), HK1(NM_000188), HOXD10(NM_002148), HSPB1(NM_001540), HSPB3(NM_006308), HSPB8(NM_014365), IGRD1(NM_001550), IGHMBP2(NM_002180), IKBKAP(NM_003640), INF2(NM_022489), KARS(NM_005548), KIF1A(NM_004321), LITAF(NM_004862), LMNA(NM_170707), LRSAM1(NM_138361), MARS(NM_004990), MED25(NM_030973), MFN2(NM_014874), MPZ(NM_000530), MTMR2(NM_016156), MYH14(NM_024729), NDRG1(NM_006096), NEFL(NM_006158), NGF(NM_002506), NTRK1(NM_002529), NRG2(NM_013982), PDK3(NM_005391), PLEKHG5(NM_020631), PMP22(NM_000304), PRPS1(NM_002764), PRX(NM_181882), RAB7A(NM_004637), REEP1(NM_022912), SBF1(NM_002972), SBF2(NM_030962), SETX(NM_015046), SCN9A(NM_002977), SH3TC2(NM_024577), SLC5A7(NM_021815), SLC12A6(NM_005135), SOX10(NM_006941), SPTLC1(NM_006415), SPTLC2(NM_004863), TDP1(NM_018319), TFG(NM_006070), TRIM2(NM_015271), TRPV4(NM_021625), TUBB3(NM_006086), VAPB(NM_004738), WNK1(NM_213655), YARS(NM_003680), COX10(NM_001303) 및 TEKT3(NM_031898)로 구성된 군으로부터 선택되는 유전자를 코딩하는 뉴클레오타이드 서열에 특이적으로 결합하는 프라이머 또는 프로브를 포함하는 차세대 염기서열 분석(Next Generation Sequencing)-기반 샤르코-마리-투스(Charcot-Marie-Tooth) 질환의 원인 유전자 진단용 키트를 제공한다.According to an aspect of the present invention, the present invention is AARS (GenBank access number NM_001605), AIEM1 (NM_004208), ARIIGER10 (NM_014629), ATL1 (NM_015915), ATL3 (NM_015459), BSCL2 (NM_032667), C12orf65 ( NM_152269), CCT5 (NM_012073), CTDP1 (NM_004715), DCTN1 (NM_004082), DHTKD1 (NM_018706), DNAJB2 (NM_006736), DNM2 (NM_004945), DNMT1 (NM_001379), EST2 (NM_DYNC1) NM_000399), FAM134B(NM_001034850), FBLN5(NM_006329), FGD4(NM_139241), FIG4(NM_014845), GAN(NM_022041), GARS(NM_002047), GDAP1_0(NM_018972), GJB1(29NB), GJB1(NM_216), NM_216 NM_000183), HARS(NM_002109), HINT1(NM_005340), HK1(NM_000188), HOXD10(NM_002148), HSPB1(NM_001540), HSPB3(NM_006308), HSPB8(NM_014365), IGRAPD1(NM_180P2), IGRAPD1(NM_KBK2P2) NM_003640), INF2(NM_022489), KARS(NM_005548), KIF1A(NM_004321), LITAF(NM_004862), LMNA(NM_170707), LRSAM1(NM_138361), MARS(NM_004990), MED25874(NM_973), MED25(NM_973) NM_000530), MTMR2(NM_016156), MYH14(NM_024729), NDRG1(NM_006096), NEFL(NM_006158), NGF(NM_002506), NTRK1(NM_002529), NRG2(NM_0139 82), PDK3(NM_005391), PLEKHG5(NM_020631), PMP22(NM_000304), PRPS1(NM_002764), PRX(NM_181882), RAB7A(NM_004637), REEP1(NM_022912), SBF1(NM_002972), SBF1(NM_002972), SBF1(NM_002972), SBF1(NM_002972) NM_015046), SCN9A(NM_002977), SH3TC2(NM_024577), SLC5A7(NM_021815), SLC12A6(NM_005135), SOX10(NM_006941), SPTLC1(NM_006415), SPTLC1(NM_006415), SPTLC2(NM_0048632), TDP1TFG(NM_0NM_006), TDP1183M_006 NM_015271), TRPV4 (NM_021625), TUBB3 (NM_006086), VAPB (NM_004738), WNK1 (NM_213655), YARS (NM_003680), COX10 (NM_001303) and TEKT3 (NM_031898). It provides a kit for diagnosing the cause of a next generation sequencing-based Charcot-Marie-Tooth disease including a primer or probe that specifically binds to it.

본 발명자들은 기존의 다단계로 구성된 샤르코-마리-투스 질환의 원인 유전자 동정 알고리즘을 단순화하고, 동정 효율을 높이면서 비용 및 시간을 절감할 수 있는 새로운 진단 키트를 개발하고자 노력하였다. 그 결과, 샤르코-마리-투스 질환의 원인 유전자 및 밀접한 관련이 있는 유전자로 구성된 샤르코-마리-투스 질환의 원인 유전자 진단용 키트를 개발하고, 신규 원인 유전자 변이를 규명하였다.The present inventors have tried to develop a new diagnostic kit that can reduce cost and time while simplifying the algorithm for identifying the causative gene of Charcoal-Marie-tus disease composed of multiple steps, and increasing identification efficiency. As a result, a kit for diagnosing the causative gene of Sharko-Marie-tus disease, consisting of genes that cause Charcoal-Marie-tus disease and closely related genes, was developed, and new causative gene mutations were identified.

본 발명에서 진단하고자 하는 샤르코-마리-투스 질환은 유전운동감각신경병(Hereditary motor and sensory neuropathy)으로도 불리며, 유전적 및 임상적으로 매우 이질적인 말초신경질환군으로서, 원위성 근육 약화 및 위축, 요족(pes caus), 감각 손상 등의 임상 증상을 나타낸다(Reilly MM, et al., J Neurol Neurosurg Psychiatry 80: 1304-1314, 2009).The Charcoal-Marie-tus disease to be diagnosed in the present invention is also referred to as hereditary motor and sensory neuropathy, and is a group of peripheral nerve diseases that are genetically and clinically very heterogeneous, and distal muscle weakness and atrophy, urinary foot ( pes caus) and sensory impairment (Reilly MM, et al., J Neurol Neurosurg Psychiatry 80: 1304-1314, 2009).

종래의 샤르코-마리-투스 질환의 유전적 변이를 진단하는 방법은 NCS(Nerve Conduction Study)를 통해 세부아형을 분석하고 PMP22 유전자의 중복 검사 후 주요 원인 유전자(PMP22, MPZ, Cx32 및 MFN2)의 변이를 조사하고 엑손 시퀀싱(whole exome sequencing) 및 캐필러리 시퀀싱(capillary sequencing)을 통해 진단을 확정하였다.The conventional method for diagnosing genetic mutations in Charcoal-Marie-tus disease is to analyze subtypes through NCS (Nerve Conduction Study), and after double-testing of the PMP22 gene, mutations in the major causative genes (PMP22, MPZ, Cx32 and MFN2). Was investigated, and the diagnosis was confirmed through whole exome sequencing and capillary sequencing.

본 발명은 원스텝(one step)으로 샤르코-마리-투스 질환의 원인 유전자를 진단할 수 있는 차세대 염기서열 분석-기반 키트를 제공한다.The present invention provides a next-generation sequencing-based kit capable of diagnosing the causative gene of Charcoal-Marie-tus disease in one step.

본 명세서에서 용어 “차세대 염기서열 분석(Next-generation sequencing 또는 Massive parallel sequencing)”은 유전체를 무수히 많은 조각으로 나눈 뒤 각각의 염기서열을 조합하여 유전체를 해독하는 분석 방법을 의미한다.In the present specification, the term “next-generation sequencing (massive parallel sequencing)” refers to an analysis method for decoding the genome by dividing the genome into countless pieces and combining each nucleotide sequence.

본 발명의 일 구현예에 따르면, 상기 차세대 염기서열 분석은 엑솜 시퀀싱(whole exome sequencing)이다. 상기 엑솜 시퀀싱은 유전체의 코딩영역을 선택적으로 시퀀싱 하는 기술로, 인간 유전체의 약 1%를 구성하고 대부분의 단백질을 만드는 엑손 영역만 시퀀싱 하는 기술이다(참조; Bahareh Rabbani et al. Journal of Humn Genetics(2014) 59, 5-15, https://en.wikipedia.org/wiki/Exome_sequencing).According to one embodiment of the present invention, the next-generation sequencing analysis is exome sequencing. The exome sequencing is a technique for selectively sequencing the coding region of the genome, and is a technique for sequencing only the exon region that constitutes about 1% of the human genome and makes most of the protein (see Bahareh Rabbani et al. Journal of Humn Genetics (Reference: Bahareh Rabbani et al. Journal of Humn Genetics). 2014) 59, 5-15, https://en.wikipedia.org/wiki/Exome_sequencing).

본 발명의 다른 구현예에 따르면, 상기 엑솜 시퀀싱은 SBS(Sequencing-By-Synthesis) 방식이다. 상기 SBS 방식은 기판 상에 단일 가닥 DNA 조각(fragment)를 부착한 후 이 조각들을 중합반응을 통해 군집(cluster)을 이루게 한다. 이 과정에서 검사하려는 DNA 조각에 혼성화 되는 염기의 종류를 신호를 통해 확인하여 서열을 검출하는 방식이다(참조; http://www.illumina.com/technology/next-generation-sequencing/sequencing-technology.html 및 https://en.wikipedia.org/wiki/Illumina_dye_sequencing).According to another embodiment of the present invention, the exome sequencing is SBS (Sequencing-By-Synthesis) method. In the SBS method, a single-stranded DNA fragment is attached to a substrate, and then the fragments are polymerized to form a cluster. In this process, the type of base hybridized to the DNA fragment to be tested is identified through a signal to detect the sequence (see: http://www.illumina.com/technology/next-generation-sequencing/sequencing-technology. html and https://en.wikipedia.org/wiki/Illumina_dye_sequencing).

본 발명의 차세대 염기서열 분석-기반 샤르코-마리-투스 질환의 원인 유전자 진단용 키트는 차세대 염기서열 분석에 적합한 프라이머를 이용하여 증폭한다.The kit for diagnosing the cause of the next-generation sequencing-based Charcoal-Marie-tus disease of the present invention is amplified using a primer suitable for next-generation sequencing.

상기 프라이머는 Sureselect(Agilent Technologies, Santa Clara, CA)를 이용하여 설계한다.The primers were designed using Sureselect (Agilent Technologies, Santa Clara, CA).

*본 발명의 키트에서 이용되는 프라이머는 본 발명의 뉴클레오티드 서열에 대하여 상보적인 서열을 갖는다. 본 명세서에서 용어 “상보적(complementary)”은 어떤 특정한 혼성화(hybridization) 또는 어닐링 조건 하에서 상기 나열한 본 발명의 뉴클레오티드 서열에 선택적으로 혼성화 할 수 있을 정도의 상보성을 갖는 것을 의미한다. 따라서 용어 “상보적”은 용어 완전 상보적(perfectly complementary)과는 다른 의미를 가지며, 본 발명의 프라이머 또는 프로브는 상기 본 발명의 뉴클레오티드 서열에 선택적으로 혼성화 할 수 있을 정도이면, 하나 또는 그 이상의 미스매치(mismatch) 염기서열을 가질 수 있다. 본 명세서에서 사용되는 용어 “프라이머”는 적합한 온도에서 적합한 완충액 내에서 적합한 조건(즉, 4종의 다른 뉴클레오사이드 트리포스페이트 및 중합반응 효소) 하에서 주형-지시 DNA 합성의 개시점으로 작용할 수 있는 단일-가닥 올리고뉴클레오티드를 의미한다. 프라이머의 적합한 길이는 다양한 요소, 예컨대, 온도와 프라이머의 용도에 따라 변화가 있지만 전형적으로 15-30 뉴클레오티드이다. 짧은 프라이머 분자는 주형과 충분히 안정된 혼성 복합체를 형성하기 위하여 일반적으로 보다 낮은 온도를 요구한다.* The primer used in the kit of the present invention has a sequence complementary to the nucleotide sequence of the present invention. In the present specification, the term "complementary" means having a degree of complementarity capable of selectively hybridizing to the nucleotide sequence of the present invention listed above under certain hybridization or annealing conditions. Therefore, the term “complementary” has a different meaning from the term perfectly complementary, and the primer or probe of the present invention is sufficient to selectively hybridize to the nucleotide sequence of the present invention. It can have a mismatch sequence. As used herein, the term “primer” refers to a single template that can serve as an initiation point for template-directed DNA synthesis under suitable conditions (ie, four different nucleoside triphosphates and polymerases) in a suitable buffer at a suitable temperature. -Means a stranded oligonucleotide. The suitable length of the primer varies depending on various factors such as temperature and the application of the primer, but is typically 15-30 nucleotides. Short primer molecules generally require lower temperatures to form sufficiently stable hybrid complexes with the template.

프라이머의 서열은 주형의 일부 서열과 완전하게 상보적인 서열을 가질 필요는 없으며, 주형과 혼성화 되어 프라이머 고유의 작용을 할 수 있는 범위 내에서의 충분한 상보성을 가지면 충분하다. 따라서 본 발명에서의 프라이머는 주형인 상기 나열한 본 발명의 뉴클레오티드 서열에 완벽하게 상보적인 서열을 가질 필요는 없으며, 이 유전자 서열에 혼성화되어 프라이머 작용을 할 수 있는 범위 내에서 충분한 상보성을 가지면 충분하다. 이러한 프라이머의 디자인은 본 발명의 뉴클레오타이드 서열을 참조하여 당업자에 의해 용이하게 실시할 수 있으며, 예컨대, 프라이머 디자인용 프로그램(예: SURESELECT 프로그램)을 이용하여 할 수 있다.The sequence of the primer does not need to have a sequence that is completely complementary to some of the sequences of the template, and it is sufficient to have sufficient complementarity within the range capable of hybridizing with the template to perform a unique function of the primer. Therefore, the primer in the present invention does not need to have a sequence perfectly complementary to the nucleotide sequence of the present invention listed above as a template, and it is sufficient if it has sufficient complementarity within the range capable of hybridizing to this gene sequence to function as a primer. The design of such a primer can be easily carried out by a person skilled in the art by referring to the nucleotide sequence of the present invention, for example, it can be done using a primer design program (eg, SURESELECT program).

본 명세서에 기재된 용어“증폭”은 핵산 분자를 증폭하는 반응을 의미한다. 본 발명은 상기 뉴클레오티드 서열을 분석(시퀀싱)하는 것이기 때문에, 분석 대상의 시료에서 본 발명의 뉴클레오티드 서열의 염기서열을 결정한다. 따라서 본 발명은 원칙적으로 시료 내의 뉴클레오타이드 서열을 주형으로 하고 이에 결합하는 프라이머를 이용하여 증폭 반응을 실시한다.The term "amplification" as used herein refers to a reaction to amplify a nucleic acid molecule. Since the present invention analyzes (sequencing) the nucleotide sequence, the nucleotide sequence of the nucleotide sequence of the present invention is determined from a sample to be analyzed. Therefore, in principle, the present invention performs an amplification reaction using a nucleotide sequence in a sample as a template and a primer binding thereto.

본 발명에 이용되는 프라이머는 주형의 한 부위에 혼성화 또는 어닐링되어, 이중쇄 구조를 형성한다. 이러한 이중쇄 구조를 형성하는 데 적합한 핵산 혼성화의 조건은 Joseph Sambrook, 등, Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.(2001) 및 Haymes, B.D., 등, Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington, D.C. (1985)에 개시되어 있다.The primer used in the present invention is hybridized or annealed at one site of the template to form a double-chain structure. Conditions for nucleic acid hybridization suitable for forming such a double-stranded structure are Joseph Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (2001) and Haymes, BD, et al., Nucleic Acid Hybridization. , A Practical Approach, IRL Press, Washington, DC (1985).

본 발명의 다른 양태에 따르면, 본 발명은 AARS[진뱅크(GenBank) 접근번호 NM_001605], AIEM1(NM_004208), ARIIGER10(NM_014629), ATL1(NM_015915), ATL3(NM_015459), BSCL2(NM_032667), C12orf65(NM_152269), CCT5(NM_012073), CTDP1(NM_004715), DCTN1(NM_004082), DHTKD1(NM_018706), DNAJB2(NM_006736), DNM2(NM_004945), DNMT1(NM_001379), DST(NM_001723), DYNC1H1(NM_001376), EGR2(NM_000399), FAM134B(NM_001034850), FBLN5(NM_006329), FGD4(NM_139241), FIG4(NM_014845), GAN(NM_022041), GARS(NM_002047), GDAP1(NM_018972), GJB1(NM_000166), GNB4(NM_021629), HADHB(NM_000183), HARS(NM_002109), HINT1(NM_005340), HK1(NM_000188), HOXD10(NM_002148), HSPB1(NM_001540), HSPB3(NM_006308), HSPB8(NM_014365), IGRD1(NM_001550), IGHMBP2(NM_002180), IKBKAP(NM_003640), INF2(NM_022489), KARS(NM_005548), KIF1A(NM_004321), LITAF(NM_004862), LMNA(NM_170707), LRSAM1(NM_138361), MARS(NM_004990), MED25(NM_030973), MFN2(NM_014874), MPZ(NM_000530), MTMR2(NM_016156), MYH14(NM_024729), NDRG1(NM_006096), NEFL(NM_006158), NGF(NM_002506), NTRK1(NM_002529), NRG2(NM_013982), PDK3(NM_005391), PLEKHG5(NM_020631), PMP22(NM_000304), PRPS1(NM_002764), PRX(NM_181882), RAB7A(NM_004637), REEP1(NM_022912), SBF1(NM_002972), SBF2(NM_030962), SETX(NM_015046), SCN9A(NM_002977), SH3TC2(NM_024577), SLC5A7(NM_021815), SLC12A6(NM_005135), SOX10(NM_006941), SPTLC1(NM_006415), SPTLC2(NM_004863), TDP1(NM_018319), TFG(NM_006070), TRIM2(NM_015271), TRPV4(NM_021625), TUBB3(NM_006086), VAPB(NM_004738), WNK1(NM_213655), YARS(NM_003680), COX10(NM_001303) 및 TEKT3(NM_031898)로 구성된 군으로부터 선택되는 하나 이상의 유전자를 코딩하는 뉴클레오타이드 서열에 특이적으로 결합하는 프라이머 또는 프로브를 이용하여 증폭시키는 단계를 포함하는 차세대 염기서열 분석-기반 샤르코-마리-투스 질환의 원인 유전자 진단 방법을 제공한다.According to another aspect of the present invention, the present invention provides AARS (GenBank accession number NM_001605), AIEM1 (NM_004208), ARIIGER10 (NM_014629), ATL1 (NM_015915), ATL3 (NM_015459), BSCL2 (NM_032667), C12orf65 ( NM_152269), CCT5 (NM_012073), CTDP1 (NM_004715), DCTN1 (NM_004082), DHTKD1 (NM_018706), DNAJB2 (NM_006736), DNM2 (NM_004945), DNMT1 (NM_001379), EST2 (NM_DYNC1) NM_000399), FAM134B(NM_001034850), FBLN5(NM_006329), FGD4(NM_139241), FIG4(NM_014845), GAN(NM_022041), GARS(NM_002047), GDAP1_0(NM_018972), GJB1(29NB), GJB1(NM_216), NM_216 NM_000183), HARS(NM_002109), HINT1(NM_005340), HK1(NM_000188), HOXD10(NM_002148), HSPB1(NM_001540), HSPB3(NM_006308), HSPB8(NM_014365), IGRAPD1(NM_180P2), IGRAPD1(NM_KBK2P2) NM_003640), INF2(NM_022489), KARS(NM_005548), KIF1A(NM_004321), LITAF(NM_004862), LMNA(NM_170707), LRSAM1(NM_138361), MARS(NM_004990), MED25874(NM_973), MED25(NM_973) NM_000530), MTMR2(NM_016156), MYH14(NM_024729), NDRG1(NM_006096), NEFL(NM_006158), NGF(NM_002506), NTRK1(NM_002529), NRG2(NM_013 982), PDK3(NM_005391), PLEKHG5(NM_020631), PMP22(NM_000304), PRPS1(NM_002764), PRX(NM_181882), RAB7A(NM_004637), REEP1(NM_022912), SBF1(NM_002972), SBF1(NM_002972), SBF1(NM_002972), SBF1(NM_002972) NM_015046), SCN9A(NM_002977), SH3TC2(NM_024577), SLC5A7(NM_021815), SLC12A6(NM_005135), SOX10(NM_006941), SPTLC1(NM_006415), SPTLC1(NM_006415), SPTLC2(NM_0048632), TDP1TFG(NM_0NM_006), TDP1183M_006 NM_015271), TRPV4 (NM_021625), TUBB3 (NM_006086), VAPB (NM_004738), WNK1 (NM_213655), YARS (NM_003680), COX10 (NM_001303), and TEKT3 (NM_031898). It provides a next-generation sequencing-based method for diagnosing the causative gene of Charcoal-Marie-tus disease, comprising the step of amplifying using a primer or probe that specifically binds to the sequence.

본 발명의 일 구현예에 따르면, 상기 차세대 염기서열 분석은 엑솜 시퀀싱이다. 본 발명의 다른 구현예에 따르면, 상기 엑솜 시퀀싱은 SBS 방식이다.According to an embodiment of the present invention, the next-generation sequencing is exome sequencing. According to another embodiment of the present invention, the exome sequencing is SBS method.

상기 프라이머는 Sureselect(Agilent Technologies, Santa Clara, CA)를 이용하여 설계한다.The primers were designed using Sureselect (Agilent Technologies, Santa Clara, CA).

본 발명은 상기 차세대 염기서열 분석(Next Generation Sequencing)-기반 샤르코-마리-투스(Charcot-Marie-Tooth) 질환의 원인 유전자 진단용 키트와 동일한 프라이머 또는 프로브를 이용하여 원인 유전자를 진단하는 방법이므로, 이 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.The present invention is a method for diagnosing the causative gene using the same primers or probes as the kit for diagnosing the causative gene of the Next Generation Sequencing-based Charcot-Marie-Tooth disease. Description of the common content between the two is omitted in order to avoid excessive complexity of the present specification.

본 발명은 상기 차세대 염기서열 분석-기반 샤르코-마리-투스 질환의 원인 유전자 진단용 키트를 이용하여 임상적 유효성을 확인하면서 규명된 샤르코-마리-투스 질환의 신규한 진단 마커를 제공한다.The present invention provides a novel diagnostic marker of the Charco-Marie-tus disease identified while confirming the clinical effectiveness using the next-generation sequencing-based kit for diagnosing the cause of the Charcoal-Marie-tus disease.

유의성 있는 진단 마커의 선택과 적용은 진단 결과의 신뢰도를 결정짓는다. 유의성 있는 진단 마커란, 진단하여 얻은 결과가 정확하여 타당도(validity)가 높고 반복 측정 시에도 일관된 결과를 나타내도록 신뢰도(reliability)가 높은 마커를 의미한다. 본 발명에 따른 진단 마커로서 변이 유전자는, 샤르코-마리-투스 질환을 나타내는 환자군에서만 검출되고 정상 대조군에서는 검출될 확률이 거의 없는 신뢰도가 높은 마커이다. 따라서 본 발명의 유의성 있는 진단 마커로서 변이 유전자의 존재 여부를 검출하여 얻은 결과를 토대로 진단된 결과는 타당하게 신뢰할 수 있다The selection and application of significant diagnostic markers determines the reliability of the diagnostic results. Significant diagnostic markers refer to markers with high reliability so that results obtained through diagnosis are accurate and thus have high validity and consistent results even when repeated measurements are made. The mutant gene as a diagnostic marker according to the present invention is a highly reliable marker that is detected only in a patient group exhibiting Charcoal-Marie-tus disease and has little probability of being detected in a normal control group. Therefore, the diagnosis result based on the result obtained by detecting the presence or absence of a mutant gene as a significant diagnostic marker of the present invention can be reasonably reliable.

본 발명의 또 다른 양태에 따르면, 본 발명은 샤르코-마리-투스 질환의 진단 마커로서 야생형 PMP22 유전자의 47번째 뉴클레오타이드가 시토신(cytosine)으로 치환된 변이 유전자를 제공한다.According to another aspect of the present invention, the present invention provides a mutant gene in which nucleotide 47 of the wild-type PMP22 gene is substituted with cytosine as a diagnostic marker for Charcoal-Marie-tus disease.

본 발명의 일 구현예에 따르면, 상기 야생형 PMP22 유전자는 서열목록 제1서열의 뉴클레오타이드 서열에 의해 암호화된다.According to one embodiment of the present invention, the wild-type PMP22 gene is encoded by the nucleotide sequence of SEQ ID NO: 1.

상기 야생형 PMP22 유전자의 47번째 뉴클레오타이드가 시토신으로 치환되어 야생형 PMP22 단백질의 16번째 아미노산이 아르기닌(arginine)으로 치환된 변이 단백질이 된다.The 47th nucleotide of the wild-type PMP22 gene is substituted with cytosine, so that the 16th amino acid of the wild-type PMP22 protein becomes a mutant protein in which arginine is substituted.

본 발명의 다른 양태에 따르면, 본 발명은 샤르코-마리-투스 질환의 진단 마커로서 야생형 SH3TC2 유전자의 929번째 및 3272번째 뉴클레오타이드가 각각 아데닌(adenine) 및 티민(thymine)으로 치환된 변이 유전자를 제공한다.According to another aspect of the present invention, the present invention provides a mutant gene in which nucleotides 929 and 3272 of the wild-type SH3TC2 gene are substituted with adenine and thymine, respectively, as a diagnostic marker for Charcoal-Marie-tus disease. .

본 발명의 일 구현예에 따르면, 상기 야생형 SH3TC2 유전자는 서열목록 제2서열의 뉴클레오타이드 서열에 의해 암호화된다.According to one embodiment of the present invention, the wild-type SH3TC2 gene is encoded by the nucleotide sequence of SEQ ID NO: 2.

상기 야생형 SH3TC2 유전자의 929번째 및 3272번째 뉴클레오타이드가 각각 아데닌 및 티민으로 치환되어 야생형 SH3TC2 단백질의 310번째 및 1091번째 아미노산이 각각 글루탐산(glutamic acid) 및 발린(valine)으로 치환된 변이 단백질이 된다.The 929th and 3272th nucleotides of the wild-type SH3TC2 gene are replaced with adenine and thymine, respectively, so that the 310th and 1091th amino acids of the wild-type SH3TC2 protein are replaced with glutamic acid and valine, respectively.

본 발명의 또 다른 양태에 따르면, 본 발명은 샤르코-마리-투스 질환의 진단 마커로서 야생형 MPZ 유전자의 154번째 뉴클레오타이드가 구아닌(guanine)으로 치환된 변이 유전자를 제공한다.According to another aspect of the present invention, the present invention provides a mutant gene in which the 154th nucleotide of the wild-type MPZ gene is substituted with guanine as a diagnostic marker for Charcoal-Marie-tus disease.

본 발명의 일 구현예에 따르면, 상기 야생형 MPZ 유전자는 서열목록 제3서열의 뉴클레오타이드 서열에 의해 암호화된다.According to one embodiment of the present invention, the wild-type MPZ gene is encoded by the nucleotide sequence of SEQ ID NO: 3.

상기 야생형 MPZ 유전자의 154번째 뉴클레오타이드가 구아닌으로 치환되어 야생형 MPZ 단백질의 52번째 아미노산이 발린으로 치환된 변이 단백질이 된다.The 154th nucleotide of the wild-type MPZ gene is replaced with guanine, so that the 52nd amino acid of the wild-type MPZ protein becomes a mutant protein in which valine is substituted.

본 발명의 다른 양태에 따르면, 본 발명은 샤르코-마리-투스 질환의 진단 마커로서 야생형 MPZ 유전자의 262번째 뉴클레오타이드가 시토신(cytosine)으로 치환된 변이 유전자를 제공한다.According to another aspect of the present invention, the present invention provides a mutant gene in which nucleotide 262 of the wild-type MPZ gene is substituted with cytosine as a diagnostic marker for Charcoal-Marie-tus disease.

본 발명의 일 구현예에 따르면, 상기 야생형 MPZ 유전자는 서열목록 제3서열의 뉴클레오타이드 서열에 의해 암호화된다.According to one embodiment of the present invention, the wild-type MPZ gene is encoded by the nucleotide sequence of SEQ ID NO: 3.

상기 야생형 MPZ 유전자의 262번째 뉴클레오타이드가 시토신으로 치환되어 야생형 MPZ 단백질의 88번째 아미노산이 히스티딘(histidine)으로 치환된 변이 단백질이 된다.The 262nd nucleotide of the wild-type MPZ gene is substituted with cytosine, and the 88th amino acid of the wild-type MPZ protein becomes a mutant protein in which histidine is substituted.

본 발명의 또 다른 양태에 따르면, 본 발명은 샤르코-마리-투스 질환의 진단 마커로서 야생형 GJB1 유전자의 286번째 뉴클레오타이드가 시토신으로 치환된 변이 유전자를 제공한다.According to another aspect of the present invention, the present invention provides a mutant gene in which nucleotide 286 of the wild-type GJB1 gene is substituted with cytosine as a diagnostic marker for Charcoal-Marie-tus disease.

*본 발명의 일 구현예에 따르면, 상기 야생형 GJB1 유전자는 서열목록 제4서열의 뉴클레오타이드 서열에 의해 암호화된다.* According to one embodiment of the present invention, the wild-type GJB1 gene is encoded by the nucleotide sequence of SEQ ID NO: 4.

상기 야생형 GJB1 유전자의 286번째 뉴클레오타이드가 시토신으로 치환되어 야생형 GJB1 단백질의 96번째 아미노산이 프롤린(proline)으로 치환된 변이 단백질이 된다.The 286th nucleotide of the wild-type GJB1 gene is replaced with cytosine, and the 96th amino acid of the wild-type GJB1 protein becomes a mutant protein in which proline is substituted.

본 발명의 다른 양태에 따르면, 본 발명은 샤르코-마리-투스 질환의 진단 마커로서 야생형 SPTLC2 유전자의 435번째 뉴클레오타이드가 티민(thymine)으로 치환된 변이 유전자를 제공한다.According to another aspect of the present invention, the present invention provides a mutant gene in which nucleotide 435 of the wild-type SPTLC2 gene is substituted with thymine as a diagnostic marker for Charcoal-Marie-tus disease.

본 발명의 일 구현예에 따르면, 상기 야생형 SPTLC2 유전자는 서열목록 제5서열의 뉴클레오타이드 서열에 의해 암호화된다.According to one embodiment of the present invention, the wild-type SPTLC2 gene is encoded by the nucleotide sequence of SEQ ID NO:5.

상기 야생형 SPTLC2 유전자의 435번째 뉴클레오타이드가 티민으로 치환되어 야생형 SPTLC2 단백질의 145번째 아미노산이 세린(serine)으로 치환된 변이 단백질이 된다.Nucleotide 435 of the wild-type SPTLC2 gene is substituted with thymine to become a mutant protein in which the 145th amino acid of the wild-type SPTLC2 protein is substituted with serine.

본 발명의 또 다른 양태에 따르면, 본 발명은 샤르코-마리-투스 질환의 진단 마커로서 야생형 DCTN1 유전자의 1019번째 뉴클레오타이드가 구아닌(guanine)으로 치환된 변이 유전자를 제공한다.According to another aspect of the present invention, the present invention provides a mutant gene in which nucleotide 1019 of the wild-type DCTN1 gene is substituted with guanine as a diagnostic marker for Charcoal-Marie-tus disease.

본 발명의 일 구현예에 따르면, 상기 야생형 DCTN1 유전자는 서열목록 제6서열의 뉴클레오타이드 서열에 의해 암호화된다.According to one embodiment of the present invention, the wild-type DCTN1 gene is encoded by the nucleotide sequence of SEQ ID NO:6.

상기 야생형 DCTN1 유전자의 1019번째 뉴클레오타이드가 구아닌으로 치환되어 야생형 DCTN1 단백질의 340번째 아미노산이 글라이신(glycine)으로 치환된 변이 단백질이 된다.The 1019th nucleotide of the wild-type DCTN1 gene is replaced with guanine, so that the 340th amino acid of the wild-type DCTN1 protein becomes a mutant protein in which glycine is substituted.

본 발명의 다른 양태에 따르면, 상기 변이 유전자에 의해 코딩되는 샤르코-마리-투스 질환 진단 마커로서의 변이 단백질을 제공한다.According to another aspect of the present invention, there is provided a mutant protein encoded by the mutant gene as a diagnostic marker for Charcoal-Marie-tus disease.

상기 변이 단백질은 상기 변이 유전자의 뉴클레오타이드 치환에 따른 아미노산 치환에 의한 변이 단백질로, 이 둘 사이에 공통된 내용은 본 명세서의 과도한 복잡성을 피하기 위하여, 그 기재를 생략한다.The mutant protein is a mutant protein by amino acid substitution according to the nucleotide substitution of the mutant gene, and descriptions of the contents in common between the two are omitted in order to avoid undue complexity in the present specification.

본 발명의 또 다른 양태에 따르면, 상기 변이 유전자 또는 상기 변이 단백질을 검출할 수 있는 제제를 포함하는 샤르코-마리-투스 질환 원인 유전자 진단용 키트를 제공한다.According to another aspect of the present invention, there is provided a kit for diagnosing a cause of Charcoal-Marie-tus disease gene comprising an agent capable of detecting the mutant gene or the mutant protein.

본 발명의 다른 양태에 따르면, 상기 변이 유전자 또는 상기 변이 단백질을 검출할 수 있는 제제를 포함하는 샤르코-마리-투스 질환의 원인 유전자 진단 방법을 제공한다.According to another aspect of the present invention, there is provided a method for diagnosing a cause gene of Charcoal-Marie-tus disease, comprising an agent capable of detecting the mutant gene or the mutant protein.

본 발명의 특징 및 이점을 요약하면 다음과 같다: The features and advantages of the present invention are summarized as follows:

(a) 본 발명은 차세대 염기서열 분석(Next Generation Sequencing)-기반 샤르코-마리-투스(Charcot-Marie-Tooth) 질환의 원인 유전자 진단용 키트 및 진단 방법을 제공한다.(a) The present invention provides a kit and a diagnostic method for diagnosing the causative gene of Next Generation Sequencing-based Charcot-Marie-Tooth disease.

(b) 본 발명의 진단 키트 및 방법은 기존의 복잡한 샤르코-마리-투스 질환의 원인 유전자 동정 알고리즘을 단순화하여 원스텝 진단 시스템을 구축하였다.(b) The diagnostic kit and method of the present invention simplifies the existing algorithm for identifying the causative gene of the complex Charcoal-Marie-tus disease to construct a one-step diagnostic system.

(c) 이러한 본 발명의 진단 키트 및 방법은 원인 유전자의 동정 효율을 높이면서 비용 및 시간을 절감 할 수 있다.(c) The diagnostic kit and method of the present invention can reduce cost and time while increasing the efficiency of identification of the causative gene.

(d) 또한, 본 발명은 샤르코-마리-투스 질환의 신규 원인 유전자 변이를 규명하였다.(d) In addition, the present invention has identified a novel causative gene mutation of Charcoal-Marie-tus disease.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for describing the present invention in more detail, and it will be apparent to those of ordinary skill in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

실시예Example

실험재료 및 실험방법Experimental materials and test methods

대상object

총 243명의 샤르코-마리-투스(Charcot-Marie-Tooth; CMT) 질환 환자 또는 상기 환자의 정상 가계원을 본 실험에 등록하였다. 두 명의 독자적 신경과 전문의에 의한 임상 평가를 실시하였다. 모든 참가자는 성균관 대학교, 삼성서울병원의 기관생명윤리위원회에 의해 승인된 절차에 따라 피험자 동의서를 제공하였다.A total of 243 Charcot-Marie-Tooth (CMT) disease patients or normal household members of the patient were enrolled in this experiment. Clinical evaluation was conducted by two independent neurologists. All participants provided informed consent according to the procedure approved by the Institutional Bioethics Committee of Sungkyunkwan University and Samsung Medical Center.

유전자 패널의 설계Design of the gene panel

광범위한 문헌 검색 및 데이타베이스를 통해 표적 유전자를 선별하였다. 프라이머 설계는 Sureselect(Agilent Technologies, Santa Clara, CA)로 실시하였다. 6298 프로브로 총 1669 부위를 리딩하였다. 커버리지 99.5%로 총 크기는 433 Mb이다.Target genes were selected through extensive literature searches and databases. Primer design was performed with Sureselect (Agilent Technologies, Santa Clara, CA). A total of 1669 sites were read with the 6298 probe. With 99.5% coverage, the total size is 433 Mb.

원인 변이의 시퀀싱 및 확인Sequencing and identification of causal variations

QIAamp 혈액 DNA 정제 키트(Qiagen, Hilden, Germany)를 이용하여 말초혈의 DNA를 정제하였다. 환자 시료를 탈수성 CMT의 주된 유전적 원인인 이중 17p12에 대하여 헥사플렉스(hexaplex) 마이크로세틀라이트 PCR을 이용하여 사전 스크리닝하였다(6). HiSeq2500 게몬 아날라이저(Illumina, San Diego, CA, USA)로 시퀀싱을 실시하고 UCSC 어셈블리 hg19를 레퍼런스 서열로 이용하였다. 기능적으로 유의한 변이체(미스센스, 넌센스, 엑손 삽입-결실 및 스플라이싱 부위 변이체)를 선별하고 dbSNP142(http://www.ncbi.nlm.nih.gov), 1000 게놈 프로젝트 데이타베이스(http://www.1000genomes.org/) 및 엑솜 변이체 서버(http://evs.gs.washington.edu/EVS/)에 신규 또는 드문 것(MAF≤0.01)으로 등록된 변이체를 추가적으로 선별하여 배제하였다. 후보 변이체를 확인하기 위해 생거 시퀀싱법을 이용하였다.Peripheral blood DNA was purified using a QIAamp blood DNA purification kit (Qiagen, Hilden, Germany). Patient samples were pre-screened for 17p12, a major genetic cause of dehydration CMT, using hexaplex microsatellite PCR (6). Sequencing was performed with a HiSeq2500 Gemon Analyzer (Illumina, San Diego, CA, USA), and UCSC assembly hg19 was used as a reference sequence. Functionally significant variants (misense, nonsense, exon indel and splicing site variants) were selected and dbSNP142 ( http://www.ncbi.nlm.nih.gov ), 1000 Genome Project Database ( http: //www.1000genomes.org/ ) and exome variant servers ( http://evs.gs.washington.edu/EVS/ ) were additionally selected and excluded as new or rare (MAF≤0.01) variants. Sanger sequencing was used to identify candidate variants.

결과result

CMT 유전자 패널의 제조 및 보정Preparation and calibration of the CMT gene panel

CMT 유전자 패널을 제조하기 위해, 총 81 유전자(표 1)를 선별하고, HiSeq2500 Genome Analyzer(Illumina)에 최적화된 Sureselect(Agilent)에 따라 프라이머를 설계하였다. 새롭게 개발된 유전자 패널을 보정하기 위해, 당원에서 사전에 결정된 원인 변이를 갖는 114명 환자에 대하여 시험하였다. 예상한 바와 같이, 시료로부터 모든 변이를 검출할 수 있었다. 이에, 새롭게 개발된 CMT 유전자 패널의 유효성은 충분히 확인되었다.To prepare a CMT gene panel, a total of 81 genes (Table 1) were selected, and primers were designed according to Sureselect (Agilent) optimized for HiSeq2500 Genome Analyzer (Illumina). To calibrate the newly developed gene panel, 114 patients with pre-determined causal mutations were tested in our hospital. As expected, all mutations could be detected from the sample. Thus, the effectiveness of the newly developed CMT gene panel was sufficiently confirmed.

유전자gene 표현형Phenotype 유전형태Hereditary form LociLoci GenBank 접근번호GenBank access number 커버리지Coverage AARSAARS CMT2NCMT2N ADAD 16q2216q22 NM_001605.2NM_001605.2 100%100% AIFM1AIFM1 CMTX4CMTX4 XRXR Xq26.1Xq26.1 NM_004208.3NM_004208.3 100%100% ARHGEF10ARHGEF10 CMT1CMT1 ADAD 8p238p23 NM_014629.2NM_014629.2 100%100% ATL1ATL1 HSN1DHSN1D ADAD 14q22.114q22.1 NM_015915.4NM_015915.4 100%100% ATL3ATL3 HSANHSAN ADAD 11q13.111q13.1 NM_015459.3NM_015459.3 100%100% BSCL2BSCL2 dHMN5dHMN5 ADAD 11q1311q13 NM_032667.6NM_032667.6 100%100% C12orf65C12orf65 CMT6CMT6 ADAD 12q24.3112q24.31 NM_152269.4NM_152269.4 100%100% CCT5CCT5 HSNHSN ARAR 5p15.25p15.2 NM_012073.3NM_012073.3 100%100% CTDP1CTDP1 Nuropathy, cataractNuropathy, cataract ARAR 18q2318q23 NM_004715.4NM_004715.4 100%100% DCTN1DCTN1 dHMN7BdHMN7B ADAD 2p132p13 NM_004082.4NM_004082.4 100%100% DHTKD1*DHTKD1* CMT2QCMT2Q ADAD 10p1410p14 NM_018706.6NM_018706.6 100%100% DNAJB2DNAJB2 CMT2TCMT2T ARAR 2q322q32 NM_006736.5NM_006736.5 100%100% DNM2DNM2 DI-CMTB, CMT2MDI-CMTB, CMT2M ADAD 19p13.219p13.2 NM_004945.3NM_004945.3 100%100% DNMT1DNMT1 HSN1EHSN1E ADAD 19p13.2 19p13.2 NM_001379.2NM_001379.2 98%98% DSTDST HSAN6HSAN6 ARAR 6p12.16p12.1 NM_001723.5NM_001723.5 100%100% DYNC1H1DYNC1H1 CMT2OCMT2O ADAD 14q3214q32 NM_001376.4NM_001376.4 100%100% EGR2EGR2 CMT1D, DSSCMT1D, DSS ADAD 10q21.110q21.1 NM_000399.3NM_000399.3 100%100% FAM134BFAM134B HSN2BHSN2B ARAR 5p15.15p15.1 NM_001034850.2NM_001034850.2 100%100% FBLN5FBLN5 CMT1CMT1 ADAD 14q32.114q32.1 NM_006329.3NM_006329.3 92%92% FGD4FGD4 CMT4HCMT4H ARAR 12p11.2112p11.21 NM_139241.2NM_139241.2 98%98% FIG4FIG4 CMT4JCMT4J ARAR 6q216q21 NM_014845.5NM_014845.5 100%100% GANGAN GANGAN ARAR 16q24.116q24.1 NM_022041.3NM_022041.3 100%100% GARSGARS CMT2D, dHMN5ACMT2D, dHMN5A ADAD 7p157p15 NM_002047.2NM_002047.2 100%100% GDAP1GDAP1 CMT2K, CMT4A, RI-CMTACMT2K, CMT4A, RI-CMTA AR, ADAR, AD 8q21.118q21.11 NM_018972.2NM_018972.2 100%100% GJB1GJB1 CMTX1CMTX1 XDXD Xq13.1Xq13.1 NM_000166.5NM_000166.5 100%100% GNB4GNB4 CMT-DIFCMT-DIF ADAD 3q26.333q26.33 NM_021629.3NM_021629.3 100%100% HADHBHADHB CMT2CMT2 ARAR 2p232p23 NM_000183.2NM_000183.2 100%100% HARSHARS Axonal peripheral neuropathyAxonal peripheral neuropathy ADAD 5q31.35q31.3 NM_002109.4NM_002109.4 99%99% HINT1HINT1 AR-CMT2AR-CMT2 ARAR 5q31.2 5q31.2 NM_005340.6NM_005340.6 94%94% HK1*HK1* HMSN-Russe/CMT4G)HMSN-Russe/CMT4G) ARAR 10q2210q22 NM_000188.2NM_000188.2 97%97% HOXD10HOXD10 CMT with congenital vertical talusCMT with congenital vertical talus ADAD 2q31.12q31.1 NM_002148.3NM_002148.3 100%100% HSPB1HSPB1 CMT2F, dHMN2BCMT2F, dHMN2B ADAD 7q11.237q11.23 NM_001540.3NM_001540.3 100%100% HSPB3HSPB3 dHMN2CdHMN2C ADAD 5q11.25q11.2 NM_006308.2NM_006308.2 100%100% HSPB8HSPB8 CMT2L, dHMN2ACMT2L, dHMN2A ADAD 12q24.2312q24.23 NM_014365.2NM_014365.2 100%100% IFRD1IFRD1 HMSN with ataxia (SMNA)HMSN with ataxia (SMNA) ADAD 7q31.17q31.1 NM_001550.3NM_001550.3 100%100% IGHMBP2IGHMBP2 dHMN6dHMN6 ARAR 11q13.311q13.3 NM_002180.2NM_002180.2 100%100% IKBKAPIKBKAP HSAN3HSAN3 ARAR 9q319q31 NM_003640.3NM_003640.3 100%100% INF2INF2 CMT-DIECMT-DIE ADAD 14q32.3314q32.33 NM_022489.3NM_022489.3 99%99% KARSKARS RI-CMT2CRI-CMT2C ADAD 16q23.116q23.1 NM_005548.2NM_005548.2 100%100% KIF1AKIF1A HSN2CHSN2C ARAR 2q37.32q37.3 NM_004321.6NM_004321.6 100%100% LITAFLITAF CMT1CCMT1C ADAD 16p13.1316p13.13 NM_004862.3NM_004862.3 88%88% LMNALMNA CMT2B1CMT2B1 AD>ARAD>AR 1q221q22 NM_170707.3NM_170707.3 100%100% LRSAM1LRSAM1 CMT2PCMT2P ARAR 9q33.39q33.3 NM_138361.5NM_138361.5 100%100% MARSMARS CMT2CMT2 ADAD 12q13.312q13.3 NM_004990.3NM_004990.3 100%100% MED25MED25 CMT2B2CMT2B2 ARAR 19q13.319q13.3 NM_030973.3NM_030973.3 98%98% MFN2MFN2 CMT2A, CMT6CMT2A, CMT6 ADAD 1p36.221p36.22 NM_014874.3NM_014874.3 100%100% MPZMPZ CMT1B, DI-CMT CMT2, DSSCMT1B, DI-CMT CMT2, DSS ADAD 1q23.31q23.3 NM_000530.6NM_000530.6 100%100% MTMR2MTMR2 CMT4B1CMT4B1 ARAR 11q2211q22 NM_016156.5NM_016156.5 98%98% MYH14MYH14 PN with myopathyPN with myopathy ADAD 19q13.3319q13.33 NM_024729.3NM_024729.3 100%100% NDRG1NDRG1 CMT4DCMT4D ARAR 8q24.38q24.3 NM_006096.3NM_006096.3 100%100% NEFLNEFL CMT1F, CMT2ECMT1F, CMT2E ADAD 8q218q21 NM_006158.4NM_006158.4 100%100% NGFNGF HSAN5HSAN5 ARAR 1p13.11p13.1 NM_002506.2NM_002506.2 100%100% NTRK1NTRK1 HSN IVHSN IV ARAR 1q21-q221q21-q22 NM_002529.3NM_002529.3 100%100% NRG2NRG2 CMT4CMT4 ARAR 5q23-q335q23-q33 NM_013982.2NM_013982.2 100%100% PDK3PDK3 CMTX6CMTX6 XDXD Xp22.11Xp22.11 NM_005391.4NM_005391.4 100%100% PLEKHG5PLEKHG5 RI-CMTRI-CMT AR, ADAR, AD 1p36.311p36.31 NM_020631.4NM_020631.4 99%99% PMP22PMP22 CMT1A, HNPPCMT1A, HNPP ADAD 17p1217p12 NM_000304.3NM_000304.3 100%100% PRPS1PRPS1 CMTX5CMTX5 XRXR Xq22.3Xq22.3 NM_002764.3NM_002764.3 100%100% PRXPRX CMT4F, DSSCMT4F, DSS ARAR 19q13.219q13.2 NM_181882.2NM_181882.2 100%100% RAB7ARAB7A CMT2BCMT2B ADAD 3q21.33q21.3 NM_004637.5NM_004637.5 100%100% REEP1REEP1 dHMN5dHMN5 ADAD 2p11.22p11.2 NM_022912.2NM_022912.2 94%94% SBF1SBF1 CMT4B3CMT4B3 ARAR 22q13.3322q13.33 NM_002972.2 NM_002972.2 98%98% SBF2SBF2 CMT4B2CMT4B2 ARAR 11p15.411p15.4 NM_030962.3NM_030962.3 99%99% SETXSETX dHMNdHMN ADAD 9q34.139q34.13 NM_015046.5NM_015046.5 100%100% SCN9A*SCN9A* HSAN2DHSAN2D ARAR 2q242q24 NM_002977.3NM_002977.3 100%100% SH3TC2*SH3TC2* CMT4CCMT4C ARAR 5q325q32 NM_024577.3NM_024577.3 97%97% SLC5A7SLC5A7 dHMN7AdHMN7A ADAD 2q122q12 NM_021815.2NM_021815.2 100%100% SLC12A6SLC12A6 PN with Andermann syndromePN with Andermann syndrome ARAR 15q1315q13 NM_005135.2NM_005135.2 100%100% SOX10SOX10 CMT1CMT1 ADAD 22q13.122q13.1 NM_006941.3NM_006941.3 100%100% SPTLC1SPTLC1 HSAN1AHSAN1A ADAD 9q22.29q22.2 NM_006415.3NM_006415.3 100%100% SPTLC2SPTLC2 HSAN1CHSAN1C ADAD 14q24.314q24.3 NM_004863.3NM_004863.3 100%100% TDP1TDP1 CMT2CMT2 ARAR 14q32.11 14q32.11 NM_018319.3NM_018319.3 100%100% TFGTFG HMSN-PHMSN-P ADAD 3q12.23q12.2 NM_006070.5NM_006070.5 100%100% TRIM2TRIM2 CMT2CMT2 ARAR 4q31.34q31.3 NM_015271.3NM_015271.3 100%100% TRPV4TRPV4 CMT2CCMT2C ADAD 12q24.112q24.1 NM_021625.4NM_021625.4 100%100% TUBB3TUBB3 CMT2CMT2 ADAD 16q24.316q24.3 NM_006086.3NM_006086.3 100%100% VAPBVAPB SMA-late onset, ALS8SMA-late onset, ALS8 ADAD 20q13.3320q13.33 NM_004738.4NM_004738.4 100%100% WNK1*WNK1* HSAN IIHSAN II ARAR 12p13.312p13.3 NM_213655.4NM_213655.4 100%100% YARSYARS DI-CMTCDI-CMTC ADAD 1p35.11p35.1 NM_003680.2NM_003680.2 100%100% COX10*,# COX10*, # 17p1217p12 NM_001303.3NM_001303.3 100%100% TEKT3# TEKT3 # 17p1217p12 NM_031898.2NM_031898.2 100%100%

유전자 패널을 이용한 유전적 진단Genetic diagnosis using a gene panel

유전적으로 확인되지 않은 환자의 유전적 진단 시험을 실시하였다. 64 CMT 가계의 총 117 시료를 분석하였다(표 2).Genetic diagnostic tests were performed on patients who were not genetically identified. A total of 117 samples from 64 CMT households were analyzed (Table 2).

형태shape 가계 수Number of households 유전적 확인Genetic confirmation 미확인unidentified CMT1CMT1 1313 1One 1212 CMT2CMT2 2929 44 2525 CMT4CMT4 1One 1One 00 CMTXCMTX 99 99 00 dHMNdHMN 44 1One 33 HSANHSAN 22 1One 1One 그 외etc 55 00 55 총합total 6464 1717 4747

후 필터링 및 캐필러리 시퀀싱을 통해, PMP22, SH3TC2, MARS, MFN2, GJB1, SPTLC2 및 DCTN1으로부터 14개의 원인 변이를 분리할 수 있었다(표 3).After filtering and capillary sequencing, 14 causal mutations could be isolated from PMP22, SH3TC2, MARS, MFN2, GJB1, SPTLC2 and DCTN1 (Table 3).

형태shape 유전적 분류Genetic classification 유전자gene 변이체Variant 패밀리family 유전heredity 리마크 및 참고문헌Lee Mark and References 뉴클레오타이드Nucleotide 아미노산amino acid CMT1CMT1 CMT1ECMT1E PMP22PMP22 c.47T>Cc.47T>C L16RL16R FC541FC541 우성dominant 신규new CMT4CMT4 CMT4CCMT4C SH3TC2SH3TC2 c.929G>A + c.3272G>Tc.929G>A + c.3272G>T G310E + G1091VG310E + G1091V FC703FC703 열성zeal 신규new CMT2CMT2 CMT2CMT2 MARSMARS c.2398C>Ac.2398C>A P800TP800T FC495FC495 우성dominant 1212 CMT2A2CMT2A2 MFN2MFN2 c.839G>Ac.839G>A R280HR280H FC527FC527 우성dominant 1313 CMT2ICMT2I MPZMPZ c.154T>Gc.154T>G F52VF52V FC156FC156 우성dominant 신규new c.262T>Cc.262T>C Y88HY88H FC141FC141 우성dominant 신규new CMTXCMTX CMTX1CMTX1 GJB1GJB1 c.20A>Gc.20A>G Y7CY7C FC718FC718 우성dominant 1414 c.43C>Tc.43C>T R15WR15W FC751FC751 우성dominant 1515 c.283G>Ac.283G>A V95MV95M FC565, FC687, FC698FC565, FC687, FC698 우성dominant 1616 c.286G>Cc.286G>C A96PA96P FC725FC725 우성dominant 신규new c.490C>Tc.490C>T R164WR164W FC714FC714 우성dominant 1414 c.491G>Ac.491G>A R164QR164Q FC254, FC722FC254, FC722 우성dominant 1414 HSANHSAN HSAN1CHSAN1C SPTLC2SPTLC2 c.435G>Tc.435G>T R145SR145S FC459FC459 우성dominant 신규new dHMNdHMN dHMN7BdHMN7B DCTN1DCTN1 c.1019A>Gc.1019A>G E340GE340G FC180FC180 우성dominant 신규new

표 3의 변이 중 7개 변이는 신규한 변이이고, 다른 7개 변이는 이미 공지된 변이이다. 모든 원인 변이는 SH3TC2 내 복잡한 이형접합체 변이를 제외하고 우성 유전되었다. 흥미롭게도, GJB1 변이가 두드러지게 분리되었다(9 가계에서 6 변이).Seven of the mutations in Table 3 are novel mutations, and the other seven are known mutations. All causal mutations were dominantly inherited, except for complex heterozygous mutations in SH3TC2. Interestingly, the GJB1 mutation was markedly separated (6 variants in 9 families).

PMP22 중복 검정PMP22 duplicate test

다음, CMT1A, 17p12 부위의 1.4 Mb 중복의 복제수 변이를 검출하는 유전자 패널의 효율성을 산출하였다. 헥사플렉스 법으로 시험한 CMT1A 환자 10 시료와 정상인 5시료를 적용하였다. 1.4 Mb 중복지역내의 PMP22 유전자와 TEKT3유전자의 read depth를 다른 부분의 평균 read depth와 비교하는 방법을 적용하였다. 정상인과 비교했을 때, CMT1A 환자에서는 PMP22 유전자가 1.496±0.098, TEKT 유전자가 1.472±0.119가 나오는 등 통계적으로 유의미하게 증가했다. 또한, CMT1A 환자가 유전자 중복으로 인해 17p12 지역이 1.5배의 유전자량을 보유한다는 사실을 고려하면, 그 평균값이 1.484±0.105 이므로, 본 유전자 패널을 적용할 경우 거의 유사한 값을 얻을 수 있었다. 이러한 결과는 본 발명의 유전자 패널이 CMT1A 환자의 1.4 Mb 중복을 검출하기 적합함을 의미한다.Next, the efficiency of the gene panel to detect the copy number variation of 1.4 Mb overlap at the CMT1A, 17p12 site was calculated. 10 samples of CMT1A patients and 5 samples of normal subjects tested by the hexaflex method were applied. A method of comparing the read depth of the PMP22 gene and TEKT3 gene in the 1.4 Mb overlap region with the average read depth of the other parts was applied. Compared with the normal subjects, the PMP22 gene was 1.496±0.098 and the TEKT gene 1.472±0.119 was significantly increased in CMT1A patients. In addition, considering the fact that CMT1A patients have 1.5 times the gene mass in the 17p12 region due to gene duplication, the average value is 1.484±0.105, so when this gene panel was applied, almost similar values could be obtained. These results mean that the genetic panel of the present invention is suitable for detecting 1.4 Mb duplication in CMT1A patients.

시료sample Read depthRead depth MeanMean PMP22PMP22 TEKT3TEKT3 정상인(n=5)Normal person (n=5) 1.000 ± 0.0601.000 ± 0.060 1.000 ± 0.0821.000 ± 0.082 1.000 ± 0.0691.000 ± 0.069 FC425-1FC425-1 1.0811.081 1.0461.046 1.064 ± 0.0251.064 ± 0.025 FC453-1FC453-1 0.9890.989 0.9620.962 0.976 ± 0.0190.976 ± 0.019 FC565-1FC565-1 1.0641.064 1.0791.079 1.072 ± 0.0111.072 ± 0.011 FC703-1FC703-1 0.8720.872 0.9350.935 0.904 ± 0.0450.904 ± 0.045 FC707-1FC707-1 0.9930.993 0.9770.977 0.985 ± 0.0110.985 ± 0.011 CMT1A 환자(n=15)CMT1A patient (n=15) 1.496 ± 0.0981.496 ± 0.098 1.472 ± 0.1191.472 ± 0.119 1.484 ± 0.1051.484 ± 0.105 FC045-12FC045-12 1.4351.435 1.4401.440 1.438 ± 0.0031.438 ± 0.003 FC144-1FC144-1 1.4681.468 1.4391.439 1.453 ± 0.0201.453 ± 0.020 FC168-1FC168-1 1.6151.615 1.6301.630 1.623 ± 0.0101.623 ± 0.010 FC175-1FC175-1 1.4681.468 1.4591.459 1.463 ± 0.0061.463 ± 0.006 FC179-1FC179-1 1.5181.518 1.5681.568 1.543 ± 0.0351.543 ± 0.035 FC214-3FC214-3 1.6781.678 1.7051.705 1.692 ± 0.0181.692 ± 0.018 FC215-2FC215-2 1.3951.395 1.3811.381 1.388 ± 0.0091.388 ± 0.009 FC226-1FC226-1 1.5481.548 1.5281.528 1.538 ± 0.0141.538 ± 0.014 FC287-1FC287-1 1.5781.578 1.4181.418 1.498 ± 0.1131.498 ± 0.113 FC339-1FC339-1 1.6231.623 1.6491.649 1.636 ± 0.0181.636 ± 0.018 FC498-1FC498-1 1.3281.328 1.3031.303 1.315 ± 0.0171.315 ± 0.017 FC511-1FC511-1 1.4141.414 1.3481.348 1.381 ± 0.0471.381 ± 0.047 FC512-1FC512-1 1.4141.414 1.4221.422 1.418 ± 0.0051.418 ± 0.005 FC561-1FC561-1 1.5041.504 1.4361.436 1.470 ± 0.0481.470 ± 0.048 FC589-1FC589-1 1.4491.449 1.3561.356 1.402 ± 0.0651.402 ± 0.065

고찰Review

본 발명에서, 원-스템 검출 시스템을 활용한 신규한 진단 키트를 제안하였다. 종래에는, CMT의 유전적 진단을 위해 줄지어 배열된 검출 시스템을 이용하였는데, 이는 상당한 시간 및 비용이 소요되었다. 염색체 17p 부위 중복의 검출, 운동신경전도속도에 기반한 형태의 진단은 높은 빈도를 갖는 주요 유전자의 캐필러리 시퀀싱에 의존하였다. 각 단계의 복잡한 과정에도 성공률은 60% 미만 이였다.In the present invention, a novel diagnostic kit using a one-stem detection system has been proposed. Conventionally, a detection system arranged in a row was used for genetic diagnosis of CMT, which took considerable time and cost. The detection of chromosome 17p region duplication and the type of diagnosis based on the motor neuron conduction rate depended on the capillary sequencing of the major genes with high frequency. Even in the complex process of each step, the success rate was less than 60%.

이전의 방법과 비교하여, 본 발명에서 개발된 신규 진단 시스템은 보다 높은 검출 효율, 및 시간 및 비용을 감소시킨 이점을 갖는다. 75 비-CMT1A 환자 및 38환자의 원인 변이에 적용하여 확인하였다. 한국인 집단 내 CMT1A 패밀리는 35.1%인 것을 고려하면, 본 발명의 유전자 패널을 적용하면 분리율을 68%까지 증가시킬 것이다. 본 발명자는 비-CMT1A 환자에 대한 엑손시퀀싱(Whole Exome Sequencing; WES)을 적용하여 검출율은 68.6%이였다. 그러므로, 본 발명의 CMT에 대한 표적 유전자 패널을 적용하면 종래 방법 및 WES와 비교하여 유사한 분리율을 나타내면서 시간 및 비용을 감소시킬 수 있다.Compared with the previous method, the novel diagnostic system developed in the present invention has the advantage of higher detection efficiency and reduced time and cost. It was confirmed by applying to causal mutations in 75 non-CMT1A patients and 38 patients. Considering that the CMT1A family in the Korean population is 35.1%, applying the gene panel of the present invention will increase the separation rate to 68%. The present inventor applied Whole Exome Sequencing (WES) to non-CMT1A patients, and the detection rate was 68.6%. Therefore, when the target gene panel for CMT of the present invention is applied, time and cost can be reduced while exhibiting a similar separation rate compared to the conventional method and WES.

본 발명의 원스템 검출 시스템은 염색체 17p 부위에 대한 복제수 변이(copy number variation; CNV)에 대한 검출도 포함한다. 종래의 짧은 뉴클레오타이드 리드(short nucleotide read)-기반 NGS는 복제수 변이의 검출에 단점을 갖으나, 본 발명은 8 마커를 이용하여 이를 극복하였다. 이전 연구에서, 본 발명자들은 6 마커를 적용하여 99.9% 효율로 PMP22 중복을 검출하였다(6). 본 발명에서는 중복 부위에 대한 두 마커의 read-depth 및 다른 염색체 내 6 마커를 비교하여 CNV를 측정하였다. 마커 사이의 평균차가 유의한 차이를 갖으므로, 진단에 만족하는 정도의 중복 부위에 대한 CNV를 검출하였다. 본 발명자는 HNPP(Hereditary Neuropathy with a liability to Pressure Palsy)에 대한 유효성을 시험해보지 않았지만, 동일한 부위의 결실이므로 질환진단에 적용 할 수 있을 것이다.The one-stem detection system of the present invention also includes detection of copy number variation (CNV) for the chromosome 17p site. Conventional short nucleotide read (short nucleotide read)-based NGS has a disadvantage in the detection of copy number variation, but the present invention overcomes this by using 8 markers. In a previous study, we applied 6 markers to detect PMP22 duplicates with 99.9% efficiency (6). In the present invention, CNV was measured by comparing the read-depth of two markers for the overlapping site and 6 markers in different chromosomes. Since the mean difference between the markers had a significant difference, CNV was detected for the overlapping region satisfactory for diagnosis. The present inventors have not tested the effectiveness of HNPP (Hereditary Neuropathy with a liability to Pressure Palsy), but since it is a deletion of the same site, it may be applied to disease diagnosis.

이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.As described above, specific parts of the present invention have been described in detail, and it is obvious that these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereto for those of ordinary skill in the art. Therefore, it will be said that the practical scope of the present invention is defined by the appended claims and their equivalents.

<110> SAMSUNG LIFE PUBLIC WELFARE FOUNDATION <120> Kit for Diagnosing Charcot-Marie-Tooth <130> PN150255D <150> KR 10-2015-0167973 <151> 2015-11-27 <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 483 <212> DNA <213> PMP22 <400> 1 atgctcctcc tgttgctgag tatcatcgtc ctccacgtcg cggtgctggt gctgctgttc 60 gtctccacga tcgtcagcca atggatcgtg ggcaatggac acgcaactga tctctggcag 120 aactgtagca cctcttcctc aggaaatgtc caccactgtt tctcatcatc accaaacgaa 180 tggctgcagt ctgtccaggc caccatgatc ctgtcgatca tcttcagcat tctgtctctg 240 ttcctgttct tctgccaact cttcaccctc accaaggggg gcaggtttta catcactgga 300 atcttccaaa ttcttgctgg tctgtgcgtg atgagtgctg cggccatcta cacggtgagg 360 cacccggagt ggcatctcaa ctcggattac tcctacggtt tcgcctacat cctggcctgg 420 gtggccttcc ccctggccct tctcagcggt gtcatctatg tgatcttgcg gaaacgcgaa 480 tga 483 <210> 2 <211> 3867 <212> DNA <213> SH3TC2 <400> 2 atgggtggct gcttctgcat ccccagggag cggagtctga cccggggccc aggtaaagaa 60 actccttcca aggatccaac tgtatcgagt gagtgtatag cctcatctga atacaaggaa 120 aaatgttttc tgccacagaa cattaatcca gacctgacac tctccttctg tgtaaagagc 180 cgctccagga ggtgtgtaaa tggaccccta caggaagctg ctcggaggcg gctctgggca 240 ctggagaatg aggaccagga ggtgcgcatg ctgtttaagg acctctcagc aaggttggtc 300 agtatccagt ctcagagggc ccagtttctc atcaccttca agaccatgga ggaaatctgg 360 aagttctcca cctaccttaa tttaggctac gtatccatgt gtctagaaca tctcctcttt 420 gaccacaagt actggctcaa ctgcatattg gtggaggata cagagatcca agtgtctgta 480 gatgataaac acctggaaac aatatacctg ggactcctga tacaggaagg ccacttcttc 540 tgcagagccc tgtgctccgt gactccacca gccgagaagg aaggggaatg cttgacactt 600 tgcaagaatg agttaatctc agtgaagatg gcagaagctg gctccgagtt ggaaggcgtg 660 tctttggtga caggtcagcg gggcctggta ctggtgtcag ccttggagcc tctgcctctc 720 cctttccacc agtggttcct aaagaattat ccaggaagct gtggcctttc caggaagagg 780 gattggacag gctcctatca gattggcaga ggacgctgta aggccttgac gggttatgag 840 ccaggagaaa aggatgaact gaatttctac cagggagaaa gcattgagat catcggcttt 900 gtcatacctg ggcttcagtg gttcattgga aagtcgacaa gttcaggaca agtgggcttt 960 gtccccacca ggaacataga tcctgattct tattccccaa tgagcaggaa ctctgccttt 1020 ctcagtgatg aggagagatg ctccctgttg gccctgggaa gtgataagca gactgagtgt 1080 tccagcttcc tccacactct tgctcgcact gacatcacat ctgtctaccg gctcagtggg 1140 tttgaatcca tccagaatcc tccaaatgat ctgagtgcat cccagcctga aggtttcaag 1200 gaggtcaggc ctggcagagc ctgggaggag catcaggccg tggggtccag acagtccagc 1260 agctctgagg actccagcct ggaggaggag ctcctctcgg ccacctcaga cagctatcgc 1320 ctgccggagc ctgatgacct tgatgacccg gaactgctca tggacctaag cactggtcag 1380 gaggaggagg ctgagaactt cgcccccata ttggcttttc tggatcatga gggttatgct 1440 gaccacttta agagtctcta tgacttctcc ttctctttcc tcacttcttc cttttatagc 1500 ttctctgagg aggatgagtt tgtggcctac ctggaggcat caagaaagtg ggccaagaag 1560 agccacatga cctgggccca tgcccgtctc tgcttcctcc tgggccggct gagcatcagg 1620 aaggtcaaac tctctcaggc cagggtgtac ttcgaggagg ccatccacat tctcaatgga 1680 gcatttgagg acctatcctt ggtggccact ctgtacatca atttggctgc catctacctg 1740 aaacagaggc tgagacataa aggctccgcc ctgttggaaa aggcaggtgc cctgctggcc 1800 tgcctgcctg accgtgagtc tagtgccaag catgaactcg acgtggtggc ctacgtgctg 1860 cgccagggga ttgtggtggg cagcagcccg ctggaggcca gggcctgctt tctggccatc 1920 cgcttgctcc tgagcctagg ccggcacgag gaggtcctgc cctttgccga gcgcctgcag 1980 ctcctctctg gacaccctcc tgcctctgag gctgtggcca gtgttttgag ttttctgtat 2040 gacaagaaat atcttccaca ccttgcagtg gcctctgtcc agcaacatgg tatccagagt 2100 gcccaaggga tgtctcttcc tatttggcag gtccaccttg tcctccagaa cacaaccaag 2160 ctccttggct ttccttcccc aggctggggt gaagtttctg ccttggcctg cccaatgctc 2220 agacaggccc tggctgcctg tgaggaacta gcagaccgga gcacccagag ggccctgtgt 2280 ctcatccttt ccaaagtgta cctcgagcac aggtctcctg acggtgccat ccactacctg 2340 agccaggcct tggtgctagg gcagctgctg ggtgagcagg aatcctttga gtcttctctc 2400 tgcctggcat gggcctatct cttagccagc caggccaaga aggctttgga tgtgcttgag 2460 ccactgctat gctccctgaa ggagacagag agtctcactc aaaggggagt catctataac 2520 ctcctgggac ttgcactcca aggtgaaggc cgggtgaaca gggcagccaa gagctatctt 2580 cgggccttga acagagccca ggaggtggga gatgtgcata accaggcagt ggctatggcc 2640 aatcttggcc acctgagcct taagtcctgg gctcagcatc cagccagaaa ctatctcctg 2700 caggctgtac gactctattg tgaacttcag gccagtaagg agacagacat ggaattagta 2760 caggtgtttc tctggttggc ccaagttctg gtgtctggac accagctgac ccatggcctt 2820 ctttgttatg aaatggcatt gctgtttggc ttaaggcatc gacatctaaa gagtcagctt 2880 caggccacca aatccctctg ccatttctac agctctgtgt ccccaaaccc tgaggcatgc 2940 atcacctacc atgagcactg gctggccctg gctcagcaac tcagggaccg ggagatggaa 3000 gggaggctgc tggagtccct ggggcagctt tatcggaacc taaataccgc caggtccctc 3060 aggaggtcac tcacatgcat caaggagagc ctgcgtatct tcattgacct gggggagaca 3120 gacaaggctg ctgaggcctg gcttggggcg gggcgactcc actacctcat gcaggaagac 3180 gagctggtgg agctgtgcct gcaggcagcc atccagacag ccctgaagtc agaggagcct 3240 ttgctggctc tcaaacttta tgaagaagca ggtgatgtgt tcttcaatgg gacccgccac 3300 aggcatcatg cagtggagta ctaccgagct ggagctgttc ctttagcaag gaggttgaag 3360 gcggtgagaa ctgagctccg gattttcaat aagctgacag agctgcagat tagcctcgaa 3420 ggctatgaga aggctttgga atttgccacc ctggccgcca ggctcagcac agtcacagga 3480 gatcagaggc aagagctggt ggcctttcac cgcctggcta cagtgtacta ctccctgcac 3540 atgtatgaga tggctgagga ctgctacctg aagaccctgt ccctctgtcc accatggctg 3600 cagagtccca aggaggccct gtactatgcc aaggtgtatt atcgcctggg cagactcacc 3660 ttctgccagc tgaaggatgc ccatgatgcc actgagtact tccttctggc cctggcagca 3720 gcggtcctgc tgggtgatga ggagcttcag gacaccatta ggagcaggct ggacaacatc 3780 tgccagagcc ccctgtggca cagcaggccc tccgggtgct cctcagagag ggcgcggtgg 3840 ctgagtggtg gtggcctggc cctctga 3867 <210> 3 <211> 747 <212> DNA <213> MPZ <400> 3 atggctcctg gggctccctc atccagcccc agccctatcc tggctgtgct gctcttctct 60 tctttggtgc tgtccccggc ccaggccatc gtggtttaca ccgacaggga ggtccatggt 120 gctgtgggct cccgggtgac cctgcactgc tccttctggt ccagtgagtg ggtctcagat 180 gacatctcct tcacctggcg ctaccagccc gaagggggca gagatgccat ttcgatcttc 240 cactatgcca agggacaacc ctacattgac gaggtgggga ccttcaaaga gcgcatccag 300 tgggtagggg accctcgctg gaaggatggc tccattgtca tacacaacct agactacagt 360 gacaatggca cgttcacttg tgacgtcaaa aaccctccag acatagtggg caagacctct 420 caggtcacgc tgtatgtctt tgaaaaagtg ccaactaggt acggggtcgt tctgggagct 480 gtgatcgggg gtgtcctcgg ggtggtgctg ttgctgctgc tgcttttcta cgtggttcgg 540 tactgctggc tacgcaggca ggcggccctg cagaggaggc tcagtgctat ggagaagggg 600 aaattgcaca agccaggaaa ggacgcgtcg aagcgcgggc ggcagacgcc agtgctgtat 660 gcaatgctgg accacagcag aagcaccaaa gctgtcagtg agaagaaggc caaggggctg 720 ggggagtctc gcaaggataa gaaatag 747 <210> 4 <211> 852 <212> DNA <213> GJB1 <400> 4 atgaactgga caggtttgta caccttgctc agtggcgtga accggcattc tactgccatt 60 ggccgagtat ggctctcggt catcttcatc ttcagaatca tggtgctggt ggtggctgca 120 gagagtgtgt ggggtgatga gaaatcttcc ttcatctgca acacactcca gcctggctgc 180 aacagcgttt gctatgacca attcttcccc atctcccatg tgcggctgtg gtccctgcag 240 ctcatcctag tttccacccc agctctcctc gtggccatgc acgtggctca ccagcaacac 300 atagagaaga aaatgctacg gcttgagggc catggggacc ccctacacct ggaggaggtg 360 aagaggcaca aggtccacat ctcagggaca ctgtggtgga cctatgtcat cagcgtggtg 420 ttccggctgt tgtttgaggc cgtcttcatg tatgtctttt atctgctcta ccctggctat 480 gccatggtgc ggctggtcaa gtgcgacgtc tacccctgcc ccaacacagt ggactgcttc 540 gtgtcccgcc ccaccgagaa aaccgtcttc accgtcttca tgctagctgc ctctggcatc 600 tgcatcatcc tcaatgtggc cgaggtggtg tacctcatca tccgggcctg tgcccgccga 660 gcccagcgcc gctccaatcc accttcccgc aagggctcgg gcttcggcca ccgcctctca 720 cctgaataca agcagaatga gatcaacaag ctgctgagtg agcaggatgg ctccctgaaa 780 gacatactgc gccgcagccc tggcaccggg gctgggctgg ctgaaaagag cgaccgctgc 840 tcggcctgct ga 852 <210> 5 <211> 1689 <212> DNA <213> SPTLC2 <400> 5 atgcggccgg agcccggagg ctgctgctgc cgccgcacgg tgcgggcgaa tggctgcgtg 60 gcgaacgggg aagtacggaa cgggtacgtg aggagcagcg ctgcagccgc agccgcagcc 120 gccgccggcc agatccatca tgttacacaa aatggaggac tatataaaag accgtttaat 180 gaagcttttg aagaaacacc aatgctggtt gctgtgctca cgtatgtggg gtatggcgta 240 ctcaccctct ttggatatct tcgagatttc ttgaggtatt ggagaattga aaagtgtcac 300 catgcaacag aaagagaaga acaaaaggac tttgtgtcat tgtatcaaga ttttgaaaac 360 ttttatacaa ggaatctgta catgaggata agagacaact ggaatcggcc aatctgtagt 420 gtgcctggag ccagggtgga catcatggag agacagtctc atgattataa ctggtccttc 480 aagtatacag ggaatataat aaagggtgtt ataaacatgg gttcctacaa ctatcttgga 540 tttgcacgga atactggatc atgtcaagaa gcagccgcca aagtccttga ggagtatgga 600 gctggagtgt gcagtactcg gcaggaaatt ggaaacctgg acaagcatga agaactagag 660 gagcttgtag caaggttctt aggagtagaa gctgctatgg cgtatggcat gggatttgca 720 acgaattcaa tgaacattcc tgctcttgtt ggcaaaggtt gcctgattct gagtgatgaa 780 ctgaatcatg catcactggt tctgggagcc agactgtcag gagcaaccat tagaatcttc 840 aaacacaaca atatgcaaag cctagagaag ctattgaaag atgccattgt ttatggtcag 900 cctcggacac gaaggccctg gaagaaaatt ctcatccttg tggaaggaat atatagcatg 960 gagggatcta ttgttcgtct tcctgaagtg attgccctca agaagaaata caaggcatac 1020 ttgtatctgg atgaggctca cagcattggc gccctgggcc ccacaggccg gggtgtggtg 1080 gagtactttg gcctggatcc cgaggatgtg gatgttatga tgggaacgtt cacaaagagt 1140 tttggtgctt ctggaggata tattggaggc aagaaggagc tgatagacta cctgcgaaca 1200 cattctcata gtgcagtgta tgccacgtca ttgtcacctc ctgtagtgga gcagatcatc 1260 acctccatga agtgcatcat ggggcaggat ggcaccagcc ttggtaaaga gtgtgtacaa 1320 cagttagctg aaaacaccag gtatttcagg agacgcctga aagagatggg cttcatcatc 1380 tatggaaatg aagactctcc agtagtgcct ttgatgctct acatgcctgc caaaattggc 1440 gcctttggac gggagatgct gaagcggaac atcggtgtcg ttgtggttgg atttcctgcc 1500 accccaatta ttgagtccag agccaggttt tgcctgtcag cagctcatac caaagaaata 1560 cttgatactg ctttaaagga gatagatgaa gttggggacc tattgcagct gaagtattcc 1620 cgtcatcggt tggtacctct actggacagg ccctttgacg agacgacgta tgaagaaaca 1680 gaagactga 1689 <210> 6 <211> 3837 <212> DNA <213> DCTN1 <400> 6 atggcacaga gcaagaggca cgtgtacagc cggacgccca gcggcagcag gatgagtgcg 60 gaggcaagcg cccggcctct gcgggtgggc tcccgtgtag aggtgattgg aaaaggccac 120 cgaggcactg tggcctatgt tggagccaca ctgtttgcca ctggcaaatg ggtaggcgtg 180 attctggatg aagcaaaggg caaaaatgat ggaactgttc aaggcaggaa gtacttcact 240 tgtgatgaag ggcatggcat ctttgtgcgc cagtcccaga tccaggtatt tgaagatgga 300 gcagatacta cttccccaga gacacctgat tcttctgctt caaaagtcct caaaagagag 360 ggaactgata caactgcaaa gactagcaaa ctgcggggac tgaagcctaa gaaggcaccg 420 acagcccgaa agaccacaac tcggcgaccc aagcccacgc gcccagccag tactggggtg 480 gctggggcca gtagctccct gggcccctct ggctcagcgt cagcaggtga gctgagcagc 540 agtgagccca gcaccccggc tcagactccg ctggcagcac ccatcatccc cacgccggtc 600 ctcacctctc ctggagcagt ccccccgctt ccttccccat ccaaggagga ggagggacta 660 agggctcagg tgcgggacct ggaggagaaa ctagagaccc tgagactgaa acgggcagaa 720 gacaaagcaa agctaaaaga gctggagaaa cacaaaatcc agctggagca ggtgcaggaa 780 tggaagagca aaatgcagga gcagcaggcc gacctgcagc ggcgcctcaa ggaggcgaga 840 aaggaagcca aggaggcgct ggaggcaaag gaacgctata tggaggagat ggctgatact 900 gctgatgcca ttgagatggc cactttggac aaggagatgg ctgaagagcg ggctgagtcc 960 ctgcagcagg aggtggaggc actgaaggag cgggtggacg agctcactac tgacttagag 1020 atcctcaagg ctgagattga agagaagggc tcagatggcg ctgcatccag ttatcagctc 1080 aagcagcttg aggagcagaa tgcccgcctg aaggatgccc tggtgaggat gcgggatctt 1140 tcttcctcag agaagcagga gcatgtgaag ctccagaagc tcatggaaaa gaagaaccaa 1200 gagctggaag ttgtgaggca acagcgggag cgtctgcagg aggagctaag ccaggcagag 1260 agcaccattg atgagctcaa ggagcaggtg gatgctgctc tgggtgctga ggagatggtg 1320 gagatgctga cagatcggaa cctgaatctg gaagagaaag tgcgcgagtt gagggagact 1380 gtgggagact tggaagcgat gaatgagatg aacgatgagc tgcaggagaa tgcacgtgag 1440 acagaactgg agctgcggga gcagctggac atggcaggcg cgcgggttcg tgaggcccag 1500 aagcgtgtgg aggcagccca ggagacggtt gcagactacc agcagaccat caagaagtac 1560 cgccagctga ccgcccatct acaggatgtg aatcgggaac tgacaaacca gcaggaagca 1620 tctgtggaga ggcaacagca gccacctcca gagacctttg acttcaaaat caagtttgct 1680 gagactaagg cccatgccaa ggcaattgag atggaattga ggcagatgga ggtggcccag 1740 gccaatcgac acatgtccct gctgacagcc ttcatgcctg acagcttcct tcggccaggt 1800 ggggaccatg actgcgttct ggtgctgttg ctcatgcctc gtctcatttg caaggcagag 1860 ctgatccgga agcaggccca ggagaagttt gaactaagtg agaactgttc agagcggcct 1920 gggctgcgag gagctgctgg ggagcaactc agctttgctg ctggactggt gtactcgctg 1980 agcctgctgc aggccacgct acaccgctat gagcatgccc tctctcagtg cagtgtggat 2040 gtgtataaga aagtgggcag cctgtaccct gagatgagtg cccatgagcg ctccttggat 2100 ttcctcattg aactgctgca caaggatcag ctggatgaga ctgtcaatgt ggagcctctc 2160 accaaggcca tcaagtacta tcagcatctg tacagcatcc accttgccga acagcctgag 2220 gactgtacta tgcagctggc tgaccacatt aagttcacgc agagtgctct ggactgcatg 2280 agtgtggagg taggacggct gcgtgccttc ttgcagggtg ggcaggaggc tacagatatt 2340 gccctcctgc tccgggatct ggaaacttca tgcagtgaca tccgccagtt ctgcaagaag 2400 atccgaaggc gaatgccagg gacagatgct cctgggatcc cagctgcact ggcctttgga 2460 ccacaggtat ctgacacgct cctagactgc aggaaacact tgacgtgggt cgtggctgtg 2520 ctgcaggagg tggcagctgc tgctgcccag ctcattgccc cactggcaga gaatgagggg 2580 ctacttgtgg ctgctctgga ggaactggct ttcaaagcaa gcgagcagat ctatgggacc 2640 ccctccagca gcccctatga gtgtctgcgc cagtcatgca acatcctcat cagtaccatg 2700 aacaagctgg ccacagccat gcaggagggg gagtatgatg cagagcggcc ccccagcaag 2760 cctccaccgg ttgaactgcg ggctgctgcc cttcgtgcag agatcacaga tgctgaaggc 2820 ctgggtttga agctcgaaga tcgagagaca gttattaagg agttgaagaa gtcactcaag 2880 attaagggag aggagctaag tgaggccaat gtgcggctga gcctcctgga gaagaagttg 2940 gacagtgctg ccaaggatgc agatgagcgc atcgagaaag tccagactcg gctggaggag 3000 acccaggcac tgctgcgaaa gaaggagaaa gagtttgagg agacaatgga tgcactccag 3060 gctgacatcg accagctgga ggcagagaag gcagaactaa agcagcgtct gaacagccag 3120 tccaaacgca cgattgaggg actccggggc cctcctcctt caggcattgc tactctggtc 3180 tctggcattg ctggtgaaga acagcagcga ggagccatcc ctgggcaggc tccagggtct 3240 gtgccaggcc cagggctggt gaaggactca ccactgctgc ttcagcagat ctctgccatg 3300 aggctgcaca tctcccagct ccagcatgag aacagcatcc tcaagggagc ccagatgaag 3360 gcatccttgg catccctgcc ccctctgcat gttgcaaagc tatcccatga gggccctggc 3420 agtgagttac cagctggagc gctgtatcgt aagaccagcc agctgctgga gacattgaat 3480 caattgagca cacacacgca cgtagtagac atcactcgca ccagccctgc tgccaagagc 3540 ccgtcggccc aacttatgga gcaagtggct cagcttaagt ccctgagtga caccgtcgag 3600 aagctcaagg atgaggtcct caaggagaca gtatctcagc gccctggagc cacagtaccc 3660 actgactttg ccaccttccc ttcatcagcc ttcctcaggg ccaaggagga gcagcaggat 3720 gacacagtct acatgggcaa agtgaccttc tcatgtgcgg ctggttttgg acagcgacac 3780 cggctggtgc tgacccagga gcagctgcac cagcttcaca gtcgcctcat ctcctaa 3837 <110> SAMSUNG LIFE PUBLIC WELFARE FOUNDATION <120> Kit for Diagnosing Charcot-Marie-Tooth <130> PN150255D <150> KR 10-2015-0167973 <151> 2015-11-27 <160> 6 <170> KopatentIn 2.0 <210> 1 <211> 483 <212> DNA <213> PMP22 <400> 1 atgctcctcc tgttgctgag tatcatcgtc ctccacgtcg cggtgctggt gctgctgttc 60 gtctccacga tcgtcagcca atggatcgtg ggcaatggac acgcaactga tctctggcag 120 aactgtagca cctcttcctc aggaaatgtc caccactgtt tctcatcatc accaaacgaa 180 tggctgcagt ctgtccaggc caccatgatc ctgtcgatca tcttcagcat tctgtctctg 240 ttcctgttct tctgccaact cttcaccctc accaaggggg gcaggtttta catcactgga 300 atcttccaaa ttcttgctgg tctgtgcgtg atgagtgctg cggccatcta cacggtgagg 360 cacccggagt ggcatctcaa ctcggattac tcctacggtt tcgcctacat cctggcctgg 420 gtggccttcc ccctggccct tctcagcggt gtcatctatg tgatcttgcg gaaacgcgaa 480 tga 483 <210> 2 <211> 3867 <212> DNA <213> SH3TC2 <400> 2 atgggtggct gcttctgcat ccccagggag cggagtctga cccggggccc aggtaaagaa 60 actccttcca aggatccaac tgtatcgagt gagtgtatag cctcatctga atacaaggaa 120 aaatgttttc tgccacagaa cattaatcca gacctgacac tctccttctg tgtaaagagc 180 cgctccagga ggtgtgtaaa tggaccccta caggaagctg ctcggaggcg gctctgggca 240 ctggagaatg aggaccagga ggtgcgcatg ctgtttaagg acctctcagc aaggttggtc 300 agtatccagt ctcagagggc ccagtttctc atcaccttca agaccatgga ggaaatctgg 360 aagttctcca cctaccttaa tttaggctac gtatccatgt gtctagaaca tctcctcttt 420 gaccacaagt actggctcaa ctgcatattg gtggaggata cagagatcca agtgtctgta 480 gatgataaac acctggaaac aatatacctg ggactcctga tacaggaagg ccacttcttc 540 tgcagagccc tgtgctccgt gactccacca gccgagaagg aaggggaatg cttgacactt 600 tgcaagaatg agttaatctc agtgaagatg gcagaagctg gctccgagtt ggaaggcgtg 660 tctttggtga caggtcagcg gggcctggta ctggtgtcag ccttggagcc tctgcctctc 720 cctttccacc agtggttcct aaagaattat ccaggaagct gtggcctttc caggaagagg 780 gattggacag gctcctatca gattggcaga ggacgctgta aggccttgac gggttatgag 840 ccaggagaaa aggatgaact gaatttctac cagggagaaa gcattgagat catcggcttt 900 gtcatacctg ggcttcagtg gttcattgga aagtcgacaa gttcaggaca agtgggcttt 960 gtccccacca ggaacataga tcctgattct tattccccaa tgagcaggaa ctctgccttt 1020 ctcagtgatg aggagagatg ctccctgttg gccctgggaa gtgataagca gactgagtgt 1080 tccagcttcc tccacactct tgctcgcact gacatcacat ctgtctaccg gctcagtggg 1140 tttgaatcca tccagaatcc tccaaatgat ctgagtgcat cccagcctga aggtttcaag 1200 gaggtcaggc ctggcagagc ctgggaggag catcaggccg tggggtccag acagtccagc 1260 agctctgagg actccagcct ggaggaggag ctcctctcgg ccacctcaga cagctatcgc 1320 ctgccggagc ctgatgacct tgatgacccg gaactgctca tggacctaag cactggtcag 1380 gaggaggagg ctgagaactt cgcccccata ttggcttttc tggatcatga gggttatgct 1440 gaccacttta agagtctcta tgacttctcc ttctctttcc tcacttcttc cttttatagc 1500 ttctctgagg aggatgagtt tgtggcctac ctggaggcat caagaaagtg ggccaagaag 1560 agccacatga cctgggccca tgcccgtctc tgcttcctcc tgggccggct gagcatcagg 1620 aaggtcaaac tctctcaggc cagggtgtac ttcgaggagg ccatccacat tctcaatgga 1680 gcatttgagg acctatcctt ggtggccact ctgtacatca atttggctgc catctacctg 1740 aaacagaggc tgagacataa aggctccgcc ctgttggaaa aggcaggtgc cctgctggcc 1800 tgcctgcctg accgtgagtc tagtgccaag catgaactcg acgtggtggc ctacgtgctg 1860 cgccagggga ttgtggtggg cagcagcccg ctggaggcca gggcctgctt tctggccatc 1920 cgcttgctcc tgagcctagg ccggcacgag gaggtcctgc cctttgccga gcgcctgcag 1980 ctcctctctg gacaccctcc tgcctctgag gctgtggcca gtgttttgag ttttctgtat 2040 gacaagaaat atcttccaca ccttgcagtg gcctctgtcc agcaacatgg tatccagagt 2100 gcccaaggga tgtctcttcc tatttggcag gtccaccttg tcctccagaa cacaaccaag 2160 ctccttggct ttccttcccc aggctggggt gaagtttctg ccttggcctg cccaatgctc 2220 agacaggccc tggctgcctg tgaggaacta gcagaccgga gcacccagag ggccctgtgt 2280 ctcatccttt ccaaagtgta cctcgagcac aggtctcctg acggtgccat ccactacctg 2340 agccaggcct tggtgctagg gcagctgctg ggtgagcagg aatcctttga gtcttctctc 2400 tgcctggcat gggcctatct cttagccagc caggccaaga aggctttgga tgtgcttgag 2460 ccactgctat gctccctgaa ggagacagag agtctcactc aaaggggagt catctataac 2520 ctcctgggac ttgcactcca aggtgaaggc cgggtgaaca gggcagccaa gagctatctt 2580 cgggccttga acagagccca ggaggtggga gatgtgcata accaggcagt ggctatggcc 2640 aatcttggcc acctgagcct taagtcctgg gctcagcatc cagccagaaa ctatctcctg 2700 caggctgtac gactctattg tgaacttcag gccagtaagg agacagacat ggaattagta 2760 caggtgtttc tctggttggc ccaagttctg gtgtctggac accagctgac ccatggcctt 2820 ctttgttatg aaatggcatt gctgtttggc ttaaggcatc gacatctaaa gagtcagctt 2880 caggccacca aatccctctg ccatttctac agctctgtgt ccccaaaccc tgaggcatgc 2940 atcacctacc atgagcactg gctggccctg gctcagcaac tcagggaccg ggagatggaa 3000 gggaggctgc tggagtccct ggggcagctt tatcggaacc taaataccgc caggtccctc 3060 aggaggtcac tcacatgcat caaggagagc ctgcgtatct tcattgacct gggggagaca 3120 gacaaggctg ctgaggcctg gcttggggcg gggcgactcc actacctcat gcaggaagac 3180 gagctggtgg agctgtgcct gcaggcagcc atccagacag ccctgaagtc agaggagcct 3240 ttgctggctc tcaaacttta tgaagaagca ggtgatgtgt tcttcaatgg gacccgccac 3300 aggcatcatg cagtggagta ctaccgagct ggagctgttc ctttagcaag gaggttgaag 3360 gcggtgagaa ctgagctccg gattttcaat aagctgacag agctgcagat tagcctcgaa 3420 ggctatgaga aggctttgga atttgccacc ctggccgcca ggctcagcac agtcacagga 3480 gatcagaggc aagagctggt ggcctttcac cgcctggcta cagtgtacta ctccctgcac 3540 atgtatgaga tggctgagga ctgctacctg aagaccctgt ccctctgtcc accatggctg 3600 cagagtccca aggaggccct gtactatgcc aaggtgtatt atcgcctggg cagactcacc 3660 ttctgccagc tgaaggatgc ccatgatgcc actgagtact tccttctggc cctggcagca 3720 gcggtcctgc tgggtgatga ggagcttcag gacaccatta ggagcaggct ggacaacatc 3780 tgccagagcc ccctgtggca cagcaggccc tccgggtgct cctcagagag ggcgcggtgg 3840 ctgagtggtg gtggcctggc cctctga 3867 <210> 3 <211> 747 <212> DNA <213> MPZ <400> 3 atggctcctg gggctccctc atccagcccc agccctatcc tggctgtgct gctcttctct 60 tctttggtgc tgtccccggc ccaggccatc gtggtttaca ccgacaggga ggtccatggt 120 gctgtgggct cccgggtgac cctgcactgc tccttctggt ccagtgagtg ggtctcagat 180 gacatctcct tcacctggcg ctaccagccc gaagggggca gagatgccat ttcgatcttc 240 cactatgcca agggacaacc ctacattgac gaggtgggga ccttcaaaga gcgcatccag 300 tgggtagggg accctcgctg gaaggatggc tccattgtca tacacaacct agactacagt 360 gacaatggca cgttcacttg tgacgtcaaa aaccctccag acatagtggg caagacctct 420 caggtcacgc tgtatgtctt tgaaaaagtg ccaactaggt acggggtcgt tctgggagct 480 gtgatcgggg gtgtcctcgg ggtggtgctg ttgctgctgc tgcttttcta cgtggttcgg 540 tactgctggc tacgcaggca ggcggccctg cagaggaggc tcagtgctat ggagaagggg 600 aaattgcaca agccaggaaa ggacgcgtcg aagcgcgggc ggcagacgcc agtgctgtat 660 gcaatgctgg accacagcag aagcaccaaa gctgtcagtg agaagaaggc caaggggctg 720 ggggagtctc gcaaggataa gaaatag 747 <210> 4 <211> 852 <212> DNA <213> GJB1 <400> 4 atgaactgga caggtttgta caccttgctc agtggcgtga accggcattc tactgccatt 60 ggccgagtat ggctctcggt catcttcatc ttcagaatca tggtgctggt ggtggctgca 120 gagagtgtgt ggggtgatga gaaatcttcc ttcatctgca acacactcca gcctggctgc 180 aacagcgttt gctatgacca attcttcccc atctcccatg tgcggctgtg gtccctgcag 240 ctcatcctag tttccacccc agctctcctc gtggccatgc acgtggctca ccagcaacac 300 atagagaaga aaatgctacg gcttgagggc catggggacc ccctacacct ggaggaggtg 360 aagaggcaca aggtccacat ctcagggaca ctgtggtgga cctatgtcat cagcgtggtg 420 ttccggctgt tgtttgaggc cgtcttcatg tatgtctttt atctgctcta ccctggctat 480 gccatggtgc ggctggtcaa gtgcgacgtc tacccctgcc ccaacacagt ggactgcttc 540 gtgtcccgcc ccaccgagaa aaccgtcttc accgtcttca tgctagctgc ctctggcatc 600 tgcatcatcc tcaatgtggc cgaggtggtg tacctcatca tccgggcctg tgcccgccga 660 gcccagcgcc gctccaatcc accttcccgc aagggctcgg gcttcggcca ccgcctctca 720 cctgaataca agcagaatga gatcaacaag ctgctgagtg agcaggatgg ctccctgaaa 780 gacatactgc gccgcagccc tggcaccggg gctgggctgg ctgaaaagag cgaccgctgc 840 tcggcctgct ga 852 <210> 5 <211> 1689 <212> DNA <213> SPTLC2 <400> 5 atgcggccgg agcccggagg ctgctgctgc cgccgcacgg tgcgggcgaa tggctgcgtg 60 gcgaacgggg aagtacggaa cgggtacgtg aggagcagcg ctgcagccgc agccgcagcc 120 gccgccggcc agatccatca tgttacacaa aatggaggac tatataaaag accgtttaat 180 gaagcttttg aagaaacacc aatgctggtt gctgtgctca cgtatgtggg gtatggcgta 240 ctcaccctct ttggatatct tcgagatttc ttgaggtatt ggagaattga aaagtgtcac 300 catgcaacag aaagagaaga acaaaaggac tttgtgtcat tgtatcaaga ttttgaaaac 360 ttttatacaa ggaatctgta catgaggata agagacaact ggaatcggcc aatctgtagt 420 gtgcctggag ccagggtgga catcatggag agacagtctc atgattataa ctggtccttc 480 aagtatacag ggaatataat aaagggtgtt ataaacatgg gttcctacaa ctatcttgga 540 tttgcacgga atactggatc atgtcaagaa gcagccgcca aagtccttga ggagtatgga 600 gctggagtgt gcagtactcg gcaggaaatt ggaaacctgg acaagcatga agaactagag 660 gagcttgtag caaggttctt aggagtagaa gctgctatgg cgtatggcat gggatttgca 720 acgaattcaa tgaacattcc tgctcttgtt ggcaaaggtt gcctgattct gagtgatgaa 780 ctgaatcatg catcactggt tctgggagcc agactgtcag gagcaaccat tagaatcttc 840 aaacacaaca atatgcaaag cctagagaag ctattgaaag atgccattgt ttatggtcag 900 cctcggacac gaaggccctg gaagaaaatt ctcatccttg tggaaggaat atatagcatg 960 gagggatcta ttgttcgtct tcctgaagtg attgccctca agaagaaata caaggcatac 1020 ttgtatctgg atgaggctca cagcattggc gccctgggcc ccacaggccg gggtgtggtg 1080 gagtactttg gcctggatcc cgaggatgtg gatgttatga tgggaacgtt cacaaagagt 1140 tttggtgctt ctggaggata tattggaggc aagaaggagc tgatagacta cctgcgaaca 1200 cattctcata gtgcagtgta tgccacgtca ttgtcacctc ctgtagtgga gcagatcatc 1260 acctccatga agtgcatcat ggggcaggat ggcaccagcc ttggtaaaga gtgtgtacaa 1320 cagttagctg aaaacaccag gtatttcagg agacgcctga aagagatggg cttcatcatc 1380 tatggaaatg aagactctcc agtagtgcct ttgatgctct acatgcctgc caaaattggc 1440 gcctttggac gggagatgct gaagcggaac atcggtgtcg ttgtggttgg atttcctgcc 1500 accccaatta ttgagtccag agccaggttt tgcctgtcag cagctcatac caaagaaata 1560 cttgatactg ctttaaagga gatagatgaa gttggggacc tattgcagct gaagtattcc 1620 cgtcatcggt tggtacctct actggacagg ccctttgacg agacgacgta tgaagaaaca 1680 gaagactga 1689 <210> 6 <211> 3837 <212> DNA <213> DCTN1 <400> 6 atggcacaga gcaagaggca cgtgtacagc cggacgccca gcggcagcag gatgagtgcg 60 gaggcaagcg cccggcctct gcgggtgggc tcccgtgtag aggtgattgg aaaaggccac 120 cgaggcactg tggcctatgt tggagccaca ctgtttgcca ctggcaaatg ggtaggcgtg 180 attctggatg aagcaaaggg caaaaatgat ggaactgttc aaggcaggaa gtacttcact 240 tgtgatgaag ggcatggcat ctttgtgcgc cagtcccaga tccaggtatt tgaagatgga 300 gcagatacta cttccccaga gacacctgat tcttctgctt caaaagtcct caaaagagag 360 ggaactgata caactgcaaa gactagcaaa ctgcggggac tgaagcctaa gaaggcaccg 420 acagcccgaa agaccacaac tcggcgaccc aagcccacgc gcccagccag tactggggtg 480 gctggggcca gtagctccct gggcccctct ggctcagcgt cagcaggtga gctgagcagc 540 agtgagccca gcaccccggc tcagactccg ctggcagcac ccatcatccc cacgccggtc 600 ctcacctctc ctggagcagt ccccccgctt ccttccccat ccaaggagga ggagggacta 660 agggctcagg tgcgggacct ggaggagaaa ctagagaccc tgagactgaa acgggcagaa 720 gacaaagcaa agctaaaaga gctggagaaa cacaaaatcc agctggagca ggtgcaggaa 780 tggaagagca aaatgcagga gcagcaggcc gacctgcagc ggcgcctcaa ggaggcgaga 840 aaggaagcca aggaggcgct ggaggcaaag gaacgctata tggaggagat ggctgatact 900 gctgatgcca ttgagatggc cactttggac aaggagatgg ctgaagagcg ggctgagtcc 960 ctgcagcagg aggtggaggc actgaaggag cgggtggacg agctcactac tgacttagag 1020 atcctcaagg ctgagattga agagaagggc tcagatggcg ctgcatccag ttatcagctc 1080 aagcagcttg aggagcagaa tgcccgcctg aaggatgccc tggtgaggat gcgggatctt 1140 tcttcctcag agaagcagga gcatgtgaag ctccagaagc tcatggaaaa gaagaaccaa 1200 gagctggaag ttgtgaggca acagcgggag cgtctgcagg aggagctaag ccaggcagag 1260 agcaccattg atgagctcaa ggagcaggtg gatgctgctc tgggtgctga ggagatggtg 1320 gagatgctga cagatcggaa cctgaatctg gaagagaaag tgcgcgagtt gagggagact 1380 gtgggagact tggaagcgat gaatgagatg aacgatgagc tgcaggagaa tgcacgtgag 1440 acagaactgg agctgcggga gcagctggac atggcaggcg cgcgggttcg tgaggcccag 1500 aagcgtgtgg aggcagccca ggagacggtt gcagactacc agcagaccat caagaagtac 1560 cgccagctga ccgcccatct acaggatgtg aatcgggaac tgacaaacca gcaggaagca 1620 tctgtggaga ggcaacagca gccacctcca gagacctttg acttcaaaat caagtttgct 1680 gagactaagg cccatgccaa ggcaattgag atggaattga ggcagatgga ggtggcccag 1740 gccaatcgac acatgtccct gctgacagcc ttcatgcctg acagcttcct tcggccaggt 1800 ggggaccatg actgcgttct ggtgctgttg ctcatgcctc gtctcatttg caaggcagag 1860 ctgatccgga agcaggccca ggagaagttt gaactaagtg agaactgttc agagcggcct 1920 gggctgcgag gagctgctgg ggagcaactc agctttgctg ctggactggt gtactcgctg 1980 agcctgctgc aggccacgct acaccgctat gagcatgccc tctctcagtg cagtgtggat 2040 gtgtataaga aagtgggcag cctgtaccct gagatgagtg cccatgagcg ctccttggat 2100 ttcctcattg aactgctgca caaggatcag ctggatgaga ctgtcaatgt ggagcctctc 2160 accaaggcca tcaagtacta tcagcatctg tacagcatcc accttgccga acagcctgag 2220 gactgtacta tgcagctggc tgaccacatt aagttcacgc agagtgctct ggactgcatg 2280 agtgtggagg taggacggct gcgtgccttc ttgcagggtg ggcaggaggc tacagatatt 2340 gccctcctgc tccgggatct ggaaacttca tgcagtgaca tccgccagtt ctgcaagaag 2400 atccgaaggc gaatgccagg gacagatgct cctgggatcc cagctgcact ggcctttgga 2460 ccacaggtat ctgacacgct cctagactgc aggaaacact tgacgtgggt cgtggctgtg 2520 ctgcaggagg tggcagctgc tgctgcccag ctcattgccc cactggcaga gaatgagggg 2580 ctacttgtgg ctgctctgga ggaactggct ttcaaagcaa gcgagcagat ctatgggacc 2640 ccctccagca gcccctatga gtgtctgcgc cagtcatgca acatcctcat cagtaccatg 2700 aacaagctgg ccacagccat gcaggagggg gagtatgatg cagagcggcc ccccagcaag 2760 cctccaccgg ttgaactgcg ggctgctgcc cttcgtgcag agatcacaga tgctgaaggc 2820 ctgggtttga agctcgaaga tcgagagaca gttattaagg agttgaagaa gtcactcaag 2880 attaagggag aggagctaag tgaggccaat gtgcggctga gcctcctgga gaagaagttg 2940 gacagtgctg ccaaggatgc agatgagcgc atcgagaaag tccagactcg gctggaggag 3000 acccaggcac tgctgcgaaa gaaggagaaa gagtttgagg agacaatgga tgcactccag 3060 gctgacatcg accagctgga ggcagagaag gcagaactaa agcagcgtct gaacagccag 3120 tccaaacgca cgattgaggg actccggggc cctcctcctt caggcattgc tactctggtc 3180 tctggcattg ctggtgaaga acagcagcga ggagccatcc ctgggcaggc tccagggtct 3240 gtgccaggcc cagggctggt gaaggactca ccactgctgc ttcagcagat ctctgccatg 3300 aggctgcaca tctcccagct ccagcatgag aacagcatcc tcaagggagc ccagatgaag 3360 gcatccttgg catccctgcc ccctctgcat gttgcaaagc tatcccatga gggccctggc 3420 agtgagttac cagctggagc gctgtatcgt aagaccagcc agctgctgga gacattgaat 3480 caattgagca cacacacgca cgtagtagac atcactcgca ccagccctgc tgccaagagc 3540 ccgtcggccc aacttatgga gcaagtggct cagcttaagt ccctgagtga caccgtcgag 3600 aagctcaagg atgaggtcct caaggagaca gtatctcagc gccctggagc cacagtaccc 3660 actgactttg ccaccttccc ttcatcagcc ttcctcaggg ccaaggagga gcagcaggat 3720 gacacagtct acatgggcaa agtgaccttc tcatgtgcgg ctggttttgg acagcgacac 3780 cggctggtgc tgacccagga gcagctgcac cagcttcaca gtcgcctcat ctcctaa 3837

Claims (6)

샤르코-마리-투스(Charcot-Marie-Tooth) 질환의 진단 마커로서 야생형 GJB1 유전자의 286번째 뉴클레오타이드가 시토신(cytosine)으로 치환된 변이 유전자.
A mutation gene in which the 286th nucleotide of the wild-type GJB1 gene is replaced with a cytosine as a diagnostic marker for Charcot-Marie-Tooth disease.
샤르코-마리-투스(Charcot-Marie-Tooth) 질환의 진단 마커로서 야생형 GJB1 유전자의 286번째 뉴클레오타이드가 시토신(cytosine)으로 치환된 변이 유전자에 의해 코딩되는 샤르코-마리-투스 질환 질단 마커로서의 변이 단백질.
Mutation protein as a Charcoal-Marie-Tooth disease veneer marker encoded by a mutated gene in which the 286th nucleotide of the wild-type GJB1 gene is replaced by a cytosine as a diagnostic marker for Charcot-Marie-Tooth disease.
샤르코-마리-투스(Charcot-Marie-Tooth) 질환의 진단 마커로서 야생형 GJB1 유전자의 286번째 뉴클레오타이드가 시토신(cytosine)으로 치환된 뉴클레오타이드 서열로 이루어진 유전자를 검출할 수 있는 제제를 포함하는 샤르코-마리-투스 질환의 진단용 키트.
A diagnostic marker for Charcot-Marie-Tooth disease, which contains an agent capable of detecting a gene consisting of a nucleotide sequence in which the 286th nucleotide of the wild type GJB1 gene has been replaced with a cytosine, Diagnostic kit for Tus disease.
제 3 항에 있어서, 상기 키트는 AARS(NM_001605), AIEM1(NM_004208), ARIIGER10(NM_014629), ATL1(NM_015915), ATL3(NM_015459), BSCL2(NM_032667), C12orf65(NM_152269), CCT5(NM_012073), CTDP1(NM_004715), DCTN1(NM_004082), DHTKD1(NM_018706), DNAJB2(NM_006736), DNM2(NM_004945), DNMT1(NM_001379), DST(NM_001723), DYNC1H1(NM_001376), EGR2(NM_000399), FAM134B(NM_001034850), FBLN5(NM_006329), FGD4(NM_139241), FIG4(NM_014845), GAN(NM_022041), GARS(NM_002047), GDAP1(NM_018972), GNB4(NM_021629), HADHB(NM_000183), HARS(NM_002109), HINT1(NM_005340), HK1(NM_000188), HOXD10(NM_002148), HSPB1(NM_001540), HSPB3(NM_006308), HSPB8(NM_014365), IGRD1(NM_001550), IGHMBP2(NM_002180), IKBKAP(NM_003640), INF2(NM_022489), KARS(NM_005548), KIF1A(NM_004321), LITAF(NM_004862), LMNA(NM_170707), LRSAM1(NM_138361), MARS(NM_004990), MED25(NM_030973), MFN2(NM_014874), MTMR2(NM_016156), MYH14(NM_024729), NDRG1(NM_006096), NEFL(NM_006158), NGF(NM_002506), NTRK1(NM_002529), NRG2(NM_013982), PDK3(NM_005391), PLEKHG5(NM_020631), PMP22(NM_000304), PRPS1(NM_002764), PRX(NM_181882), RAB7A(NM_004637), REEP1(NM_022912), SBF1(NM_002972), SBF2(NM_030962), SETX(NM_015046), SCN9A(NM_002977), SLC5A7(NM_021815), SLC12A6(NM_005135), SOX10(NM_006941), SPTLC1(NM_006415), SPTLC2(NM_004863), TDP1(NM_018319), TFG(NM_006070), TRIM2(NM_015271), TRPV4(NM_021625), TUBB3(NM_006086), VAPB(NM_004738), WNK1(NM_213655), YARS(NM_003680), COX10(NM_001303) 및 TEKT3(NM_031898)로 구성된 군으로부터 선택되는 유전자를 검출할 수 있는 제제를 추가적으로 포함하는 것인, 샤르코-마리-투스 질환의 진단용 키트.
4. The method of claim 3, wherein the kit further comprises at least one of AARS (NM_001605), AIEM1 (NM_04208), ARIIGER10 (NM_014629), ATL1 (NM_015915), ATL3 (NM_015459), BSCL2 (NM_032667), C12orf65 (NM_004715), DTN1 (NM_001376), EGR2 (NM_000399), FAM134B (NM_001034850), FBLN5 (NM_001034850), DCTN1 (NM_004082), DHTKD1 (NM_018706), DNAJB2 (NM_006736), DNM2 (NM_006329), FGD4 (NM_139241), FIG4 (NM_014845), GAN (NM_022041), GARS (NM_002047), GDAP1 (NM_018972), GNB4 (NM_021629), HADHB (NM_000188), HSPB1 (NM_001540), HSPB3 (NM_006308), HSPB8 (NM_014365), IGRD1 (NM_001550), IGHMBP2 (NM_002180), IKBKAP (NM_003640), INF2 (NM_022489), KARS (NM_004861), LITAF (NM_004862), LMNA (NM_170707), LRSAM1 (NM_138361), MARS (NM_004990), MED25 NM_030973, MFN2 NM_014874, MTMR2 NM_016156, MYH14 NM_024729, NDRG1 (NM_006158), NGF (NM_002506), NTRK1 (NM_002529), NRG2 (NM_013982), PDK3 (NM_005391), PLEKHG5 REF1 (NM_022912), SBF1 (NM_002972), SBF2 (NM_030962), SETX (NM_015046), SCN9A (NM_002977), SLC5A7 (NM_002977), PMP22 (NM_000304), PRPS1 (NM_002764), PRX (NM_181882), RAB7A NM_021815), SLC12A6 (NM_005135), SOX10 (NM_006941), SPTLC1 (NM_006415), SPTLC2 (NM_004863), TDP1 (NM_018319), TFG (NM_006070), TRIM2 (NM_015271), TRPV4 (NM_021625), TUBB3 Wherein the method further comprises an agent capable of detecting a gene selected from the group consisting of NM_004738, WNK1 (NM_213655), YARS (NM_003680), COX10 (NM_001303) and TEKT3 (NM_031898) Kits.
샤르코-마리-투스(Charcot-Marie-Tooth) 질환의 진단 마커로서 야생형 GJB1 유전자의 286번째 뉴클레오타이드가 시토신(cytosine)으로 치환된 뉴클레오타이드 서열로 이루어진 유전자를 검출할 수 있는 제제를 이용하여 핵산 분자를 증폭시키는 단계를 포함하는 샤르코-마리-투스 질환의 진단을 위한 정보제공방법.
As a diagnostic marker for Charcot-Marie-Tooth disease, nucleic acid molecules are amplified using a preparation capable of detecting a gene consisting of a nucleotide sequence in which the 286th nucleotide of the wild-type GJB1 gene has been replaced with a cytosine Wherein the method comprises the steps of:
제 5 항에 있어서, 상기 키트는 AARS(NM_001605), AIEM1(NM_004208), ARIIGER10(NM_014629), ATL1(NM_015915), ATL3(NM_015459), BSCL2(NM_032667), C12orf65(NM_152269), CCT5(NM_012073), CTDP1(NM_004715), DCTN1(NM_004082), DHTKD1(NM_018706), DNAJB2(NM_006736), DNM2(NM_004945), DNMT1(NM_001379), DST(NM_001723), DYNC1H1(NM_001376), EGR2(NM_000399), FAM134B(NM_001034850), FBLN5(NM_006329), FGD4(NM_139241), FIG4(NM_014845), GAN(NM_022041), GARS(NM_002047), GDAP1(NM_018972), GNB4(NM_021629), HADHB(NM_000183), HARS(NM_002109), HINT1(NM_005340), HK1(NM_000188), HOXD10(NM_002148), HSPB1(NM_001540), HSPB3(NM_006308), HSPB8(NM_014365), IGRD1(NM_001550), IGHMBP2(NM_002180), IKBKAP(NM_003640), INF2(NM_022489), KARS(NM_005548), KIF1A(NM_004321), LITAF(NM_004862), LMNA(NM_170707), LRSAM1(NM_138361), MARS(NM_004990), MED25(NM_030973), MFN2(NM_014874), MTMR2(NM_016156), MYH14(NM_024729), NDRG1(NM_006096), NEFL(NM_006158), NGF(NM_002506), NTRK1(NM_002529), NRG2(NM_013982), PDK3(NM_005391), PLEKHG5(NM_020631), PMP22(NM_000304), PRPS1(NM_002764), PRX(NM_181882), RAB7A(NM_004637), REEP1(NM_022912), SBF1(NM_002972), SBF2(NM_030962), SETX(NM_015046), SCN9A(NM_002977), SLC5A7(NM_021815), SLC12A6(NM_005135), SOX10(NM_006941), SPTLC1(NM_006415), SPTLC2(NM_004863), TDP1(NM_018319), TFG(NM_006070), TRIM2(NM_015271), TRPV4(NM_021625), TUBB3(NM_006086), VAPB(NM_004738), WNK1(NM_213655), YARS(NM_003680), COX10(NM_001303) 및 TEKT3(NM_031898)로 구성된 군으로부터 선택되는 유전자를 검출할 수 있는 제제를 이용하여 핵산 분자를 증폭시키는 단계를 추가적으로 포함하는 것인, 샤르코-마리-투스 질환의 진단을 위한 정보제공방법.The kit according to claim 5, wherein the kit comprises at least one of AARS (NM_001605), AIEM1 (NM_04208), ARIIGER10 (NM_014629), ATL1 NM_015915, ATL3 NM_015459, BSCL2 NM_032667, C12orf65 NM_152269, CCT5 (NM_004715), DTN1 (NM_001376), EGR2 (NM_000399), FAM134B (NM_001034850), FBLN5 (NM_001034850), DCTN1 (NM_004082), DHTKD1 (NM_018706), DNAJB2 (NM_006736), DNM2 (NM_006329), FGD4 (NM_139241), FIG4 (NM_014845), GAN (NM_022041), GARS (NM_002047), GDAP1 (NM_018972), GNB4 (NM_021629), HADHB (NM_000188), HSPB1 (NM_001540), HSPB3 (NM_006308), HSPB8 (NM_014365), IGRD1 (NM_001550), IGHMBP2 (NM_002180), IKBKAP (NM_003640), INF2 (NM_022489), KARS (NM_004861), LITAF (NM_004862), LMNA (NM_170707), LRSAM1 (NM_138361), MARS (NM_004990), MED25 NM_030973, MFN2 NM_014874, MTMR2 NM_016156, MYH14 NM_024729, NDRG1 (NM_006158), NGF (NM_002506), NTRK1 (NM_002529), NRG2 (NM_013982), PDK3 (NM_005391), PLEKHG5 REF1 (NM_022912), SBF1 (NM_002972), SBF2 (NM_030962), SETX (NM_015046), SCN9A (NM_002977), SLC5A7 (NM_002977), PMP22 (NM_000304), PRPS1 (NM_002764), PRX (NM_181882), RAB7A NM_021815), SLC12A6 (NM_005135), SOX10 (NM_006941), SPTLC1 (NM_006415), SPTLC2 (NM_004863), TDP1 (NM_018319), TFG (NM_006070), TRIM2 (NM_015271), TRPV4 (NM_021625), TUBB3 And amplifying the nucleic acid molecule using a preparation capable of detecting a gene selected from the group consisting of NM_004738, WNK1 (NM_213655), YARS (NM_003680), COX10 (NM_001303) and TEKT3 (NM_031898) , A method of providing information for diagnosis of Charcot-Marie-Tooth disease.
KR1020180094643A 2018-08-13 2018-08-13 Kit for Diagnosing Charcot-Marie-Tooth KR101929163B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180094643A KR101929163B1 (en) 2018-08-13 2018-08-13 Kit for Diagnosing Charcot-Marie-Tooth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180094643A KR101929163B1 (en) 2018-08-13 2018-08-13 Kit for Diagnosing Charcot-Marie-Tooth

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020150167973A Division KR101896147B1 (en) 2015-11-27 2015-11-27 Kit for Diagnosing Charcot-Marie-Tooth

Publications (2)

Publication Number Publication Date
KR20180105597A true KR20180105597A (en) 2018-09-28
KR101929163B1 KR101929163B1 (en) 2018-12-13

Family

ID=63721783

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180094643A KR101929163B1 (en) 2018-08-13 2018-08-13 Kit for Diagnosing Charcot-Marie-Tooth

Country Status (1)

Country Link
KR (1) KR101929163B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050612A1 (en) 2018-09-04 2020-03-12 주식회사 엘지화학 Device having variable transmittance
CN114277146A (en) * 2021-12-28 2022-04-05 中南大学湘雅三医院 Probe combination, kit and application for diagnosing peroneal muscular atrophy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050612A1 (en) 2018-09-04 2020-03-12 주식회사 엘지화학 Device having variable transmittance
CN114277146A (en) * 2021-12-28 2022-04-05 中南大学湘雅三医院 Probe combination, kit and application for diagnosing peroneal muscular atrophy
CN114277146B (en) * 2021-12-28 2024-05-07 中南大学湘雅三医院 Probe combination for diagnosing fibula amyotrophy, kit and application

Also Published As

Publication number Publication date
KR101929163B1 (en) 2018-12-13

Similar Documents

Publication Publication Date Title
JP6618894B2 (en) Transition to natural chromatin for individual epigenomics
Cole et al. Epigenetic signatures of salivary gland inflammation in Sjögren's syndrome
Bousman et al. Preliminary evidence of ubiquitin proteasome system dysregulation in schizophrenia and bipolar disorder: convergent pathway analysis findings from two independent samples
US10138520B2 (en) Diagnostic miRNA markers for Alzheimer
US20180340228A1 (en) Diagnostic mirna markers for parkinson&#39;s disease
Harris et al. Genome-wide peripheral blood leukocyte DNA methylation microarrays identified a single association with inflammatory bowel diseases
KR101718940B1 (en) Epigenetic early diagnostic composition for Alzheimer&#39;s disease or mild cognitive impairment
JP2015165805A (en) Size-based genomic analysis
KR101992786B1 (en) Method for providing information of prediction and diagnosis of obesity using methylation level of CYP2E1 gene and composition therefor
JP2014506459A (en) Methods for discovering pharmacogenomic biomarkers
WO2017112738A1 (en) Methods for measuring microsatellite instability
KR101992792B1 (en) Method for providing information of prediction and diagnosis of obesity using methylation level of AKR1E2 gene and composition therefor
KR101929163B1 (en) Kit for Diagnosing Charcot-Marie-Tooth
KR101921027B1 (en) Kit for Diagnosing Charcot-Marie-Tooth
KR101896147B1 (en) Kit for Diagnosing Charcot-Marie-Tooth
KR101992789B1 (en) Method for providing information of prediction and diagnosis of obesity using methylation level of BZRAP1-AS1 gene and composition therefor
KR101929164B1 (en) Kit for Diagnosing Charcot-Marie-Tooth
KR101929165B1 (en) Kit for Diagnosing Charcot-Marie-Tooth
JP6571526B2 (en) Methods to improve microarray performance by excluding strands
US20220162710A1 (en) Composition for diagnosis or prognosis prediction of glioma, and method for providing information related thereto
Grillova et al. Core genome sequencing and genotyping of Leptospira interrogans in clinical samples by target capture sequencing
AU2017100960A4 (en) Method of identifying a gene associated with a disease or pathological condition of the disease
KR20240021975A (en) Materials and Methods for Tumor Evaluation
WO2018186687A1 (en) Method for determining nucleic acid quality of biological sample
JP2018161132A (en) Methods of classifying biological samples for predicting response to tyrosine kinase inhibitor treatment

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right