JP2006166577A - Power supply control method and power unit - Google Patents

Power supply control method and power unit Download PDF

Info

Publication number
JP2006166577A
JP2006166577A JP2004353477A JP2004353477A JP2006166577A JP 2006166577 A JP2006166577 A JP 2006166577A JP 2004353477 A JP2004353477 A JP 2004353477A JP 2004353477 A JP2004353477 A JP 2004353477A JP 2006166577 A JP2006166577 A JP 2006166577A
Authority
JP
Japan
Prior art keywords
power
load
storage device
power supply
power consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004353477A
Other languages
Japanese (ja)
Inventor
Shunichi Abe
俊一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004353477A priority Critical patent/JP2006166577A/en
Publication of JP2006166577A publication Critical patent/JP2006166577A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply control method and a power unit which can lessen loss and are low-cost by lessening the change of a current taken out of a generator even with sudden change of a load. <P>SOLUTION: This power unit has a generator, an accumulating device, and a control unit. The generator sets its output power to be lower than the maximum power consumption of the load and to be larger than the specified power consumption during operation of the load. Then, the accumulating device is connected in parallel with the generator. Besides, the control unit so controls the system as to perform the power supply to the load by the discharge of the accumulating device when the power consumption of the load is larger than the specified power consumption of the load, and to perform the power supply from the generator to the load when the power consumption of the load is under the specified power consumption, and also to perform the charge to the accumulating device by the current from the generator. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電源供給制御方法及び電源装置に関し、詳細には燃料電池などの発電装置の直流電圧出力を二次電池などの蓄電デバイスに充電し定電圧電源を介して変動する負荷に電力を供給する電源装置であって、例えば画像形成装置に電力を供給する電源装置の電力面での最適化に関する。   The present invention relates to a power supply control method and a power supply device, and in particular, charges a DC voltage output of a power generation device such as a fuel cell to a storage device such as a secondary battery and supplies power to a load that fluctuates via a constant voltage power supply. For example, the present invention relates to power optimization of a power supply device that supplies power to an image forming apparatus.

従来の画像形成装置の多くは、商業用電源を用いており、そのため待機時にでも商業用電源からの電気エネルギーを消費するので資源節約、環境保護の点からも好ましくなかった。そこで、従来より、太陽電池で二次電池を充電する太陽電池電源システムを採用した画像形成装置が、例えば特許文献1及び特許文献2に提案されている。しかし、これらの太陽電池による電力供給は日光が当たることを前提としており、そのために夜間などの際におけるエネルギー低下時に対する機構が別に必要となり、装置の大型化、そしてコストアップとなっていた。そこで、注目されている発電装置が燃料電池である。以下、この燃料電池について説明する。   Many of the conventional image forming apparatuses use a commercial power source. Therefore, electric energy from the commercial power source is consumed even during standby, which is not preferable in terms of resource saving and environmental protection. Therefore, conventionally, for example, Patent Document 1 and Patent Document 2 have proposed an image forming apparatus that employs a solar battery power supply system that charges a secondary battery with a solar battery. However, the power supply by these solar cells is based on the premise that it will be exposed to sunlight. For this reason, a separate mechanism for reducing energy during nighttime and the like is required, which increases the size and cost of the device. Therefore, a fuel cell is attracting attention. Hereinafter, this fuel cell will be described.

現在、燃料電池は、水素と酸素を化学反応させて水ができる際のエネルギーを電力というかたちで外部に取り出す電源であり、クリーンなエネルギーとして注目されている。しかし、燃料電池の出力抵抗値が二次電池や電気二重層コンデンサの出力抵抗値Rに比べ大きいため、変動の大きな負荷に電力を直接供給すると負荷が大きくなった時に大きな電流Iが流れるため、下記の式から算出する出力抵抗での損失Wが大きくなり効率が悪い。
W=I*R
Currently, a fuel cell is a power source that extracts the energy generated when water is produced by chemically reacting hydrogen and oxygen in the form of electric power, and is attracting attention as clean energy. However, since the output resistance value of the fuel cell is larger than the output resistance value R of the secondary battery or the electric double layer capacitor, a large current I flows when the load increases when power is directly supplied to a load with large fluctuations. The loss W at the output resistance calculated from the following formula becomes large and the efficiency is poor.
W = I 2 * R

このため二次電池や電気二重層コンデンサに充電して電流を平均化することで効率を良くすることができる。
特開平7−15889号公報 特開平7−271249号公報
For this reason, efficiency can be improved by charging a secondary battery or an electric double layer capacitor and averaging the current.
Japanese Unexamined Patent Publication No. 7-15889 JP 7-271249 A

しかし、燃料電池、そして二次電池や電気二重層コンデンサは容量が大きいほど価格が高くなるので、負荷となる装置を駆動するのに十分な容量が必要であってもコスト面を鑑みればなるべく容量が小さいことが望ましい。また、負荷となる装置を連続に駆動でき、かつ最小規模の燃料電池システムを作り上げることが望ましい。更に、燃料電池の出力電圧は不安定なため、一般には定電圧電源で電圧を安定化してから負荷に供給するのが一般的である。   However, fuel cells, secondary batteries, and electric double layer capacitors have higher prices as their capacity increases, so even if sufficient capacity is required to drive the load device, capacity is as much as possible in view of cost. Is desirable to be small. It is also desirable to create a fuel cell system with a minimum scale that can continuously drive a load device. Furthermore, since the output voltage of the fuel cell is unstable, it is generally supplied to the load after the voltage is stabilized by a constant voltage power source.

本発明はこれらの問題点を解決するためのものであり、急激な負荷の変動でも発電装置から取り出す電流の変化を少なくし、損失を少なくでき、更に安価な、電源供給制御方法及び電源装置を提供することを目的とする。   The present invention is intended to solve these problems, and a power supply control method and a power supply device that can reduce a change in current taken out from a power generation device even in a sudden load change, reduce loss, and are less expensive. The purpose is to provide.

前記問題点を解決するために、発電装置と蓄電デバイスを並列接続して構成する電源装置から負荷への電源供給を制御する、本発明の電源供給制御方法によれば、発電装置の出力電力を、電力を供給する負荷の最大消費電力より低く、かつ負荷の動作中の所定の消費電力より大きく設定する。そして、負荷の消費電力が負荷の所定の消費電力より大きい時は蓄電デバイスの放電による負荷へ電力供給を行い、負荷の消費電力が負荷の所定の消費電力より以下の時は発電装置から負荷への電力供給を行うと共に発電装置からの電流による蓄電デバイスへの充電を行う。よって、急激な負荷の変動でも発電装置から取り出す電流の変化を少なくし、損失を少なくできる。   In order to solve the above problem, according to the power supply control method of the present invention, which controls the power supply from the power supply device configured by connecting the power generation device and the power storage device in parallel to the load, the output power of the power generation device is reduced. The power consumption is set lower than the maximum power consumption of the load supplying the power and larger than the predetermined power consumption during the operation of the load. When the power consumption of the load is larger than the predetermined power consumption of the load, power is supplied to the load by discharging the power storage device, and when the power consumption of the load is less than the predetermined power consumption of the load, The power is supplied to the power storage device with the current from the power generator. Therefore, even if the load fluctuates suddenly, the change in current taken out from the power generation device can be reduced and the loss can be reduced.

また、別の発明としての電源装置は、発電装置と蓄電デバイスと制御部とを有する。発電装置は、負荷の最大消費電力より低く、かつ負荷の動作中の所定の消費電力より大きく、出力電力を設定する発電装置である。そして、蓄電デバイスは発電装置と並列接続する。その上で、制御部は、負荷の消費電力が負荷の所定の消費電力より大きい時は蓄電デバイスの放電による負荷へ電力供給を行い、負荷の消費電力が負荷の所定の消費電力より以下の時は発電装置から負荷への電力供給を行うと共に発電装置からの電流による蓄電デバイスへの充電を行うように制御する。よって、急激な負荷の変動でも発電装置から取り出す電流の変化を少なくし、損失を少なくでき、かつ安価な電源装置を提供できる。   In addition, a power supply device as another invention includes a power generation device, a power storage device, and a control unit. The power generation device is a power generation device that sets output power that is lower than the maximum power consumption of the load and larger than a predetermined power consumption during the operation of the load. The power storage device is connected in parallel with the power generation device. In addition, when the power consumption of the load is greater than the predetermined power consumption of the load, the control unit supplies power to the load by discharging the power storage device, and when the power consumption of the load is less than the predetermined power consumption of the load. Controls to supply power from the power generator to the load and to charge the power storage device with the current from the power generator. Therefore, it is possible to provide a low-cost power supply device that can reduce a change in current taken out from the power generation device even when the load is suddenly changed, and can reduce loss.

更に、本発明の電源装置において、負荷に並列接続され、負荷に印加される入力電圧が定格電圧以下の電圧であれば当該入力電圧を一定な定格電圧にして負荷に印加する定電圧電源を設けたことにより、安定な電圧を負荷に供給できる。   Furthermore, the power supply device of the present invention is provided with a constant voltage power source that is connected in parallel to the load and that applies the input voltage to the load with a constant rated voltage if the input voltage applied to the load is equal to or lower than the rated voltage. As a result, a stable voltage can be supplied to the load.

また、負荷の所定の消費電力は負荷の平均消費電力であることが好ましい。更には、発電装置は燃料電池であることが好ましい。また、蓄電デバイスは二次電池又は電気二重層コンデンサであることが好ましい。   The predetermined power consumption of the load is preferably the average power consumption of the load. Furthermore, the power generation device is preferably a fuel cell. Further, the electricity storage device is preferably a secondary battery or an electric double layer capacitor.

更に、蓄電デバイスの表面温度を検出する温度センサと、該温度センサからの検出信号に基づいて蓄電デバイスの充電状態を検知し、検知した蓄電デバイスの充電状態に応じて充電電流の供給を制御する充電制御回路とを設けたことにより、効率的な充電制御を行うことができる。   Furthermore, a temperature sensor that detects the surface temperature of the power storage device, and a charge state of the power storage device is detected based on a detection signal from the temperature sensor, and charging current supply is controlled according to the detected charge state of the power storage device. By providing the charge control circuit, efficient charge control can be performed.

また、蓄電デバイスに供給される充電電流を検出する電流センサを設け、充電制御回路は、該電流センサからの検出信号に基づいて蓄電デバイスの充電状態を検知し、検知した蓄電デバイスの充電状態に応じて充電電流の供給を制御する。よって、より一層効率的な充電制御を行うことができる。   In addition, a current sensor that detects a charging current supplied to the power storage device is provided, and the charge control circuit detects a charge state of the power storage device based on a detection signal from the current sensor, and determines the detected charge state of the power storage device. The supply of charging current is controlled accordingly. Therefore, more efficient charge control can be performed.

更に、発電装置と蓄電デバイスの間にスイッチを設け、充電制御回路によりスイッチの開閉が制御されることにより、二次電池などの蓄電デバイスを電気的に切り離し可能とし、燃料電池などの発電装置からの不必要な蓄電デバイスへの充電をなくすことができる。   Furthermore, a switch is provided between the power generation device and the power storage device, and the opening and closing of the switch is controlled by the charge control circuit, so that the power storage device such as a secondary battery can be electrically disconnected from the power generation device such as a fuel cell. It is possible to eliminate unnecessary charging of the electricity storage device.

また、発電装置と蓄電デバイスの間に第1のスイッチを、蓄電デバイスと定電圧電源の間に第2のスイッチをそれぞれ設け、蓄電デバイスの充放電に応じて各スイッチが開閉することにより、二次電池などの蓄電デバイスを電気的に切り離し可能とし必要としないときは定電圧電源での電流の消費をなくし、燃料電池などの発電装置からの不必要な蓄電デバイスへの充電をなくすことができる。   In addition, a first switch is provided between the power generation device and the power storage device, and a second switch is provided between the power storage device and the constant voltage power source, and each switch opens and closes according to charge / discharge of the power storage device. When electricity storage devices such as secondary batteries can be electrically disconnected and are not required, current consumption with constant voltage power supplies can be eliminated, and unnecessary charging of electricity storage devices from power generators such as fuel cells can be eliminated. .

更に、第1のスイッチと第2のスイッチは互いに連動して開閉することが好ましい。   Furthermore, it is preferable that the first switch and the second switch open and close in conjunction with each other.

また、負荷は記録装置の記録を行うための駆動手段であり、そして記録装置における記録開始時で発電装置の出力電力以上の電力を要する場合は、蓄電デバイスの放電による駆動手段へ電力供給を行う。よって、連続枚数の印刷出力を行う際、燃料電池などの発電装置の平均電力が負荷である記録装置の駆動手段が消費する平均電力を下回っても二次電池などの蓄電デバイスからの電力で印刷動作が可能であり、更に燃料電池などの発電装置の発電能力を下げることができ、安価な燃料電池でよく電源装置全体の価格を下げることができる。   In addition, the load is a driving unit for performing recording of the recording device, and when the recording device starts recording and requires more power than the output power of the power generation device, power is supplied to the driving unit by discharging the power storage device. . Therefore, when performing continuous print output, even if the average power of a power generator such as a fuel cell is lower than the average power consumed by the drive means of the recording device that is the load, printing is performed with the power from the power storage device such as a secondary battery. The power generation capability of the power generation device such as a fuel cell can be lowered, and the price of the entire power supply device can be reduced by using an inexpensive fuel cell.

本発明の電源装置において、発電装置の出力電力を負荷の最大消費電力より低く、かつ負荷の動作中の所定の消費電力より大きく設定する。この発電装置に蓄電デバイスを並列接続する。制御部は、負荷の消費電力が負荷の所定の消費電力より大きい時は蓄電デバイスの放電による負荷へ電力供給を行い、負荷の消費電力が負荷の所定の消費電力より以下の時は発電装置から負荷への電力供給を行うと共に発電装置からの電流による蓄電デバイスへの充電を行うように制御する。よって、急激な負荷の変動でも発電装置から取り出す電流の変化を少なくし、損失を少なくでき、かつ安価な電源装置を提供できる。   In the power supply device of the present invention, the output power of the power generation device is set lower than the maximum power consumption of the load and larger than the predetermined power consumption during the operation of the load. An electricity storage device is connected in parallel to this power generation device. The control unit supplies power to the load by discharging the power storage device when the power consumption of the load is greater than the predetermined power consumption of the load, and from the power generator when the power consumption of the load is less than the predetermined power consumption of the load. Control is performed so that power is supplied to the load and the power storage device is charged by the current from the power generation device. Therefore, it is possible to provide a low-cost power supply device that can reduce a change in current taken out from the power generation device even when the load is suddenly changed, and can reduce loss.

はじめに、本発明の電源装置を適用する記録装置について説明する。
図1は本発明の電源装置を適用する記録装置の構成を示す概略斜視図である。同図に示す記録装置の一例であるインクジェット記録装置10には、記録ヘッド11とインク供給源であるインクタンクとを一体とした記録ヘッドカートリッジ12を装填するタイプのものである。この記録ヘッドカートリッジ12は、押さえ部材13によりキャリッジ14の上に固定されており、これらはシャフト15に沿って長手方向に往復運動可能となっている。そして、記録ヘッド11より吐出されたインク滴は、記録ヘッド11と微小間隔をおいて、プラテン16に記録面を規制された記録用紙17に到達し、画像を形成する。記録ヘッド11にはケーブル18及びこれに結合する端子を介して適宜のデータ供給源より画像データに応じた記録タイミングパルスが供給される。記録ヘッドカートリッジ12は、用いるインク色等に応じて、1個又は複数個(図示では2個)を設けることができる。キャリッジモータ19はキャリッジ14をシャフト15に沿って走査させるためのモータであり、ワイヤ20はキャリッジモータ19の駆動力をキャリッジ14に伝達するためのワイヤである。また、ラインフィールドモータ21はプラテンローラ16に結合して記録用紙17を搬送させるためのラインフィードモータであり、ホームポジションセンサ22はキャリッジ14のホームポジションの位置を検出するためのセンサである。
First, a recording apparatus to which the power supply device of the present invention is applied will be described.
FIG. 1 is a schematic perspective view showing the configuration of a recording apparatus to which the power supply apparatus of the present invention is applied. An ink jet recording apparatus 10 which is an example of the recording apparatus shown in the figure is of a type in which a recording head cartridge 12 in which a recording head 11 and an ink tank as an ink supply source are integrated is loaded. The recording head cartridge 12 is fixed on a carriage 14 by a pressing member 13, and can reciprocate in the longitudinal direction along the shaft 15. Then, the ink droplets ejected from the recording head 11 reach the recording paper 17 whose recording surface is regulated by the platen 16 at a minute distance from the recording head 11 and form an image. A recording timing pulse corresponding to image data is supplied to the recording head 11 from an appropriate data supply source via a cable 18 and a terminal coupled thereto. One or a plurality of recording head cartridges 12 (two in the drawing) can be provided according to the ink color used. The carriage motor 19 is a motor for scanning the carriage 14 along the shaft 15, and the wire 20 is a wire for transmitting the driving force of the carriage motor 19 to the carriage 14. The line field motor 21 is a line feed motor that is coupled to the platen roller 16 to convey the recording paper 17, and the home position sensor 22 is a sensor that detects the home position of the carriage 14.

次に、このような構成を有する図1の記録装置の一例であるインクジェット記録装置の記録制御を実行するための制御回路について、図1の記録装置の制御回路を示すブロック図である図2を用いて説明する。   Next, FIG. 2 is a block diagram showing the control circuit of the recording apparatus of FIG. 1 with respect to a control circuit for executing recording control of the ink jet recording apparatus which is an example of the recording apparatus of FIG. 1 having such a configuration. It explains using.

図2に示す図1の記録装置の一例であるインクジェット記録装置の制御回路30は、記録装置の記録動作を行うのに必要な電力を供給するために、本発明の電源装置に相当する電源装置31、記録装置の動作制御及びデータ処理を実行するためのCPU32、CPU32の制御プログラムやフォント処理のための各種データを格納するROM33、受信した画像データを含め各種データを一時格納するRAM34、ホストコンピュータ等の外部機器から送られてくる画像データを取り込むためのデータ受信部35、データ受信部35で受信した画像データをRAM34へDMA転送したり、CPU32からRAM34へのアクセスを制御するDMA/RAMコントローラ36、プリンタ固有のパラメータを格納するEEPROM等からなる不揮発性メモリ37、記録ヘッド38を駆動するヘッドドライバ39、CPU32からの制御によりヘッドドライバ39への画像データの転送とヒートパルス信号を発生するヘッドコントローラ40を含んで構成されている。更には、キャリッジモータドライバ41とキャリッジモータ42及びタイミング制御部43は、CPU32から供給される制御信号とエンコーダ等による記録タイミングパルスによって記録ヘッド38の移動(その方向を主走査方向と呼ぶ)を行う制御系であり、同様にラインフィードモータドライバ44とラインフィードモータ45は、CPU32から供給される制御信号によって記録用紙等の記録媒体の搬送(その方向を副走査方向と呼ぶ)を行う制御系である。また、インク流量検出部46は、記録ヘッド38に送られた記録信号から、所定時間内において記録のために吐出されたインク滴(ドット)の数をカウントし、インクタンクから記録ヘッド38に供給されるインクの流量を検出する。   The control circuit 30 of the ink jet recording apparatus, which is an example of the recording apparatus of FIG. 1 shown in FIG. 2, supplies power necessary for performing the recording operation of the recording apparatus, and corresponds to the power supply apparatus of the present invention. 31, a CPU 32 for executing operation control and data processing of the recording apparatus, a ROM 33 for storing a control program for the CPU 32 and various data for font processing, a RAM 34 for temporarily storing various data including received image data, and a host computer A data receiving unit 35 for taking in image data sent from an external device such as a DMA / RAM controller for transferring image data received by the data receiving unit 35 to the RAM 34 or controlling access from the CPU 32 to the RAM 34 36, an EEPROM or the like that stores printer-specific parameters Nonvolatile memory 37 is configured to include a head controller 40 for generating a transfer and heat pulse signal of the image data to the head driver 39 under the control of the head driver 39, CPU 32 for driving the recording head 38. Further, the carriage motor driver 41, the carriage motor 42, and the timing control unit 43 move the recording head 38 (this direction is referred to as a main scanning direction) by a control signal supplied from the CPU 32 and a recording timing pulse from an encoder or the like. Similarly, the line feed motor driver 44 and the line feed motor 45 are control systems that transport a recording medium such as recording paper (this direction is referred to as a sub-scanning direction) by a control signal supplied from the CPU 32. is there. The ink flow rate detection unit 46 counts the number of ink droplets (dots) ejected for recording within a predetermined time from the recording signal sent to the recording head 38 and supplies the ink droplets to the recording head 38 from the ink tank. The flow rate of the ink to be detected is detected.

次に、図1の記録装置における基本的な記録制御について、図2を用いて説明する。
先ず、データ受信部35によってホストコンピュータより入力された画像データは、DMA/RAMコントローラ36を介してRAM34に一時格納され、ROM33に格納された制御プログラムを実行してCPU32は受信コマンド、画像データ、文字コードの解析を行う。その後、入力された画像データは、CPU32により記録データに変換され、順次、RAM34に格納される。受信コマンドには記録制御情報が含まれ、この記録制御情報に応じた記録パス数により記録が行われる。1ライン分の記録データの展開が終了するか、もしくはホストコンピュータから記録命令(受信コマンドの1つ)が入力された時点で、キャリッジモータドライバ41によりキャリッジモータ42が駆動される。そして、タイミング制御部43から出力される記録タイミングパルスに同期してRAM34に格納されている記録データが、DMA/RAMコントローラ36及びヘッドコントローラ40を介してヘッドドライバ39に転送される。そして、ヘッドコントローラ40からヒートパルス信号がヘッドドライバ39に送られて記録ヘッド38からインク滴を吐出する。1ライン分の記録が終了するとラインフィードモータ45が駆動されて改行が行われ、一連の手順が終了する。このような手順を記録用紙の1ページに渡って繰り返して行うことにより、1ページ分の記録動作が完了する。
Next, basic recording control in the recording apparatus of FIG. 1 will be described with reference to FIG.
First, the image data input from the host computer by the data receiving unit 35 is temporarily stored in the RAM 34 via the DMA / RAM controller 36, and the CPU 32 executes the control program stored in the ROM 33 so that the CPU 32 receives the received command, the image data, Perform character code analysis. Thereafter, the input image data is converted into recording data by the CPU 32 and sequentially stored in the RAM 34. The reception command includes recording control information, and recording is performed with the number of recording passes corresponding to the recording control information. The carriage motor 42 is driven by the carriage motor driver 41 when the development of the recording data for one line is completed or when a recording command (one reception command) is input from the host computer. Then, the recording data stored in the RAM 34 is transferred to the head driver 39 via the DMA / RAM controller 36 and the head controller 40 in synchronization with the recording timing pulse output from the timing control unit 43. Then, a heat pulse signal is sent from the head controller 40 to the head driver 39 to eject ink droplets from the recording head 38. When the recording for one line is completed, the line feed motor 45 is driven to perform a line feed, and a series of procedures is completed. By repeating such a procedure over one page of the recording paper, the recording operation for one page is completed.

このような基本的な記録制御によって記録動作を行う記録装置の一例であるインクジェット記録装置に使用した本発明の電源装置について、具体的な数値を示して以下に説明する。なお、下記の数値は説明をし易くするためであり、この数値に限定するものではない。   The power supply device of the present invention used in an ink jet recording apparatus which is an example of a recording apparatus that performs a recording operation by such basic recording control will be described below with specific numerical values. The following numerical values are for ease of explanation, and are not limited to these numerical values.

上述したように、インクジェット記録装置はキャリッジに搭載したヘッドを往復運度させながらインクを吐出して画像を形成するため、連続印刷中の電流変化特性を示す図3のように、キャリッジの動き始めで1.45A程度のインパルス的な瞬時電流が必要である。しかし、待機状態の時は0.2A程度の電流しか必要としない。一方、連続プリント中はキャリッジの往復動作の度に、1.45Aと0.2Aの間で激しく変動するが、平均すれば0.7A程度の電流が流れることになる。この動作を本発明の電源装置における発電装置として用いる燃料電池だけで賄おうとすると1.45Aの電流を取り出すことができる燃料電池が必要であるが、二次電池や電気二重層コンデンサ等でアシストしてやれば燃料電池は0.7Aの電流を流す容量があれば連続印刷を行うことができる。   As described above, since the ink jet recording apparatus ejects ink while reciprocating the head mounted on the carriage to form an image, the carriage starts to move as shown in FIG. 3 showing the current change characteristics during continuous printing. Therefore, an impulse instantaneous current of about 1.45 A is required. However, only a current of about 0.2 A is required in the standby state. On the other hand, during continuous printing, each time the carriage reciprocates, it fluctuates between 1.45 A and 0.2 A. On average, a current of about 0.7 A flows. If this operation is to be covered only by a fuel cell used as a power generator in the power supply device of the present invention, a fuel cell capable of extracting a current of 1.45 A is required, but it can be assisted by a secondary battery, an electric double layer capacitor or the like. For example, a fuel cell can perform continuous printing if it has a capacity to pass a current of 0.7 A.

ここで、本発明の電源装置における発電装置に用いる燃料電池について簡単に説明すると、燃料電池は、膜状の電解質の両面に白金を触媒に含む炭素等の電極を設け、一方の電極(燃料極)に水素、メタノール等の還元剤を供給し、他方の電極(空気極)に空気等の酸素を含む還元剤を供給するように構成される。燃料極で白金を触媒として水素から生成される水素イオンが電解質中を燃料極から空気極に伝搬され、燃料極で水素から発生した電子が外部の負荷を通じて空気極に流れ、空気極において水素イオンと電子と酸素とにより水が生成され、一連の酸化還元反応におり電気エネルギーが生成されて外部に電圧を供給する。また、図4に示す燃料電池の電流−電圧特性図からわかるように、燃料電池の出力インピーダンスのために電流を多く取り出す程、燃料電池の電圧は低下する。この特性図から出力インピーダンスは約16Ωである。   Here, the fuel cell used for the power generator in the power supply device of the present invention will be briefly described. The fuel cell is provided with electrodes such as carbon containing platinum as a catalyst on both surfaces of a membrane electrolyte, and one electrode (fuel electrode). ) Is supplied with a reducing agent such as hydrogen or methanol, and the other electrode (air electrode) is supplied with a reducing agent containing oxygen such as air. Hydrogen ions generated from hydrogen using platinum as a catalyst at the fuel electrode are propagated in the electrolyte from the fuel electrode to the air electrode, and electrons generated from hydrogen at the fuel electrode flow to the air electrode through an external load, and hydrogen ions are generated at the air electrode. Water is generated by oxygen, electrons, and oxygen, and electric energy is generated through a series of oxidation-reduction reactions to supply voltage to the outside. As can be seen from the current-voltage characteristic diagram of the fuel cell shown in FIG. 4, the more the current is extracted for the output impedance of the fuel cell, the lower the voltage of the fuel cell. From this characteristic diagram, the output impedance is about 16Ω.

次に、本発明の電源装置について説明する。
図5は本発明の第1の実施の形態例に係る電源装置の回路構成を示すブロック図である。同図に示すように、第1の実施の形態例の電源装置100は、上述した燃料電池などの発電装置101、発電装置101と接地の間に並列接続され、例えば二次電池、電気二重層コンデンサなどの蓄電デバイス102、アノードが発電装置101と、カソードが負荷104の一端子及び蓄電デバイス102の一端子にそれぞれ接続されているダイオード103を含んで構成されている。このような構成を有する電源装置100には、上述したインクジェット記録装置におけるラインフィードモータなどの負荷200が接続されている。なお、発電装置101の出力インピーダンスは約16Ωである。
Next, the power supply device of the present invention will be described.
FIG. 5 is a block diagram showing a circuit configuration of the power supply apparatus according to the first embodiment of the present invention. As shown in the figure, the power supply device 100 of the first embodiment is connected in parallel between the power generation device 101 such as the fuel cell described above, and the power generation device 101 and the ground, for example, a secondary battery, an electric double layer. An electric storage device 102 such as a capacitor, an anode includes a power generation apparatus 101, and a cathode includes a diode 103 connected to one terminal of a load 104 and one terminal of the electric storage device 102, respectively. The power supply device 100 having such a configuration is connected to a load 200 such as a line feed motor in the above-described ink jet recording apparatus. The output impedance of the power generator 101 is about 16Ω.

このような回路構成を有する本実施の形態例の電源装置100によれば、例えば0.65Aの電流を取り出そうと、発電装置101の出力電圧は図4により30Vになる。ダイオード103の電圧降下は約1Vあるので、ダイオード103のカソードの電圧は29Vとなり、一方蓄電デバイス102は電圧が29Vのものを使用する。そして、0.65Aの電流を負荷200が消費する時は(発電装置101の出力電圧(30V))−(ダイオードでの電圧降下(1V))=29Vと、蓄電デバイス102の電圧が等しくなるので、蓄電デバイス102は充電も放電も行わない。次に、0.65Aより大きい電流を負荷200が消費する時は、図4により発電装置101の出力電圧は蓄電デバイス102の電圧より低くなるので、蓄電デバイス102は負荷が消費する電流を全て賄うために放電する。一方、0.65A以下の電流しか負荷200が消費しない時は、発電装置101の出力電圧は蓄電デバイス102の電圧より高くなるので蓄電デバイス102は充電され、かつ負荷200が消費する電流を全て発電装置101が賄う。例えば図1のインクジェット記録装置における待機時の電流は0.2Aなので、発電装置101の出力電圧は、約38Vからダイオード103での電圧降下(1V)を減算した37V、蓄電デバイス102が29Vなのでその差8Vで、出力インピーダンスが約16Ωなので蓄電デバイス102の充電電流は0.5A(=8V/16Ω)となる。つまり、充電と放電は、上述したように発電装置101の電圧、発電装置101の内部抵抗、二次電池、電気二重層コンデンサなどの蓄電デバイス102の電圧、ダイオード103の電圧降下等の回路定数を最適に設定することで、充電と放電を切り替えるための制御回路を設けることなく、自動的に充電と放電を切り替えることが可能になった。なお、充電電流だけに着目して二次電池の容量を決めれば10C〜0.05Cの範囲が実用的な限界であり、つまり二次電池の容量は0.05AH〜10AHの範囲が実用的な限界である。なぜならば、二次電池の容量が0.05AHあるいはそれ以下であると、充電が短時間で完了する反面充電時の発熱や電池の寿命の問題が発生する。また、二次電池の容量が10AHあるいはそれ以上であると発熱や寿命の点で問題ないが、充電完了まで20時間程度要してしまい、また価格や体積、重量の点で問題となる。   According to the power supply apparatus 100 of the present embodiment having such a circuit configuration, the output voltage of the power generation apparatus 101 is 30 V as shown in FIG. Since the voltage drop of the diode 103 is about 1V, the cathode voltage of the diode 103 is 29V, while the power storage device 102 uses a voltage of 29V. When the load 200 consumes a current of 0.65 A, (the output voltage (30 V) of the power generation apparatus 101) − (voltage drop (1 V) at the diode) = 29 V, the voltage of the power storage device 102 becomes equal. The power storage device 102 is neither charged nor discharged. Next, when the load 200 consumes a current larger than 0.65 A, the output voltage of the power generation apparatus 101 is lower than the voltage of the power storage device 102 according to FIG. 4, so the power storage device 102 covers all the current consumed by the load. To discharge. On the other hand, when the load 200 consumes only a current of 0.65 A or less, since the output voltage of the power generation device 101 is higher than the voltage of the power storage device 102, the power storage device 102 is charged and all the current consumed by the load 200 is generated. Device 101 covers it. For example, since the standby current in the ink jet recording apparatus of FIG. 1 is 0.2 A, the output voltage of the power generation apparatus 101 is 37 V obtained by subtracting the voltage drop (1 V) at the diode 103 from about 38 V, and the storage device 102 is 29 V. Since the difference is 8V and the output impedance is about 16Ω, the charging current of the electricity storage device 102 is 0.5A (= 8V / 16Ω). That is, as described above, charging and discharging are performed by setting circuit constants such as the voltage of the power generation apparatus 101, the internal resistance of the power generation apparatus 101, the voltage of the storage device 102 such as a secondary battery and an electric double layer capacitor, and the voltage drop of the diode 103. By optimally setting, it is possible to automatically switch between charging and discharging without providing a control circuit for switching between charging and discharging. If the capacity of the secondary battery is determined by paying attention only to the charging current, the range of 10C to 0.05C is a practical limit, that is, the capacity of the secondary battery is practically in the range of 0.05AH to 10AH. It is a limit. This is because when the capacity of the secondary battery is 0.05 AH or less, charging is completed in a short time, but problems of heat generation during charging and battery life occur. In addition, if the capacity of the secondary battery is 10 AH or more, there is no problem in terms of heat generation and life, but it takes about 20 hours to complete charging, and in terms of price, volume, and weight.

よって、本実施の形態例の電源装置100による電源供給制御方法によれば、発電装置101の出力電力を負荷200の最大消費電力より低く、かつ負荷200の動作中の平均消費電力より大きく設定し、平均消費電力以上のとき、例えば図3に示すキャリッジの動き始めで1.45A程度のインパルス的な瞬時電流が流れるときは蓄電デバイス102でアシストすることにより、発電装置101は0.7Aの電流を流す容量があれば連続印刷を行うことができる。   Therefore, according to the power supply control method by the power supply apparatus 100 of the present embodiment, the output power of the power generation apparatus 101 is set lower than the maximum power consumption of the load 200 and larger than the average power consumption during the operation of the load 200. For example, when an impulse instantaneous current of about 1.45 A flows at the beginning of the movement of the carriage shown in FIG. 3 when the average power consumption is exceeded, the power generation device 101 has a current of 0.7 A by assisting with the power storage device 102. If there is a capacity to flow, continuous printing can be performed.

次に、図6は本発明の第2の実施の形態例に係る電源装置の回路構成を示すブロック図である。同図において、図5と同じ参照符号は同じ構成要素を示す。同図に示すように、第2の実施の形態例の電源装置100は、図5に示す第1の実施の形態例の電源装置100の構成に、更に負荷200に並列に接続され、コンデンサを含む定電圧電源104を有している。このような構成を有する本実施の形態例の電源装置100によれば、定電圧電源104には発電装置101で発生した電圧からダイオード103での電圧降下(1V)で減算された電圧が供給され、定電圧電源104は供給された入力電圧は定電圧電源104の定格電圧以下の一定電圧にして負荷200に供給する。そして、負荷200、例えばインクジェット記録装置がプリンタ動作を開始すると、定電圧電源104の出力端子から負荷200に電流の供給が行われ、発電装置101の出力電圧が低下する。一方、負荷200の動作が停止すると、定電圧電源104の出力端子から負荷200への電流の供給が停止し、発電装置101の出力電圧が上昇する。   Next, FIG. 6 is a block diagram showing a circuit configuration of a power supply apparatus according to the second embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 5 denote the same components. As shown in the figure, the power supply device 100 of the second embodiment is connected in parallel to a load 200 in addition to the configuration of the power supply device 100 of the first embodiment shown in FIG. A constant voltage power supply 104 is included. According to the power supply apparatus 100 of the present embodiment having such a configuration, the constant voltage power supply 104 is supplied with a voltage obtained by subtracting a voltage drop (1V) at the diode 103 from the voltage generated by the power generation apparatus 101. The constant voltage power supply 104 supplies the supplied input voltage to the load 200 at a constant voltage lower than the rated voltage of the constant voltage power supply 104. When the load 200, for example, an ink jet recording apparatus, starts a printer operation, current is supplied from the output terminal of the constant voltage power source 104 to the load 200, and the output voltage of the power generation apparatus 101 decreases. On the other hand, when the operation of the load 200 is stopped, the supply of current from the output terminal of the constant voltage power supply 104 to the load 200 is stopped, and the output voltage of the power generator 101 is increased.

次に、図7は本発明の第3の実施の形態例に係る電源装置の回路構成を示すブロック図である。同図において、図6と同じ参照符号は同じ構成要素を示す。同図に示す第3の実施の形態例の電源装置100は、図6に示す第2の実施の形態例の電源装置100の構成における蓄電デバイス102として二次電池105を用い、更には二次電池105の表面温度を検出する温度センサ106と、当該温度センサ106による検出信号に基づいて二次電池105の充電状態を検知し後述するスイッチ108の開閉を制御する充電制御回路107と、二次電池105とダイオード103のカソードとの間に設けられたスイッチ108とを有している。このような構成を有する本実施の形態例の電源装置100によれば、温度センサ106により二次電池105の表面温度を検出し、充電制御回路107は当該検出信号に基づいて二次電池105の充電状態を検知し、例えば二次電池105の満充電状態を検知した場合はスイッチ108を開いて充電を停止する。   Next, FIG. 7 is a block diagram showing a circuit configuration of a power supply device according to a third embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 6 denote the same components. The power supply apparatus 100 according to the third embodiment shown in the figure uses a secondary battery 105 as the power storage device 102 in the configuration of the power supply apparatus 100 according to the second embodiment shown in FIG. A temperature sensor 106 that detects the surface temperature of the battery 105, a charge control circuit 107 that detects the charge state of the secondary battery 105 based on a detection signal from the temperature sensor 106, and controls opening and closing of a switch 108, which will be described later; A switch 108 provided between the battery 105 and the cathode of the diode 103 is included. According to the power supply apparatus 100 of the present embodiment having such a configuration, the temperature sensor 106 detects the surface temperature of the secondary battery 105, and the charge control circuit 107 detects the secondary battery 105 based on the detection signal. When the state of charge is detected, for example, when the fully charged state of the secondary battery 105 is detected, the switch 108 is opened to stop charging.

次に、図8は本発明の第4の実施の形態例に係る電源装置の回路構成を示すブロック図である。同図において、図7と同じ参照符号は同じ構成要素を示す。同図に示す第4の実施の形態例の電源装置100は、図7に示す第3の実施の形態例の電源装置100の構成に、二次電池105に供給される電流を検出する電流センサ109を有している。このような構成を有する本実施の形態例の電源装置100によれば、電流センサ109により二次電池105に供給される電流を検出し、充電制御回路107は当該検出信号に基づいて二次電池105の充電状態を検知し、例えば二次電池105の満充電状態を検知した場合はスイッチ108を開いて充電を停止する。   Next, FIG. 8 is a block diagram showing a circuit configuration of a power supply device according to a fourth embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 7 denote the same components. The power supply device 100 according to the fourth embodiment shown in the figure is a current sensor that detects the current supplied to the secondary battery 105 in the configuration of the power supply device 100 according to the third embodiment shown in FIG. 109. According to the power supply apparatus 100 of the present embodiment having such a configuration, the current supplied to the secondary battery 105 is detected by the current sensor 109, and the charge control circuit 107 is based on the detection signal. For example, when a fully charged state of the secondary battery 105 is detected, the switch 108 is opened to stop charging.

次に、図9は本発明の第5の実施の形態例に係る電源装置の回路構成を示すブロック図である。同図において、図6と同じ参照符号は同じ構成要素を示す。同図に示す第5の実施の形態例の電源装置100は、図6に示す第2の実施の形態例の電源装置100の構成における蓄電デバイス102として二次電池105を用い、更には発電装置101とダイオード103のアノードとの間に、またダイオード103のカソードと定電圧電源104との間に、それぞれスイッチ110,111をそれぞれ設けたものである。このような構成を有する本実施の形態例の電源装置100によれば、二次電池105の充電状態に応じてスイッチ110,111を開閉して二次電池105の充放電を制御する。また、このように2つのスイッチ110,111を設けたことにより、二次電池105を電気的に切り離し可能とし、二次電池105を必要としないときは定電圧電源104での電流の消費をなくすること、そして発電装置101からの不必要な二次電池105への充電をなくすことにより、定電圧電源104及び二次電池105の寿命を延ばすことができる。   Next, FIG. 9 is a block diagram showing a circuit configuration of a power supply device according to a fifth embodiment of the present invention. In the figure, the same reference numerals as those in FIG. 6 denote the same components. The power supply device 100 of the fifth embodiment shown in the figure uses a secondary battery 105 as the power storage device 102 in the configuration of the power supply device 100 of the second embodiment shown in FIG. Switches 110 and 111 are provided between the diode 101 and the anode of the diode 103 and between the cathode of the diode 103 and the constant voltage power source 104, respectively. According to the power supply device 100 of the present embodiment having such a configuration, charging / discharging of the secondary battery 105 is controlled by opening and closing the switches 110 and 111 according to the charge state of the secondary battery 105. Further, by providing the two switches 110 and 111 in this way, the secondary battery 105 can be electrically disconnected, and when the secondary battery 105 is not required, current consumption in the constant voltage power source 104 is eliminated. In addition, by eliminating unnecessary charging of the secondary battery 105 from the power generation apparatus 101, the lifetime of the constant voltage power supply 104 and the secondary battery 105 can be extended.

なお、図10に示すように、このスイッチ110,111が相互に連動して開閉を行うようにし、スイッチ110が閉じたことに連動してスイッチ111が開いて、発電装置101から二次電池105への充電を行い、満充電となればスイッチ110を開いて発電装置101からの充電を終了したことに連動してスイッチ111が閉じて二次電池105の放電を行い負荷200への電流供給を行う。   As shown in FIG. 10, the switches 110 and 111 are opened / closed in conjunction with each other, and the switch 111 is opened in conjunction with the switch 110 being closed. When the battery is fully charged, the switch 110 is closed in conjunction with the completion of the charging from the power generator 101 to discharge the secondary battery 105 and supply the current to the load 200. Do.

なお、充電電流だけに着目して二次電池の容量を決めれば10C〜0.05Cの範囲が実用的な限界となる。つまり、二次電池の容量は0.05AH〜10AHの範囲が実用的な限界となる。0.05AHあるいはそれ以下だと、すぐに充電が完了する反面、充電時の発熱や電池の寿命の問題が発生する。また、10AHあるいはそれ以上だと、発熱や寿命の点では申し分ないが、充電完了まで20時間程度要するし、価格や体積、重量の点で問題となる。更に、燃料電池の平均電流が、プリンタが消費する平均電流を上回っているので、何枚でも連続動作が可能である。が、連続枚数を例えば100枚と制限すれば燃料電池の平均電流がプリンタで消費する平均電流を下回っても二次電池からの電流でプリント動作が可能であり、更に燃料電池の発電能力を下げることができる。   If the capacity of the secondary battery is determined by paying attention only to the charging current, the range of 10C to 0.05C becomes a practical limit. That is, the practical limit of the secondary battery capacity is in the range of 0.05 AH to 10 AH. If it is 0.05 AH or less, charging is completed immediately, but heat generation during charging and battery life problems occur. On the other hand, if it is 10 AH or more, it is satisfactory in terms of heat generation and life, but it takes about 20 hours to complete charging, and it is problematic in terms of price, volume, and weight. Furthermore, since the average current of the fuel cell exceeds the average current consumed by the printer, any number of sheets can be operated continuously. However, if the number of continuous sheets is limited to 100 sheets, for example, even if the average current of the fuel cell is lower than the average current consumed by the printer, the printing operation can be performed with the current from the secondary battery, and the power generation capacity of the fuel cell is further reduced. be able to.

なお、本発明は上記実施の形態例に限定されるものではなく、特許請求の範囲内の記載であれば多種の変形や置換可能であることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications and substitutions are possible as long as they are described within the scope of the claims.

本発明の電源装置を適用する記録装置の構成を示す概略斜視図である。1 is a schematic perspective view illustrating a configuration of a recording apparatus to which a power supply device of the present invention is applied. 図1の記録装置の制御回路を示すブロック図である。FIG. 2 is a block diagram illustrating a control circuit of the recording apparatus in FIG. 1. 記録装置による連続印刷中の電流変化を示す特性図である。It is a characteristic view which shows the electric current change during the continuous printing by a recording device. 燃料電池の電流−電圧特性図である。It is a current-voltage characteristic view of a fuel cell. 本発明の第1の実施の形態例に係る電源装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the power supply device which concerns on the 1st Example of this invention. 本発明の第2の実施の形態例に係る電源装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the power supply device which concerns on the 2nd Example of this invention. 本発明の第3の実施の形態例に係る電源装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the power supply device which concerns on the 3rd Example of this invention. 本発明の第4の実施の形態例に係る電源装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the power supply device which concerns on the 4th Example of this invention. 本発明の第5の実施の形態例に係る電源装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the power supply device which concerns on the 5th Example of this invention. 図9のスイッチが連動する場合の電源装置の回路構成を示すブロック図である。It is a block diagram which shows the circuit structure of the power supply device when the switch of FIG. 9 interlock | cooperates.

符号の説明Explanation of symbols

100;電源装置、101;発電装置、102;蓄電デバイス、
103;ダイオード、104;定電圧電源、105;二次電池、
106;温度センサ、107;充電制御回路、
108,110,111;スイッチ、109;電流センサ、
200;負荷。
100; power supply device; 101; power generation device; 102; power storage device;
103; diode, 104; constant voltage power supply, 105; secondary battery,
106; temperature sensor; 107; charge control circuit;
108, 110, 111; switch, 109; current sensor,
200; load.

Claims (13)

発電装置と蓄電デバイスを並列接続して構成する電源装置から負荷への電源供給を制御する電源供給制御方法において、
前記発電装置の出力電力を、前記負荷の最大消費電力より低く、かつ前記負荷の動作中の所定の消費電力より大きく設定し、
前記負荷の消費電力が前記負荷の所定の消費電力より大きい時は、前記蓄電デバイスの放電による前記負荷へ電力供給を行い、
前記負荷の消費電力が前記負荷の所定の消費電力より以下の時は、前記発電装置から前記負荷への電力供給を行うと共に前記発電装置からの電流による前記蓄電デバイスへの充電を行うことを特徴とする電源供給制御方法。
In a power supply control method for controlling power supply to a load from a power supply device configured by connecting a power generation device and a power storage device in parallel,
The output power of the power generator is set lower than the maximum power consumption of the load and larger than a predetermined power consumption during operation of the load,
When the power consumption of the load is greater than the predetermined power consumption of the load, power is supplied to the load by discharging the power storage device,
When the power consumption of the load is less than the predetermined power consumption of the load, power is supplied from the power generation device to the load, and the power storage device is charged by a current from the power generation device. A power supply control method.
電力を供給する負荷の最大消費電力より低く、かつ前記負荷の動作中の所定の消費電力より大きく、出力電力を設定した発電装置と、
該発電装置と並列接続する蓄電デバイスと、
前記負荷の消費電力が前記負荷の所定の消費電力より大きい時は、前記蓄電デバイスの放電による前記負荷へ電力供給を行い、前記負荷の消費電力が前記負荷の所定の消費電力より以下の時は、前記発電装置から前記負荷への電力供給を行うと共に前記発電装置からの電流による前記蓄電デバイスへの充電を行うように制御する制御部と
を有することを特徴とする電源装置。
A power generator configured to set output power lower than the maximum power consumption of a load supplying power and larger than a predetermined power consumption during operation of the load;
An electricity storage device connected in parallel with the power generation device;
When the power consumption of the load is greater than the predetermined power consumption of the load, power is supplied to the load by discharging the power storage device, and when the power consumption of the load is less than the predetermined power consumption of the load And a control unit that controls to supply power from the power generation device to the load and to charge the power storage device with a current from the power generation device.
前記負荷に並列接続され、前記負荷に印加される入力電圧が定格電圧以下の電圧であれば当該入力電圧を一定な定格電圧にして前記負荷に印加する定電圧電源を設けた請求項2記載の電源装置。   3. A constant voltage power supply that is connected in parallel to the load and that applies a constant rated voltage to the load when the input voltage applied to the load is equal to or lower than a rated voltage is provided. Power supply. 前記負荷の所定の消費電力は、前記負荷の平均消費電力である請求項2記載の電源装置。   The power supply device according to claim 2, wherein the predetermined power consumption of the load is an average power consumption of the load. 前記発電装置は、燃料電池である請求項2記載の電源装置。   The power supply device according to claim 2, wherein the power generation device is a fuel cell. 前記蓄電デバイスは、二次電池又は電気二重層コンデンサである請求項2記載の電源装置。   The power supply device according to claim 2, wherein the power storage device is a secondary battery or an electric double layer capacitor. 前記蓄電デバイスの表面温度を検出する温度センサと、該温度センサからの検出信号に基づいて前記蓄電デバイスの充電状態を検知し、検知した前記蓄電デバイスの充電状態に応じて充電電流の供給を制御する充電制御回路とを設けた請求項2〜6のいずれかに記載の電源装置。   A temperature sensor that detects a surface temperature of the power storage device, and a charge state of the power storage device is detected based on a detection signal from the temperature sensor, and a supply of a charging current is controlled according to the detected charge state of the power storage device The power supply device according to any one of claims 2 to 6, further comprising a charge control circuit for performing the operation. 前記蓄電デバイスに供給される充電電流を検出する電流センサを設け、前記充電制御回路は、該電流センサからの検出信号に基づいて前記蓄電デバイスの充電状態を検知し、検知した前記蓄電デバイスの充電状態に応じて充電電流の供給を制御する請求項2〜7のいずれかに記載の電源装置。   A current sensor for detecting a charging current supplied to the power storage device is provided, and the charge control circuit detects a charge state of the power storage device based on a detection signal from the current sensor, and detects the detected charge of the power storage device The power supply device according to any one of claims 2 to 7, wherein supply of a charging current is controlled according to a state. 前記発電装置と前記蓄電デバイスの間にスイッチを設け、前記充電制御回路により前記スイッチの開閉が制御される請求項7又は8に記載の電源装置。   The power supply device according to claim 7 or 8, wherein a switch is provided between the power generation device and the power storage device, and the opening and closing of the switch is controlled by the charge control circuit. 前記発電装置と前記蓄電デバイスの間に第1のスイッチを、前記蓄電デバイスと前記定電圧電源の間に第2のスイッチをそれぞれ設け、前記蓄電デバイスの充放電に応じて各スイッチが開閉する請求項2記載の電源装置。   A first switch is provided between the power generation device and the power storage device, and a second switch is provided between the power storage device and the constant voltage power source, and each switch opens and closes according to charge / discharge of the power storage device. Item 3. The power supply device according to Item 2. 前記第1のスイッチと前記第2のスイッチは、互いに連動して開閉する請求項10記載の電源装置。   The power supply device according to claim 10, wherein the first switch and the second switch open and close in conjunction with each other. 前記負荷は、記録装置の記録を行うための駆動手段である請求項2又は3に記載の電源装置。   The power supply apparatus according to claim 2, wherein the load is a driving unit for performing recording of the recording apparatus. 前記記録装置における記録開始時で前記発電装置の出力電力以上の電力を要する場合は、前記蓄電デバイスの放電による前記駆動手段へ電力供給を行う請求項12記載の電源装置。

The power supply device according to claim 12, wherein when the recording device starts recording and requires more power than the output power of the power generation device, power is supplied to the driving unit by discharging the power storage device.

JP2004353477A 2004-12-07 2004-12-07 Power supply control method and power unit Pending JP2006166577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353477A JP2006166577A (en) 2004-12-07 2004-12-07 Power supply control method and power unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353477A JP2006166577A (en) 2004-12-07 2004-12-07 Power supply control method and power unit

Publications (1)

Publication Number Publication Date
JP2006166577A true JP2006166577A (en) 2006-06-22

Family

ID=36667970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353477A Pending JP2006166577A (en) 2004-12-07 2004-12-07 Power supply control method and power unit

Country Status (1)

Country Link
JP (1) JP2006166577A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099872A1 (en) * 2007-02-14 2008-08-21 Nec Corporation Ic module system
KR20170017600A (en) * 2015-08-07 2017-02-15 한국과학기술원 Portable electronic device for aging mitigating of power supply-connected batteries

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099872A1 (en) * 2007-02-14 2008-08-21 Nec Corporation Ic module system
KR20170017600A (en) * 2015-08-07 2017-02-15 한국과학기술원 Portable electronic device for aging mitigating of power supply-connected batteries
KR101717365B1 (en) * 2015-08-07 2017-03-16 한국과학기술원 Portable electronic device for aging mitigating of power supply-connected batteries

Similar Documents

Publication Publication Date Title
JP2006286321A (en) Fuel cell system, electronic apparatus equipped with the same, and image formation device
US7300134B2 (en) Image forming apparatus and method for humidifying in head cap
JP4605055B2 (en) Printing device, supply power control device, and computer program
JP4724331B2 (en) Ink jet printer performing power control and control method of ink jet printer
CN1078830A (en) Battery charge controller and the electronic equipment of this device is housed
JP2012125928A (en) Recording apparatus and power apparatus
JP2006166577A (en) Power supply control method and power unit
US20130257930A1 (en) Powering a wireless printer during sleep mode
JP4922196B2 (en) Thermal printer
JP4843898B2 (en) Fuel cell device and control method thereof
JP2006260120A (en) Electronic apparatus system
JP2006285605A (en) Power supply apparatus, recording device including the apparatus, electronic equipment, and power supply system including the recording device
JP2006210176A (en) Power supply device, and electron/electric equipment and image forming apparatus using device
JP2005331462A (en) Method and detector for detecting voltage reduction in line printer
CN215883059U (en) Thermal transfer label printer with low-voltage rechargeable battery
JP2008243398A (en) Fuel cell system, electronic device, and image forming device
JP4564738B2 (en) Inkjet recording device
US11618272B2 (en) Printing apparatus
JP5624590B2 (en) Printing device
JP2006236610A (en) Power source system, electronic equipment, and image forming device
JPH11262193A (en) Battery driven equipment, power supplying unit, and system
JP2009093949A (en) Fuel cell system and electronic device
US7073897B2 (en) Ink jet recording apparatus of mobile type
JP4779727B2 (en) Printing device
JP2006154939A (en) Electronic equipment and fuel cell control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818