JP2006165014A - Method of forming metal oxide film and method of manufacturing dye-sensitized solar cell - Google Patents

Method of forming metal oxide film and method of manufacturing dye-sensitized solar cell Download PDF

Info

Publication number
JP2006165014A
JP2006165014A JP2004349497A JP2004349497A JP2006165014A JP 2006165014 A JP2006165014 A JP 2006165014A JP 2004349497 A JP2004349497 A JP 2004349497A JP 2004349497 A JP2004349497 A JP 2004349497A JP 2006165014 A JP2006165014 A JP 2006165014A
Authority
JP
Japan
Prior art keywords
oxide film
metal oxide
dye
vapor deposition
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004349497A
Other languages
Japanese (ja)
Inventor
Keiichi Iio
圭市 飯尾
Masaru Ito
大 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2004349497A priority Critical patent/JP2006165014A/en
Publication of JP2006165014A publication Critical patent/JP2006165014A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming a metal oxide film having a continuous structure with no boundary between oxides, and to provide a method of manufacturing a dye-sensitized solar cell having high photoelectric conversion efficiency using the metal oxide film. <P>SOLUTION: In this method of forming the metal oxide film 3, the metal oxide film 3 having a dendritic structure is formed on a substrate 1 by vacuum vapor deposition. The vacuum vapor deposition uses a plurality of evaporation sources 9 and lets evaporation particles incident from a plurality of directions. The dye-sensitized solar cell 10 has such a structure that at least a transparent conductive layer 2, a pigment 4-adsorbed metal oxide film 3 and an electrolyte layer 5, and another transparent conductive layer 2 are formed in order on the substrate 1. In the method of manufacturing the dye-sensitized solar cell 10, the metal oxide film 3 has a dendritic structure, and is formed by vacuum vapor deposition wherein the evaporation particles are made to be incident from a plurality of directions. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹枝状の構造体からなる多孔質金属酸化物膜の製造方法に関するものであり、またこの金属酸化物膜を電極として用い、該電極に色素を吸着させ、対極との間に電解質を挟んだ構造の色素増感太陽電池の製造方法に関するものである。   The present invention relates to a method for producing a porous metal oxide film comprising a dendritic structure, and the metal oxide film is used as an electrode, a dye is adsorbed to the electrode, and an electrolyte is provided between the electrode and the counter electrode. The present invention relates to a method for producing a dye-sensitized solar cell having a structure with a structure interposed therebetween.

色素増感太陽電池は、透明導電膜上に色素が吸着した多孔質の金属酸化物半導体を形成した光電極、及び、触媒となる導電膜からなる対向電極、及び電荷輸送層から構成され、電荷輸送層を介して光電極及び対向電極を重ねることにより製造され、その原理は半導体表面に適当な色素が存在することで、半導体自身の吸収波長ではない波長領域から光の応答が得られるという、いわゆる分光増感現象を応用したものである。これまでに800〜900nmまでの光を吸収する色素や、この色素をより多く吸着させるための多孔質金属酸化物半導体の発明により、アモルファスシリコン太陽電池に匹敵する光電変換効率を示すことが知られている(例えば、特許文献1参照。)。さらにこのタイプの太陽電池は従来の単結晶シリコン太陽電池、アモルファスシリコン太陽電池、化合物半導体太陽電池と比較して低コストで作製できる可能性を有しており、次世代の太陽電池として注目を集めているものである。   A dye-sensitized solar cell is composed of a photoelectrode in which a porous metal oxide semiconductor having a dye adsorbed on a transparent conductive film, a counter electrode made of a conductive film serving as a catalyst, and a charge transport layer. Manufactured by overlapping the photoelectrode and the counter electrode through the transport layer, the principle is that the presence of a suitable dye on the semiconductor surface, the light response can be obtained from a wavelength region that is not the absorption wavelength of the semiconductor itself, This is an application of the so-called spectral sensitization phenomenon. So far, it has been known that a pigment that absorbs light of 800 to 900 nm and a porous metal oxide semiconductor for adsorbing more of this pigment exhibit photoelectric conversion efficiency comparable to that of an amorphous silicon solar cell. (For example, refer to Patent Document 1). Furthermore, this type of solar cell has the potential to be manufactured at a lower cost than conventional single crystal silicon solar cells, amorphous silicon solar cells, and compound semiconductor solar cells, and has attracted attention as the next-generation solar cell. It is what.

今後、色素増感太陽電池を実用化するためには、更なる光電変換効率の向上が必要とされる。効率を向上させるためには、金属酸化物半導体膜の光吸収効率を高め、より大きい短絡電流密度を得ることが挙げられる。光吸収効率を高めるためには膜の表面積を大きくして膜表面への吸着量を多くすること、また色素の吸収係数が低い長波長の光を膜内で効率良く散乱させて光吸収のロスを減らすこと、また半導体膜の抵抗値を低減させる必要がある。これらの条件を満たすため、これまで様々な多孔質膜が検討されてきた。   In the future, in order to put the dye-sensitized solar cell into practical use, it is necessary to further improve the photoelectric conversion efficiency. In order to improve the efficiency, it is possible to increase the light absorption efficiency of the metal oxide semiconductor film and obtain a larger short-circuit current density. In order to increase the light absorption efficiency, the surface area of the film should be increased to increase the amount of adsorption to the film surface, and long wavelength light with a low dye absorption coefficient can be efficiently scattered within the film, resulting in a loss of light absorption. It is necessary to reduce the resistance of the semiconductor film. In order to satisfy these conditions, various porous membranes have been studied so far.

前記多孔質金属酸化物半導体は、一般的にゾルゲル法やスプレー法といった液相法により作製されてきた。液相法で得られる膜は一般的に10〜50nm程度の微粒子の集合体からなり、粒子のサイズを選択することで長波長領域の光を効率良く散乱させ、光の吸収効率を向上させるなど、様々な高性能化がはかられてきた。しかしながら、これらの膜は粒子間の電荷移動抵抗が存在するため、酸化物微粒子界面などでロスが生じるという問題があった。このため、膜の作製後、同じ物質の前駆体等を用いて粒子間のネッキングを行うなどの処理が行われてきたが、抜本的な改良には至っていない。   The porous metal oxide semiconductor has generally been produced by a liquid phase method such as a sol-gel method or a spray method. Films obtained by the liquid phase method generally consist of aggregates of fine particles of about 10 to 50 nm, and by selecting the size of the particles, light in the long wavelength region is efficiently scattered to improve the light absorption efficiency. Various performance enhancements have been made. However, these films have a problem that loss occurs at the oxide fine particle interface and the like due to the existence of charge transfer resistance between the particles. For this reason, after the production of the film, treatments such as necking between particles using a precursor of the same substance have been performed, but no drastic improvement has been achieved.

また一方で、光電変換効率を向上させる手段として、酸化物の複合化の検討もこれまで数多くなされてきた。酸化物を複合化させることで、例えば電子拡散長の大きい物質と伝導帯のエネルギー順位が低い酸化物を複合化させることで、セルの高い電流値を維持しながら電圧向上が期待される。また、いったん一方の酸化物の伝導帯に注入された電子がもう一方の酸化物に移動することで、酸化物から電解液への逆電子移動の抑制も期待される。これまで、液相法によりさまざまな酸化物の組み合わせが行われてきたが、従来最も優れた性能を示した酸化チタン単独での変換効率を凌ぐ材料は得られなかった。   On the other hand, as a means for improving the photoelectric conversion efficiency, many studies have been made on oxide composites. By compounding an oxide, for example, by compounding a substance having a large electron diffusion length and an oxide having a low conduction band energy level, an improvement in voltage is expected while maintaining a high current value of the cell. In addition, since electrons once injected into the conduction band of one oxide move to the other oxide, suppression of reverse electron transfer from the oxide to the electrolyte is also expected. Until now, various combinations of oxides have been carried out by the liquid phase method, but no material superior to the conversion efficiency of titanium oxide alone, which has shown the best performance in the past, has been obtained.

以下に先行技術文献を示す。
特許第2664194号公報
Prior art documents are shown below.
Japanese Patent No. 2664194

そこで、本発明における課題は、前記の問題点を解決すべく、酸化物間の粒界がなく、連続した構造を有する金属酸化物膜の製造方法、及びこの金属酸化物膜を用いた、光電変換効率の高い色素増感太陽電池の製造方法を提供することを目的とする。   Therefore, in order to solve the above-mentioned problems, the problem in the present invention is a method for producing a metal oxide film having a continuous structure without a grain boundary between oxides, and a photoelectric device using this metal oxide film. It aims at providing the manufacturing method of a dye-sensitized solar cell with high conversion efficiency.

本発明の請求項1に係る発明は、基材1上に、真空蒸着法により樹枝状構造を有する金属酸化物膜3を形成する金属酸化物膜3の製造方法であって、該真空蒸着法が、複数の蒸着源9を用いて、複数の方向から蒸着粒子を入射させることを特徴とする金属酸化物膜の製造方法である。   The invention according to claim 1 of the present invention is a method for producing a metal oxide film 3 which forms a metal oxide film 3 having a dendritic structure on a substrate 1 by a vacuum vapor deposition method. Is a method for producing a metal oxide film, wherein vapor deposition particles are incident from a plurality of directions using a plurality of vapor deposition sources 9.

本発明の請求項2に係る発明は、請求項1記載の金属酸化物膜の製造方法において、前記複数の蒸着源9のうち、少なくとも一つが該蒸着源9と基材8を結ぶ直線と、基材8の法線のなす角度が10〜80°の範囲内である位置にあることを特徴とする金属酸化物膜の製造方法である。   The invention according to claim 2 of the present invention is the method for producing a metal oxide film according to claim 1, wherein at least one of the plurality of vapor deposition sources 9 is a straight line connecting the vapor deposition source 9 and the substrate 8; The metal oxide film manufacturing method is characterized in that the angle formed by the normal line of the substrate 8 is in a position within a range of 10 to 80 °.

本発明の請求項3に係る発明は、請求項1又は2記載の金属酸化物膜の製造方法において、前記複数の蒸着源9の、蒸着源9と基材8を結ぶ直線と、基材8の法線のなす角度がそれぞれ異なることを特徴とする金属酸化物膜の製造方法である。   The invention according to claim 3 of the present invention is the method for producing a metal oxide film according to claim 1 or 2, wherein a straight line connecting the evaporation source 9 and the substrate 8 of the plurality of evaporation sources 9 and the substrate 8 are provided. The metal oxide film manufacturing method is characterized in that the angles formed by the normal lines are different from each other.

本発明の請求項4に係る発明は、請求項1乃至3のいずれか1項記載の金属酸化物膜の製造方法において、前記金属酸化物膜3が、チタン、ニオブ、亜鉛、錫のいずれか一つ以上を含むことを特徴とする金属酸化物膜の製造方法である。   The invention according to claim 4 of the present invention is the method of manufacturing a metal oxide film according to any one of claims 1 to 3, wherein the metal oxide film 3 is any one of titanium, niobium, zinc, and tin. It is a manufacturing method of the metal oxide film characterized by including one or more.

本発明の請求項5に係る発明は、請求項1乃至4のいずれか1項記載の金属酸化物膜の製造方法において、前記複数の蒸着源9の材料が異なり、共蒸着させることにより複合酸化物膜を形成することを特徴とする金属酸化物膜の製造方法である。   The invention according to claim 5 of the present invention is the method for producing a metal oxide film according to any one of claims 1 to 4, wherein the materials of the plurality of vapor deposition sources 9 are different and are co-deposited to perform composite oxidation. A metal oxide film manufacturing method characterized by forming a physical film.

本発明の請求項6に係る発明は、少なくとも、基材上1に透明導電層2、色素4が吸着した金属酸化物膜3及び電解質層5、透明導電層2が順次形成されてなる色素増感太陽電池10の製造方法であって、該金属酸化物膜3が樹枝状構造を有してなり、複数の方向から蒸着粒子を入射させる、真空蒸着法により形成されてなることを特徴とする色素増感太陽電池の製造方法である。   The invention according to claim 6 of the present invention is such that at least a transparent conductive layer 2, a metal oxide film 3 adsorbed with a dye 4, an electrolyte layer 5, and a transparent conductive layer 2 are sequentially formed on a substrate 1. It is a manufacturing method of the solar cell 10, characterized in that the metal oxide film 3 has a dendritic structure and is formed by a vacuum deposition method in which vapor deposition particles are incident from a plurality of directions. It is a manufacturing method of a dye-sensitized solar cell.

本発明の請求項7に係る発明は、請求項6記載の色素増感太陽電池の製造方法において、前記複数の蒸着源9のうち、少なくとも一つが該蒸着源9と基材8を結ぶ直線と、基材8の法線のなす角度が10〜80°の範囲内である位置にあることを特徴とする色素増感太陽電池の製造方法である。   The invention according to claim 7 of the present invention is the method for producing a dye-sensitized solar cell according to claim 6, wherein at least one of the plurality of vapor deposition sources 9 is a straight line connecting the vapor deposition source 9 and the substrate 8. The method for producing a dye-sensitized solar cell, characterized in that the angle formed by the normal line of the substrate 8 is in a position within a range of 10 to 80 °.

本発明の請求項8に係る発明は、請求項6又は7記載の色素増感太陽電池の製造方法において、前記複数の蒸着源9の、蒸着源9と基材8を結ぶ直線と、基材8の法線のなす角度がそれぞれ異なることを特徴とする色素増感太陽電池の製造方法である。   The invention according to claim 8 of the present invention is the method for producing a dye-sensitized solar cell according to claim 6 or 7, wherein a straight line connecting the evaporation source 9 and the substrate 8 of the plurality of evaporation sources 9 and the substrate 8 is a method for producing a dye-sensitized solar cell, characterized in that angles formed by normal lines 8 are different from each other.

本発明の請求項9に係る発明は、請求項6乃至8のいずれか1項記載の色素増感太陽電池の製造方法において、前記金属酸化物膜3が、チタン、ニオブ、亜鉛、錫のいずれか一つ以上を含むことを特徴とする色素増感太陽電池の製造方法である。   The invention according to claim 9 of the present invention is the method for producing a dye-sensitized solar cell according to any one of claims 6 to 8, wherein the metal oxide film 3 is any one of titanium, niobium, zinc, and tin. It is a manufacturing method of the dye-sensitized solar cell characterized by including one or more.

本発明の請求項10に係る発明は、請求項6乃至9のいずれか1項記載の色素増感太陽電池の製造方法において、前記複数の蒸着源9の材料が異なり、共蒸着させることにより複合酸化物膜を形成することを特徴とする色素増感太陽電池の製造方法である。   The invention according to claim 10 of the present invention is the method for producing a dye-sensitized solar cell according to any one of claims 6 to 9, wherein the materials of the plurality of evaporation sources 9 are different and are combined by co-evaporation. An oxide film is formed. A method for producing a dye-sensitized solar cell.

本発明によれば、複数の蒸着源をもちいて真空蒸着法で金属酸化物膜を作製することで、膜の粒界がなく、且つ表面積の大きい樹枝状構造体からなる金属酸化物膜を得ることができる。また、この半導体膜を用いることにより高い変換効率を有する色素増感太陽電池を提供することができる。   According to the present invention, a metal oxide film made of a dendritic structure having no grain boundaries and a large surface area is obtained by producing a metal oxide film by a vacuum deposition method using a plurality of deposition sources. be able to. Moreover, the dye-sensitized solar cell which has high conversion efficiency can be provided by using this semiconductor film.

以下に本発明の実施の形態を図1〜図3に基づいて詳細に説明する。   Embodiments of the present invention will be described below in detail with reference to FIGS.

図1は本発明に係る金属酸化物膜3の製造方法により、基材1上に金属酸化物膜3を成膜した状態の層構成を示す側断面図であり、図2は本発明に係る金属酸化物膜3を用いて作製した色素増感太陽電池10の層構成を示す側断面図であり、図3は本発明に係る金属酸化物膜3の製造方法であって、真空蒸着法による成膜における基材8と蒸着源9の位置関係を示す模式図である。   FIG. 1 is a side sectional view showing a layer structure in a state in which a metal oxide film 3 is formed on a substrate 1 by the method for producing a metal oxide film 3 according to the present invention, and FIG. 2 according to the present invention. FIG. 3 is a side sectional view showing a layer structure of a dye-sensitized solar cell 10 produced using the metal oxide film 3, and FIG. 3 is a method for producing the metal oxide film 3 according to the present invention, which is based on a vacuum deposition method. It is a schematic diagram which shows the positional relationship of the base material 8 and the vapor deposition source 9 in film-forming.

本発明においては、図1に示すように、基材1上に金属酸化物膜(半導体膜)3を設けることができる。基材1としては、透明な公知の材料を用いることができるが、例えばポリメチルメタクリレート、ポリカーボネート、ポリスチレン、ポリエチレンサルファイド、ポリエーテルスルホン、ポリオレフィン、ポリエチレンテレフタレート、ポリエチレンナフタレート、トリアセチルセルロース、ポリイミド等のプラスチックフィルム、あるいはガラスを用いることができる。   In the present invention, a metal oxide film (semiconductor film) 3 can be provided on a substrate 1 as shown in FIG. As the substrate 1, a transparent known material can be used. For example, polymethyl methacrylate, polycarbonate, polystyrene, polyethylene sulfide, polyethersulfone, polyolefin, polyethylene terephthalate, polyethylene naphthalate, triacetyl cellulose, polyimide, and the like. A plastic film or glass can be used.

また、図2のような構成の太陽電池(10)を作製する場合、一方の基材1は透明である必要があるが、他方は透明でもそうでなくても良い。このような基材1は、必要に応じて表面がコロナ処理、プラズマ処理、薬品処理などによって改質されたものであってもよい。このとき、基材1の表面の粗さによって、真空蒸着法で成膜する際の膜の成長の形態が変化するが、何ら問題はなく、粗さを制御することにより逆に膜の密度を変化させることができる。金属酸化物膜3を色素増感太陽電池用の電極として用いた場合、適切な表面粗さの基材1を用いることで、体積当たりの表面積が大きく、かつ、膜内での光散乱が多い膜が作製できる。   Moreover, when producing the solar cell (10) of a structure like FIG. 2, one base material 1 needs to be transparent, but the other does not need to be transparent. Such a base material 1 may have a surface modified by corona treatment, plasma treatment, chemical treatment, or the like, if necessary. At this time, the form of film growth during film formation by vacuum deposition changes depending on the roughness of the surface of the substrate 1, but there is no problem, and the density of the film can be reduced by controlling the roughness. Can be changed. When the metal oxide film 3 is used as an electrode for a dye-sensitized solar cell, by using the base material 1 having an appropriate surface roughness, the surface area per volume is large and the light scattering in the film is large. A film can be produced.

本発明では、基材1と金属酸化物膜3の間に保護層(図示せず)を設けても良い。本発明における保護層としては、酸化珪素、あるいは酸化アルミニウムを用いることができるが、それ以外にも、鉄、コバルト、ジルコニウム、あるいはその他の金属酸化物や金属酸窒化物、金属窒化物、金属フッ化物などを用いることができる。また、シリコン樹脂や含フッ素有機化合物などの高分子化合物を用いることができるが、このとき、ある特定の金属酸化物膜を用いた場合に起こる光触媒作用により、分解されない必要がある。保護層を設けることにより、後述する後処理などを行う時に基材1を保護することができる。   In the present invention, a protective layer (not shown) may be provided between the substrate 1 and the metal oxide film 3. As the protective layer in the present invention, silicon oxide or aluminum oxide can be used. In addition, iron, cobalt, zirconium, other metal oxides, metal oxynitrides, metal nitrides, metal fluorides can be used. A compound or the like can be used. In addition, a high molecular compound such as a silicon resin or a fluorine-containing organic compound can be used, but at this time, it needs to be not decomposed due to a photocatalytic action that occurs when a specific metal oxide film is used. By providing the protective layer, the substrate 1 can be protected when post-processing described later is performed.

本発明では、基材1と金属酸化物膜3の間に透明導電層2を設けることができる。透明導電層2としては、公知の可視光領域の吸収が少なく導電性のある透明導電材料を用いることができるが、錫をドープした酸化インジウム(ITO)、フッ素やインジウムなどがドープされた酸化スズ、アルミニウムやガリウムなどをドープした酸化亜鉛等が好ましい。また、この透明導電膜についても、前述同様凹凸のある表面を持たせることで、金属酸化物膜3の形状を変化させることができる。   In the present invention, the transparent conductive layer 2 can be provided between the substrate 1 and the metal oxide film 3. As the transparent conductive layer 2, a known transparent conductive material with little absorption in the visible light region can be used. Indium oxide doped with tin (ITO), tin oxide doped with fluorine, indium, or the like Zinc oxide doped with aluminum, gallium or the like is preferable. Moreover, also about this transparent conductive film, the shape of the metal oxide film 3 can be changed by giving the uneven surface like the above.

透明導電層2の形成方法としては、真空蒸着法、反応性蒸着法、イオンビームアシスト蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等の真空成膜プロセスや、ディッピング法、スピンコーティング法、ロールコーティング法、スクリーン印刷法、スプレー法等の液相コーティング法により作製することができるが、いかなる成
膜方法であっても構わない。
The method for forming the transparent conductive layer 2 includes vacuum deposition methods such as vacuum deposition, reactive deposition, ion beam assisted deposition, sputtering, ion plating, plasma CVD, dipping, and spin coating. The film can be produced by a liquid phase coating method such as a roll coating method, a screen printing method, or a spray method, but any film forming method may be used.

本発明において、金属酸化物膜3は、様々なものを用いることができる。具体的には亜鉛、ニオブ、錫、チタン、バナジウム、インジウム、タングステン、タンタル、ジルコニウム、モリブデン、マンガン、鉄、銅、ニッケル、イリジウム、ロジウム、クロム、ルテニウムの酸化物があげられる。また、SrTiO3、CaTiO3、BaTiO3、MgTiO3、SrNb26のようなペロブスカイト、またこれらの複合酸化物または酸化物混合物なども使用することができる。 In the present invention, various metal oxide films 3 can be used. Specific examples include oxides of zinc, niobium, tin, titanium, vanadium, indium, tungsten, tantalum, zirconium, molybdenum, manganese, iron, copper, nickel, iridium, rhodium, chromium, and ruthenium. In addition, perovskites such as SrTiO 3 , CaTiO 3 , BaTiO 3 , MgTiO 3 , SrNb 2 O 6 , composite oxides or oxide mixtures thereof can also be used.

本発明の金属酸化物膜3を色素増感太陽電池用の電極として用いる場合、重要なファクターとなるのは伝導帯のエネルギーレベル、導電性である。伝導帯のエネルギーレベルはセルの電圧を決定するため、より電圧の大きくなる位置にあるものが好ましい。また一方で色素から電子注入が行われるために色素の励起準位よりも高い位置にある必要がある。これらの条件を満たす物質としては、酸化チタン、酸化ニオブ、酸化錫、酸化亜鉛が好適である。また、導電性は低いがエネルギー準位が有利な位置にあるものと、導電性の高いものを複合化させることにより性能を向上させることも可能である。この場合、複合酸化物内の電子移動のロスを低減させるため、伝導帯のエネルギー準位の低い酸化物が表面に存在し、その内側に導電性の高い物質が存在するのが好適である。このとき導電性の物質は酸化物であってもそうでなくてもよい。   When the metal oxide film 3 of the present invention is used as an electrode for a dye-sensitized solar cell, the important factors are the energy level of the conduction band and the conductivity. Since the energy level of the conduction band determines the voltage of the cell, the energy level at the position where the voltage becomes higher is preferable. On the other hand, since electrons are injected from the dye, it is necessary to be at a position higher than the excitation level of the dye. As a substance satisfying these conditions, titanium oxide, niobium oxide, tin oxide, and zinc oxide are suitable. In addition, it is possible to improve performance by combining a material having low conductivity but an advantageous energy level with a material having high conductivity. In this case, in order to reduce the loss of electron transfer in the composite oxide, it is preferable that an oxide having a low energy level of the conduction band exists on the surface and a highly conductive substance exists on the inside thereof. At this time, the conductive substance may or may not be an oxide.

本発明における金属酸化物膜3の構造は、図1に示すような樹枝状の構造体が集合したものからなっており、それぞれの構造体は粒界がなく、連続した構造を有することを特徴としている。この膜を色素増感太陽電池用の電極として用いた場合、金属酸化物膜3は一般的に表面積が大きいため、図2に記載の色素4を多く吸着させることができ、光の吸収効率を高めることができる。また、それぞれの構造体が粒界を有していないため、電荷移動の際の抵抗が非常に小さい。このような理由から、金属酸化物膜3を色素増感太陽電池用の電極として用いた場合、大きな光電流を得ることができる。   The structure of the metal oxide film 3 in the present invention is composed of a collection of dendritic structures as shown in FIG. 1, and each structure has no grain boundary and has a continuous structure. It is said. When this film is used as an electrode for a dye-sensitized solar cell, since the metal oxide film 3 generally has a large surface area, it can adsorb a large amount of the dye 4 shown in FIG. Can be increased. Moreover, since each structure does not have a grain boundary, the resistance at the time of charge transfer is very small. For these reasons, when the metal oxide film 3 is used as an electrode for a dye-sensitized solar cell, a large photocurrent can be obtained.

本発明における金属酸化物膜3の膜厚は、色素増感太陽電池の電極として用いる場合、3μm以下の場合は色素の吸着量が少なく、十分な光電流を得ることができないため、これ以上であることが好ましい。また、膜厚が20μm以上になると、金属酸化物膜3の抵抗値が大きくなり、また色素4から酸化物の伝導帯に注入された電子が、色素4や電解液と再結合する確率が高くなるため、好ましくない。よって3〜20μm程度の膜厚が好適である。但し、色素増感太陽電池以外の用途に用いる場合はこの限りではない。   When the metal oxide film 3 in the present invention is used as an electrode of a dye-sensitized solar cell, if it is 3 μm or less, the amount of dye adsorbed is small and a sufficient photocurrent cannot be obtained. Preferably there is. Further, when the film thickness is 20 μm or more, the resistance value of the metal oxide film 3 increases, and the probability that electrons injected from the dye 4 into the conduction band of the oxide recombine with the dye 4 or the electrolyte is high. Therefore, it is not preferable. Therefore, a film thickness of about 3 to 20 μm is suitable. However, this does not apply when used for applications other than dye-sensitized solar cells.

色素増感太陽電池用の電極として用いる場合、金属酸化物膜3の表面積は大きいほどよい。体積あたりの表面積が大きいほど、体積あたりの色素4の吸着量が多くなり、より小さい面積で大きな電流値を得ることができる。表面積の指針として、投影面積に対する実際の表面積の値を用いると、この値が300倍以上、好ましくは500倍以上であることが好ましい。   When used as an electrode for a dye-sensitized solar cell, the larger the surface area of the metal oxide film 3, the better. As the surface area per volume increases, the amount of dye 4 adsorbed per volume increases, and a large current value can be obtained in a smaller area. When the value of the actual surface area relative to the projected area is used as a guide for the surface area, this value is preferably 300 times or more, preferably 500 times or more.

本発明の金属酸化物膜3の光透過率は、特に制限するものではないが、全光透過率が波長350〜900nmの範囲において20〜80%であることが好ましい。また、(拡散透過率)/(全光透過率)で定義されるヘイズの値が大きいと、色素増感太陽電池用の電極として用いた場合、色素4を半導体膜表面に吸着させた際の光吸収効率が向上するため、好適である。具体的には波長350〜900nmの範囲において60%以上、さらに好ましくは80%以上が良い。また、ヘイズと吸収率のこのような相関は近赤外、赤外といった長波長領域において顕著に見られるため、80%以上のヘイズ率を示す波長領域が600〜900nmの近赤外、赤外領域を含むとさらに好ましい。   The light transmittance of the metal oxide film 3 of the present invention is not particularly limited, but the total light transmittance is preferably 20 to 80% in the wavelength range of 350 to 900 nm. Further, when the haze value defined by (diffuse transmittance) / (total light transmittance) is large, when used as an electrode for a dye-sensitized solar cell, the dye 4 is adsorbed on the surface of the semiconductor film. Since light absorption efficiency improves, it is suitable. Specifically, it is 60% or more, more preferably 80% or more in the wavelength range of 350 to 900 nm. Further, since such a correlation between haze and absorptance is prominently observed in a long wavelength region such as near infrared and infrared, a near infrared and infrared wavelength region having a haze ratio of 80% or more is 600 to 900 nm. More preferably, it includes a region.

本発明において得られる樹枝状構造からなる金属酸化物膜3の作製法としては、化学エッチングや膜の自己組織化といった手法や、CVD法、真空蒸着法が考えられる。この中でも真空蒸着法は、成膜レート、成膜圧力、蒸発物質の入射角、蒸着源9の数などの条件を変えることにより、膜の構造を制御することができ、ゆえに表面積や入射光の散乱性を制御することができるため好適である。以下、この条件について詳しく説明する。   As a method for producing the metal oxide film 3 having a dendritic structure obtained in the present invention, a technique such as chemical etching or self-organization of the film, a CVD method, or a vacuum evaporation method can be considered. Among these, the vacuum deposition method can control the structure of the film by changing the conditions such as the film formation rate, film formation pressure, the incident angle of the evaporating substance, the number of the evaporation sources 9, and therefore the surface area and incident light. It is preferable because the scattering property can be controlled. Hereinafter, this condition will be described in detail.

図3に基材8と蒸着源9の位置関係を座標軸内に示したモデル図を示す。この時、基材8の中心はZ軸上にあるものとする。基材8と蒸着源9のある平面間の距離hは、特に制限するものではないが、成膜レートや樹枝状構造の多孔性を考慮すると、10〜50cmの間であるのが好ましい。蒸発物質の入射角を変化させ、いわゆる斜め蒸着により成膜することで、表面積の大きい膜を作製できることが知られているが、今回の場合においても同様な手法を用いることができる。図3において、基材8とx=0平面とのなす角度αを変化させることで膜の多孔性を制御できる。αの値は0〜90°まで変化させることができる。蒸着源9の位置は、蒸発物質が基材8に入射しうる位置であればどこであっても構わないが、成膜レートを考慮すると、図3においてx≦0、z≧0の位置にあるのが好ましい。特に蒸着源9と基材8を結ぶ直線と、基材8の法線のなす角度βが10°≦β≦80°以下の場合は、シャドウイング効果により表面積の大きな膜が作製できるため、好ましい。10°以下の場合は、シャドウイング効果がほとんど無いため、緻密で表面積の小さい膜ができる。80°以上の場合は、成膜レートが低くなったり、膜の強度が低下する。   FIG. 3 is a model diagram showing the positional relationship between the substrate 8 and the vapor deposition source 9 in the coordinate axes. At this time, the center of the base material 8 is on the Z axis. The distance h between the plane on which the substrate 8 and the evaporation source 9 are located is not particularly limited, but is preferably between 10 and 50 cm in consideration of the film forming rate and the porosity of the dendritic structure. It is known that a film having a large surface area can be produced by changing the incident angle of the evaporation substance and forming the film by so-called oblique vapor deposition, but the same method can be used in this case as well. In FIG. 3, the porosity of the membrane can be controlled by changing the angle α formed between the substrate 8 and the x = 0 plane. The value of α can be varied from 0 to 90 °. The position of the vapor deposition source 9 may be anywhere as long as the evaporated substance can enter the base material 8, but in consideration of the film formation rate, it is in the position of x ≦ 0 and z ≧ 0 in FIG. Is preferred. In particular, when the angle β formed by the straight line connecting the vapor deposition source 9 and the substrate 8 and the normal of the substrate 8 is 10 ° ≦ β ≦ 80 ° or less, a film having a large surface area can be produced by the shadowing effect, which is preferable. . In the case of 10 ° or less, since there is almost no shadowing effect, a dense film with a small surface area can be formed. In the case of 80 ° or more, the film forming rate is lowered or the strength of the film is lowered.

複数の蒸着源9を用いた場合では、何れか一つの蒸着源9がまたシャドウイング効果の起こる位置にある場合、空隙ができ、表面積の大きい膜が得られる。この空隙の割合、膜の表面積、また膜の構造は、蒸着源9の位置によって制御することができる。例えば、ある一方向から蒸着粒子を入射させた場合は、斜め柱状構造が得られる。これに対し図3に示すように2つの蒸着源9をx軸に対して対称な位置に置き、蒸着を行うと左右に対称に枝の成長した樹枝状構造が得られる。これらの構造体も入射角によって様々な表面積になる。蒸着源9と基材8を結ぶ直線と、基材8の法線のなす角度βが大きくなるにつれ、シャドウイング効果は顕著になり、体積あたりの表面積は大きくなるが、βがさらに大きくなると、空隙の占める割合が多くなるため、体積あたりの表面積は小さくなる。このように、体積あたりの表面積は、βに対して極大値をとる。蒸着源9の数は2つ以上でも樹枝状構造は得ることができ、入射角などの条件を最適化することでより表面積の大きい金属酸化物膜3を得ることもできる。このときのそれぞれの蒸着源9に対するβの値は、すべて同じであってもそうでなくてもよい。   When a plurality of vapor deposition sources 9 are used, if any one vapor deposition source 9 is also at a position where the shadowing effect occurs, a void is formed and a film having a large surface area is obtained. The ratio of the voids, the surface area of the film, and the structure of the film can be controlled by the position of the vapor deposition source 9. For example, when vapor deposition particles are incident from a certain direction, an oblique columnar structure is obtained. On the other hand, as shown in FIG. 3, when two vapor deposition sources 9 are placed symmetrically with respect to the x-axis and vapor deposition is performed, a dendritic structure with branches growing symmetrically on the left and right is obtained. These structures also have various surface areas depending on the incident angle. As the angle β formed by the straight line connecting the vapor deposition source 9 and the base material 8 and the normal line of the base material 8 increases, the shadowing effect becomes more prominent and the surface area per volume increases, but β further increases. Since the proportion of voids increases, the surface area per volume decreases. Thus, the surface area per volume takes a maximum value with respect to β. A dendritic structure can be obtained even if the number of vapor deposition sources 9 is two or more, and a metal oxide film 3 having a larger surface area can be obtained by optimizing conditions such as an incident angle. At this time, the β values for the respective vapor deposition sources 9 may or may not be the same.

また、異なる2種類以上の物質を用いて共蒸着をさせることにより複合酸化物膜も容易に作製できる。複合酸化物膜を作製する場合は、上記のような共蒸着であっても、別の物質を一種類ずつ蒸着させてもよい。金属酸化物膜3を色素増感太陽電池用の電極として用いる場合、前述の通り導電性の物質を伝導帯の位置的に有利な物質で被覆するものが好ましいが、このような膜も導電性の膜を蒸着した後、もう一方の物質を蒸着することで作製できる。   In addition, a composite oxide film can be easily produced by performing co-evaporation using two or more different substances. In the case of producing a complex oxide film, different materials may be deposited one by one, even by co-evaporation as described above. When the metal oxide film 3 is used as an electrode for a dye-sensitized solar cell, it is preferable to coat a conductive substance with a substance that is advantageous in terms of the conduction band as described above. After the film is deposited, the other material can be deposited.

本発明における蒸着源9となる物質は金属酸化物そのものでもよいし、金属、金属亜酸化物などを酸素雰囲気下で反応性蒸着により作製することもできる。また、蒸着源9に2種類以上の金属または金属酸化物の混合物を使用することにより、膜へのドーピングも可能である。   The substance used as the vapor deposition source 9 in the present invention may be a metal oxide itself, or a metal, a metal suboxide, or the like can be produced by reactive vapor deposition in an oxygen atmosphere. Further, by using a mixture of two or more kinds of metals or metal oxides for the vapor deposition source 9, the film can be doped.

蒸着時の圧力は蒸発粒子の平均自由行程に大きく影響するため、成膜レート、膜の多孔性に大きく影響する。反応性蒸着の場合は導入する酸素ガスの流量で圧力を調整することができる。圧力が低いと膜に到達する蒸発粒子が多くなるために緻密な膜が形成され、高い場合は空隙の多い膜ができる。膜の密度が低くなるにつれ、体積あたりの表面積は大き
くなるが、空隙が多くなりすぎると、体積あたりの表面積は小さくなる。この場合も前述の角度の場合と同様、成膜時の圧力に対して体積あたりの表面積は極大値をとる。また、蒸着時の基材8の温度は蒸着粒子の基材8上での拡散に影響する。基材8の温度が高いと、粒子の基材8上での平均拡散距離が大きくなり、基材8の温度が低いと、粒子の基材8上での平均拡散距離が小さくなり、膜の空隙が多くなる。また、蒸着源9の温度を加熱や電子ビームの強度などにより変えることにより、膜の密度を変えることも可能である。このように様々な条件を変えることで、様々な構造、様々な表面積の膜を得ることができる。また、成膜中に条件を変化させることにより、膜の深さ方向に対して構造を徐々に変化させたり、表面積を変化させることも可能である。また真空蒸着により作製された膜の空隙に粒子を充填させても何ら問題は無く、さらに大きな表面積を有する膜を得ることができる。
Since the pressure during vapor deposition greatly affects the mean free path of the evaporated particles, it greatly affects the film formation rate and the film porosity. In the case of reactive vapor deposition, the pressure can be adjusted by the flow rate of the introduced oxygen gas. When the pressure is low, the amount of evaporated particles reaching the film increases, so that a dense film is formed. When the pressure is high, a film with many voids is formed. As the density of the film decreases, the surface area per volume increases, but if the number of voids increases, the surface area per volume decreases. In this case as well, as in the case of the aforementioned angle, the surface area per volume takes a maximum value with respect to the pressure during film formation. In addition, the temperature of the base material 8 during vapor deposition affects the diffusion of vapor deposition particles on the base material 8. When the temperature of the base material 8 is high, the average diffusion distance of the particles on the base material 8 increases, and when the temperature of the base material 8 is low, the average diffusion distance of the particles on the base material 8 decreases, More voids. Further, the density of the film can be changed by changing the temperature of the vapor deposition source 9 by heating, the intensity of the electron beam, or the like. By changing various conditions in this way, films having various structures and various surface areas can be obtained. Further, by changing the conditions during film formation, the structure can be gradually changed or the surface area can be changed in the depth direction of the film. Moreover, there is no problem even if the voids of the film produced by vacuum deposition are filled with particles, and a film having a larger surface area can be obtained.

上記の真空蒸着法で作製された金属酸化物膜3は基材加熱を行わない場合、アモルファスであることが多い。色素増感太陽電池用の電極として用いる場合、金属酸化物膜3はアモルファスでは伝導性が低く、結晶化させる必要がある。このため真空蒸着により成膜した膜はほとんどの物質の場合、成膜後に400℃以上の熱処理を行う必要がある。熱処理を行うと、隣接したそれぞれの構造体が凝集するため、膜の表面積が小さくなる。このため、熱処理条件の最適化により、できるだけ凝集を抑える必要がある。結晶化させるための手法としては、熱処理のほかにも、プラズマ処理、コロナ処理、UV処理、薬品処理など、任意の方法があげられる。また、熱による焼成や圧縮機を用いた加圧処理、レーザアニーリングなど、任意の手段を用いて後処理することもできる。   The metal oxide film 3 produced by the above vacuum deposition method is often amorphous when the substrate is not heated. When used as an electrode for a dye-sensitized solar cell, the metal oxide film 3 is low in conductivity and needs to be crystallized. For this reason, in the case of almost all substances deposited by vacuum deposition, it is necessary to perform a heat treatment at 400 ° C. or higher after the deposition. When the heat treatment is performed, adjacent structures are aggregated, so that the surface area of the film is reduced. For this reason, it is necessary to suppress aggregation as much as possible by optimizing the heat treatment conditions. As a method for crystallization, in addition to heat treatment, any method such as plasma treatment, corona treatment, UV treatment, and chemical treatment can be used. Further, post-processing can be performed using any means such as baking by heat, pressurization using a compressor, or laser annealing.

次に、本発明における金属酸化物膜3を色素増感太陽電池用の電極として用いた場合について詳述する。図2に示す本発明の色素増感太陽電池10は、基材1、透明導電層2、金属酸化物膜3、および該金属酸化物膜(半導体膜)3に担持された色素4、さらには金属酸化物膜3のクラックを満たすように形成された電解質層5、導電性触媒層6、透明導電層2、基材1より形成されている。   Next, the case where the metal oxide film 3 in the present invention is used as an electrode for a dye-sensitized solar cell will be described in detail. The dye-sensitized solar cell 10 of the present invention shown in FIG. 2 includes a substrate 1, a transparent conductive layer 2, a metal oxide film 3, a dye 4 supported on the metal oxide film (semiconductor film) 3, and further It is formed of an electrolyte layer 5, a conductive catalyst layer 6, a transparent conductive layer 2, and a base material 1 that are formed so as to fill a crack in the metal oxide film 3.

本発明における色素4として、例えば、ルテニウム−トリス、ルテニウム−ビス型の遷移金属錯体、またはフタロシアニンやポルフィリン、シアニジン色素、メロシアニン色素、ローダミン色素、クマリン色素、ロダニン色素などの有機色素が挙げられる。これらの色素は、吸光係数が大きくかつ繰り返しの酸化還元に対して安定であることが好ましい。また、上記色素4は金属酸化物膜(半導体膜)3上に化学的に吸着すると、該金属酸化物膜(半導体膜)3への電子移動が効率良く行われるため、カルボキシル基、スルホン酸基、リン酸基、アミド基、アミノ基、カルボニル基、ホスフィン基などの官能基を有することが好ましい。   Examples of the dye 4 in the present invention include ruthenium-tris, ruthenium-bis type transition metal complexes, or organic dyes such as phthalocyanine, porphyrin, cyanidin dye, merocyanine dye, rhodamine dye, coumarin dye, and rhodanine dye. These dyes preferably have a large extinction coefficient and are stable against repeated redox. Further, when the dye 4 is chemically adsorbed on the metal oxide film (semiconductor film) 3, electron transfer to the metal oxide film (semiconductor film) 3 is efficiently performed. It preferably has a functional group such as a phosphoric acid group, an amide group, an amino group, a carbonyl group, or a phosphine group.

本発明における電解質層5としては、溶媒としてアセトニトリル、プロピオニトリルやエチレンカーボネート、プロピレンカーボネートのようなニトリル系、カーボネート系の極性溶媒に対して、ヨウ素および金属、有機物などのヨウ化物塩を溶解させた酸化還元系を含む溶液を用いることができる。しかしながら、これらの溶液は実際にセルを作製する際において、液漏れや溶媒の蒸発による性能の低下が懸念される。このような劣化の可能性を回避するために、溶液をゲル中に担持させたゲル状電解質やp型半導体を含む固体状電荷輸送層を用いることができる。   As the electrolyte layer 5 in the present invention, iodine, metals, organic compounds and other iodide salts are dissolved in acetonitrile, propionitrile, nitriles such as ethylene carbonate and propylene carbonate, and carbonates as polar solvents. A solution containing a redox system can be used. However, there is a concern that these solutions may deteriorate in performance due to liquid leakage or solvent evaporation when cells are actually produced. In order to avoid the possibility of such deterioration, a solid charge transport layer containing a gel electrolyte in which a solution is supported in a gel or a p-type semiconductor can be used.

前記固体状電荷輸送層に用いることのできる材料の具体例としては、トリフェニルアミン、ジフェニルアミン、フェニレンジアミンなどの芳香族アミン化合物、ナフタレン、アントラセンなどの縮合多環炭化水素、アゾベンゼンなどのアゾ化合物、スチルベンなどの芳香環をエチレン結合やアセチレン結合で連結した構造を有する化合物、アミノ基で置換されたヘテロ芳香環化合物、ポルフィリン類、フタロシアン類、キノン類、テトラシアノ
キノジメタン類、ジシアノキノンジイミン類、テトラシアノエチレン、ビオローゲン類、ジチオール金属錯体などが挙げられる。また、ポリピロール、ポリアニリン、ポリチオフェンなどの導電性高分子なども用いることができる。これらの有機ホール輸送材料は結晶性のものとアモルファスのものがあるが、アモルファスのものは色素4との界面が結晶性のものと比較して均一な場合が多く、電荷分離が均一に起こるため、好適である。また、その他固体状電荷輸送層に用いることのできる材料として、CuI、AgI、TiI、およびその他の金属ヨウ化物、CuBr、CuSCNなどがある。また、ポリアルキレンエーテルなどの高分子ゲルにヨウ化物塩、ヨウ素等を抱含させて用いてもよい。これらの材料は、必要に応じて任意に組み合わせて用いることができる。
Specific examples of materials that can be used for the solid charge transport layer include aromatic amine compounds such as triphenylamine, diphenylamine, and phenylenediamine, condensed polycyclic hydrocarbons such as naphthalene and anthracene, azo compounds such as azobenzene, Compounds having a structure in which aromatic rings such as stilbene are linked by ethylene bonds or acetylene bonds, heteroaromatic compounds substituted with amino groups, porphyrins, phthalocyanines, quinones, tetracyanoquinodimethanes, dicyanoquinone dii Mines, tetracyanoethylene, viologens, dithiol metal complexes and the like. In addition, conductive polymers such as polypyrrole, polyaniline, and polythiophene can also be used. These organic hole transport materials are crystalline and amorphous. However, the amorphous material has a more uniform interface with the dye 4 than the crystalline material, and charge separation occurs uniformly. Is preferable. Other materials that can be used for the solid charge transport layer include CuI, AgI, TiI, and other metal iodides, CuBr, CuSCN, and the like. Further, an iodide salt, iodine or the like may be included in a polymer gel such as polyalkylene ether. These materials can be used in any combination as required.

本発明における電解質層5の形成方法としては、マイクログラビアコーティング、ディップコーティング、スクリーンコーティング、スピンコーティング等を用いることができる。固体電解質またはp型半導体を用いる場合には、任意の溶媒を用いた溶液にした後、上記方法を用いて塗工し、基材1を任意の温度に加熱して溶媒を蒸発させるなどにより形成する。   As a method for forming the electrolyte layer 5 in the present invention, microgravure coating, dip coating, screen coating, spin coating, or the like can be used. When a solid electrolyte or p-type semiconductor is used, it is formed by making a solution using an arbitrary solvent, coating by using the above method, and evaporating the solvent by heating the substrate 1 to an arbitrary temperature. To do.

本発明における導電性触媒層6としては、任意の導電性材料を用いることができ、白金や金、銀、銅などの金属、もしくは炭素などが挙げられる。これらを形成する際には、透明導電層2と同様の真空成膜法、あるいはこれら材料の微粒子をペーストにしたものをコーティングする方法を用いることができる。   As the conductive catalyst layer 6 in the present invention, any conductive material can be used, and examples thereof include metals such as platinum, gold, silver, and copper, or carbon. In forming these, a vacuum film forming method similar to that of the transparent conductive layer 2 or a method of coating a paste made of fine particles of these materials can be used.

また、本発明における色素増感太陽電池においては、透明導電層2と金属酸化物膜3との間に短絡防止層7を設けることができる。これにより、電解質とアノードの短絡電流を低減することができる。特に、固体のp型半導体を電解質として用いる場合はこの層が必須である。短絡防止層7としては可視光を透過し、伝導帯のエネルギー準位が金属酸化物膜3のそれに近い値を持つn型半導体であれば特に制限はない。   In the dye-sensitized solar cell of the present invention, the short-circuit prevention layer 7 can be provided between the transparent conductive layer 2 and the metal oxide film 3. Thereby, the short circuit current of an electrolyte and an anode can be reduced. In particular, this layer is essential when a solid p-type semiconductor is used as the electrolyte. The short-circuit prevention layer 7 is not particularly limited as long as it is an n-type semiconductor that transmits visible light and has a conduction band energy level close to that of the metal oxide film 3.

該短絡防止層7の形成方法としては、透明導電層2の場合と同様に真空成膜プロセスや、液相コーティング法により作製することができる。真空成膜プロセスを用いる場合、透明導電層2、短絡防止層7、金属酸化物膜3は大気開放することなく真空下でインライン成膜が可能である。   As a method for forming the short-circuit prevention layer 7, it can be produced by a vacuum film formation process or a liquid phase coating method as in the case of the transparent conductive layer 2. When using a vacuum film formation process, the transparent conductive layer 2, the short-circuit prevention layer 7, and the metal oxide film 3 can be formed in-line under vacuum without being exposed to the atmosphere.

本発明の金属酸化物膜(半導体膜)3は、色素増感太陽電池のみの応用に何ら限定されるものではなく、光触媒を応用したデバイス、エレクトロクロミックデバイスなどの電極材料など、様々な用途に用いることができる。   The metal oxide film (semiconductor film) 3 of the present invention is not limited to the application of only the dye-sensitized solar cell, and can be used for various applications such as a device using a photocatalyst and an electrode material such as an electrochromic device. Can be used.

以下、本発明の金属酸化物膜(半導体膜)を色素増感太陽電池に応用した例で具体的に説明する。   Hereinafter, an example in which the metal oxide film (semiconductor film) of the present invention is applied to a dye-sensitized solar cell will be specifically described.

<実施例1>
図2の層構成の色素増感太陽電池10を次のように作製した。基材1としてガラス(Corning7059、1mm厚)を使用し、この上に透明導電層2としてフッ素ドープ酸化錫(FTO)を大気圧プラズマCVD法により形成した。得られた透明導電性基材上に、金属酸化物膜3として酸化チタンを真空蒸着法により作製した、この時の蒸着条件は、図3において蒸着源9は2つで、その位置がそれぞれ座標軸で(x、y、z)=(0、20、0)、(x、y、z)=(0、−20、0)(単位cmとする)、高さhが40cm、基材とx=0平面のなす角度α=45°、成膜圧力0.3Pa、基材温度25℃、成膜速度は15nm/sとした。得られた積層体を、電熱炉を用いて450℃で30分間焼成した。得られた酸化チタン膜の膜厚は8μmであった。このときの投影面積に対する実
際の表面積は約700倍であった。この膜の断面像をSEMによって観察したところ、樹枝状構造の集合体からなるものであった。得られた積層体を、ビス(4,4−ジカルボキシ−2,2−ビピリジル)ジチオシアネートルテニウムのエタノール溶液に浸漬することにより、色素4を吸着させた。色素4を担持した後、エタノール洗浄、及び乾燥を行った。以下の操作を乾燥アルゴン雰囲気下で行った。電解質(電荷輸送層)5として0.4M−TPAI(テトラプロピルアンモニウムヨーダイド)、0.05M−I2、メトキシアセトニトリルからなる電解質を金属酸化物膜(半導体膜)3である酸化チタン膜上に形成した。更に、対向電極として上記と同様にして形成した基材1、透明導電層2よりなる積層体を用意し、この上に真空蒸着法により成膜した白金を導電性触媒層6として形成することにより対向電極を作製し、導電性触媒層6と電解質(電荷輸送層)5を重ね合わせるように固定した後、側面を接着剤で封止することにより色素増感太陽電池を作製した。以上で得られた色素増感太陽電池の電流−電圧特性を測定したところ、A.M.1.5、100mW/cm2の擬似太陽光を用いた時、短絡電流JSC=17mA/cm2、開放電圧VOC=0.77V、フィルファクターFF=0.66で光電変換効率はη=8.6%であった。
<Example 1>
The dye-sensitized solar cell 10 having the layer configuration of FIG. 2 was produced as follows. Glass (Corning 7059, 1 mm thickness) was used as the substrate 1, and fluorine-doped tin oxide (FTO) was formed thereon as the transparent conductive layer 2 by the atmospheric pressure plasma CVD method. On the obtained transparent conductive base material, titanium oxide was produced as a metal oxide film 3 by a vacuum vapor deposition method. The vapor deposition conditions at this time were as follows: two vapor deposition sources 9 in FIG. (X, y, z) = (0, 20, 0), (x, y, z) = (0, −20, 0) (unit: cm), height h is 40 cm, base material and x = 0 Angle formed by plane = 45 °, film forming pressure 0.3Pa, substrate temperature 25 ° C, film forming speed 15nm / s. The obtained laminate was fired at 450 ° C. for 30 minutes using an electric furnace. The thickness of the obtained titanium oxide film was 8 μm. The actual surface area with respect to the projected area at this time was about 700 times. When a cross-sectional image of this film was observed by SEM, it was composed of an aggregate of dendritic structures. The obtained laminate was immersed in an ethanol solution of bis (4,4-dicarboxy-2,2-bipyridyl) dithiocyanate ruthenium to adsorb the dye 4. After loading the dye 4, washing with ethanol and drying were performed. The following operations were performed under a dry argon atmosphere. An electrolyte composed of 0.4 M-TPAI (tetrapropylammonium iodide), 0.05 M-I 2 , and methoxyacetonitrile is used as an electrolyte (charge transport layer) 5 on a titanium oxide film that is a metal oxide film (semiconductor film) 3. Formed. Furthermore, by preparing a laminate composed of the base material 1 and the transparent conductive layer 2 formed in the same manner as described above as the counter electrode, and forming platinum as a conductive catalyst layer 6 by depositing platinum thereon by a vacuum deposition method. After preparing the counter electrode and fixing the conductive catalyst layer 6 and the electrolyte (charge transport layer) 5 so as to overlap each other, the side surface was sealed with an adhesive to prepare a dye-sensitized solar cell. The current-voltage characteristics of the dye-sensitized solar cell obtained above were measured. M.M. When using pseudo sunlight of 1.5 and 100 mW / cm 2 , the short-circuit current J SC = 17 mA / cm 2 , the open circuit voltage V OC = 0.77 V, the fill factor FF = 0.66, and the photoelectric conversion efficiency is η = It was 8.6%.

<実施例2>
実施例1の場合と同様な基材1の上に、同様の透明導電層2を設けたものの上に、金属酸化物膜3として酸化チタンを真空蒸着法により作製した。この時の蒸着条件は、図3において蒸着源9は3つで、その位置が座標軸で(x、y、z)=(0、20、0)、(x、y、z)=(0、−20、0)、原点(単位cm)、高さhが40cm、基材とx=0平面のなす角度α=45°、成膜圧力0.3Pa、基材温度25℃とした。成膜速度は15nm/sとした。得られた積層体を、電熱炉を用いて450℃で30分間焼成した。得られた酸化チタン膜の膜厚は8μmであった。このときの投影面積に対する実際の表面積は約1000倍であった。この膜の断面像をSEMによって観察したところ、斜め柱状構造の集合体からなるものであった。得られた積層体を用いて実施例1と同様な材料を用いて同様の手法で色素増感太陽電池を作製した。得られた色素増感太陽電池の電流−電圧特性を測定したところ、A.M.1.5、100mW/cm2の擬似太陽光を用いた時、短絡電流JSC=18mA/cm2、開放電圧VOC=0.76V、フィルファクターFF=0.66で光電変換効率はη=9.0%であった。
<Example 2>
Titanium oxide was produced as a metal oxide film 3 by vacuum deposition on the same base material 1 as in Example 1 and the same transparent conductive layer 2. The vapor deposition conditions at this time are as follows. In FIG. 3, the number of vapor deposition sources 9 is three, and their positions are coordinate axes (x, y, z) = (0, 20, 0), (x, y, z) = (0, −20, 0), origin (unit: cm), height h: 40 cm, angle α = 45 ° formed by the substrate and x = 0 plane, film forming pressure 0.3 Pa, substrate temperature 25 ° C. The film formation rate was 15 nm / s. The obtained laminate was fired at 450 ° C. for 30 minutes using an electric furnace. The thickness of the obtained titanium oxide film was 8 μm. The actual surface area with respect to the projected area at this time was about 1000 times. When a cross-sectional image of this film was observed by SEM, it was composed of an aggregate of oblique columnar structures. Using the obtained laminate, a dye-sensitized solar cell was produced in the same manner using the same material as in Example 1. The current-voltage characteristics of the obtained dye-sensitized solar cell were measured. M.M. When using pseudo sunlight of 1.5 and 100 mW / cm 2 , the short circuit current J SC = 18 mA / cm 2 , the open circuit voltage V OC = 0.76 V, the fill factor FF = 0.66, and the photoelectric conversion efficiency is η = It was 9.0%.

<実施例3>
実施例1の場合と同様な基材1の上に、同様の透明導電層2を設けたものの上に、金属酸化物膜3として酸化チタンおよび酸化ニオブを真空蒸着法により作製した。まず酸化チタンの蒸着を行い、その後蒸着源の物質を酸化ニオブに切り替えてさらに蒸着を行った。この時の蒸着条件は、図3において蒸着源9は3つで、その位置が座標軸で(x、y、z)=(0、20、0)、(x、y、z)=(0、−20、0)、原点、高さhが40cm、基材とx=0平面のなす角度α=45°、成膜圧力0.3Pa、基材温度25℃とした。成膜速度は15nm/sとした。得られた積層体を、電熱炉を用いて550℃で30分間焼成した。得られた酸化チタン膜の膜厚は8μmであった。このときの投影面積に対する実際の表面積は約900倍であった。この膜の断面像をSEMによって観察したところ、樹枝状構造の集合体からなるものであった。得られた積層体を用いて実施例1と同様な材料を用いて同様の手法で色素増感太陽電池を作製した。得られた色素増感太陽電池の電流−電圧特性を測定したところ、A.M.1.5、100mW/cm2の擬似太陽光を用いた時、短絡電流JSC=17mA/cm2、開放電圧VOC=0.8V、フィルファクターFF=0.7で光電変換効率はη=9.5%であった。
<Example 3>
Titanium oxide and niobium oxide were produced as a metal oxide film 3 on a substrate 1 similar to that in Example 1 by providing a similar transparent conductive layer 2 by a vacuum deposition method. First, titanium oxide was vapor-deposited, and then the vapor deposition source material was switched to niobium oxide for further vapor deposition. The vapor deposition conditions at this time are as follows. In FIG. 3, the number of vapor deposition sources 9 is three, and their positions are coordinate axes (x, y, z) = (0, 20, 0), (x, y, z) = (0, −20, 0), origin, height h is 40 cm, angle α = 45 ° between substrate and x = 0 plane, film forming pressure 0.3 Pa, substrate temperature 25 ° C. The deposition rate was 15 nm / s. The obtained laminate was baked at 550 ° C. for 30 minutes using an electric furnace. The thickness of the obtained titanium oxide film was 8 μm. The actual surface area with respect to the projected area at this time was about 900 times. When a cross-sectional image of this film was observed by SEM, it was composed of an aggregate of dendritic structures. Using the obtained laminate, a dye-sensitized solar cell was produced in the same manner using the same material as in Example 1. The current-voltage characteristics of the obtained dye-sensitized solar cell were measured. M.M. 1.5 and 100 mW / cm 2 of simulated sunlight, the short-circuit current J SC = 17 mA / cm 2, the open circuit voltage V OC = 0.8 V, the fill factor FF = 0.7, and the photoelectric conversion efficiency is η = 9. It was 5%.

以下に、本発明の比較例について説明する。   Below, the comparative example of this invention is demonstrated.

<比較例1>
実施例1の場合と同様な基材1の上に、同様の透明導電層2を設けたものの上に、金属酸化物膜3として酸化チタンを真空蒸着法により作製した。この時の蒸着条件は、図3において蒸着源9は1つで、その位置が原点、高さhが40cm、基材とx=0平面のなす角度α=45°、成膜圧力0.3Pa、基板温度25℃とした。成膜速度は15nm/sとした。得られた積層体を、電熱炉を用いて450℃で30分間焼成した。得られた酸化チタン膜の膜厚は8μmであった。このときの投影面積に対する実際の表面積は約550倍であった。この膜の断面像をSEMによって観察したところ、斜め柱状構造の集合体からなるものであった。得られた積層体を用いて実施例1と同様な材料を用いて同様の手法で色素増感太陽電池を作製した。得られた色素増感太陽電池の電流−電圧特性を測定したところ、A.M.1.5、100mW/cm2の擬似太陽光を用いた時、短絡電流JSC=15mA/cm2、開放電圧VOC=0.73V、フィルファクターFF=0.64で光電変換効率はη=7.0%であった。
<比較例2>
実施例1の場合と同様な基材1の上に、同様の透明導電層2を設けたものの上に、金属酸化物膜3として酸化チタンをスクリーン印刷法により作製した。得られた積層体を、電熱炉を用いて450℃で30分間焼成した。得られた酸化チタン膜の膜厚は15μmであった。このときの投影面積に対する実際の表面積は約750倍であった。表面像をSEMによって観察したところ、得られた酸化チタン膜は粒径10〜30nmの粒子からなるものであった。得られた積層体を用いて実施例1と同様な材料を用いて同様の手法で色素増感太陽電池を作製した。得られた色素増感太陽電池の電流−電圧特性を測定したところ、A.M.1.5、100mW/cm2の擬似太陽光を用いた時、短絡電流JSC=15mA/cm2、開放電圧VOC=0.72V、フィルファクターFF=0.62で光電変換効率はη=6.7%であった。また、この手法で作製した酸化チタンを用いた場合、膜厚は15μmのものが最も高い効率を示した。
<Comparative Example 1>
Titanium oxide was produced as a metal oxide film 3 by vacuum deposition on the same base material 1 as in Example 1 and the same transparent conductive layer 2. The deposition conditions at this time are as follows. In FIG. 3, the number of deposition sources 9 is one, the position is the origin, the height h is 40 cm, the angle between the substrate and the x = 0 plane α = 45 °, and the deposition pressure is 0.3 Pa. The substrate temperature was 25 ° C. The film formation rate was 15 nm / s. The obtained laminate was fired at 450 ° C. for 30 minutes using an electric furnace. The thickness of the obtained titanium oxide film was 8 μm. The actual surface area with respect to the projected area at this time was about 550 times. When a cross-sectional image of this film was observed by SEM, it was composed of an aggregate of oblique columnar structures. Using the obtained laminate, a dye-sensitized solar cell was produced in the same manner using the same material as in Example 1. The current-voltage characteristics of the obtained dye-sensitized solar cell were measured. M.M. When using pseudo sunlight of 1.5 and 100 mW / cm 2 , the short-circuit current J SC = 15 mA / cm 2 , the open-circuit voltage V OC = 0.73 V, the fill factor FF = 0.64, and the photoelectric conversion efficiency is η = It was 7.0%.
<Comparative example 2>
Titanium oxide was produced as a metal oxide film 3 by screen printing on a substrate 1 similar to that in Example 1 and a similar transparent conductive layer 2 provided thereon. The obtained laminate was fired at 450 ° C. for 30 minutes using an electric furnace. The thickness of the obtained titanium oxide film was 15 μm. The actual surface area with respect to the projected area at this time was about 750 times. When the surface image was observed by SEM, the obtained titanium oxide film was composed of particles having a particle diameter of 10 to 30 nm. Using the obtained laminate, a dye-sensitized solar cell was produced in the same manner using the same material as in Example 1. The current-voltage characteristics of the obtained dye-sensitized solar cell were measured. M.M. When using pseudo sunlight of 1.5, 100 mW / cm 2 , the short circuit current J SC = 15 mA / cm 2 , the open circuit voltage V OC = 0.72 V, the fill factor FF = 0.62, and the photoelectric conversion efficiency is η = It was 6.7%. When titanium oxide produced by this method was used, the film thickness of 15 μm showed the highest efficiency.

実施例、比較例の結果より、蒸着源9が2つの場合に得られる樹枝状構造からなる酸化チタン膜を用いて作製した色素増感太陽電池の光電変換効率は、斜め柱状構造からなる酸化チタン膜を用いた場合、また従来の塗布法で作製した酸化チタン膜を用いた場合よりも優れた変換効率を示すことがわかった。これは樹枝状構造が大きい表面積と、電子移動のロスが無い連続した構造を兼ね備えているためと考えられる。また、蒸着源9の数や位置を変えることで、より表面積の大きい樹枝状構造がえられることが示された。また、2種類以上の酸化物を複合化させることで高い電流値を維持したまま、電圧、曲線因子が向上することが示された。   From the results of Examples and Comparative Examples, the photoelectric conversion efficiency of a dye-sensitized solar cell produced using a titanium oxide film having a dendritic structure obtained when there are two deposition sources 9 is titanium oxide having an oblique columnar structure. It was found that the conversion efficiency was superior when the film was used and when a titanium oxide film produced by a conventional coating method was used. This is presumably because the dendritic structure has a large surface area and a continuous structure with no loss of electron transfer. It was also shown that a dendritic structure with a larger surface area can be obtained by changing the number and position of the vapor deposition sources 9. In addition, it was shown that the voltage and the fill factor are improved while maintaining a high current value by combining two or more kinds of oxides.

本発明に係る金属酸化物膜の製造方法により、基材上に金属酸化物膜を成膜した状態の層構成を示す側断面図である。It is a sectional side view which shows the layer structure of the state which formed the metal oxide film on the base material with the manufacturing method of the metal oxide film which concerns on this invention. 本発明に係る金属酸化物膜を用いて作製した色素増感太陽電池の層構成を示す側断面図である。It is a sectional side view which shows the layer structure of the dye-sensitized solar cell produced using the metal oxide film which concerns on this invention. 本発明に係る金属酸化物膜の製造方法であって、真空蒸着法による成膜における基材と蒸着源の位置関係を示す模式図である。It is a manufacturing method of the metal oxide film which concerns on this invention, Comprising: It is a schematic diagram which shows the positional relationship of the base material and vapor deposition source in the film-forming by a vacuum evaporation method.

符号の説明Explanation of symbols

1・・・基材
2・・・透明導電層
3・・・金属酸化物膜(半導体膜)
4・・・色素
5・・・電解質(電荷輸送層)
6・・・導電性触媒層
7・・・短絡防止層
8・・・基材
9・・・蒸着源
10・・・色素増感太陽電池
DESCRIPTION OF SYMBOLS 1 ... Base material 2 ... Transparent conductive layer 3 ... Metal oxide film (semiconductor film)
4 ... Dye 5 ... Electrolyte (charge transport layer)
6 ... Conductive catalyst layer 7 ... Short-circuit prevention layer 8 ... Base material 9 ... Deposition source 10 ... Dye-sensitized solar cell

Claims (10)

基材に、真空蒸着法により樹枝状構造を有する金属酸化物膜を形成する金属酸化物膜の製造方法であって、該真空蒸着法が、複数の蒸着源を用いて、複数の方向から蒸着粒子を入射させることを特徴とする金属酸化物膜の製造方法。   A metal oxide film manufacturing method for forming a metal oxide film having a dendritic structure on a substrate by a vacuum evaporation method, wherein the vacuum evaporation method uses a plurality of evaporation sources to perform evaporation from a plurality of directions. A method for producing a metal oxide film, wherein particles are incident. 前記複数の蒸着源のうち、少なくとも一つが該蒸着源と基材を結ぶ直線と、基材の法線のなす角度が10〜80°の範囲内である位置にあることを特徴とする請求項1記載の金属酸化物膜の製造方法。   The at least one of the plurality of vapor deposition sources is at a position where an angle formed by a straight line connecting the vapor deposition source and the substrate and a normal line of the substrate is within a range of 10 to 80 °. 2. A method for producing a metal oxide film according to 1. 前記複数の蒸着源の、蒸着源と基材を結ぶ直線と、基材の法線のなす角度がそれぞれ異なることを特徴とする請求項1又は2記載の金属酸化物膜の製造方法。   The method for producing a metal oxide film according to claim 1 or 2, wherein an angle formed by a straight line connecting the vapor deposition source and the substrate and a normal line of the substrate is different between the plurality of vapor deposition sources. 前記金属酸化物膜が、チタン、ニオブ、亜鉛、錫のいずれか一つ以上を含むことを特徴とする請求項1乃至3のいずれか1項記載の金属酸化物膜の製造方法。   The method for producing a metal oxide film according to claim 1, wherein the metal oxide film contains at least one of titanium, niobium, zinc, and tin. 前記複数の蒸着源の材料が異なり、共蒸着させることにより複合酸化物膜を形成することを特徴とする請求項1乃至4のいずれか1項記載の金属酸化物膜の製造方法。   5. The method for producing a metal oxide film according to claim 1, wherein materials of the plurality of vapor deposition sources are different and a composite oxide film is formed by co-evaporation. 少なくとも基材上に、透明導電層、色素が吸着した金属酸化物膜及び電解質層、透明導電層が順次形成されてなる色素増感太陽電池の製造方法であって、該金属酸化物膜が樹枝状構造を有してなり、複数の方向から蒸着粒子を入射させる、真空蒸着法により形成されてなることを特徴とする色素増感太陽電池の製造方法。   A method for producing a dye-sensitized solar cell, in which a transparent conductive layer, a metal oxide film and an electrolyte layer on which a dye is adsorbed, and a transparent conductive layer are sequentially formed on at least a substrate, wherein the metal oxide film is A method for producing a dye-sensitized solar cell, characterized in that the dye-sensitized solar cell is formed by a vacuum vapor deposition method in which vapor deposition particles are incident from a plurality of directions. 前記複数の蒸着源のうち、少なくとも一つが該蒸着源と基材を結ぶ直線と、基材の法線のなす角度が10〜80°の範囲内である位置にあることを特徴とする請求項6記載の色素増感太陽電池の製造方法。   The at least one of the plurality of vapor deposition sources is at a position where an angle formed by a straight line connecting the vapor deposition source and the substrate and a normal line of the substrate is within a range of 10 to 80 °. 6. A method for producing a dye-sensitized solar cell according to 6. 前記複数の蒸着源の、蒸着源と基材を結ぶ直線と、基材の法線のなす角度がそれぞれ異なることを特徴とする請求項6又は7記載の色素増感太陽電池の製造方法。   The method for producing a dye-sensitized solar cell according to claim 6 or 7, wherein an angle formed by a straight line connecting the vapor deposition source and the substrate and a normal line of the substrate is different between the plurality of vapor deposition sources. 前記金属酸化物膜が、チタン、ニオブ、亜鉛、錫のいずれか一つ以上を含むことを特徴とする請求項6乃至8のいずれか1項記載の色素増感太陽電池の製造方法。   The method for producing a dye-sensitized solar cell according to any one of claims 6 to 8, wherein the metal oxide film contains one or more of titanium, niobium, zinc, and tin. 前記複数の蒸着源の材料が異なり、共蒸着させることにより複合酸化物膜を形成することを特徴とする請求項6乃至9のいずれか1項記載の色素増感太陽電池の製造方法。   The method for producing a dye-sensitized solar cell according to any one of claims 6 to 9, wherein a material of the plurality of vapor deposition sources is different and a composite oxide film is formed by co-evaporation.
JP2004349497A 2004-12-02 2004-12-02 Method of forming metal oxide film and method of manufacturing dye-sensitized solar cell Pending JP2006165014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004349497A JP2006165014A (en) 2004-12-02 2004-12-02 Method of forming metal oxide film and method of manufacturing dye-sensitized solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004349497A JP2006165014A (en) 2004-12-02 2004-12-02 Method of forming metal oxide film and method of manufacturing dye-sensitized solar cell

Publications (1)

Publication Number Publication Date
JP2006165014A true JP2006165014A (en) 2006-06-22

Family

ID=36666716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004349497A Pending JP2006165014A (en) 2004-12-02 2004-12-02 Method of forming metal oxide film and method of manufacturing dye-sensitized solar cell

Country Status (1)

Country Link
JP (1) JP2006165014A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043408A1 (en) * 2005-10-07 2007-04-19 Sharp Kabushiki Kaisha Photoelectric conversion element and solar cell using same
CN102628155A (en) * 2011-02-02 2012-08-08 三菱综合材料株式会社 Method of manufacturing films, evaporation materials for co-evaporation, film, film sheet and laminate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218662A (en) * 1990-03-27 1992-08-10 Toyota Central Res & Dev Lab Inc Anisotropic nano-composite material and its manufacture
JPH08266910A (en) * 1995-03-29 1996-10-15 Matsushita Electric Works Ltd Manufacture of titanium dioxide photocatalyst film
JPH0961629A (en) * 1995-08-22 1997-03-07 Toyota Central Res & Dev Lab Inc Multiple groove type material, pseudo longitudinal multilayered film and their production
JP2002170557A (en) * 2000-12-01 2002-06-14 Toyota Central Res & Dev Lab Inc Electrode
JP2003197282A (en) * 2001-12-27 2003-07-11 Toppan Printing Co Ltd Dye sensitized solar battery
JP2003215336A (en) * 2002-01-18 2003-07-30 Nippon Sheet Glass Co Ltd Thin film polarizer and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04218662A (en) * 1990-03-27 1992-08-10 Toyota Central Res & Dev Lab Inc Anisotropic nano-composite material and its manufacture
JPH08266910A (en) * 1995-03-29 1996-10-15 Matsushita Electric Works Ltd Manufacture of titanium dioxide photocatalyst film
JPH0961629A (en) * 1995-08-22 1997-03-07 Toyota Central Res & Dev Lab Inc Multiple groove type material, pseudo longitudinal multilayered film and their production
JP2002170557A (en) * 2000-12-01 2002-06-14 Toyota Central Res & Dev Lab Inc Electrode
JP2003197282A (en) * 2001-12-27 2003-07-11 Toppan Printing Co Ltd Dye sensitized solar battery
JP2003215336A (en) * 2002-01-18 2003-07-30 Nippon Sheet Glass Co Ltd Thin film polarizer and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007043408A1 (en) * 2005-10-07 2007-04-19 Sharp Kabushiki Kaisha Photoelectric conversion element and solar cell using same
CN102628155A (en) * 2011-02-02 2012-08-08 三菱综合材料株式会社 Method of manufacturing films, evaporation materials for co-evaporation, film, film sheet and laminate

Similar Documents

Publication Publication Date Title
KR101061970B1 (en) Photoelectrode using conductive nonmetallic film and dye-sensitized solar cell comprising same
KR101430139B1 (en) Manufacturing technology perovskite-based mesoporous thin film solar cell
Kim et al. Highly efficient solution processed nanorice structured NiS counter electrode for quantum dot sensitized solar cells
Meng et al. Investigation of Al2O3 and ZrO2 spacer layers for fully printable and hole-conductor-free mesoscopic perovskite solar cells
Raj et al. Surface reinforced platinum counter electrode for quantum dots sensitized solar cells
JP4032873B2 (en) LAMINATE, MANUFACTURING METHOD THEREOF, AND PRODUCT USING THE SAME
Punnoose et al. Highly catalytic nickel sulfide counter electrode for dye-sensitized solar cells
Choudhury et al. Compression of ZnO nanoparticle films at elevated temperature for flexible dye-sensitized solar cells
JP4665426B2 (en) Dye-sensitized solar cell and method for producing the same
JP4710251B2 (en) Method for producing metal oxide film
KR101627161B1 (en) Dye-sensitized solar cell including polymer support layer, and preparing method of the same
Singh et al. Recent development and future prospects of rigid and flexible dye-sensitized solar cell: a review
JP4622519B2 (en) Dye-sensitized solar cell and method for producing the same
JP2006199986A (en) Metal oxide film, solar cell using the oxide film, photocatalyst thin film, and method for manufacturing metal oxide film
JP2001345124A (en) Chemically modified semiconductor electrode, method of manufacturing it, and photocell using it
JP4099988B2 (en) Dye-sensitized solar cell
JP4797338B2 (en) Dye-sensitized solar cell and method for producing the same
JP2007087854A (en) Dye-sensitized solar cell
JP2003059546A (en) Manufacturing method of dye sensitizing solar cell and solar cell using same
JP4314764B2 (en) Method for producing dye-sensitized solar cell
JP4984440B2 (en) Metal oxide film and dye-sensitized solar cell
JP2006165014A (en) Method of forming metal oxide film and method of manufacturing dye-sensitized solar cell
JP2007109500A (en) Dye-sensitized solar cell
JP2005251605A (en) Dye-sensitized solar cell, module, and manufacturing method of dye-sensitized solar cell
JP2006012517A (en) Metal oxide structure, and dye sensitized solar battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120104