JP2007335835A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2007335835A
JP2007335835A JP2007007022A JP2007007022A JP2007335835A JP 2007335835 A JP2007335835 A JP 2007335835A JP 2007007022 A JP2007007022 A JP 2007007022A JP 2007007022 A JP2007007022 A JP 2007007022A JP 2007335835 A JP2007335835 A JP 2007335835A
Authority
JP
Japan
Prior art keywords
metal layer
insulating layer
layer
resin insulating
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007007022A
Other languages
Japanese (ja)
Inventor
Yasuhito Iwatsuki
保仁 岩月
Hiroyuki Yamanaka
浩之 山仲
Atsushi Kanai
淳 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2007007022A priority Critical patent/JP2007335835A/en
Publication of JP2007335835A publication Critical patent/JP2007335835A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

<P>PROBLEM TO BE SOLVED: To suppress remaining of heat from a heating component and to discourage cracking at the soldering part for connecting a mounting component, relating to a wiring board that has an electric wiring at least on one surface, with the heating component being mounted. <P>SOLUTION: The total thickness of a first metal layer 3 and a second metal layer 4 on both surfaces of a first resin insulating layer 5 is set to be larger than the first resin insulating layer 5, with the edge of the first metal layer 3 positioned inside the peripheral edge of the first resin insulating layer 5. The thermal expansion coefficient of the first metal layer 3 in planar direction is set smaller than that of the second metal layer 4 in planar direction. The thermal conductivity of the first metal layer 3 is set higher than that of the second metal layer 4. A reinforcing fiber packed second resin insulating layer 6 whose thickness is equal to or more than that of the first metal layer, contacting the entire periphery of the edge of the first metal layer 3, is added to the first resin insulating layer 5. The first resin insulating layer 5 is such highly thermally conductive insulating layer as formed of the insulating material having a higher thermal conductivity than the second resin insulating layer 6. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発熱部品を実装した構成においても放熱特性及び接続信頼性の高い配線板に関する。   The present invention relates to a wiring board having high heat dissipation characteristics and high connection reliability even in a configuration in which a heat generating component is mounted.

電子機器に搭載する配線板は、電子機器の軽薄短小化に伴う微細配線・高密度実装の技術が求められる一方で、発熱に対応する高放熱の技術も求められている。特に、各種制御・操作に大電流を使用する自動車などにおける電子回路では、導電回路の抵抗に起因する発熱やパワー素子からの発熱が非常に多く、配線板の放熱特性は高レベルであることが必須となってきている。   A wiring board mounted on an electronic device is required to have a technology for fine wiring and high-density mounting in accordance with a reduction in the thickness and size of the electronic device, and a technology for high heat dissipation corresponding to heat generation is also required. In particular, in electronic circuits such as automobiles that use a large current for various controls and operations, heat generation due to the resistance of the conductive circuit and heat generation from the power element are very large, and the heat dissipation characteristics of the wiring board may be high. It has become essential.

その対策として、放熱性の高いセラミック基板やシート状繊維基材に熱硬化性樹脂を保持した絶縁層に厚い金属層(銅板ないし銅箔等)を一体化した積層板を用意し、金属層を回路加工した配線板がある(例えば、特許文献1の段落番号0002の記載)。   As a countermeasure, prepare a laminated board in which a thick metal layer (copper plate or copper foil) is integrated with an insulating layer holding a thermosetting resin on a highly heat-dissipating ceramic substrate or sheet-like fiber base material. There is a circuit processed wiring board (for example, description in paragraph 0002 of Patent Document 1).

シート状繊維基材に熱硬化性樹脂を保持した絶縁層に厚い金属層を一体化した配線板では、配線板にはんだ付によりパワー素子など発熱部品を実装すると、金属層の熱膨張・収縮の応力がはんだ部にかかり、はんだ部にクラックが発生しやすくなる。   In a wiring board in which a thick metal layer is integrated with an insulating layer holding a thermosetting resin on a sheet-like fiber base, mounting a heat-generating component such as a power element on the wiring board by soldering will cause thermal expansion / contraction of the metal layer. Stress is applied to the solder portion, and cracks are likely to occur in the solder portion.

特開2003−198103号公報JP 2003-198103 A

本発明が解決しようとする課題は、シート状繊維基材で補強された第1樹脂絶縁層とその両面に一体化した第1金属層と第2金属層で構成され、少なくとも第1金属層が電気配線の機能を有し、前記第1金属層の電気配線に発熱部品を実装した配線板において、発熱部品による熱の滞留を抑制し、実装部品を接続したはんだ部にクラックが起こりにくくすることである。   The problem to be solved by the present invention is composed of a first resin insulation layer reinforced with a sheet-like fiber base material, a first metal layer and a second metal layer integrated on both sides thereof, and at least the first metal layer is In a wiring board having a function of electrical wiring and mounting a heat generating component on the electrical wiring of the first metal layer, it is possible to suppress heat retention due to the heat generating component, and to prevent a crack from occurring in a solder portion connected to the mounting component. It is.

上記課題を達成するために、本発明に係る配線板(請求項1)は、シート状繊維基材で補強された第1樹脂絶縁層とその両面に一体化した第1金属層と第2金属層で構成され、少なくとも第1金属層が電気配線の機能を有する構成において、前記第1金属層の電気配線には、発熱部品が実装されている。第1金属層と第2金属層はその合計厚みが第1樹脂絶縁層の厚みより厚く設定され、第1金属層の端縁は第1樹脂絶縁層の周縁より内側に位置する。そして、第1金属層の平面方向の熱膨張率が第2金属層の平面方向の熱膨張率より小さく、かつ、第1金属層の熱伝導率が第2金属層の熱伝導率より高く設定される。さらに、第1樹脂絶縁層には、第1金属層の端縁全周に接し厚みが第1金属層厚みと同等以上である補強繊維充填第2樹脂絶縁層が付加されており、第1樹脂絶縁層は、第2樹脂絶縁層よりも熱伝導率の高い絶縁材料で形成された高熱伝導性の絶縁層であることを特徴とする。   In order to achieve the above object, a wiring board according to the present invention (Claim 1) includes a first resin insulating layer reinforced with a sheet-like fiber base material, a first metal layer and a second metal integrated on both sides thereof. In the configuration in which the first metal layer has a function of electric wiring, at least the first metal layer has a function of electric wiring, and a heat generating component is mounted on the electric wiring of the first metal layer. The total thickness of the first metal layer and the second metal layer is set to be thicker than the thickness of the first resin insulation layer, and the edge of the first metal layer is located inside the periphery of the first resin insulation layer. The thermal expansion coefficient in the planar direction of the first metal layer is set smaller than the thermal expansion coefficient in the planar direction of the second metal layer, and the thermal conductivity of the first metal layer is set higher than the thermal conductivity of the second metal layer. Is done. The first resin insulating layer is further provided with a reinforcing fiber-filled second resin insulating layer that is in contact with the entire periphery of the edge of the first metal layer and has a thickness equal to or greater than the thickness of the first metal layer. The insulating layer is a highly thermally conductive insulating layer formed of an insulating material having a higher thermal conductivity than the second resin insulating layer.

上記請求項1において、好ましくは、第1樹脂絶縁層の熱伝導率が4W/m・K以上である(請求項2)。さらに、第2樹脂絶縁層の平面方向の熱膨張率が、第1金属層の熱膨張率より小さいことを特徴とする(請求項3)。   In the first aspect, preferably, the thermal conductivity of the first resin insulating layer is 4 W / m · K or more (claim 2). Furthermore, the thermal expansion coefficient in the planar direction of the second resin insulating layer is smaller than the thermal expansion coefficient of the first metal layer (Claim 3).

電気配線の機能を有する金属層上にパワー素子等の発熱部品を実装する場合、当該パワー素子の熱膨張率は5ppm/℃程度である。一方、パワー素子直下の金属層の熱膨張率(α)は9〜30ppm/℃程度である。パワー素子の発熱と発熱停止による、冷熱サイクルを繰り返すと、両者の熱膨張率の差に起因して、両者を接合しているはんだ部に応力が集中し、はんだ部にクラックが発生して接続信頼性が低下する。   When a heat-generating component such as a power element is mounted on a metal layer having a function of electrical wiring, the thermal expansion coefficient of the power element is about 5 ppm / ° C. On the other hand, the coefficient of thermal expansion (α) of the metal layer directly under the power element is about 9 to 30 ppm / ° C. If the heat cycle of the power element is repeated and the heat generation is stopped, stress is concentrated on the solder part that joins the two due to the difference in the coefficient of thermal expansion between the two, causing cracks in the solder part and connecting. Reliability decreases.

しかし、本発明に係る配線板においては、第1樹脂絶縁層は、第1金属層と第2金属層の合計厚みより薄く、かつ、第2樹脂絶縁層よりも熱伝導率の高い絶縁材料で形成された高熱伝導性の絶縁層としたので、第1樹脂絶縁層で熱伝導が阻害されることが少なく、第1樹脂絶縁層を介した第1金属層と第2金属層の熱伝導性は確保され、第1金属層自体の昇温が抑えられる。さらに、第1金属層の熱伝導率を第2金属層の熱伝導率より高くしたので、パワー素子の発熱が第1金属層を速やかに伝達して放熱性が向上する。また、第1金属層は、その端縁全周が第1金属層の厚みと同等以上の第2樹脂絶縁層に接し規制され、かつ、第1金属層の平面方向の熱膨張率を第2金属層の平面方向の熱膨張率より小さくしたので、第1金属層の平面方向の熱膨張は抑えられることになる。このようにして、第1金属層の温度上昇による膨張が抑制され、はんだ部にかかる応力が低減される。
さらに、第1樹脂絶縁層の熱伝導率を4W/m・K以上とすることにより、放熱効果は大きくなる。また、第2樹脂絶縁層の平面方向の熱膨張率を第1金属層の熱膨張率より小さくすることにより、第1金属層の平面方向の熱膨張を抑制する効果は大きくなる。
However, in the wiring board according to the present invention, the first resin insulating layer is made of an insulating material that is thinner than the total thickness of the first metal layer and the second metal layer and has a higher thermal conductivity than the second resin insulating layer. Since the formed highly heat-conductive insulating layer is formed, the first resin insulating layer is less likely to hinder heat conduction, and the heat conductivity of the first metal layer and the second metal layer through the first resin insulating layer is reduced. Is ensured, and the temperature rise of the first metal layer itself is suppressed. Furthermore, since the thermal conductivity of the first metal layer is made higher than the thermal conductivity of the second metal layer, the heat generated by the power element is quickly transmitted through the first metal layer, and the heat dissipation is improved. Further, the first metal layer is regulated so that the entire circumference of the edge is in contact with the second resin insulating layer equal to or more than the thickness of the first metal layer, and the coefficient of thermal expansion in the planar direction of the first metal layer is the second. Since the thermal expansion coefficient in the planar direction of the metal layer is smaller than that, the thermal expansion in the planar direction of the first metal layer is suppressed. In this way, the expansion due to the temperature rise of the first metal layer is suppressed, and the stress applied to the solder portion is reduced.
Furthermore, the heat dissipation effect is increased by setting the thermal conductivity of the first resin insulating layer to 4 W / m · K or more. Moreover, the effect of suppressing the thermal expansion in the planar direction of the first metal layer is increased by making the thermal expansion coefficient in the planar direction of the second resin insulating layer smaller than that of the first metal layer.

本発明を実施する具体的な形態は、例えば、図1(a)に示すような構成が望ましい。シート状繊維基材で補強された第1樹脂絶縁層5の両面に第1金属層3と第2金属層4が一体化され、少なくとも第1金属層3は電気配線の機能を有する。電気配線の機能を有する第1金属層には、発熱素子1がはんだ2により実装される。第1樹脂絶縁層5両面に一体化した第1金属層3と第2金属層4は、その合計厚みが第1樹脂絶縁層5の厚みより厚く設定されている。また、第1金属層3の端縁は、第1樹脂絶縁層5の周縁より内側に位置している。さらに、第1金属層3の平面方向の熱膨張率が第2金属層4の平面方向の熱膨張率より小さく、かつ、第1金属層3の熱伝導率が第2金属層4の熱伝導率より高く設定されている。そして、第1樹脂絶縁層5には、第1金属層3端縁全周に接し厚みが第1金属層3の厚みと同等以上である補強繊維充填第2樹脂絶縁層6が付加されている。ここで、第1樹脂絶縁層5は、第2樹脂絶縁層6よりも熱伝導率の高い絶縁材料で形成された高熱伝導性の絶縁層である。   As a specific form for carrying out the present invention, for example, a configuration as shown in FIG. The first metal layer 3 and the second metal layer 4 are integrated on both surfaces of the first resin insulating layer 5 reinforced with the sheet-like fiber base material, and at least the first metal layer 3 has a function of electric wiring. The heating element 1 is mounted with solder 2 on the first metal layer having the function of electrical wiring. The total thickness of the first metal layer 3 and the second metal layer 4 integrated on both surfaces of the first resin insulation layer 5 is set to be greater than the thickness of the first resin insulation layer 5. Further, the edge of the first metal layer 3 is located inside the periphery of the first resin insulating layer 5. Furthermore, the thermal expansion coefficient in the planar direction of the first metal layer 3 is smaller than the thermal expansion coefficient in the planar direction of the second metal layer 4, and the thermal conductivity of the first metal layer 3 is the thermal conductivity of the second metal layer 4. It is set higher than the rate. The first resin insulating layer 5 is provided with a reinforcing fiber-filled second resin insulating layer 6 that is in contact with the entire periphery of the first metal layer 3 and has a thickness equal to or greater than the thickness of the first metal layer 3. . Here, the first resin insulation layer 5 is a high thermal conductivity insulation layer formed of an insulation material having a higher thermal conductivity than the second resin insulation layer 6.

上記のような構成は、まず、シート状繊維基材に熱硬化性樹脂を保持させたプリプレグ層の両面に第1金属層3および第2金属層4を配置して加熱加圧成形により一体化する。プリプレグ層は、前記成形により第1樹脂絶縁層5となる。そして、第1金属層3の端縁が第1樹脂絶縁層5の周縁より内側に位置するように、第1金属層3を加工して両面金属層付き板状体とする。この加工は、第1金属層が電気配線の機能を有するように加工することを含む。尚、予め所定形状に加工した第1金属層および第2金属層を前記プリプレグ層の両面に配置し、加熱加圧成形により一体化して、両面金属層付き板状体としてもよい。   In the above configuration, first, the first metal layer 3 and the second metal layer 4 are arranged on both surfaces of the prepreg layer in which the thermosetting resin is held on the sheet-like fiber base material, and integrated by heat and pressure molding. To do. The prepreg layer becomes the first resin insulating layer 5 by the molding. And the 1st metal layer 3 is processed so that the edge of the 1st metal layer 3 may be located inside the periphery of the 1st resin insulation layer 5, and it is set as a plate-like body with a double-sided metal layer. This processing includes processing so that the first metal layer has a function of electric wiring. In addition, the 1st metal layer and 2nd metal layer which were previously processed into the predetermined shape are arrange | positioned on both surfaces of the said prepreg layer, and it is good also as a plate-like body with a double-sided metal layer by integrating by heat-pressure molding.

次に、前記の両面金属層付き板状体の第1金属層3側にプリプレグ層を重ね、加熱加圧成形により一体化して第2樹脂絶縁層6を形成する。第1金属層3上の第2樹脂絶縁層6を研磨又はざぐり加工にて除去し、第1金属層3を露出させる。このようにして、第1樹脂絶縁層5に第2樹脂絶縁層6が付加された状態とする。
そして、所定の発熱素子1を、上記第2樹脂絶縁層6を除去した第1金属層3上の実装領域に、はんだリフロー等の手段により実装する。
第2樹脂絶縁層6の付加は、第1金属層3に対面する領域を予め除去したプリプレグ層を両面金属層付き板状体に重ねて加熱加圧成形により一体化すれば、前記の研磨又はざぐり加工の工程を省略又は簡略化することができる。
Next, the second resin insulating layer 6 is formed by stacking a prepreg layer on the first metal layer 3 side of the plate with double-sided metal layers and integrating them by heat and pressure molding. The second resin insulating layer 6 on the first metal layer 3 is removed by polishing or counterboring to expose the first metal layer 3. In this way, the second resin insulation layer 6 is added to the first resin insulation layer 5.
Then, the predetermined heating element 1 is mounted on a mounting region on the first metal layer 3 from which the second resin insulating layer 6 has been removed by means such as solder reflow.
The addition of the second resin insulating layer 6 is performed by adding the prepreg layer from which the region facing the first metal layer 3 has been removed in advance to the plate-like body with double-sided metal layers and integrating them by heat and pressure molding. The counterbore process can be omitted or simplified.

上記において、第1樹脂絶縁層5の厚みは、第1金属層3と第2金属層4の合計厚みよりも薄いので、第1樹脂絶縁層5に第1金属層3を押し込むことによっては、第1金属層3の端縁周囲にその厚み以上に樹脂絶縁層が接した状態とすることはできない。第1樹脂絶縁層5に第2樹脂絶縁層6を付加することは必須の事項となる。   In the above, since the thickness of the first resin insulating layer 5 is thinner than the total thickness of the first metal layer 3 and the second metal layer 4, by pressing the first metal layer 3 into the first resin insulating layer 5, The resin insulating layer cannot be in contact with the periphery of the edge of the first metal layer 3 beyond its thickness. It is essential to add the second resin insulation layer 6 to the first resin insulation layer 5.

上記プリプレグを構成するシート状繊維基材は、ガラス繊維や有機繊維で構成された織布や不織布である。樹脂絶縁層の熱膨張率を小さくするためには、アラミド繊維やアルミナ繊維からなるシート状繊維基材が好ましい。第1樹脂絶縁層は、好ましくは、熱伝導率が4W/m・K以上である。前記シート状繊維基材に含浸して樹脂絶縁層を構成するための熱硬化性樹脂は、樹脂絶縁層の熱伝導率を4W/m・K以上にする場合には、例えば、以下のような樹脂組成を採用する。
すなわち、無機充填材を含有し(式1)で示す分子構造のエポキシ樹脂モノマを配合したエポキシ樹脂組成物を採用する。前記無機充填材は、熱伝導率20W/m・K以上であって、樹脂固形分100体積部に対し10〜185体積部の量で絶縁層中に存在するようにする。
The sheet-like fiber base material constituting the prepreg is a woven fabric or a nonwoven fabric made of glass fiber or organic fiber. In order to reduce the thermal expansion coefficient of the resin insulating layer, a sheet-like fiber base material made of aramid fiber or alumina fiber is preferable. The first resin insulating layer preferably has a thermal conductivity of 4 W / m · K or more. The thermosetting resin for impregnating the sheet-like fiber base material to form the resin insulating layer is, for example, as follows when the thermal conductivity of the resin insulating layer is 4 W / m · K or more. Adopt resin composition.
That is, an epoxy resin composition containing an inorganic filler and containing an epoxy resin monomer having a molecular structure represented by (Formula 1) is employed. The inorganic filler has a thermal conductivity of 20 W / m · K or more, and is present in the insulating layer in an amount of 10 to 185 parts by volume with respect to 100 parts by volume of the resin solid content.

Figure 2007335835
上記(式1)で示す分子構造のエポキシ樹脂モノマは、ビフェニル骨格あるいはビフェニル誘導体の骨格をもち、1分子中に2個以上のエポキシ基をもつエポキシ化合物全般である。エポキシ樹脂モノマの硬化反応を進めるために、硬化剤を配合する。硬化剤は、例えば、アミン化合物やその誘導体、酸無水物、イミダゾールやその誘導体、フェノール類又はその化合物や重合体などである。また、エポキシ樹脂モノマと硬化剤の反応を促進するために、硬化促進剤を使用することができる。硬化促進剤は、例えば、トリフェニルホスフィン、イミダゾールやその誘導体、三級アミン化合物やその誘導体などである。
Figure 2007335835
The epoxy resin monomers having the molecular structure represented by the above (formula 1) are all epoxy compounds having a biphenyl skeleton or a biphenyl derivative skeleton and having two or more epoxy groups in one molecule. In order to advance the curing reaction of the epoxy resin monomer, a curing agent is blended. Examples of the curing agent include amine compounds and derivatives thereof, acid anhydrides, imidazoles and derivatives thereof, phenols or compounds and polymers thereof, and the like. Moreover, in order to accelerate | stimulate reaction of an epoxy resin monomer and a hardening | curing agent, a hardening accelerator can be used. Examples of the curing accelerator include triphenylphosphine, imidazole and derivatives thereof, tertiary amine compounds and derivatives thereof, and the like.

上記硬化剤や硬化促進剤を配合したエポキシ樹脂組成物に配合する熱伝導率20W/m・K以上の無機充填材は、金属酸化物又は水酸化物あるいは無機セラミックス、その他の充填材であり、例えば、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、アルミナ、酸化マグネシウム等の無機粉末充填材、合成繊維、セラミックス繊維等の繊維質充填材、着色剤等である。これら無機充填材は2種類以上を併用してもよい。
無機充填材は、樹脂固形分100体積部に対し10〜185体積部の量となるように配合する。前記無機充填材の熱伝導率と配合量の下限値は、樹脂絶縁層の熱伝導率を4W/m・K以上にする場合に必要である。また、エポキシ樹脂組成物に配合する無機充填材が少ないと、無機充填材をエポキシ樹脂組成物中に均一に分散させることが難しくなる。熱伝導性の確保と共にこの点においても、無機充填材配合量の下限値の規定は重要である。一方、無機充填材の配合量を多くすると、エポキシ樹脂組成物の粘性が増大して取り扱いが難しくなるので、無機充填材配合量の上限値は、このような観点から規定する。
The inorganic filler having a thermal conductivity of 20 W / m · K or more blended in the epoxy resin composition blended with the curing agent or curing accelerator is a metal oxide, hydroxide, inorganic ceramic, or other filler. For example, inorganic powder fillers such as boron nitride, aluminum nitride, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, alumina, magnesium oxide, fibrous fillers such as synthetic fibers and ceramic fibers, colorants, etc. is there. Two or more of these inorganic fillers may be used in combination.
An inorganic filler is mix | blended so that it may become the quantity of 10-185 volume parts with respect to 100 volume parts of resin solid content. The lower limit values of the thermal conductivity and blending amount of the inorganic filler are necessary when the thermal conductivity of the resin insulating layer is 4 W / m · K or more. Moreover, when there are few inorganic fillers mix | blended with an epoxy resin composition, it will become difficult to disperse | distribute an inorganic filler uniformly in an epoxy resin composition. In this respect as well as ensuring thermal conductivity, it is important to define the lower limit value of the inorganic filler content. On the other hand, when the blending amount of the inorganic filler is increased, the viscosity of the epoxy resin composition is increased and the handling becomes difficult. Therefore, the upper limit value of the blending amount of the inorganic filler is defined from this viewpoint.

尚、無機充填材の熱伝導率が30W/m・K以上であれば、樹脂絶縁層の熱伝導率をさらに高くできるので好ましい。また、無機充填材は、その形状が、粉末(塊状、球状)、短繊維、長繊維等いずれであってもよい。上記エポキシ樹脂組成物には、そのほか必要に応じて難燃剤や希釈剤、可塑剤、カップリング剤等を配合することができる。   In addition, it is preferable if the thermal conductivity of the inorganic filler is 30 W / m · K or more because the thermal conductivity of the resin insulating layer can be further increased. Further, the inorganic filler may have any shape such as powder (bulk shape, spherical shape), short fiber, long fiber and the like. In addition to the above epoxy resin composition, a flame retardant, a diluent, a plasticizer, a coupling agent, and the like can be blended as necessary.

樹脂絶縁層の形成は、上記エポキシ樹脂組成物を必要に応じ溶剤に希釈してワニスを調製しこれをシート状繊維基材に含浸し、加熱乾燥して半硬化状態にしたプリプレグを準備する。そして、これらを加熱加圧成形して樹脂絶縁層とする。前記加熱加圧成形に当っては、金属層を前記プリプレグ層の両面に配置し、これらを加熱加圧成形により一体化する。金属層は、電解金属、圧延金属のいずれであってもよい。   The resin insulation layer is formed by preparing a prepreg in which the epoxy resin composition is diluted with a solvent as necessary to prepare a varnish, impregnating the varnish into a sheet-like fiber base material, and drying by heating to a semi-cured state. And these are heat-press-molded and it is set as a resin insulating layer. In the heat and pressure molding, metal layers are arranged on both surfaces of the prepreg layer, and these are integrated by heat and pressure molding. The metal layer may be either electrolytic metal or rolled metal.

尚、第一金属層は電気配線の機能を有するため、電気伝導率が高い銅を使用するのが一般的であるが、熱膨張率の小さい銅/モリブデン合金、銅/タングステン合金、銅/クロム合金、銅/インバー合金などの銅合金を使用すると、接続信頼性がさらに向上できるので好ましい。その中でも銅/クロム合金は、安価であり、かつ、銅/モリブデン合金と同等の接続信頼性が維持できるのでさらに好ましい。これら銅合金の電気伝導率は、銅に比べると劣るものの実用上の支障はない。
エポキシ樹脂組成物を溶剤に希釈してワニスを調製する場合、溶剤の配合・使用が、エポキシ樹脂硬化物の熱伝導性に影響を与えることはない。
In addition, since the first metal layer has a function of electrical wiring, it is common to use copper having high electrical conductivity, but copper / molybdenum alloy, copper / tungsten alloy, copper / chromium having low thermal expansion coefficient. It is preferable to use a copper alloy such as an alloy or a copper / invar alloy because the connection reliability can be further improved. Among these, a copper / chromium alloy is more preferable because it is inexpensive and can maintain connection reliability equivalent to that of a copper / molybdenum alloy. Although the electrical conductivity of these copper alloys is inferior to copper, there is no practical problem.
When the varnish is prepared by diluting the epoxy resin composition in a solvent, the blending and use of the solvent does not affect the thermal conductivity of the cured epoxy resin.

以下、本発明に係る実施例を示し、本発明について詳細に説明する。尚、以下の実施例および比較例において、「部」とは「質量部」を意味する。また、本発明は、その要旨を逸脱しない限り、本実施例に限定されるものではない。   Examples of the present invention will be described below, and the present invention will be described in detail. In the following examples and comparative examples, “part” means “part by mass”. Moreover, this invention is not limited to a present Example, unless it deviates from the summary.

本実施例に使用する材料仕様は以下の通りである。
(a)エポキシ樹脂ワニスa;エポキシ樹脂モノマ成分としてビフェニル骨格をもつエポキシ樹脂モノマ(ジャパンエポキシレジン製「YL6121H」,エポキシ当量175)100部を用意し、これをメチルイソブチルケトン(和光純薬製)100部に100℃で溶解し、室温に戻した。前記「YL6121H」は、既述の分子構造式(式1)において、R=−CH,n=0.1であるエポキシ樹脂モノマと分子構造式(式1)において、R=−H,n=0.1であるエポキシ樹脂モノマを等モルで含有するエポキシ樹脂モノマである。
硬化剤として1,5−ジアミノナフタレン(和光純薬製「1,5−DAN」,アミン当量40)22部を用意し、これをジメチルホルムアミド(和光純薬製)100部に100℃で溶解し、室温に戻した。
上記のエポキシ樹脂モノマ溶液と硬化剤溶液を混合・撹拌して均一なワニスにし、さらに無機充填材として窒化ホウ素(電気化学工業製「HGPE」,平均粒子径:8μm,熱伝導率60W/m・K,粒子形状:平板状)116部(樹脂固形分100体積部に対し67体積部に相当)を加えて混練し、エポキシ樹脂ワニスaを調製した。
(b)エポキシ樹脂ワニスb;エポキシ樹脂ワニスa中の無機充填材である窒化ホウ素(電気化学工業製「HGPE」)を43部(樹脂固形分100体積部に対し25体積部に相当)を加えて混練する以外は、エポキシ樹脂ワニスaと同様にしてエポキシ樹脂ワニスbを調製した。
(c)エポキシ樹脂ワニスc;エポキシ樹脂ワニスa中の無機充填材である窒化ホウ素(電気化学工業製「HGPE」)を75部(樹脂固形分100体積部に対し40体積部に相当)を加えて混練する以外は、エポキシ樹脂ワニスaと同様にしてエポキシ樹脂ワニスcを調製した。
(d)プリプレグd;エポキシ樹脂ワニスaを、厚み60μmのガラス織布に含浸し加熱乾燥して厚み100μmのプリプレグを得た。
(e)プリプレグe;エポキシ樹脂ワニスbを、厚み30μmのガラス織布に含浸し加熱乾燥して厚み100μmのプリプレグを得た。
(f)プリプレグf;エポキシ樹脂ワニスcを、厚み80μmのガラス不織布に含浸し加熱乾燥して厚み100μmのプリプレグを得た。
(g)プリプレグg;エポキシ樹脂ワニスaを、厚み80μmのガラス不織布に含浸し加熱乾燥して厚み100μmのプリプレグを得た。
The material specifications used in this example are as follows.
(A) Epoxy resin varnish a; 100 parts of an epoxy resin monomer having a biphenyl skeleton as an epoxy resin monomer component (Japan Epoxy Resin “YL6121H”, epoxy equivalent 175) is prepared, and this is methyl isobutyl ketone (Wako Pure Chemical Industries, Ltd.) It melt | dissolved in 100 parts at 100 degreeC, and returned to room temperature. The "YL6121H" the molecular structure described above in (Equation 1), R = -CH 3, n = 0.1 in which the epoxy resin monomer and molecular structural formula (Formula 1), R = -H, n = 0.1 An epoxy resin monomer containing an equimolar amount of an epoxy resin monomer of 0.1.
As a curing agent, 22 parts of 1,5-diaminonaphthalene (“1,5-DAN” manufactured by Wako Pure Chemical Industries, Ltd., amine equivalent 40) is prepared and dissolved in 100 parts of dimethylformamide (manufactured by Wako Pure Chemical Industries) at 100 ° C. , Returned to room temperature.
The above epoxy resin monomer solution and the curing agent solution are mixed and stirred to form a uniform varnish, and boron nitride (“HGPE” manufactured by Denki Kagaku Kogyo, average particle size: 8 μm, thermal conductivity 60 W / m 116 parts (corresponding to 67 parts by volume with respect to 100 parts by volume of the resin solid content) were added and kneaded to prepare an epoxy resin varnish a.
(B) Epoxy resin varnish b; 43 parts of boron nitride (“HGPE” manufactured by Denki Kagaku Kogyo), which is an inorganic filler in the epoxy resin varnish a, is added (corresponding to 25 parts by volume with respect to 100 parts by volume of resin solids). Except for kneading, an epoxy resin varnish b was prepared in the same manner as the epoxy resin varnish a.
(C) Epoxy resin varnish c: 75 parts of boron nitride (“HGPE” manufactured by Denki Kagaku Kogyo), which is an inorganic filler in the epoxy resin varnish a, is added (corresponding to 40 parts by volume with respect to 100 parts by volume of the resin solid content). Except for kneading, an epoxy resin varnish c was prepared in the same manner as the epoxy resin varnish a.
(D) Prepreg d: Epoxy resin varnish a was impregnated into a glass woven fabric having a thickness of 60 μm and dried by heating to obtain a prepreg having a thickness of 100 μm.
(E) Prepreg e; Epoxy resin varnish b was impregnated into a glass woven fabric having a thickness of 30 μm and dried by heating to obtain a prepreg having a thickness of 100 μm.
(F) Prepreg f: Epoxy resin varnish c was impregnated into a glass nonwoven fabric having a thickness of 80 μm and dried by heating to obtain a prepreg having a thickness of 100 μm.
(G) Prepreg g: Epoxy resin varnish a was impregnated into a glass nonwoven fabric having a thickness of 80 μm and dried by heating to obtain a prepreg having a thickness of 100 μm.

実施例1
プリプレグdを1枚使用して、その両側に第1金属層として1.4mm厚の銅層(熱膨張率:17ppm/℃、熱伝導率:395W/m・K)、第2金属層として1.4mm厚のアルミ板(熱膨張率:24ppm/℃、熱伝導率:200W/m・K)を重ね、温度175℃、圧力6MPaの条件で90分間加熱加圧成形して一体化し、第1樹脂絶縁層の両面に金属層を一体化した厚み2.9mmの積層板を得た。そして、第1金属層(銅層)を所定形状に加工して、両面金属層付き板状体とした。第1樹脂絶縁層の熱膨張率は、12ppm/℃であり、熱伝導率は、3W/m・Kである。
Example 1
Using one prepreg d, a 1.4 mm thick copper layer (thermal expansion coefficient: 17 ppm / ° C., thermal conductivity: 395 W / m · K) as the first metal layer on both sides, and 1 as the second metal layer A 4 mm thick aluminum plate (thermal expansion coefficient: 24 ppm / ° C., thermal conductivity: 200 W / m · K) is stacked, heated and pressed for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 6 MPa, and integrated. A laminated plate having a thickness of 2.9 mm in which metal layers were integrated on both surfaces of the resin insulating layer was obtained. And the 1st metal layer (copper layer) was processed into the predetermined shape, and it was set as the plate-like body with a double-sided metal layer. The first resin insulating layer has a thermal expansion coefficient of 12 ppm / ° C. and a thermal conductivity of 3 W / m · K.

次に、プリプレグeを上記両面金属層付き板状体の所定形状に合わせて第1金属層対応部分をパンチング加工で除去してから、両面金属層付き板状体の第1金属層側に14枚配置し、離型フィルムで挟み温度175℃、圧力6MPaの条件で90分間加熱加圧成形して、第2樹脂絶縁層を一体化した。
離型フィルムを剥がして、第1樹脂絶縁層に付加した第2樹脂絶縁層が第1金属層(銅層)と同じ高さで第1金属層端縁周囲に当接する構成の配線板を得た。これは、図1(a)に示す構成に相当するものである。第2樹脂絶縁層の熱膨張率は、17ppm/℃であり、熱伝導率は、2W/m・Kである。
Next, the prepreg e is matched with the predetermined shape of the plate with the double-sided metal layer and the portion corresponding to the first metal layer is removed by punching, and then the plate-like body with the double-sided metal layer is moved to the first metal layer side. One sheet was placed, sandwiched between release films, and heated and pressed for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 6 MPa, and the second resin insulation layer was integrated.
The release film is peeled off to obtain a wiring board having a configuration in which the second resin insulating layer added to the first resin insulating layer contacts the periphery of the first metal layer edge at the same height as the first metal layer (copper layer). It was. This corresponds to the configuration shown in FIG. The thermal expansion coefficient of the second resin insulation layer is 17 ppm / ° C., and the thermal conductivity is 2 W / m · K.

実施例1で得た配線板について、熱膨張率、熱伝導率、素子発熱温度およびはんだ接続信頼性を測定した結果を、金属層の構成と共に表1にまとめて示す。測定は、以下に示す方法による。
熱膨張率:配線板から5×10mmの板状試料を切り出し、TMA測定にて30℃〜80℃の範囲における平面方向の熱膨張係数を測定した。
熱伝導率:配線板からφ50mmの板状試料を切り出し、両面の金属層を含まない厚さ方向の熱伝導率を、熱流計法(JIS−A1412準拠)にて測定した。
素子発熱温度:所定形状に加工した第1金属層に発熱素子(セラミックヒータチップ)をはんだ付し、第2金属層を冷却フィンにて冷却し、一定温度に保つ。発熱素子に80Wの電力を入力し、入力2分後の素子温度を測定した。
はんだ接続信頼性:所定形状に加工した第1金属層に発熱素子(セラミックヒータチップ)をはんだ付し、105℃〜−40℃の範囲で冷熱サイクル試験を行ない、1000サイクル後のはんだ部クラック発生の有無を調べた。
The results of measuring the thermal expansion coefficient, thermal conductivity, element heat generation temperature, and solder connection reliability of the wiring board obtained in Example 1 are shown together in Table 1 together with the configuration of the metal layer. The measurement is based on the method shown below.
Thermal expansion coefficient: A plate sample of 5 × 10 mm was cut out from the wiring board, and the thermal expansion coefficient in the plane direction in the range of 30 ° C. to 80 ° C. was measured by TMA measurement.
Thermal conductivity: A plate-like sample having a diameter of 50 mm was cut out from the wiring board, and the thermal conductivity in the thickness direction not including the metal layers on both sides was measured by a heat flow meter method (based on JIS-A1412).
Element heating temperature: A heating element (ceramic heater chip) is soldered to the first metal layer processed into a predetermined shape, and the second metal layer is cooled by cooling fins and kept at a constant temperature. A power of 80 W was input to the heating element, and the element temperature after 2 minutes of input was measured.
Solder connection reliability: A heating element (ceramic heater chip) is soldered to the first metal layer processed into a predetermined shape, a thermal cycle test is conducted in the range of 105 ° C to -40 ° C, and cracks in the solder part occur after 1000 cycles The presence or absence of was investigated.

実施例2
実施例1において、第1樹脂絶縁層としてプリプレグfを使用する以外は実施例1と同様にして配線板を得た。第1樹脂絶縁層の熱膨張率は、18ppm/℃であり、熱伝導率は、4W/m・Kである。
Example 2
In Example 1, a wiring board was obtained in the same manner as in Example 1 except that the prepreg f was used as the first resin insulating layer. The first resin insulating layer has a thermal expansion coefficient of 18 ppm / ° C. and a thermal conductivity of 4 W / m · K.

実施例3
実施例1において、第1樹脂絶縁層としてプリプレグgを使用する以外は実施例1と同様にして配線板を得た。第1樹脂絶縁層の熱膨張率は、18ppm/℃であり、熱伝導率は、5W/m・Kである。
Example 3
In Example 1, a wiring board was obtained in the same manner as in Example 1 except that prepreg g was used as the first resin insulating layer. The first resin insulating layer has a thermal expansion coefficient of 18 ppm / ° C. and a thermal conductivity of 5 W / m · K.

実施例4
実施例3において、第1金属層として1.4mm厚の銅/モリブデン合金(熱膨張率:9ppm/℃、熱伝導率:220W/m・K)を使用する以外は実施例3と同様にして配線板を得た。
Example 4
In Example 3, a copper / molybdenum alloy (thermal expansion coefficient: 9 ppm / ° C., thermal conductivity: 220 W / m · K) having a thickness of 1.4 mm was used as the first metal layer. A wiring board was obtained.

実施例5
実施例4において、第2樹脂絶縁層としてプリプレグdを使用する以外は実施例4と同様にして配線板を得た。第2樹脂絶縁層の熱膨張率は、12ppm/℃であり、熱伝導率は、3W/m・Kである。
Example 5
In Example 4, a wiring board was obtained in the same manner as in Example 4 except that prepreg d was used as the second resin insulating layer. The thermal expansion coefficient of the second resin insulation layer is 12 ppm / ° C., and the thermal conductivity is 3 W / m · K.

実施例6
実施例5において、第1金属層として1.5mm厚の銅/クロム合金(熱膨張率:10ppm/℃、熱伝導率:200W/m・K)を使用する以外は実施例5と同様にして配線板を得た。
Example 6
In Example 5, the same procedure as in Example 5 was used except that a 1.5 mm thick copper / chromium alloy (thermal expansion coefficient: 10 ppm / ° C., thermal conductivity: 200 W / m · K) was used as the first metal layer. A wiring board was obtained.

比較例1
プリプレグgを1枚使用して、その両側に第1金属層として1.4mm厚の銅層(熱膨張率:17ppm/℃、熱伝導率:395W/m・K)、第2金属層として1.4mm厚のアルミ板(熱膨張率:24ppm/℃、熱伝導率:200W/m・K)を重ね、温度175℃、圧力6MPaの条件で90分間加熱加圧成形して一体化し、第1樹脂絶縁層の両面に金属層を一体化した厚み2.9mmの積層板を得た。そして、第1金属層(銅層)を所定形状に加工して、第2樹脂絶縁層は付加していない。これは図1(b)に示す構成に相当するものである。第1樹脂絶縁層の熱膨張率は、18ppm/℃であり、熱伝導率は、5W/m・Kである。
Comparative Example 1
Using one prepreg g, a copper layer with a thickness of 1.4 mm as the first metal layer on both sides (thermal expansion coefficient: 17 ppm / ° C., thermal conductivity: 395 W / m · K), 1 as the second metal layer A 4 mm thick aluminum plate (thermal expansion coefficient: 24 ppm / ° C., thermal conductivity: 200 W / m · K) is stacked, heated and pressed for 90 minutes under the conditions of a temperature of 175 ° C. and a pressure of 6 MPa, and integrated. A laminated plate having a thickness of 2.9 mm in which metal layers were integrated on both surfaces of the resin insulating layer was obtained. The first metal layer (copper layer) is processed into a predetermined shape, and the second resin insulating layer is not added. This corresponds to the configuration shown in FIG. The first resin insulating layer has a thermal expansion coefficient of 18 ppm / ° C. and a thermal conductivity of 5 W / m · K.

比較例2
実施例1において、第1樹脂絶縁層としてプリプレグeを、第2樹脂絶縁層としてプリプレグdを使用する以外は実施例1と同様にして配線板を得た。第1樹脂絶縁層の熱膨張率は、17ppm/℃であり、熱伝導率は、2W/m・Kである。また、第2樹脂絶縁層の熱膨張率は、12ppm/℃であり、熱伝導率は、3W/m・Kである。
Comparative Example 2
A wiring board was obtained in the same manner as in Example 1 except that prepreg e was used as the first resin insulating layer and prepreg d was used as the second resin insulating layer. The first resin insulating layer has a thermal expansion coefficient of 17 ppm / ° C. and a thermal conductivity of 2 W / m · K. The second resin insulating layer has a thermal expansion coefficient of 12 ppm / ° C. and a thermal conductivity of 3 W / m · K.

比較例3
実施例3において、第1金属層として1.4mm厚のアルミ板(熱膨張率:24ppm/℃、熱伝導率:200W/m・K)、第2金属層として1.4mm厚の銅層(熱膨張率:17ppm/℃、熱伝導率:395W/m・K)とする以外は実施例3と同様にして配線板を得た。
Comparative Example 3
In Example 3, a 1.4 mm thick aluminum plate (thermal expansion coefficient: 24 ppm / ° C., thermal conductivity: 200 W / m · K) as the first metal layer, and a 1.4 mm thick copper layer (second metal layer) A wiring board was obtained in the same manner as in Example 3 except that the coefficient of thermal expansion was 17 ppm / ° C. and the thermal conductivity was 395 W / m · K.

実施例2〜5、比較例1〜3の配線板についても、実施例1と同様に特性を測定し、結果を表1に示した。   For the wiring boards of Examples 2 to 5 and Comparative Examples 1 to 3, the characteristics were measured in the same manner as in Example 1, and the results are shown in Table 1.

Figure 2007335835
Figure 2007335835


上記表に示したように、比較例1においては、第1金属層の端縁周囲を規制するものがないので、第1金属層の熱膨張を抑えられず、発熱素子の線膨張との違いから応力が発生し、はんだ部のクラックが発生しやすくなっている。比較例3においては、発熱素子をはんだ接続している第1金属層の熱膨張が第2金属層の熱膨張より大きいので、はんだ部のクラック発生数が多くなっている。

As shown in the above table, in Comparative Example 1, there is nothing that regulates the periphery of the edge of the first metal layer, so the thermal expansion of the first metal layer cannot be suppressed, and the difference from the linear expansion of the heating element. Stress is generated from the solder and cracks in the solder part are likely to occur. In Comparative Example 3, since the thermal expansion of the first metal layer that solder-connects the heating elements is larger than the thermal expansion of the second metal layer, the number of cracks in the solder portion is increased.

本発明に係る実施例においては、第1樹脂絶縁層を第2樹脂絶縁層よりも熱伝導率の高い絶縁材料で形成された高熱伝導性の絶縁層としたので、第1樹脂絶縁層で熱伝導が阻害されることが少なく、第1金属層から第2金属層への熱伝導性が確保され、素子発熱温度、はんだ部のクラック発生数を抑えられていることが理解できる(実施例1〜5と比較例2との対比)。また、第1樹脂絶縁層の熱伝導率を4W/m・K以上にすると、素子の発熱を抑えられており、放熱効果が大きくなることが理解できる(実施例2〜6と実施例1との対比)。第1金属層は銅や銅合金であり、発熱素子からの熱を伝えるのに十分に大きな熱伝導率を有する。一方、第1樹脂絶縁層は前記金属と比較して熱伝導率が大幅に低く、発熱素子からの熱がこもりやすい。このような状況においては、第1樹脂絶縁層の1W/m・K、2W/m・Kの熱伝導率の差が、発熱素子の温度上昇の抑制やはんだ接続信頼性の向上に影響を及ぼすことになる。   In the embodiment according to the present invention, the first resin insulation layer is a high thermal conductivity insulation layer made of an insulation material having a higher thermal conductivity than the second resin insulation layer. It can be understood that conduction is hardly hindered, thermal conductivity from the first metal layer to the second metal layer is ensured, and the element heat generation temperature and the number of cracks in the solder portion are suppressed (Example 1). To 5 and Comparative Example 2). In addition, it can be understood that when the thermal conductivity of the first resin insulating layer is 4 W / m · K or more, the heat generation of the element is suppressed and the heat dissipation effect is increased (Examples 2 to 6 and Example 1). Contrast). The first metal layer is copper or a copper alloy, and has a sufficiently high thermal conductivity to transfer heat from the heating element. On the other hand, the first resin insulating layer has a significantly lower thermal conductivity than the metal, and heat from the heating element tends to be trapped. In such a situation, the difference in thermal conductivity of 1 W / m · K and 2 W / m · K of the first resin insulating layer affects the suppression of the temperature rise of the heating element and the improvement of the solder connection reliability. It will be.

(a)は本発明に係る実施の形態の配線板断面図、(b)は従来の配線板断面図である。(A) is sectional drawing of the wiring board of embodiment which concerns on this invention, (b) is sectional drawing of the conventional wiring board.

符号の説明Explanation of symbols

1は発熱素子
2ははんだ
3は第1金属層
4は第2金属層
5は第1樹脂絶縁層
6は第2樹脂絶縁層
1 is a heating element 2 is solder 3 is a first metal layer 4 is a second metal layer 5 is a first resin insulation layer 6 is a second resin insulation layer

Claims (3)

シート状繊維基材で補強された第1樹脂絶縁層とその両面に一体化した第1金属層と第2金属層で構成され、少なくとも第1金属層が電気配線の機能を有する配線板において、前記第1金属層の電気配線には、発熱部品が実装されており、
第1金属層と第2金属層は、その合計厚みが第1樹脂絶縁層の厚みより厚く設定され、第1金属層の端縁は、第1樹脂絶縁層の周縁より内側に位置し、
第1金属層の平面方向の熱膨張率が第2金属層の平面方向の熱膨張率より小さく、かつ、第1金属層の熱伝導率が第2金属層の熱伝導率より高く設定され、
第1樹脂絶縁層には、第1金属層の端縁全周に接し厚みが第1金属層厚みと同等以上である補強繊維充填第2樹脂絶縁層が付加されており、
第1樹脂絶縁層は、第2樹脂絶縁層よりも熱伝導率の高い絶縁材料で形成された高熱伝導性の絶縁層であることを特徴とする配線板。
In the wiring board composed of a first resin insulating layer reinforced with a sheet-like fiber base material, a first metal layer and a second metal layer integrated on both sides thereof, and at least the first metal layer has a function of electrical wiring, A heating component is mounted on the electrical wiring of the first metal layer,
The total thickness of the first metal layer and the second metal layer is set to be thicker than the thickness of the first resin insulation layer, and the edge of the first metal layer is located inside the periphery of the first resin insulation layer,
The thermal expansion coefficient in the planar direction of the first metal layer is smaller than the thermal expansion coefficient in the planar direction of the second metal layer, and the thermal conductivity of the first metal layer is set higher than the thermal conductivity of the second metal layer,
A reinforcing fiber-filled second resin insulating layer that is in contact with the entire periphery of the edge of the first metal layer and has a thickness equal to or greater than the first metal layer thickness is added to the first resin insulating layer,
The wiring board, wherein the first resin insulating layer is a highly heat conductive insulating layer formed of an insulating material having a higher thermal conductivity than the second resin insulating layer.
第1樹脂絶縁層の熱伝導率が4W/m・K以上であることを特徴とする請求項1記載の配線板。   The wiring board according to claim 1, wherein the first resin insulating layer has a thermal conductivity of 4 W / m · K or more. 第2樹脂絶縁層の平面方向の熱膨張率が、第1金属層の熱膨張率より小さいことを特徴とする請求項1又は2のいずれかに記載の配線板。   The wiring board according to claim 1, wherein the thermal expansion coefficient in the planar direction of the second resin insulating layer is smaller than the thermal expansion coefficient of the first metal layer.
JP2007007022A 2006-05-15 2007-01-16 Wiring board Pending JP2007335835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007007022A JP2007335835A (en) 2006-05-15 2007-01-16 Wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006134749 2006-05-15
JP2007007022A JP2007335835A (en) 2006-05-15 2007-01-16 Wiring board

Publications (1)

Publication Number Publication Date
JP2007335835A true JP2007335835A (en) 2007-12-27

Family

ID=38934974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007007022A Pending JP2007335835A (en) 2006-05-15 2007-01-16 Wiring board

Country Status (1)

Country Link
JP (1) JP2007335835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087497A (en) * 2008-09-04 2010-04-15 Shin Kobe Electric Mach Co Ltd Method of manufacturing wiring board

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000151050A (en) * 1998-11-12 2000-05-30 Nippon Rika Kogyosho:Kk Composite insulation metal board
JP2000183474A (en) * 1998-12-18 2000-06-30 Fuji Electric Co Ltd Metal insulating substrate for power semiconductor device and its manufacturing method
JP2001237508A (en) * 2000-02-24 2001-08-31 Matsushita Electric Works Ltd Manufacturing method of circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000151050A (en) * 1998-11-12 2000-05-30 Nippon Rika Kogyosho:Kk Composite insulation metal board
JP2000183474A (en) * 1998-12-18 2000-06-30 Fuji Electric Co Ltd Metal insulating substrate for power semiconductor device and its manufacturing method
JP2001237508A (en) * 2000-02-24 2001-08-31 Matsushita Electric Works Ltd Manufacturing method of circuit board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087497A (en) * 2008-09-04 2010-04-15 Shin Kobe Electric Mach Co Ltd Method of manufacturing wiring board

Similar Documents

Publication Publication Date Title
JP7053579B2 (en) Heat transfer member and heat dissipation structure including it
TWI633813B (en) Boron nitride-resin composite circuit substrate, boron nitride-resin composite heat release plate integrated circuit substrate
KR20180124915A (en) Ceramic resin composite
JP4735492B2 (en) Prepress and laminate for heat and pressure molding
JP2010053224A (en) Thermally conductive resin sheet, heat conduction plate, thermally conductive printed wiring board and radiating member
JP5652307B2 (en) Prepress and laminate for heat and pressure molding
JP6276498B2 (en) Thermosetting resin composition, heat conductive sheet, and semiconductor module
US11490513B2 (en) Metal base circuit board and method of manufacturing the metal base circuit board
JP5370129B2 (en) Thermosetting resin composition, prepreg and laminate
WO2010070890A1 (en) Prepreg, process for production thereof, and printed wiring board using same
JP4561697B2 (en) Multilayer circuit board
JP4192871B2 (en) Laminated board and wiring board
JP4192870B2 (en) Laminated board and wiring board
JP5217865B2 (en) Flame-retardant epoxy resin composition, prepreg, laminate and wiring board
JP6979270B2 (en) Graphite resin complex
JP2007335835A (en) Wiring board
JP5828094B2 (en) Resin sheet, metal foil with resin, board material and component mounting board
JP2007115983A (en) Wiring board
JP4254705B2 (en) Wiring board
JP4075268B2 (en) Circuit board manufacturing method
WO2021241298A1 (en) Thermally conductive sheet with metal plate and method for poducing thermally conductive sheet
WO2023190236A1 (en) Composite and production method therefor, and assembly, circuit substrate, and power module
JP2007083662A (en) Laminate and wiring board
JP2007009089A (en) Prepreg, laminated board and printed wiring board
JP2008187107A (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100722

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100921