JP2006166526A - Provision for preventing instantaneous voltage drop - Google Patents

Provision for preventing instantaneous voltage drop Download PDF

Info

Publication number
JP2006166526A
JP2006166526A JP2004351320A JP2004351320A JP2006166526A JP 2006166526 A JP2006166526 A JP 2006166526A JP 2004351320 A JP2004351320 A JP 2004351320A JP 2004351320 A JP2004351320 A JP 2004351320A JP 2006166526 A JP2006166526 A JP 2006166526A
Authority
JP
Japan
Prior art keywords
voltage drop
reactor
instantaneous voltage
power system
load device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004351320A
Other languages
Japanese (ja)
Inventor
Naoya Eguchi
直也 江口
Toshie Miura
敏栄 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2004351320A priority Critical patent/JP2006166526A/en
Publication of JP2006166526A publication Critical patent/JP2006166526A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To compensate the lowering of power factor and voltage drop of a load system due to a reactor constituting a provision for preventing instantaneous voltage drop installed between a power system and its load system. <P>SOLUTION: The provision for preventing instantaneous voltage drop 20 comprises a switch 21, a reactor 22, and a parallel inverter 24 and when a power system 1 is sound, a parallel inverter 23 feeds a compensation current Iconv for bringing the voltage across a load apparatus 2 to a predetermined level thus improving the power factor when viewed from the power system 1 while sustaining the voltage across the load apparatus 2 at a predetermined level. When the power system 1 enters power failure state subsequently, the parallel inverter 23 supplies power to the load apparatus 2. Energy stored in the reactor 22 functions to sustain the voltage across the load apparatus 2 in a substantially normal state even at the time of transient. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、商用電源などの電力系統とその負荷機器との間に設置される瞬時電圧降下対策装置に関する。   The present invention relates to an instantaneous voltage drop countermeasure device installed between a power system such as a commercial power supply and its load equipment.

近年、パワーエレクトロニクス機器,コンピュータ機器,電子機器など、その電源としての電力系統の電圧変動の影響を受け易い負荷機器が増大していることから、前記電力系統が特に高圧系統の場合、その負荷機器には自家発電設備などのバックアップ電源を設置し、さらに、前記電力系統と負荷機器との間に、この電力系統の停電や電圧低下時に該電力系統から負荷機器を切り離す瞬時電圧降下対策装置が設けられている。   In recent years, load devices, such as power electronics devices, computer devices, and electronic devices, which are easily affected by voltage fluctuations in the power system as a power source thereof have increased. Therefore, when the power system is a high-voltage system, the load device In addition, a backup power source such as a private power generation facility is installed, and an instantaneous voltage drop countermeasure device is provided between the power system and the load device to disconnect the load device from the power system in the event of a power failure or voltage drop of the power system. It has been.

図11は、この種の瞬時電圧低下対策装置の従来例を示す回路構成図であり、下記非特許文献1に記載されている回路と同様構成のものである。   FIG. 11 is a circuit configuration diagram showing a conventional example of this type of instantaneous voltage drop countermeasure device, which has the same configuration as the circuit described in Non-Patent Document 1 below.

すなわち図11において、1は商用電源などの電力系統、10は電力系統1と負荷機器2,自家発電設備3などからなる負荷系統との間に挿設された瞬時電圧降下対策装置であり、この瞬時電圧降下対策装置10には電力系統1側の遮断器11と、リアクトル12と、サイリスタスイッチ(以下、サイリスタSWとも称する)13と、前記負荷系統側の遮断器14と、補助変圧器15と、補助変圧器15で検知した電力系統1の電圧値に基づいてサイリスタSW13の動作を制御するサイリスタSW制御回路16とを備えている。   That is, in FIG. 11, 1 is an electric power system such as a commercial power source, 10 is an instantaneous voltage drop countermeasure device inserted between the electric power system 1 and a load system consisting of the load device 2, the private power generation facility 3, etc. The instantaneous voltage drop countermeasure device 10 includes a breaker 11 on the power system 1 side, a reactor 12, a thyristor switch (hereinafter also referred to as a thyristor SW) 13, a breaker 14 on the load system side, an auxiliary transformer 15, And a thyristor SW control circuit 16 for controlling the operation of the thyristor SW 13 based on the voltage value of the power system 1 detected by the auxiliary transformer 15.

図11に示した従来の瞬時電圧低下対策装置の動作を、図12に示したその動作波形図を参照しつつ、以下に説明する。   The operation of the conventional instantaneous voltage drop countermeasure device shown in FIG. 11 will be described below with reference to the operation waveform diagram shown in FIG.

先ず、図12に示す時刻t0 直前までは電力系統1の電圧Vsが健全なため、閉路している遮断器11,リアクトル12,サイリスタSW制御回路16からのオン指令信号により導通状態にあるサイリスタSW13,閉路している遮断器14それぞれを介して電力系統1から負荷機器2に電流Isが流れている。 First, since the voltage Vs of the power system 1 is healthy until immediately before time t 0 shown in FIG. A current Is flows from the power system 1 to the load device 2 through the SW 13 and the closed circuit breaker 14.

次に時刻t0 で、電力系統1が何らかの要因で停電状態に陥ると、この時から電力系統1の電圧Vsが零の状態となるが、リアクトル12に蓄えられているエネルギーによりリアクトル12の両端電圧Vrが時刻t0 より図示のように変化し、この電圧Vrにより数ミリ秒程度の期間は負荷機器2の両端電圧Vloadをほぼ正常な状態に維持するための電流Isが流れ続ける。 Next, at time t 0 , when the power system 1 falls into a power outage state for some reason, the voltage Vs of the power system 1 becomes zero from this time. The voltage Vr changes as shown in the figure from time t 0 , and the current Is for maintaining the voltage Vload across the load device 2 in a substantially normal state continues to flow for a period of several milliseconds due to the voltage Vr.

また、上述の電圧Vsが零の状態は補助変圧器15を介したサイリスタSW制御回路16が検知し、サイリスタSW13へオフ指令信号を送出することにより、時刻t1 で電流Isが零となって、サイリスタSW13が遮断状態になり、この遮断状態になったサイリスタSW13により、以後は電力系統1が負荷機器2,自家発電設備3などからなる負荷系統から切り離され、自家発電設備3より負荷機器2に電力が供給される状態となる。 Further, the voltage Vs is zero state of the above-detected thyristor SW control circuit 16 via an auxiliary transformer 15, by sending an OFF command signal to the thyristor SW13, current Is at time t 1 becomes zero Then, the thyristor SW13 enters a cut-off state, and the thyristor SW13 in the cut-off state thereafter disconnects the power system 1 from the load system including the load equipment 2, the private power generation equipment 3, and the like, and the load equipment 2 from the private power generation equipment 3 In this state, power is supplied to.

この瞬時電圧低下対策装置10において、サイリスタSW13は電力系統1の電圧Vsの半サイクル以内の高速遮断が行えるので、遮断器11,遮断器14が閉路状態から、電力系統1の停電状態に陥った時点直後に発せられる遮断指令により開路状態に移行するのに時間が要しても、この時間が前記負荷系統に影響を与えることはない。
特開2000−287458号公報(第5頁,図1など)。 菅原他,「サイリスタスイッチによる瞬時停電対策装置」,産業電力電気応用研究会資料,IEA−01−6,2001年3月16日,社団法人電気学会。
In this instantaneous voltage drop countermeasure device 10, the thyristor SW 13 can perform high-speed interruption within a half cycle of the voltage Vs of the power system 1, so that the circuit breaker 11 and the circuit breaker 14 fall from the closed state to the power failure state of the power system 1. Even if it takes time to shift to the open circuit state by the shut-off command issued immediately after this time, this time does not affect the load system.
Japanese Patent Laid-Open No. 2000-287458 (page 5, FIG. 1, etc.). Sugawara et al., “Instantaneous power failure countermeasure device using thyristor switch”, Industrial Electric Power Application Study Group, IEA-01-6, March 16, 2001, Institute of Electrical Engineers of Japan.

図11に示した瞬時電圧降下対策装置10において、上述の動作を行わせるために、例えば、リアクトル12のパーセントインピーダンス(%Z)を30%に設定し、負荷機器2を純抵抗負荷とすると、図12の動作波形図および図13のベクトル図に示すように、電力系統1の電圧Vsが定格電圧(100%),電流Isが定格電流(100%)のときにはリアクトル12の両端電圧Vsが30%となり、このときの電圧Vsと電流Isとの位相差が17°(電気角)となり、従って、電力系統1から見た力率は約0.96、負荷機器2の両端電圧Vloadは95%となり、その結果、電力系統1が健全時におけるリアクトル12に起因した電力系統1から見た力率低下と負荷機器2の両端電圧の低下とを招くという問題点があった。   In the instantaneous voltage drop countermeasure device 10 shown in FIG. 11, in order to perform the above-described operation, for example, when the percent impedance (% Z) of the reactor 12 is set to 30% and the load device 2 is a pure resistance load, As shown in the operation waveform diagram of FIG. 12 and the vector diagram of FIG. 13, the voltage Vs across the reactor 12 is 30 when the voltage Vs of the power system 1 is the rated voltage (100%) and the current Is is the rated current (100%). The phase difference between the voltage Vs and the current Is at this time is 17 ° (electrical angle). Therefore, the power factor viewed from the power system 1 is about 0.96, and the voltage Vload across the load device 2 is 95%. As a result, there is a problem in that the power system 1 caused by the reactor 12 when the power system 1 is healthy causes a power factor reduction as viewed from the power system 1 and a voltage drop across the load device 2.

上記問題点を解消するために、例えば、上記特許文献1に開示されている回路例では、図11におけるリアクトル12の代わりに直列インバータを備え、この直列インバータにより電力系統1の電圧低下を補償するようにしているが、この直列インバータは負荷機器への有効電力の一部を分担することからをその出力容量が大きくなり、さらに、広い出力電圧範囲で高速応答が要求され、その結果、この瞬時電圧降下対策装置の大型化と価格上昇とを招くという新たな問題点があった。   In order to solve the above problem, for example, in the circuit example disclosed in Patent Document 1, a series inverter is provided instead of the reactor 12 in FIG. 11, and the voltage drop of the power system 1 is compensated by this series inverter. However, since this series inverter shares a part of the active power to the load equipment, its output capacity increases, and further, a high-speed response is required in a wide output voltage range. There was a new problem that the voltage drop countermeasure device was increased in size and increased in price.

この発明の目的は上記問題点を解消した瞬時電圧降下対策装置を提供することにある。   An object of the present invention is to provide an instantaneous voltage drop countermeasure device that solves the above problems.

この第1の発明の瞬時電圧降下対策装置にはスイッチと瞬時電圧降下補償用のリアクトルと並列インバータとを備え、商用電源などの電力系統とその負荷機器との間に、前記スイッチと前記リアクトルとを直列接続してなる回路の両端を接続するとともに、前記並列インバータを該インバータの出力側に備える連系リアクトルなどを介して前記負荷機器に接続し、前記電力系統が健全時には、前記負荷機器の両端電圧と所定の出力電圧設定値との偏差を零にする調節演算結果から導出された補償電流指令値としての無効電流指令値に基づいて前記並列インバータを動作させることを特徴とする。   The instantaneous voltage drop countermeasure device according to the first aspect of the present invention includes a switch, a reactor for compensating instantaneous voltage drop, and a parallel inverter. Between the power system such as a commercial power supply and its load device, the switch, the reactor, Are connected to the load device via a connected reactor or the like provided on the output side of the inverter, and when the power system is healthy, The parallel inverter is operated based on a reactive current command value as a compensation current command value derived from an adjustment calculation result that makes a deviation between a both-end voltage and a predetermined output voltage set value zero.

第2の発明の瞬時電圧降下対策装置にはスイッチと瞬時電圧降下補償用のリアクトルと並列インバータとを備え、商用電源などの電力系統とその負荷機器との間に、前記スイッチと前記リアクトルとを直列接続してなる回路の両端を接続するとともに、前記並列インバータを該インバータの出力側に備える連系リアクトルなどを介して前記負荷機器に接続し、前記電力系統が健全時には、前記負荷機器への電流を有効電流成分と無効電流成分とに分解したそれぞれの成分から該負荷機器の両端電圧が所望の値を維持するために導出された補償電流指令値に基づいて前記並列インバータを動作させることを特徴とする。   The instantaneous voltage drop countermeasure device of the second invention comprises a switch, a reactor for compensating the instantaneous voltage drop, and a parallel inverter, and the switch and the reactor are connected between a power system such as a commercial power source and its load device. Connect both ends of the circuit connected in series, and connect the parallel inverter to the load device via a connected reactor or the like provided on the output side of the inverter, when the power system is healthy, to the load device The parallel inverter is operated based on a compensation current command value derived to maintain a desired voltage across the load device from each component obtained by decomposing the current into an active current component and a reactive current component. Features.

第3の発明の瞬時電圧降下対策装置にはスイッチと瞬時電圧降下補償用のリアクトルと並列インバータとを備え、商用電源などの電力系統とその負荷機器との間に、前記スイッチと前記リアクトルとを直列接続してなる回路の両端を接続するとともに、前記並列インバータを該インバータの出力側に備える連系リアクトルなどを介して前記負荷機器に接続し、前記電力系統が健全時には、前記負荷機器の両端電圧と所定の出力電圧設定値との偏差を零にする調節演算結果から導出された補償電流指令値としての無効電流指令値と、該負荷機器への電流を有効電流成分と無効電流成分とに分解したそれぞれの成分から該負荷機器の両端電圧が所望の値を維持するために導出された補償電流指令値とを加算してなる新たな補償電流指令値に基づいて前記並列インバータを動作させることを特徴とする。   The instantaneous voltage drop countermeasure device of the third invention comprises a switch, a reactor for compensating the instantaneous voltage drop, and a parallel inverter, and the switch and the reactor are provided between a power system such as a commercial power source and the load device. Connect both ends of a circuit connected in series, and connect the parallel inverter to the load device via a connected reactor or the like provided on the output side of the inverter. When the power system is healthy, both ends of the load device A reactive current command value as a compensation current command value derived from an adjustment calculation result that makes a deviation between a voltage and a predetermined output voltage setting value zero, and a current to the load device into an active current component and a reactive current component Based on a new compensation current command value obtained by adding a compensation current command value derived to maintain the desired voltage across the load device from each decomposed component. And wherein the operating the parallel inverter.

第4の発明は前記第1〜第3の発明の瞬時電圧降下対策装置において、前記並列インバータとの負荷機器との間に進相コンデンサを付加したことを特徴とする。   According to a fourth invention, in the instantaneous voltage drop countermeasure device according to the first to third inventions, a phase advance capacitor is added between the parallel inverter and a load device.

第5の発明は前記第1〜第4の発明の瞬時電圧降下対策装置において、
前記電力系統に瞬時電圧降下が発生したときには、前記スイッチを閉路状態から開路状態に移行させるとともに、前記並列インバータを前記負荷機器への電源として動作させることを特徴とする。
A fifth invention is the instantaneous voltage drop countermeasure device of the first to fourth inventions,
When an instantaneous voltage drop occurs in the power system, the switch is shifted from a closed state to an open state, and the parallel inverter is operated as a power source for the load device.

この発明の瞬時電圧降下対策装置によれば、後述の如く、前記並列インバータにより前記リアクトルに起因する電力系統から見た力率の低下と負荷機器への電圧低下が解消されるので、安定した好適な電力を負荷機器に供給することができる。   According to the instantaneous voltage drop countermeasure device of the present invention, as will be described later, the parallel inverter eliminates the power factor drop and the voltage drop to the load device as seen from the power system caused by the reactor. Power can be supplied to load equipment.

図1はこの発明の第1の実施の形態を示す瞬時電圧降下対策装置の回路構成図であり、この図において、図11に示した従来例回路構成と同一機能を有するものには同一符号を付している。   FIG. 1 is a circuit configuration diagram of an instantaneous voltage drop countermeasure device showing a first embodiment of the present invention. In this figure, components having the same functions as those of the conventional circuit configuration shown in FIG. It is attached.

すなわち図1に示した瞬時電圧降下対策装置20には、例えばサイリスタSWなど高速遮断機能を有するスイッチ21と、リアクトル12と同一仕様で製作されるリアクトル22と、並列インバータ23〜25の内の何れか1台とを備えている。   That is, the instantaneous voltage drop countermeasure device 20 shown in FIG. 1 includes a switch 21 having a high-speed cutoff function such as a thyristor SW, a reactor 22 manufactured with the same specifications as the reactor 12, and any of the parallel inverters 23 to 25. Or one.

この瞬時電圧降下対策装置20の動作を、図2に示す動作ベクトル図を参照しつつ、以下に説明する。   The operation of the instantaneous voltage drop countermeasure device 20 will be described below with reference to the operation vector diagram shown in FIG.

図2(イ)は瞬時電圧低下対策装置20における前記並列インバータを動作させないときのベクトル図を示し、このときには電力系統1から瞬時電圧低下対策装置20に流れる電流Isと、瞬時電圧低下対策装置20から負荷機器2への電流ILとが等しく、これらの電流は電力系統1の電圧Vsに対して遅れ位相となっている。その結果、負荷機器2の両端電圧Vloadが図示の如く電圧Vsに対して低下した値となっている。 FIG. 2 (a) shows a vector diagram when the parallel inverter in the instantaneous voltage drop countermeasure device 20 is not operated. At this time, the current Is flowing from the power system 1 to the instantaneous voltage drop countermeasure device 20 and the instantaneous voltage drop countermeasure device 20 are shown. Is equal to the current I L to the load device 2, and these currents are in a lagging phase with respect to the voltage Vs of the power system 1. As a result, the both-ends voltage Vload of the load device 2 is a value that is lower than the voltage Vs as shown in the figure.

一方、図2(ロ)は瞬時電圧低下対策装置20における前記並列インバータを動作させたときのベクトル図を示し、このときには前記並列インバータから図示の如き位相,振幅の補償電流Iconvを注入することにより、電力系統1の電圧Vsと負荷機器2の両端電圧Vloadとがほぼ等しくでき、電力系統1から見た力率も改善することができる。   On the other hand, FIG. 2B shows a vector diagram when the parallel inverter in the instantaneous voltage drop countermeasure device 20 is operated. At this time, by injecting a compensation current Iconv having a phase and amplitude as shown from the parallel inverter. The voltage Vs of the power system 1 and the voltage Vload across the load device 2 can be made substantially equal, and the power factor viewed from the power system 1 can also be improved.

図3はこの発明の第2の実施の形態を示す瞬時電圧降下対策装置の回路構成図であり、この図において、図1に示した回路構成と同一機能を有するものには同一符号を付している。すなわち、図3に示した瞬時電圧降下対策装置30が図1に示した瞬時電圧降下対策装置20と異なる点は、進相コンデンサ31を備えていることである。   FIG. 3 is a circuit configuration diagram of an instantaneous voltage drop countermeasure device showing a second embodiment of the present invention. In this figure, components having the same functions as those of the circuit configuration shown in FIG. ing. That is, the instantaneous voltage drop countermeasure device 30 shown in FIG. 3 is different from the instantaneous voltage drop countermeasure device 20 shown in FIG. 1 in that a phase advance capacitor 31 is provided.

一般に負荷機器2は遅れ力率であり、遅れの無効電力を取るために負荷機器2の両端電圧が上述の如く低下する。これに対して前記並列インバータからは進みの無効電力を出力するが、この瞬時電圧降下対策装置30では前以って負荷機器2が取る遅れの無効電力量を想定し、その全て或いは一部を補償する容量の進相コンデンサ31を設置している。従って、負荷機器2の容量が軽くなり、進相コンデンサ31が取る進みの無効電力が過剰になる場合には、前記並列インバータがこれを打ち消すように遅れの無効電力を取るように動作すればよい。その結果、前記並列インバータが出力すべき平均無効電力が削減され、運転効率が向上し、前記並列インバータの容量を低減することができる。   In general, the load device 2 has a delay power factor, and the voltage across the load device 2 decreases as described above in order to take a reactive power with a delay. On the other hand, the reactive power of the leading is output from the parallel inverter, but the instantaneous voltage drop countermeasure device 30 assumes the reactive power amount of the delay that the load device 2 takes in advance, and all or part of it is assumed. A phase advance capacitor 31 having a capacity to compensate is provided. Accordingly, when the capacity of the load device 2 becomes light and the reactive power taken by the phase advance capacitor 31 becomes excessive, the parallel inverter may be operated so as to take the reactive power delayed so as to cancel it. . As a result, the average reactive power to be output by the parallel inverter is reduced, the operation efficiency is improved, and the capacity of the parallel inverter can be reduced.

図4はこの発明の第1の実施例を示す瞬時電圧降下対策装置の回路構成図であり、この瞬時電圧降下対策装置20にはスイッチ21と、リアクトル22と、インバータ回路23a,連系リアクトル23b,直流コンデンサ23c,制御回路230からなる並列インバータ23と、補助変圧器26とを備えている。ここで、連系リアクトル23bは相当の漏れインダクタンスを持つ変圧器でも良く、更に前記変圧器とリアクトルの双方を組み合わせて用いても良い。   FIG. 4 is a circuit configuration diagram of the instantaneous voltage drop countermeasure device according to the first embodiment of the present invention. The instantaneous voltage drop countermeasure device 20 includes a switch 21, a reactor 22, an inverter circuit 23a, and an interconnected reactor 23b. , A DC capacitor 23 c, a parallel inverter 23 including a control circuit 230, and an auxiliary transformer 26. Here, the interconnected reactor 23b may be a transformer having a considerable leakage inductance, and may be used in combination with both the transformer and the reactor.

図5は図4に示した制御回路230の詳細回路構成図であり、この制御回路230には負荷機器2の両端電圧を設定する出力電圧設定器231と、負荷機器2の両端電圧を検出する補助変圧器26から得られる交流電圧を対応した直流電圧に変換する電圧検出器232と、出力電圧設定器231からの設定値と電圧検出器232からの検出値との偏差を求める加算演算器233と、この偏差を零にする調節演算を行う電圧調節器234と、この調節演算結果に基づいて後述の補償電流指令値Iconv*(交流量)としての無効電流指令値を生成する無効電流指令演算器235とを備えている。すなわち、前記調節演算結果が負荷機器2の両端電圧を増大させる極性の場合には、補助変圧器26からの交流電圧の位相に対して90°進み位相でその振幅はこの調節演算結果の絶対値に比例する値(交流量)を前記無効電流指令値とし、また、前記調節演算結果が負荷機器2の両端電圧を減少させる極性の場合には、補助変圧器26からの交流電圧の位相に対して90°遅れ位相でその振幅はこの調節演算結果の絶対値に比例する値(交流量)を前記無効電流指令値としている。 FIG. 5 is a detailed circuit configuration diagram of the control circuit 230 shown in FIG. 4. The control circuit 230 detects an output voltage setting unit 231 that sets a voltage across the load device 2 and a voltage across the load device 2. A voltage detector 232 that converts an AC voltage obtained from the auxiliary transformer 26 into a corresponding DC voltage, and an addition calculator 233 that obtains a deviation between a set value from the output voltage setter 231 and a detected value from the voltage detector 232 And a voltage regulator 234 that performs an adjustment operation to make this deviation zero, and a reactive current command calculation that generates a reactive current command value as a compensation current command value Iconv * (alternating current amount) to be described later based on the adjustment calculation result Instrument 235. That is, when the adjustment calculation result has a polarity that increases the voltage across the load device 2, the amplitude is an absolute value of the adjustment calculation result at a phase advanced by 90 ° with respect to the phase of the AC voltage from the auxiliary transformer 26. The reactive current command value is a value proportional to the reactive current command value, and if the adjustment calculation result has a polarity that reduces the voltage across the load device 2, the phase of the AC voltage from the auxiliary transformer 26 is The reactive current command value is a value (AC amount) whose amplitude is 90 ° delayed and proportional to the absolute value of the adjustment calculation result.

以下に、図4に示した瞬時電圧降下対策装置20の動作を説明する。   The operation of the instantaneous voltage drop countermeasure device 20 shown in FIG. 4 will be described below.

すなわち図4に示した並列インバータ23は、電力系統1が健全時にはリアクトル22を介した電源系統1と連系運転しており、制御回路230からの上述の如き補償電流指令値Iconv*に基づいた補償電流Iconvを注入することにより、負荷機器2の両端電圧を出力電圧設定器231の設定値に保ちながら、電力系統1から見た力率も改善するとともに、連系リアクトル23bとインバータ回路23aとを介して直流コンデンサ23cに直流電圧を充電しつつ待機している。そして、電力系統1が何らかの要因で停電状態に陥ると、閉路状態のスイッチ21を開路状態に移行させるとともに、負荷機器2に対して直流コンデンサ23cに充電されていた電力を供給する。このとき、スイッチ21が実際に開路するまでに時間遅れが生ずるが、この時間遅れの間は、リアクトル22に蓄えられているエネルギーが負荷機器2の両端電圧をほぼ正常な状態に維持するように機能するために、負荷機器2の両端電圧の低下が抑制される。 That is, the parallel inverter 23 shown in FIG. 4 is connected to the power supply system 1 via the reactor 22 when the power system 1 is healthy, and is based on the compensation current command value Iconv * as described above from the control circuit 230. By injecting the compensation current Iconv, while maintaining the voltage across the load device 2 at the set value of the output voltage setter 231, the power factor seen from the power system 1 is improved, and the interconnection reactor 23b and the inverter circuit 23a The DC capacitor 23c is in standby while charging the DC voltage via the. When the power system 1 falls into a power failure state for some reason, the switch 21 in the closed state is shifted to the open state, and the power charged in the DC capacitor 23c is supplied to the load device 2. At this time, a time delay occurs until the switch 21 is actually opened. During this time delay, the energy stored in the reactor 22 maintains the voltage across the load device 2 in a substantially normal state. In order to function, a decrease in the voltage across the load device 2 is suppressed.

なお、連系リアクトル23bに高調波抑制機能を持つ必要があれば、これと並列にフィルタコンデンサを追加装備することでその要求を満たすことができる。   In addition, if it is necessary for the interconnection reactor 23b to have a harmonic suppression function, the requirement can be satisfied by additionally installing a filter capacitor in parallel with this.

図6はこの発明の第2の実施例を示す瞬時電圧降下対策装置の回路構成図であり、この瞬時電圧降下対策装置20にはスイッチ21と、リアクトル22と、インバータ回路23a,連系リアクトル23b,直流コンデンサ23c,制御回路240からなる並列インバータ24、または、インバータ回路23a,連系リアクトル23b,直流コンデンサ23c,制御回路250からなる並列インバータ25の何れか1台と、補助変圧器26と、CT(計器用変成器)27とを備えている。   FIG. 6 is a circuit configuration diagram of the instantaneous voltage drop countermeasure device according to the second embodiment of the present invention. The instantaneous voltage drop countermeasure device 20 includes a switch 21, a reactor 22, an inverter circuit 23a, and an interconnected reactor 23b. , A DC inverter 23c, a parallel inverter 24 composed of a control circuit 240, or a parallel inverter 25 composed of an inverter circuit 23a, a connected reactor 23b, a DC capacitor 23c, a control circuit 250, an auxiliary transformer 26, CT (instrument transformer) 27.

図7は図6に示した制御回路240の詳細回路構成図であり、この制御回路240には負荷機器2の両端電圧を検出する補助変圧器26から得られる交流電圧の位相に対してCT27から得られる負荷機器2への電流を有無効電流成分Iqと有効電流成分Ipとに分解する有効・無効電流演算器241と、この有効電流成分Ipの変動に対する負荷機器2の両端電圧の変動を抑制するために、下記数1式に演算を行い、この演算結果を有効電流補償成分Ip2として出力する演算器242と、この有効電流補償成分Ip2と前記無効電流成分Iqとを補助変圧器26から得られる交流電圧の位相を基準にした補償電流指令値Iconv*(交流量)を導出する補償電流指令演算器243とを備えている。
[数1]
Ip2={1−[1−(Xr・Ip)2 1/2 }/Xr
ここで、電力系統1の電圧Vsは定格値(=1)とし、Xrはリアクトル22のパーセントインピーダンス(%Z)を示している。
FIG. 7 is a detailed circuit configuration diagram of the control circuit 240 shown in FIG. 6. This control circuit 240 includes a CT 27 for the phase of the AC voltage obtained from the auxiliary transformer 26 that detects the voltage across the load device 2. An effective / reactive current calculator 241 that decomposes the current to the load device 2 into a valid / inactive current component Iq and an active current component Ip, and suppresses fluctuations in the voltage across the load device 2 with respect to fluctuations in the effective current component Ip. In order to achieve this, the following equation 1 is calculated, and a calculator 242 that outputs the calculation result as an active current compensation component Ip2, and the effective current compensation component Ip2 and the reactive current component Iq are obtained from the auxiliary transformer 26. A compensation current command calculator 243 for deriving a compensation current command value Iconv * (amount of alternating current) based on the phase of the AC voltage to be generated.
[Equation 1]
Ip2 = {1- [1- (Xr · Ip) 2 ] 1/2 } / Xr
Here, the voltage Vs of the power system 1 is a rated value (= 1), and Xr indicates the percent impedance (% Z) of the reactor 22.

すなわち、補償電流指令値演算器243では前記無効電流成分Iqの全てを補助変圧器26からの交流電圧の位相に対して90°進み位相でその振幅は前記Iqの値に比例する値(交流量)と、補助変圧器26からの交流電圧の位相に対して逆位相でその振幅は前記Iq2の値に比例する値(交流量)とを加算した交流量を補償電流指令値Iconv*として出力している。 That is, in the compensation current command value calculator 243, all of the reactive current component Iq is advanced by 90 ° with respect to the phase of the AC voltage from the auxiliary transformer 26, and its amplitude is a value proportional to the value of Iq (AC amount). ) And the phase of the AC voltage from the auxiliary transformer 26, the phase of which is opposite to that of the AC voltage and the value of which is proportional to the value of Iq2 (AC amount) is output as the compensation current command value Iconv *. ing.

以下に、図6に示した瞬時電圧降下対策装置20の動作を説明する。   The operation of the instantaneous voltage drop countermeasure device 20 shown in FIG. 6 will be described below.

すなわち図6に示した並列インバータ24は、電力系統1が健全時にはリアクトル22を介した電源系統1と連系運転しており、制御回路240からの上述の如き補償電流指令値Iconv*に基づいた補償電流Iconvを注入することにより、負荷機器2の両端電圧をほぼ定格値に保ちながらその変動を抑制し、電力系統1から見た力率も改善するとともに、連系リアクトル23bとインバータ回路23aとを介して直流コンデンサ23cに直流電圧を充電しつつ待機している。そして、電力系統1が何らかの要因で停電状態に陥ると、閉路状態のスイッチ21を開路状態に移行させるとともに、負荷機器2に対して直流コンデンサ23cに充電されていた電力を供給する。このとき、スイッチ21が実際に開路するまでに時間遅れが生ずるが、この時間遅れの間は、リアクトル22に蓄えられているエネルギーが負荷機器2の両端電圧をほぼ正常な状態に維持するように機能するために、負荷機器2の両端電圧の低下が抑制される。 That is, the parallel inverter 24 shown in FIG. 6 is connected to the power supply system 1 via the reactor 22 when the power system 1 is healthy, and is based on the compensation current command value Iconv * as described above from the control circuit 240. By injecting the compensation current Iconv, the fluctuation is suppressed while maintaining the voltage across the load device 2 at a substantially rated value, the power factor seen from the power system 1 is improved, and the interconnection reactor 23b and the inverter circuit 23a The DC capacitor 23c is in standby while charging the DC voltage via the. When the power system 1 falls into a power failure state for some reason, the switch 21 in the closed state is shifted to the open state, and the power charged in the DC capacitor 23c is supplied to the load device 2. At this time, a time delay occurs until the switch 21 is actually opened. During this time delay, the energy stored in the reactor 22 maintains the voltage across the load device 2 in a substantially normal state. In order to function, a decrease in the voltage across the load device 2 is suppressed.

なお、連系リアクトル23bに高調波抑制機能を持つ必要があれば、これと並列にフィルタコンデンサを追加装備することでその要求を満たすことができる。   In addition, if it is necessary for the interconnection reactor 23b to have a harmonic suppression function, the requirement can be satisfied by additionally installing a filter capacitor in parallel with this.

図8は図6に示した制御回路250の詳細回路構成図であり、この制御回路250には上述の図5に示した制御回路230と図7に示した制御回路240と、加算演算器251とを備えている。   FIG. 8 is a detailed circuit configuration diagram of the control circuit 250 shown in FIG. 6. The control circuit 250 includes the control circuit 230 shown in FIG. 5, the control circuit 240 shown in FIG. And.

従って、図6に示した並列インバータ25は、電力系統1が健全時にはリアクトル22を介した電源系統1と連系運転しており、制御回路250からの制御回路230,制御回路240による上述の如き補償電流指令値それぞれを加算した新たな補償電流指令値Iconv*に基づいた補償電流Iconvを注入することにより、負荷機器2の両端電圧を出力電圧設定器231の設定値に保ちながらその変動を抑制し、電力系統1から見た力率も改善するとともに、連系リアクトル23bとインバータ回路23aとを介して直流コンデンサ23cに直流電圧を充電しつつ待機している。そして、電力系統1が何らかの要因で停電状態に陥ると、閉路状態のスイッチ21を開路状態に移行させるとともに、負荷機器2に対して直流コンデンサ23cに充電されていた電力を供給する。このとき、スイッチ21が実際に開路するまでに時間遅れが生ずるが、この時間遅れの間は、リアクトル22に蓄えられているエネルギーが負荷機器2の両端電圧をほぼ正常な状態に維持するように機能するために、負荷機器2の両端電圧の低下が抑制される。 Therefore, the parallel inverter 25 shown in FIG. 6 is connected to the power supply system 1 via the reactor 22 when the power system 1 is healthy, and the control circuit 230 from the control circuit 250 and the control circuit 240 as described above. By injecting a compensation current Iconv based on a new compensation current command value Iconv * obtained by adding the respective compensation current command values, fluctuations are suppressed while maintaining the voltage across the load device 2 at the set value of the output voltage setter 231. And while improving the power factor seen from the electric power grid | system 1, it waits, charging the DC voltage to the DC capacitor 23c via the interconnection reactor 23b and the inverter circuit 23a. When the power system 1 falls into a power failure state for some reason, the switch 21 in the closed state is shifted to the open state, and the power charged in the DC capacitor 23c is supplied to the load device 2. At this time, a time delay occurs until the switch 21 is actually opened. During this time delay, the energy stored in the reactor 22 maintains the voltage across the load device 2 in a substantially normal state. In order to function, a decrease in the voltage across the load device 2 is suppressed.

なお、連系リアクトル23bに高調波抑制機能を持つ必要があれば、これと並列にフィルタコンデンサを追加装備することでその要求を満たすことができる。   In addition, if it is necessary for the interconnection reactor 23b to have a harmonic suppression function, the requirement can be satisfied by additionally installing a filter capacitor in parallel with this.

図9はこの発明の第3の実施例を示す瞬時電圧降下対策装置の回路構成図であり、この瞬時電圧降下対策装置40にはスイッチ21と、リアクトル22と、並列インバータ23と、補助変圧器26と、直流電源41とを備えている。   FIG. 9 is a circuit diagram of an instantaneous voltage drop countermeasure device showing a third embodiment of the present invention. The instantaneous voltage drop countermeasure device 40 includes a switch 21, a reactor 22, a parallel inverter 23, an auxiliary transformer. 26 and a DC power source 41.

すなわち、この瞬時電圧降下対策装置40が図4に示した並列インバータ23などからなる瞬時電圧低下対策装置20と異なる点は、インバータ回路23aの直流側に蓄電池などからなる直流電源41を備えていることである。   That is, the instantaneous voltage drop countermeasure device 40 is different from the instantaneous voltage drop countermeasure device 20 including the parallel inverter 23 shown in FIG. 4 in that a DC power source 41 including a storage battery is provided on the DC side of the inverter circuit 23a. That is.

この直流電源41により、電力系統1が何らかの要因で停電状態に陥った後に、並列インバータ23から負荷機器2に対して電力を供給する期間をより長くすることができる。   With this DC power supply 41, after the power system 1 falls into a power failure state for some reason, the period during which power is supplied from the parallel inverter 23 to the load device 2 can be made longer.

図10はこの発明の第4の実施例を示す瞬時電圧降下対策装置の回路構成図であり、この瞬時電圧降下対策装置50にはスイッチ21と、リアクトル22と、並列インバータ24と、補助変圧器26と、CT27と、直流電源41とを備えている。   FIG. 10 is a circuit configuration diagram of an instantaneous voltage drop countermeasure device showing a fourth embodiment of the present invention. The instantaneous voltage drop countermeasure device 50 includes a switch 21, a reactor 22, a parallel inverter 24, an auxiliary transformer. 26, CT 27, and DC power supply 41.

すなわち、この瞬時電圧降下対策装置50が図6に示した並列インバータ24などからなる瞬時電圧低下対策装置20と異なる点は、インバータ回路23aの直流側に蓄電池などからなる直流電源41を備えていることである。   That is, the instantaneous voltage drop countermeasure device 50 is different from the instantaneous voltage drop countermeasure device 20 including the parallel inverter 24 shown in FIG. 6 in that a DC power source 41 including a storage battery is provided on the DC side of the inverter circuit 23a. That is.

この直流電源41により、電力系統1が何らかの要因で停電状態に陥った後に、並列インバータ24から負荷機器2に対して電力を供給する期間をより長くすることができる。   With this DC power supply 41, after the power system 1 falls into a power failure state for some reason, the period during which power is supplied from the parallel inverter 24 to the load device 2 can be made longer.

この発明の第1の実施の形態を示す瞬時電圧降下対策装置の回路構成図1 is a circuit configuration diagram of an instantaneous voltage drop countermeasure device showing a first embodiment of the present invention. 図1の動作を説明するベクトル図Vector diagram explaining the operation of FIG. この発明の第2の実施の形態を示す瞬時電圧降下対策装置の回路構成図The circuit block diagram of the instantaneous voltage drop countermeasure device which shows 2nd Embodiment of this invention この発明の第1の実施例を示す瞬時電圧降下対策装置の回路構成図1 is a circuit configuration diagram of an instantaneous voltage drop countermeasure device showing a first embodiment of the present invention. 図4の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. この発明の第2の実施例を示す瞬時電圧降下対策装置の回路構成図Circuit configuration diagram of instantaneous voltage drop countermeasure device showing second embodiment of the present invention 図6の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. 図6の部分詳細回路構成図Partial detailed circuit configuration diagram of FIG. この発明の第3の実施例を示す瞬時電圧降下対策装置の回路構成図Circuit diagram of an instantaneous voltage drop countermeasure device showing a third embodiment of the present invention この発明の第4の実施例を示す瞬時電圧降下対策装置の回路構成図Circuit diagram of an instantaneous voltage drop countermeasure device showing a fourth embodiment of the present invention 従来例を示す瞬時電圧降下対策装置の回路構成図Circuit diagram of instantaneous voltage drop countermeasure device showing conventional example 図11の動作を説明する波形図Waveform diagram explaining the operation of FIG. 図11の動作を説明するベクトル図Vector diagram explaining the operation of FIG.

符号の説明Explanation of symbols

1…電力系統、2…負荷機器、3…自家発電設備、10…瞬時電圧降下対策装置、11…遮断器、12…リアクトル、13…サイリスタスイッチ、14…遮断器、15…補助変圧器、16…サイリスタSW制御回路、20,30,40,50…瞬時電圧低下対策装置、21…スイッチ、22…リアクトル、23〜25…並列インバータ、23a…インバータ主回路、23b…連系リアクトル、23c…コンデンサ、26…補助変圧器、27…CT、31…進相コンデンサ、41…直流電源、230,240,250…制御回路。

DESCRIPTION OF SYMBOLS 1 ... Electric power system, 2 ... Load apparatus, 3 ... Private power generation equipment, 10 ... Instantaneous voltage drop countermeasure apparatus, 11 ... Circuit breaker, 12 ... Reactor, 13 ... Thyristor switch, 14 ... Circuit breaker, 15 ... Auxiliary transformer, 16 ... Thyristor SW control circuit, 20, 30, 40, 50 ... Instantaneous voltage drop countermeasure device, 21 ... Switch, 22 ... Reactor, 23-25 ... Parallel inverter, 23a ... Inverter main circuit, 23b ... Linked reactor, 23c ... Capacitor , 26 ... auxiliary transformer, 27 ... CT, 31 ... phase advance capacitor, 41 ... DC power supply, 230, 240, 250 ... control circuit.

Claims (5)

スイッチと瞬時電圧降下補償用のリアクトルと並列インバータとを備え、
商用電源などの電力系統とその負荷機器との間に、前記スイッチと前記リアクトルとを直列接続してなる回路の両端を接続するとともに、前記並列インバータを該インバータの出力側に備える連系リアクトルまたは変圧器もしくはその双方を介して前記負荷機器に接続し、
前記電力系統が健全時には、前記負荷機器の両端電圧と所定の出力電圧設定値との偏差を零にする調節演算結果から導出された補償電流指令値としての無効電流指令値に基づいて前記並列インバータを動作させることを特徴とする瞬時電圧降下対策装置。
With a switch, a reactor for instantaneous voltage drop compensation and a parallel inverter,
Between a power system such as a commercial power supply and its load equipment, both ends of a circuit formed by connecting the switch and the reactor in series are connected, and a connected reactor including the parallel inverter on the output side of the inverter or Connected to the load device via a transformer or both,
When the power system is healthy, the parallel inverter is based on a reactive current command value as a compensation current command value derived from an adjustment calculation result that makes a deviation between a voltage across the load device and a predetermined output voltage setting value zero. An instantaneous voltage drop countermeasure device characterized by operating
スイッチと瞬時電圧降下補償用のリアクトルと並列インバータとを備え、
商用電源などの電力系統とその負荷機器との間に、前記スイッチと前記リアクトルとを直列接続してなる回路の両端を接続するとともに、前記並列インバータを該インバータの出力側に備える連系リアクトルまたは変圧器もしくはその双方を介して前記負荷機器に接続し、
前記電力系統が健全時には、前記負荷機器への電流を有効電流成分と無効電流成分とに分解したそれぞれの成分から該負荷機器の両端電圧が所望の値を維持するために導出された補償電流指令値に基づいて前記並列インバータを動作させることを特徴とする瞬時電圧降下対策装置。
With a switch, a reactor for instantaneous voltage drop compensation and a parallel inverter,
Between a power system such as a commercial power supply and its load equipment, both ends of a circuit formed by connecting the switch and the reactor in series are connected, and a connected reactor including the parallel inverter on the output side of the inverter or Connected to the load device via a transformer or both,
When the power system is healthy, a compensation current command derived so that the voltage across the load device maintains a desired value from each component obtained by decomposing the current to the load device into an active current component and a reactive current component An instantaneous voltage drop countermeasure device, wherein the parallel inverter is operated based on a value.
スイッチと瞬時電圧降下補償用のリアクトルと並列インバータとを備え、
商用電源などの電力系統とその負荷機器との間に、前記スイッチと前記リアクトルとを直列接続してなる回路の両端を接続するとともに、前記並列インバータを該インバータの出力側に備える連系リアクトルまたは変圧器もしくはその双方を介して前記負荷機器に接続し、
前記電力系統が健全時には、前記負荷機器の両端電圧と所定の出力電圧設定値との偏差を零にする調節演算結果から導出された補償電流指令値としての無効電流指令値と、該負荷機器への電流を有効電流成分と無効電流成分とに分解したそれぞれの成分から該負荷機器の両端電圧が所望の値を維持するために導出された補償電流指令値とを加算してなる新たな補償電流指令値に基づいて前記並列インバータを動作させることを特徴とする瞬時電圧降下対策装置。
With a switch, a reactor for instantaneous voltage drop compensation and a parallel inverter,
Between a power system such as a commercial power supply and its load equipment, both ends of a circuit formed by connecting the switch and the reactor in series are connected, and a connected reactor including the parallel inverter on the output side of the inverter or Connected to the load device via a transformer or both,
When the power system is healthy, the reactive current command value as a compensation current command value derived from the adjustment calculation result that makes the deviation between the both-end voltage of the load device and a predetermined output voltage setting value zero, and to the load device A new compensation current obtained by adding a compensation current command value derived so that the voltage across the load device is maintained at a desired value from each component obtained by decomposing the current of the current into an active current component and a reactive current component An instantaneous voltage drop countermeasure device, wherein the parallel inverter is operated based on a command value.
請求項1乃至請求項3の何れかに記載の瞬時電圧降下対策装置において、
前記並列インバータとの負荷機器との間に進相コンデンサを付加したことを特徴とする瞬時電圧降下対策装置。
In the instantaneous voltage drop countermeasure device according to any one of claims 1 to 3,
An instantaneous voltage drop countermeasure device, wherein a phase advance capacitor is added between the parallel inverter and a load device.
請求項1乃至請求項4の何れかに記載の瞬時電圧降下対策装置において、
前記電力系統に瞬時電圧降下が発生したときには、前記スイッチを閉路状態から開路状態に移行させるとともに、前記並列インバータを前記負荷機器への電源として動作させることを特徴とする瞬時電圧降下対策装置。

In the instantaneous voltage drop countermeasure device according to any one of claims 1 to 4,
When an instantaneous voltage drop occurs in the power system, the switch is shifted from a closed state to an open state, and the parallel inverter is operated as a power source for the load device.

JP2004351320A 2004-12-03 2004-12-03 Provision for preventing instantaneous voltage drop Pending JP2006166526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351320A JP2006166526A (en) 2004-12-03 2004-12-03 Provision for preventing instantaneous voltage drop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004351320A JP2006166526A (en) 2004-12-03 2004-12-03 Provision for preventing instantaneous voltage drop

Publications (1)

Publication Number Publication Date
JP2006166526A true JP2006166526A (en) 2006-06-22

Family

ID=36667923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351320A Pending JP2006166526A (en) 2004-12-03 2004-12-03 Provision for preventing instantaneous voltage drop

Country Status (1)

Country Link
JP (1) JP2006166526A (en)

Similar Documents

Publication Publication Date Title
US9444280B2 (en) Uninterruptable power supply system and method
Mousavi et al. Coordinated control of multifunctional inverters for voltage support and harmonic compensation in a grid-connected microgrid
US9047076B1 (en) Uninterruptable power supply system and method
Yeh et al. A reconfigurable uninterruptible power supply system for multiple power quality applications
Cheng et al. Design and implementation of a series voltage sag compensator under practical utility conditions
KR101178393B1 (en) Utility interactive inverter of three phase-indirect current control type and control method
US20190319530A1 (en) Method and control system for zero-sequence current compensation for ground current reduction
Hazarika et al. Application of dynamic voltage restorer in electrical distribution system for voltage sag compensation
Benyamina et al. An augmented state observer-based sensorless control of grid-connected inverters under grid faults
Van Tu et al. Impacts of inverter-based distributed generation control modes on short-circuit currents in distribution systems
Paquette et al. Transient droop for improved transient load sharing in microgrids
Van Tu et al. Fault current calculation in distribution systems with inverter‐based distributed generations
JP5961932B2 (en) Electric power leveling device
Wang Improved control strategy of grid-forming inverters for fault ride-through in a microgrid system
Suresh et al. Design and implementation of dual‐leg generic converter for DC/AC grid integration
JP2008141850A (en) Uninterruptible power supply system, inverter circuit, and reactor panel
Wang et al. Feed-forward control of solid state transformer
Qahraman et al. Hybrid HVDC converters and their impact on power system dynamic performance
TWI505597B (en) Micro-grid operation system with smart energy management
KR20060052197A (en) Detecting device for voltage lowering
Dargahi et al. Medium voltage dynamic voltage restorer (DVR) based on DFCM converter for power quality improvement
JP2010110120A (en) Ac power supply system
Preetha et al. DC link voltage regulation in active filter using drainage power from distribution transformer
JP2006166526A (en) Provision for preventing instantaneous voltage drop
Sadigh et al. New configuration of dynamic voltage restorer for medium voltage application

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512