JP2006165353A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2006165353A
JP2006165353A JP2004356070A JP2004356070A JP2006165353A JP 2006165353 A JP2006165353 A JP 2006165353A JP 2004356070 A JP2004356070 A JP 2004356070A JP 2004356070 A JP2004356070 A JP 2004356070A JP 2006165353 A JP2006165353 A JP 2006165353A
Authority
JP
Japan
Prior art keywords
layer
metal layer
resin
thickness
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004356070A
Other languages
Japanese (ja)
Other versions
JP4254705B2 (en
Inventor
Hiroyuki Yamanaka
浩之 山仲
Gen Ito
玄 伊藤
Atsushi Kanai
淳 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2004356070A priority Critical patent/JP4254705B2/en
Publication of JP2006165353A publication Critical patent/JP2006165353A/en
Application granted granted Critical
Publication of JP4254705B2 publication Critical patent/JP4254705B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board, configured with a first resin insulation layer 4 reinforced by a sheet-like fiber base material, and to provide a metallic layer 3 integrated on both sides of the layer 4 by bearing the mount of a heat generating component such as a power element 1 in mind, wherein at least the metal layer on one side has the functions of electrical wiring, and cracks are hardly caused to solder 2 for connecting the mounting component. <P>SOLUTION: The total thickness of the metal layer 3 located on both the sides of the first resin insulating layer 4 is selected to be larger than the thickness of the first resin insulation layer 4. Then the end edges of both the metal layers 3 are located inwardly from the circumferential edge of the first resin insulating layer 4. Further, a second resin insulating layer 5 with reinforcing fibers filled therein the thickness of which is equal to or more than the thickness of the metal layers is attached to the first resin insulating layer 4, in a way of being in contact with the entire circumference of the metal layers 3 on both the sides. The thermal expansion rate of both the first resin insulating layer 4 and the second resin insulating layer 5 is selected smaller than that of the metal layers 3, each located on both the sides of the first resin insulating layer 4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発熱部品を実装する場合にも接続信頼性の高い配線板に関する。   The present invention relates to a wiring board having high connection reliability even when a heat generating component is mounted.

電子機器に搭載する配線板は、電子機器の軽薄短小化に伴う微細配線・高密度実装の技術が求められる一方で、発熱に対応する高放熱の技術も求められている。特に、各種制御・操作に大電流を使用する自動車などにおける電子回路では、導電回路の抵抗に起因する発熱やパワー素子からの発熱が非常に多く、配線板の放熱特性は高レベルであることが必須となってきている。   A wiring board mounted on an electronic device is required to have a technology for fine wiring and high-density mounting in accordance with a reduction in the thickness and size of the electronic device, and a technology for high heat dissipation corresponding to heat generation is also required. In particular, in electronic circuits such as automobiles that use a large current for various controls and operations, heat generation due to the resistance of the conductive circuit and heat generation from the power element are very large, and the heat dissipation characteristics of the wiring board may be high. It has become essential.

その対策として、放熱性の高いセラミック基板やシート状繊維基材に熱硬化性樹脂を保持した絶縁層に厚い金属層(銅板ないし銅箔等)を一体化した積層板を用意し、金属層を回路加工した配線板がある(例えば、特許文献1の段落番号0002の記載)。   As a countermeasure, prepare a laminated board in which a thick metal layer (copper plate or copper foil) is integrated with an insulating layer holding a thermosetting resin on a highly heat-dissipating ceramic substrate or sheet-like fiber base material. There is a circuit processed wiring board (for example, description in paragraph 0002 of Patent Document 1).

シート状繊維基材に熱硬化性樹脂を保持した絶縁層に厚い金属層を一体化した配線板では、配線板に半田付によりパワー素子など発熱部品を実装すると、金属層の熱膨張・収縮の応力が半田部にかかり、半田部にクラックが発生しやすくなる。   In a wiring board in which a thick metal layer is integrated with an insulating layer holding a thermosetting resin on a sheet-like fiber base, mounting a heat-generating component such as a power element on the wiring board by soldering will cause thermal expansion / contraction of the metal layer. Stress is applied to the solder portion, and cracks are likely to occur in the solder portion.

特開2003−198103号公報JP 2003-198103 A

本発明が解決しようとする課題は、パワー素子など発熱部品を実装することを念頭に置き、シート状繊維基材で補強された第1樹脂絶縁層とその両面に一体化した金属層で構成され、少なくとも片面の金属層が電気配線の機能を有する配線板において、実装部品を接続する半田部にクラックが起こりにくくすることである。   The problem to be solved by the present invention is composed of a first resin insulating layer reinforced with a sheet-like fiber base material and a metal layer integrated on both sides thereof in consideration of mounting a heat generating component such as a power element. In the wiring board in which the metal layer on at least one side has a function of electric wiring, it is difficult to cause a crack in the solder portion connecting the mounted components.

上記課題を達成するために、本発明に係る配線板(請求項1)は、シート状繊維基材で補強された第1樹脂絶縁層とその両面に一体化した金属層で構成され、少なくとも片面の金属層が電気配線の機能を有する構成において、第1樹脂絶縁層両面の金属層はその合計厚みが第1樹脂絶縁層の厚みより厚く設定される。そして、第1樹脂絶縁層両面の金属層ともその端縁は第1樹脂絶縁層の周縁より内側に位置する。さらに、第1樹脂絶縁層には、両面の金属層端縁全周に接し厚みが金属層厚みと同等以上である補強繊維充填第2樹脂絶縁層が付加されており、第1樹脂絶縁層と第2樹脂絶縁層ともに、熱膨張率が、第1樹脂絶縁層の両面に配置されている金属層より小さいことを特徴とする。   In order to achieve the above object, a wiring board according to the present invention (Claim 1) is composed of a first resin insulating layer reinforced with a sheet-like fiber base and a metal layer integrated on both sides thereof, and at least one side. In the configuration in which the metal layer has a function of electrical wiring, the total thickness of the metal layers on both surfaces of the first resin insulation layer is set to be greater than the thickness of the first resin insulation layer. And the edge of the metal layer of both surfaces of the 1st resin insulation layer is located inside the periphery of the 1st resin insulation layer. Furthermore, the first resin insulation layer is provided with a reinforcing fiber-filled second resin insulation layer that is in contact with the entire circumference of the metal layer edges on both sides and has a thickness equal to or greater than the metal layer thickness. The second resin insulating layer is characterized in that the coefficient of thermal expansion is smaller than that of the metal layers disposed on both surfaces of the first resin insulating layer.

本発明に係る他の配線板(請求項2)は、上記の構成において、第1樹脂絶縁層に付加されている第2樹脂絶縁層が、第1樹脂絶縁層両面の金属層端縁全周に接し厚みが金属層厚みを越え、金属層表面一部を周囲から覆うようにしていることを特徴とする。   In another wiring board according to the present invention (Claim 2), in the above configuration, the second resin insulating layer added to the first resin insulating layer has the entire circumference of the metal layer edge on both surfaces of the first resin insulating layer. The thickness of the metal layer exceeds the thickness of the metal layer, and a part of the metal layer surface is covered from the periphery.

上記請求項1又は2において、好ましくは、電気配線の機能を有する金属層は厚み0.7mm以上の銅層である(請求項3)。   In the first or second aspect, preferably, the metal layer having a function of electric wiring is a copper layer having a thickness of 0.7 mm or more.

電気配線の機能を有する金属層上にパワー素子等の発熱部品を実装する場合、当該パワー素子の熱膨張率は5ppm/℃程度である。一方、パワー素子直下の金属層の熱膨張率(α)は17〜30ppm/℃程度である。パワー素子の発熱と発熱停止による、冷熱サイクルを繰り返すと、両者の熱膨張率の差に起因して、両者を接合している半田部に応力が集中し、半田部にクラックが発生して接続信頼性が低下する。   When a heat-generating component such as a power element is mounted on a metal layer having a function of electrical wiring, the thermal expansion coefficient of the power element is about 5 ppm / ° C. On the other hand, the coefficient of thermal expansion (α) of the metal layer directly under the power element is about 17 to 30 ppm / ° C. If the heat cycle of the power element is repeated and the heat generation is stopped, stress is concentrated on the solder part that joins the two due to the difference in the coefficient of thermal expansion between them, and the solder part is cracked and connected. Reliability decreases.

しかし、本発明に係る配線板(請求項1、2)においては、第1樹脂絶縁層と第2樹脂絶縁層の熱膨張率が金属層の熱膨張率より小さく、金属層は、その端縁全周が金属層の厚みと同等以上の第2樹脂絶縁層に接し規制されている。これによって、金属層の平面方向の熱膨張は抑えられることになる。また、第1樹脂絶縁層は、その両面の金属層の合計厚みより薄いので、第1樹脂絶縁層で熱伝導が阻害されることが少なく、第1樹脂絶縁層を介した両面の金属層の熱伝導性は確保され、金属層自体の昇温も抑えられる。このようにして、金属層の温度上昇による膨張が抑制され、半田部にかかる応力が低減される。
金属層の厚みを厚く設定する(請求項3)ことにより放熱効果は大きくなる。
However, in the wiring board according to the present invention (Claims 1 and 2), the thermal expansion coefficient of the first resin insulating layer and the second resin insulating layer is smaller than the thermal expansion coefficient of the metal layer, and the metal layer has its edge. The entire circumference is regulated by being in contact with a second resin insulation layer equal to or greater than the thickness of the metal layer. Thereby, the thermal expansion in the plane direction of the metal layer is suppressed. In addition, since the first resin insulation layer is thinner than the total thickness of the metal layers on both sides, the first resin insulation layer is less likely to inhibit thermal conduction, and the metal layers on both sides through the first resin insulation layer Thermal conductivity is ensured, and the temperature rise of the metal layer itself is suppressed. In this way, the expansion due to the temperature rise of the metal layer is suppressed, and the stress applied to the solder portion is reduced.
By setting the thickness of the metal layer to be thick (Claim 3), the heat dissipation effect is increased.

請求項1に係る発明を実施する具体的な形態は、例えば、図1(a)に示すような構成が望ましい。シート状補強繊維基材で補強された第1樹脂絶縁層4の両面に金属層(例えば、銅層)3が一体化され、少なくとも片面の金属層は電気配線の機能を有する。電気配線の機能を有する金属層には、後工程で、発熱素子1が半田2により実装される。第1樹脂絶縁層4両面に一体化した金属層3は、その合計厚みが第1樹脂絶縁層4の厚みより厚く設定されている。また、これら金属層3の端縁は、第1樹脂絶縁層4の周縁より内側に位置している。そして、第1樹脂絶縁層4には、その両面の金属層3端縁全周に接し厚みが金属層3の厚みと同等以上である補強繊維充填第2樹脂絶縁層5が付加されている。第1樹脂絶縁層4と第2樹脂絶縁層5の双方の熱膨張率は、金属層3の熱膨張率より小さく設定してある。   The specific form for carrying out the invention according to claim 1 is preferably, for example, a configuration as shown in FIG. Metal layers (for example, copper layers) 3 are integrated on both surfaces of the first resin insulation layer 4 reinforced with the sheet-like reinforcing fiber base, and at least one metal layer has a function of electrical wiring. The heat generating element 1 is mounted on the metal layer having the function of electric wiring by solder 2 in a later step. The total thickness of the metal layer 3 integrated on both surfaces of the first resin insulation layer 4 is set to be greater than the thickness of the first resin insulation layer 4. Further, the end edges of these metal layers 3 are located inside the periphery of the first resin insulation layer 4. The first resin insulation layer 4 is provided with a reinforcing fiber-filled second resin insulation layer 5 that is in contact with the entire circumference of the edges of the metal layers 3 on both sides and has a thickness equal to or greater than the thickness of the metal layer 3. The thermal expansion coefficient of both the first resin insulating layer 4 and the second resin insulating layer 5 is set to be smaller than the thermal expansion coefficient of the metal layer 3.

上記のような構成は、まず、シート状繊維基材に熱硬化性樹脂を保持したプリプレグ層の両面に金属層を配置して加熱加圧成形により一体化する。プリプレグ層は、前記成形により第1樹脂絶縁層4となる。そして、金属層3の端縁が第1樹脂絶縁層4の周縁より内側に位置するように、金属層を加工して両面金属層付き板状体とする。この加工は、金属層が電気配線の機能を有するように加工することを含む。尚、予め所定形状に加工した金属層を前記プリプレグ層の両面に配置し、加熱加圧成形により一体化して、両面金属層付き板状体としてもよい。
次に、前記の両面金属層付き板状体の両面にプリプレグ層を重ね、加熱加圧成形により一体化して第2樹脂絶縁層5を形成する。金属層3上の第2樹脂絶縁層5を研磨又はざぐり加工にて除去し、金属層3を露出させる。金属層3の端縁は、全周が第2樹脂絶縁層5に接した状態となるように、前記研磨又はざぐり加工を行なう。このようにして、第1樹脂絶縁層4に第2樹脂絶縁層5が付加された状態とする。前記研磨又はざぐり加工において、第2樹脂絶縁層5を金属層3の端縁まで除去せず、金属層3の周囲が第2樹脂絶縁層5により一部覆われた状態で残せば、図1(b)に示した構成(請求項2)となる。
金属層3に対面する領域を予め除去したプリプレグ層を両面金属層付き板状体に重ねて加熱加圧成形により一体化すれば、前記の研磨又はざぐり加工の工程は省略又は簡略化することができる。
In the configuration as described above, first, metal layers are arranged on both sides of a prepreg layer in which a thermosetting resin is held on a sheet-like fiber base material, and are integrated by heating and pressing. The prepreg layer becomes the first resin insulating layer 4 by the molding. Then, the metal layer is processed so that the edge of the metal layer 3 is located inside the periphery of the first resin insulating layer 4 to obtain a plate-like body with a double-sided metal layer. This processing includes processing so that the metal layer has a function of electric wiring. In addition, it is good also as a plate-shaped body with a double-sided metal layer by arrange | positioning the metal layer previously processed into the predetermined shape on both surfaces of the said prepreg layer, and integrating by heat press molding.
Next, a prepreg layer is stacked on both sides of the plate-like body with the double-sided metal layer, and is integrated by heating and pressing to form the second resin insulating layer 5. The second resin insulating layer 5 on the metal layer 3 is removed by polishing or counterboring to expose the metal layer 3. The edge of the metal layer 3 is polished or spotted so that the entire circumference is in contact with the second resin insulating layer 5. In this way, the second resin insulation layer 5 is added to the first resin insulation layer 4. If the second resin insulation layer 5 is not removed up to the edge of the metal layer 3 in the polishing or spotting process, and the periphery of the metal layer 3 is partially covered by the second resin insulation layer 5, the process shown in FIG. The configuration shown in (b) (claim 2) is obtained.
If the prepreg layer from which the region facing the metal layer 3 has been removed in advance is overlapped on the plate with double-sided metal layer and integrated by heat and pressure molding, the polishing or counterboring process may be omitted or simplified. it can.

上記において、第1樹脂絶縁層4の厚みは、その両面の金属層3の合計厚みよりも薄いので、第1樹脂絶縁層4に金属層3を押し込むことによっては、金属層3の端縁周囲にその厚み以上に樹脂絶縁層が接した状態とすることはできない。第1樹脂絶縁層4に第2樹脂絶縁層5を付加することは必須の事項となる。   In the above, since the thickness of the first resin insulation layer 4 is thinner than the total thickness of the metal layers 3 on both sides thereof, by pressing the metal layer 3 into the first resin insulation layer 4, the periphery of the edge of the metal layer 3 can be obtained. Further, the resin insulating layer cannot be in contact with the thickness more than that. Adding the second resin insulation layer 5 to the first resin insulation layer 4 is an essential matter.

上記プリプレグを構成するシート状繊維基材は、ガラス繊維や有機繊維で構成された織布や不織布である。樹脂絶縁層の熱膨張率を小さくするためには、アラミド繊維やアルミナ繊維からなるシート状繊維基材が好適である。請求項3において、第1樹脂絶縁層は、好ましくは、熱伝導率が4W/m・K以上である。前記シート状繊維基材に含浸して樹脂絶縁層を構成するための熱硬化性樹脂は、樹脂絶縁層の熱伝導率を4W/m・K以上にする場合には、例えば、以下のような樹脂組成を採用する。
すなわち、無機充填材を含有し(式1)で示す分子構造のエポキシ樹脂モノマを配合したエポキシ樹脂組成物を採用する。前記無機充填材は、熱伝導率20W/m・K以上であって、樹脂固形分100体積部に対し10〜100体積部の量で絶縁層中に存在するようにする。
The sheet-like fiber base material constituting the prepreg is a woven fabric or a nonwoven fabric made of glass fiber or organic fiber. In order to reduce the thermal expansion coefficient of the resin insulating layer, a sheet-like fiber base material made of aramid fiber or alumina fiber is suitable. In Claim 3, Preferably, the first resin insulating layer has a thermal conductivity of 4 W / m · K or more. The thermosetting resin for impregnating the sheet-like fiber base material to form the resin insulating layer is, for example, as follows when the thermal conductivity of the resin insulating layer is 4 W / m · K or more. Adopt resin composition.
That is, an epoxy resin composition containing an inorganic filler and containing an epoxy resin monomer having a molecular structure represented by (Formula 1) is employed. The inorganic filler has a thermal conductivity of 20 W / m · K or more, and is present in the insulating layer in an amount of 10 to 100 parts by volume with respect to 100 parts by volume of the resin solid content.

Figure 2006165353
Figure 2006165353

上記(式1)で示す分子構造のエポキシ樹脂モノマは、ビフェニル骨格あるいはビフェニル誘導体の骨格をもち、1分子中に2個以上のエポキシ基をもつエポキシ化合物全般である。エポキシ樹脂モノマの硬化反応を進めるために、硬化剤を配合する。硬化剤は、例えば、アミン化合物やその誘導体、酸無水物、イミダゾールやその誘導体、フェノール類又はその化合物や重合体などである。また、エポキシ樹脂モノマと硬化剤の反応を促進するために、硬化促進剤を使用することができる。硬化促進剤は、例えば、トリフェニルホスフィン、イミダゾールやその誘導体、三級アミン化合物やその誘導体などである。   The epoxy resin monomers having the molecular structure represented by the above (formula 1) are all epoxy compounds having a biphenyl skeleton or a biphenyl derivative skeleton and having two or more epoxy groups in one molecule. In order to advance the curing reaction of the epoxy resin monomer, a curing agent is blended. Examples of the curing agent include amine compounds and derivatives thereof, acid anhydrides, imidazoles and derivatives thereof, phenols or compounds and polymers thereof, and the like. Moreover, in order to accelerate | stimulate reaction of an epoxy resin monomer and a hardening | curing agent, a hardening accelerator can be used. Examples of the curing accelerator include triphenylphosphine, imidazole and derivatives thereof, tertiary amine compounds and derivatives thereof, and the like.

上記硬化剤や硬化促進剤を配合したエポキシ樹脂組成物に配合する熱伝導率20W/m・K以上の無機充填材は、金属酸化物又は水酸化物あるいは無機セラミックス、その他の充填材であり、例えば、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、アルミナ、酸化マグネシウム等の無機粉末充填材、合成繊維、セラミックス繊維等の繊維質充填材、着色剤等である。これら無機充填材は2種類以上を併用してもよい。
無機充填材は、樹脂固形分100体積部に対し10〜100体積部の量となるように配合する。前記無機充填材の熱伝導率と配合量の下限値は、樹脂絶縁層の熱伝導率を4W/m・K以上にする場合に必要である。また、エポキシ樹脂組成物に配合する無機充填材が少ないと、無機充填材をエポキシ樹脂組成物中に均一に分散させることが難しくなる。熱伝導性の確保と共にこの点においても、無機充填材配合量の下限値の規定は重要である。一方、無機充填材の配合量を多くすると、エポキシ樹脂組成物の粘性が増大して取り扱いが難しくなるので、無機充填材配合量の上限値は、このような観点から規定する。
The inorganic filler with a thermal conductivity of 20 W / m · K or more blended in the epoxy resin composition blended with the curing agent or curing accelerator is a metal oxide, hydroxide, inorganic ceramic, or other filler. For example, inorganic powder fillers such as boron nitride, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, alumina, magnesium oxide, fibrous fillers such as synthetic fibers and ceramic fibers, colorants, etc. is there. Two or more of these inorganic fillers may be used in combination.
An inorganic filler is mix | blended so that it may become the quantity of 10-100 volume parts with respect to 100 volume parts of resin solid content. The lower limit values of the thermal conductivity and the blending amount of the inorganic filler are necessary when the thermal conductivity of the resin insulating layer is 4 W / m · K or more. Moreover, when there are few inorganic fillers mix | blended with an epoxy resin composition, it will become difficult to disperse | distribute an inorganic filler uniformly in an epoxy resin composition. In this respect as well as ensuring thermal conductivity, it is important to define the lower limit value of the inorganic filler content. On the other hand, when the blending amount of the inorganic filler is increased, the viscosity of the epoxy resin composition is increased and the handling becomes difficult. Therefore, the upper limit value of the blending amount of the inorganic filler is defined from this viewpoint.

尚、無機充填材の熱伝導率が30W/m・K以上であれば、樹脂絶縁層の熱伝導率をさらに高くできるので好ましい。また、無機充填材は、その形状が、粉末(塊状、球状)、短繊維、長繊維等いずれであってもよいが、平板状のものを選定すると、高熱伝導率の無機充填材自身が樹脂中で積み重なった状態で存在することになり、樹脂絶縁層の厚み方向の熱伝導性をさらに高くできるので好ましい。上記エポキシ樹脂組成物には、そのほか必要に応じて難燃剤や希釈剤、可塑剤、カップリング剤等を配合することができる。   A thermal conductivity of the inorganic filler of 30 W / m · K or more is preferable because the thermal conductivity of the resin insulating layer can be further increased. In addition, the inorganic filler may have any shape such as powder (bulk, sphere), short fiber, long fiber, etc., but when a flat plate is selected, the inorganic filler itself with high thermal conductivity is resin. It exists in the state which accumulated in the inside, and since the heat conductivity of the thickness direction of a resin insulating layer can be made still higher, it is preferable. In addition to the above epoxy resin composition, a flame retardant, a diluent, a plasticizer, a coupling agent, and the like can be blended as necessary.

樹脂絶縁層の形成は、上記エポキシ樹脂組成物を必要に応じ溶剤に希釈してワニスを調製しこれをシート状繊維基材に含浸し、加熱乾燥して半硬化状態にしたプリプレグを準備する。そして、これらを加熱加圧成形して樹脂絶縁層とする。前記加熱加圧成形に当っては、金属層を前記プリプレグ層の両面に配置し、これらを加熱加圧成形により一体化する。金属層は、電解金属、圧延金属のいずれであってもよい。
エポキシ樹脂組成物を溶剤に希釈してワニスを調製する場合、溶剤の配合・使用が、エポキシ樹脂硬化物の熱伝導性に影響を与えることはない。
The resin insulation layer is formed by preparing a prepreg in which the epoxy resin composition is diluted with a solvent as necessary to prepare a varnish, impregnating the varnish into a sheet-like fiber base material, and drying by heating to a semi-cured state. And these are heat-press-molded and it is set as a resin insulating layer. In the heat and pressure molding, metal layers are arranged on both surfaces of the prepreg layer, and these are integrated by heat and pressure molding. The metal layer may be either electrolytic metal or rolled metal.
When the varnish is prepared by diluting the epoxy resin composition in a solvent, the blending and use of the solvent does not affect the thermal conductivity of the cured epoxy resin.

以下、本発明に係る実施例を示し、本発明について詳細に説明する。尚、以下の実施例および比較例において、「部」とは「質量部」を意味する。また、本発明は、その要旨を逸脱しない限り、本実施例に限定されるものではない。   Examples of the present invention will be described below, and the present invention will be described in detail. In the following examples and comparative examples, “part” means “part by mass”. Moreover, this invention is not limited to a present Example, unless it deviates from the summary.

実施例1
エポキシ樹脂モノマ成分としてビフェニル骨格をもつエポキシ樹脂モノマ(ジャパンエポキシレジン製「YL6121H」,エポキシ当量175)100部を用意し、これをメチルイソブチルケトン(和光純薬製)100部に100℃で溶解し、室温に戻した。前記「YL6121H」は、既述の分子構造式(式1)において、R=−CH,n=0.1であるエポキシ樹脂モノマと分子構造式(式1)において、R=−H,n=0.1であるエポキシ樹脂モノマを等モルで含有するエポキシ樹脂モノマである。
硬化剤として1,5−ジアミノナフタレン(和光純薬製「1,5−DAN」,アミン当量40)22部を用意し、これをメチルイソブチルケトン(和光純薬製)100部に100℃で溶解し、室温に戻した。
上記のエポキシ樹脂モノマ溶液と硬化剤溶液を混合・撹拌して均一なワニスにし、さらに無機充填材として窒化ホウ素(電気化学工業製「GP」,平均粒子径:8μm,熱伝導率60W/m・K,粒子形状:平板状)107部(樹脂固形分100体積部に対し50体積部に相当)を加えて混練し、エポキシ樹脂ワニスを調製した。
このエポキシ樹脂ワニスを、厚み50μmのアラミド繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグ1枚の両側に熱膨張率が17ppm/℃である1.3mm厚の金属層(銅層)を重ね、温度175℃、圧力4MPaの条件で90分間加熱加圧形成して一体化し、第1樹脂絶縁層の両面に金属層(銅層)を一体化した厚み2.7mmの積層板を得た。そして、金属層(銅層)を所定形状に加工して、両面金属層(銅層)付き板状体とした。
Example 1
As an epoxy resin monomer component, prepare 100 parts of an epoxy resin monomer having a biphenyl skeleton (Japan Epoxy Resin “YL6121H”, epoxy equivalent 175), and dissolve it at 100 ° C. in 100 parts of methyl isobutyl ketone (Wako Pure Chemical Industries, Ltd.). , Returned to room temperature. The “YL6121H” is an epoxy resin monomer in which R = —CH 3 and n = 0.1 in the molecular structural formula (formula 1) described above and R = —H, n in the molecular structural formula (formula 1). = 0.1 An epoxy resin monomer containing an equimolar amount of an epoxy resin monomer of 0.1.
As a curing agent, 22 parts of 1,5-diaminonaphthalene (“1,5-DAN” manufactured by Wako Pure Chemical Industries, Ltd., amine equivalent 40) is prepared and dissolved in 100 parts of methyl isobutyl ketone (manufactured by Wako Pure Chemical Industries) at 100 ° C. And returned to room temperature.
The epoxy resin monomer solution and the curing agent solution are mixed and stirred to form a uniform varnish, and boron nitride (“GP” manufactured by Denki Kagaku Kogyo, average particle size: 8 μm, thermal conductivity 60 W / m K (particle shape: flat plate) 107 parts (corresponding to 50 parts by volume with respect to 100 parts by volume of resin solid content) were added and kneaded to prepare an epoxy resin varnish.
This epoxy resin varnish was impregnated into an aramid fiber nonwoven fabric having a thickness of 50 μm and dried by heating to obtain a prepreg. A 1.3 mm thick metal layer (copper layer) with a thermal expansion coefficient of 17 ppm / ° C. is layered on both sides of one prepreg, and is formed by heating and pressing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa, A laminated board having a thickness of 2.7 mm in which a metal layer (copper layer) was integrated on both surfaces of the first resin insulating layer was obtained. And the metal layer (copper layer) was processed into the predetermined shape, and it was set as the plate-like body with a double-sided metal layer (copper layer).

次に、上記エポキシ樹脂ワニスを、厚み120μmのアラミド繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグを上記両面金属層(銅層)付き板状体の両面に10枚ずつ配置し離型フィルムで挟み温度175℃、圧力4MPaの条件で90分間加熱加圧成形して、第2樹脂絶縁層を一体化した。離型フィルムを剥がして、内部の所定形状の金属層(銅層)が露出するまで第2樹脂絶縁層を研磨して除去し、第1樹脂絶縁層に付加した第2樹脂絶縁層が金属層(銅層)と同じ高さの配線板を得た。これは、図1(a)に示す構成に相当するものである。第1及び第2樹脂絶縁層の熱膨張率は、12ppm/℃である。   Next, the epoxy resin varnish was impregnated into a 120 μm thick aramid fiber nonwoven fabric and dried by heating to obtain a prepreg. 10 sheets of this prepreg are placed on both sides of the plate with the double-sided metal layer (copper layer), sandwiched between release films, and heated and pressure-molded for 90 minutes under conditions of a temperature of 175 ° C. and a pressure of 4 MPa. The layers were integrated. The release film is peeled off, the second resin insulating layer is polished and removed until the metal layer (copper layer) having a predetermined shape is exposed, and the second resin insulating layer added to the first resin insulating layer is the metal layer. A wiring board having the same height as the (copper layer) was obtained. This corresponds to the configuration shown in FIG. The thermal expansion coefficient of the first and second resin insulation layers is 12 ppm / ° C.

実施例1で得た配線板について熱伝導率、そり量および半田接続信頼性を測定した結果を、使用した銅層厚みと共に表1にまとめて示す。測定は、以下に示す方法による。
熱伝導率:配線板からφ50mmの板状試料を切り出し、両面の銅層を含む厚さ方向の熱伝導を、熱流計法(JIS−A1412準拠)にて測定した。
そり量:105℃〜−40℃の範囲で冷熱サイクル試験を行ない、1000サイクル後の平面に対する浮き上がり量をそり量として測定した。
冷熱サイクル:パワー素子(セラミックチップ)を半田付し、105℃〜−40℃の範囲で冷熱サイクル試験を行ない、1000サイクル後の半田部クラック発生の有無を調べた。
The results of measuring the thermal conductivity, warpage amount and solder connection reliability of the wiring board obtained in Example 1 are shown together in Table 1 together with the used copper layer thickness. The measurement is based on the method shown below.
Thermal conductivity: A plate-like sample having a diameter of 50 mm was cut out from the wiring board, and the heat conduction in the thickness direction including the copper layers on both sides was measured by a heat flow meter method (based on JIS-A1412).
Warpage amount: A cooling / heating cycle test was performed in the range of 105 ° C. to −40 ° C., and the amount of lift relative to the plane after 1000 cycles was measured as the amount of warpage.
Cooling / heating cycle: A power element (ceramic chip) was soldered, and a cooling / heating cycle test was conducted in the range of 105 ° C. to −40 ° C., and the presence or absence of occurrence of solder cracks after 1000 cycles was examined.

実施例2
実施例1の金属層(銅層)厚みを、上側1.4mm、下側1.4mmとする以外は実施例1と同様にして配線板を得た。
Example 2
A wiring board was obtained in the same manner as in Example 1 except that the metal layer (copper layer) thickness of Example 1 was 1.4 mm on the upper side and 1.4 mm on the lower side.

実施例3
実施例1の金属層(銅層)厚みを、上側0.7mm、下側0.7mmとする以外は実施例1と同様にして配線板を得た。
Example 3
A wiring board was obtained in the same manner as in Example 1 except that the metal layer (copper layer) thickness of Example 1 was 0.7 mm on the upper side and 0.7 mm on the lower side.

実施例4
実施例1の金属層(銅層)厚みを、上側1.3mm、下側0.018mmとする以外は実施例1と同様にして配線板を得た。
Example 4
A wiring board was obtained in the same manner as in Example 1 except that the metal layer (copper layer) thickness of Example 1 was 1.3 mm on the upper side and 0.018 mm on the lower side.

実施例5
実施例1のエポキシ樹脂ワニスを、厚み50μmのアラミド繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグ1枚の両側に1.3mm厚の銅箔を重ね、温度175℃、圧力4MPaの条件で90分間加熱加圧形成して一体化し、厚み2.7mmの積層板を得た。そして、金属層(銅層)を所定形状に加工して、両面金属層(銅層)付き板状体とした。
次に、上記エポキシ樹脂ワニスを、厚み120μmのアラミド繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグを上記両面金属層(銅層)付き板状体の両面に10枚ずつ配置し離型フィルムで挟み温度175℃、圧力4MPaの条件で90分間加熱加圧成形して、第2樹脂絶縁層を一体化した。離型フィルムを剥がして、内部の所定形状の銅層が露出するまで第2樹脂絶縁層をざぐり加工にて除去し、第1樹脂絶縁層に付加した第2樹脂絶縁層が金属層(銅層)の周囲上面を覆う構成の配線板を得た。これは、図1(b)に示す構成に相当するものである。
Example 5
The epoxy resin varnish of Example 1 was impregnated into an aramid fiber nonwoven fabric having a thickness of 50 μm and dried by heating to obtain a prepreg. A copper foil having a thickness of 1.3 mm was stacked on both sides of one prepreg and integrated by heating and pressing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa to obtain a laminated plate having a thickness of 2.7 mm. And the metal layer (copper layer) was processed into the predetermined shape, and it was set as the plate-like body with a double-sided metal layer (copper layer).
Next, the epoxy resin varnish was impregnated into a 120 μm thick aramid fiber nonwoven fabric and dried by heating to obtain a prepreg. 10 sheets of this prepreg are placed on both sides of the plate with the double-sided metal layer (copper layer), sandwiched between release films, and heated and pressure-molded for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa. The layers were integrated. The release film is peeled off, the second resin insulation layer is removed by spotting until the copper layer of a predetermined shape is exposed, and the second resin insulation layer added to the first resin insulation layer is a metal layer (copper layer). ) Was obtained. This corresponds to the configuration shown in FIG.

実施例6
実施例1の金属層(銅層)厚みを上側0.6mm、下側0.6mmとする以外は実施例1と同様にして配線板を得た。
Example 6
A wiring board was obtained in the same manner as in Example 1 except that the metal layer (copper layer) thickness of Example 1 was 0.6 mm on the upper side and 0.6 mm on the lower side.

比較例1
実施例1のエポキシ樹脂ワニスを、厚み50μmのアラミド繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグ1枚の両側に1.3mm厚の銅箔を重ね、温度175℃、圧力4MPaの条件で90分間加熱加圧形成して一体化し、厚み2.7mmの積層板を得た。そして、金属層(銅層)を所定形状に加工して、両面金属層(銅層)付きの配線板とした。図2に示す構成である。
Comparative Example 1
The epoxy resin varnish of Example 1 was impregnated into an aramid fiber nonwoven fabric having a thickness of 50 μm and dried by heating to obtain a prepreg. A copper foil having a thickness of 1.3 mm was stacked on both sides of one prepreg and integrated by heating and pressing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa to obtain a laminated plate having a thickness of 2.7 mm. And the metal layer (copper layer) was processed into the predetermined shape, and it was set as the wiring board with a double-sided metal layer (copper layer). It is the structure shown in FIG.

比較例2
比較例1の金属層(銅層)厚みを上側1.0mm、下側0.012mmとする以外は比較例1と同様にして配線板を得た。
Comparative Example 2
A wiring board was obtained in the same manner as in Comparative Example 1 except that the metal layer (copper layer) thickness of Comparative Example 1 was 1.0 mm on the upper side and 0.012 mm on the lower side.

比較例3
実施例1のエポキシ樹脂ワニスを、厚み50μmのガラス繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグ1枚の両側に熱膨張率が17ppm/℃である1.3mm厚の金属層(銅層)を重ね、温度175℃、圧力4MPaの条件で90分間加熱加圧形成して一体化し、第1樹脂絶縁層の両面に金属層(銅層)を一体化した厚み2.7mmの積層板を得た。そして、金属層(銅層)を所定形状に加工して、両面金属層(銅層)付き板状体とした。
Comparative Example 3
The epoxy resin varnish of Example 1 was impregnated into a 50 μm thick glass fiber nonwoven fabric and dried by heating to obtain a prepreg. A 1.3 mm thick metal layer (copper layer) with a thermal expansion coefficient of 17 ppm / ° C. is layered on both sides of one prepreg, and is formed by heating and pressing for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa, A laminated board having a thickness of 2.7 mm in which a metal layer (copper layer) was integrated on both surfaces of the first resin insulating layer was obtained. And the metal layer (copper layer) was processed into the predetermined shape, and it was set as the plate-like body with a double-sided metal layer (copper layer).

次に、上記エポキシ樹脂ワニスを、厚み0.6mmのガラス繊維不織布に含浸し加熱乾燥してプリプレグを得た。このプリプレグを上記両面金属層(銅層)付き板状体の両面に2枚ずつ配置し離型フィルムで挟み温度175℃、圧力4MPaの条件で90分間加熱加圧成形して、第2樹脂絶縁層を一体化した。離型フィルムを剥がして、内部の所定形状の金属層(銅層)が露出するまで第2樹脂絶縁層を研磨して除去し、第1樹脂絶縁層に付加した第2樹脂絶縁層が金属層(銅層)と同じ高さの配線板を得た。これは、図1(a)に示す構成に相当するものであるが、第2樹脂絶縁層の熱膨張率が18ppm/℃と、金属層(銅層)の熱膨張率より大きいものである。尚、第1樹脂絶縁層の熱膨張率は、15ppm/℃である。   Next, the epoxy resin varnish was impregnated into a 0.6 mm thick glass fiber nonwoven fabric and dried by heating to obtain a prepreg. Two prepregs are placed on both sides of the plate with the double-sided metal layer (copper layer), sandwiched between release films, and heated and pressure-molded for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 4 MPa. The layers were integrated. The release film is peeled off, the second resin insulating layer is polished and removed until the metal layer (copper layer) having a predetermined shape is exposed, and the second resin insulating layer added to the first resin insulating layer is the metal layer. A wiring board having the same height as the (copper layer) was obtained. This corresponds to the configuration shown in FIG. 1A, but the thermal expansion coefficient of the second resin insulation layer is 18 ppm / ° C., which is larger than the thermal expansion coefficient of the metal layer (copper layer). The thermal expansion coefficient of the first resin insulation layer is 15 ppm / ° C.

実施例2〜6、比較例1〜3の配線板についても、実施例1と同様に特性を測定し、結果を表1ならびに表2に示した。   About the wiring boards of Examples 2-6 and Comparative Examples 1-3, the characteristic was measured similarly to Example 1, and the result was shown in Table 1 and Table 2.

Figure 2006165353
Figure 2006165353

Figure 2006165353
Figure 2006165353

上記表に示したように、比較例1、2においては、金属層の端縁周囲を規制するものがないので、金属層の熱膨張を抑えられず、配線板のそりが大きくなり、半田部のクラックも発生しやすくなっている。比較例3においては、第2樹脂絶縁層を付加しているものの、その熱膨張率が金属層の熱膨張率より大きいので、配線板のそりと半田部のクラック発生を抑えられていない。
本発明に係る実施例においては、配線板のそりと半田部のクラック発生を抑えられていることを理解できる。銅層の厚みを0.7mm以上にする場合は、半田部のクラック発生をより低く抑えられる(実施例1〜3と実施例6の対比)。
As shown in the above table, in Comparative Examples 1 and 2, there is nothing that regulates the periphery of the edge of the metal layer, so the thermal expansion of the metal layer cannot be suppressed, the warping of the wiring board increases, and the solder portion Cracks are also likely to occur. In Comparative Example 3, although the second resin insulation layer is added, since the thermal expansion coefficient is larger than the thermal expansion coefficient of the metal layer, the generation of the warp of the wiring board and the crack of the solder portion is not suppressed.
In the embodiment according to the present invention, it can be understood that warpage of the wiring board and occurrence of cracks in the solder portion are suppressed. When the thickness of the copper layer is 0.7 mm or more, the occurrence of cracks in the solder portion can be suppressed to a lower level (contrast of Examples 1 to 3 and Example 6).

本発明に係る実施の形態の配線板断面図である。It is a wiring board sectional view of an embodiment concerning the present invention. 従来の配線板断面図である。It is conventional wiring board sectional drawing.

符号の説明Explanation of symbols

1はパワー素子
2は半田
3は金属層
4は第1樹脂絶縁層
5は第2樹脂絶縁層
1 is power element 2 is solder 3 is metal layer 4 is first resin insulation layer 5 is second resin insulation layer

Claims (3)

シート状繊維基材で補強された第1樹脂絶縁層とその両面に一体化した金属層で構成され、少なくとも片面の金属層が電気配線の機能を有する配線板において、
両面の金属層は、その合計厚みが第1樹脂絶縁層の厚みより厚く設定され、
両面の金属層とも、その端縁は第1樹脂絶縁層の周縁より内側に位置し、
第1樹脂絶縁層には、両面の金属層端縁全周に接し厚みが金属層厚みと同等以上である補強繊維充填第2樹脂絶縁層が付加されており、第1樹脂絶縁層と第2樹脂絶縁層双方の熱膨張率が、第1樹脂絶縁層の両面に配置されている金属層の熱膨張率より小さいことを特徴とする配線板。
In the wiring board composed of a first resin insulating layer reinforced with a sheet-like fiber base material and a metal layer integrated on both sides thereof, at least one metal layer having a function of electrical wiring,
The total thickness of the metal layers on both sides is set to be greater than the thickness of the first resin insulation layer,
In both metal layers, the edge is located inside the periphery of the first resin insulation layer,
The first resin insulation layer is provided with a reinforcing fiber-filled second resin insulation layer that is in contact with the entire circumference of the metal layer edges on both sides and has a thickness equal to or greater than the metal layer thickness. A wiring board characterized in that the thermal expansion coefficient of both of the resin insulation layers is smaller than the thermal expansion coefficient of the metal layers disposed on both surfaces of the first resin insulation layer.
第1樹脂絶縁層とその両面に一体化した金属層で構成され、少なくとも片面の金属層が電気配線の機能を有する配線板において、
両面の金属層は、その合計厚みが第1樹脂絶縁層の厚みより厚く設定され、
両面の金属層とも、その端縁は第1樹脂絶縁層の周縁より内側に位置し、
第1樹脂絶縁層には、両面の金属層端縁全周に接し厚みが金属層厚みを越える補強繊維充填第2樹脂絶縁層が、金属層表面一部を周囲から覆うように付加されており、第1樹脂絶縁層と第2樹脂絶縁層双方の熱膨張率が、第1樹脂絶縁層の両面に配置されている金属層の熱膨張率より小さいことを特徴とする配線板。
In the wiring board composed of the first resin insulating layer and the metal layer integrated on both surfaces thereof, and at least one metal layer has the function of electrical wiring,
The total thickness of the metal layers on both sides is set to be greater than the thickness of the first resin insulation layer,
In both metal layers, the edge is located inside the periphery of the first resin insulation layer,
A reinforcing fiber-filled second resin insulation layer that is in contact with the entire circumference of the metal layer edges on both sides and exceeds the metal layer thickness is added to the first resin insulation layer so as to cover part of the metal layer surface from the periphery. The wiring board characterized in that the thermal expansion coefficient of both the first resin insulating layer and the second resin insulating layer is smaller than the thermal expansion coefficient of the metal layers disposed on both surfaces of the first resin insulating layer.
電気配線の機能を有する金属層が、銅層からなり、厚み0.7mm以上である請求項1又は2記載の配線板。   The wiring board according to claim 1 or 2, wherein the metal layer having a function of electric wiring is made of a copper layer and has a thickness of 0.7 mm or more.
JP2004356070A 2004-12-08 2004-12-08 Wiring board Expired - Fee Related JP4254705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004356070A JP4254705B2 (en) 2004-12-08 2004-12-08 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004356070A JP4254705B2 (en) 2004-12-08 2004-12-08 Wiring board

Publications (2)

Publication Number Publication Date
JP2006165353A true JP2006165353A (en) 2006-06-22
JP4254705B2 JP4254705B2 (en) 2009-04-15

Family

ID=36667016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004356070A Expired - Fee Related JP4254705B2 (en) 2004-12-08 2004-12-08 Wiring board

Country Status (1)

Country Link
JP (1) JP4254705B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051553A (en) * 2012-09-05 2014-03-20 Mitsubishi Chemicals Corp Interlaminar filler composition for three-dimensional laminate type semiconductor device, three-dimensional laminate type semiconductor device, and manufacturing method of three-dimensional laminate type semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014051553A (en) * 2012-09-05 2014-03-20 Mitsubishi Chemicals Corp Interlaminar filler composition for three-dimensional laminate type semiconductor device, three-dimensional laminate type semiconductor device, and manufacturing method of three-dimensional laminate type semiconductor device

Also Published As

Publication number Publication date
JP4254705B2 (en) 2009-04-15

Similar Documents

Publication Publication Date Title
JP7053579B2 (en) Heat transfer member and heat dissipation structure including it
KR20180124915A (en) Ceramic resin composite
JP6170486B2 (en) Ceramic resin composite circuit board and power semiconductor module using the same
JP2010053224A (en) Thermally conductive resin sheet, heat conduction plate, thermally conductive printed wiring board and radiating member
TWI454377B (en) Epoxy resin laminate having excellent formability and method for preparing the same
JP2007224269A (en) Prepreg for heat- and press-molding, and laminated board
WO2010070890A1 (en) Prepreg, process for production thereof, and printed wiring board using same
JP5370129B2 (en) Thermosetting resin composition, prepreg and laminate
JP4561697B2 (en) Multilayer circuit board
JP4192871B2 (en) Laminated board and wiring board
JP4192870B2 (en) Laminated board and wiring board
JP5217865B2 (en) Flame-retardant epoxy resin composition, prepreg, laminate and wiring board
JP4254705B2 (en) Wiring board
KR101254035B1 (en) Adhesive composition of metal copper clad laminate for high efficiency radiating pcb
JP2007115983A (en) Wiring board
JP6299834B2 (en) Low thermal expansion resin composition, prepreg, laminate and wiring board
JP6979270B2 (en) Graphite resin complex
JP5828094B2 (en) Resin sheet, metal foil with resin, board material and component mounting board
JP2007335835A (en) Wiring board
JP4075268B2 (en) Circuit board manufacturing method
JP2006036869A (en) Prepreg, laminate and printed wiring board
JP7122622B2 (en) Resin composition, insulation sheet and printed wiring board
WO2021241298A1 (en) Thermally conductive sheet with metal plate and method for poducing thermally conductive sheet
JP6735505B2 (en) Printed wiring board, printed circuit board, prepreg
WO2023190236A1 (en) Composite and production method therefor, and assembly, circuit substrate, and power module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080925

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees