JP2006164889A - Method of manufacturing fuel cell separator using carbon, fuel cell separator, and fuel cell - Google Patents

Method of manufacturing fuel cell separator using carbon, fuel cell separator, and fuel cell Download PDF

Info

Publication number
JP2006164889A
JP2006164889A JP2004358242A JP2004358242A JP2006164889A JP 2006164889 A JP2006164889 A JP 2006164889A JP 2004358242 A JP2004358242 A JP 2004358242A JP 2004358242 A JP2004358242 A JP 2004358242A JP 2006164889 A JP2006164889 A JP 2006164889A
Authority
JP
Japan
Prior art keywords
separator
fuel cell
sheet
impregnated
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004358242A
Other languages
Japanese (ja)
Other versions
JP4882227B2 (en
Inventor
Kazuyoshi Takada
和義 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004358242A priority Critical patent/JP4882227B2/en
Priority to PCT/JP2005/019166 priority patent/WO2006061951A1/en
Publication of JP2006164889A publication Critical patent/JP2006164889A/en
Application granted granted Critical
Publication of JP4882227B2 publication Critical patent/JP4882227B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a fuel cell separator with high performance, capable of reducing cost, and to provide a fuel cell separator and the fuel cell. <P>SOLUTION: The fuel cell separator held in a prescribed shape by impregnating a sheet-shaped carbon W1 with a shape retaining material 40 is manufactured by the manufacturing method of a fuel cell separator comprising an impregnation process forming a sheet-shaped separator material W2 by impregnating a sheet-shaped carbon W1 with a shape retaining material 40, and a pressing process forming the separator by pressing the sheet-shaped separator material W2. The fuel cell is manufactured by using the fuel cell separator. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池に用いられるセパレータの製造方法、燃料電池用セパレータおよび燃料電池に関する。   The present invention relates to a method for manufacturing a separator used in a fuel cell, a fuel cell separator, and a fuel cell.

燃料電池のセパレータの製造方法として、粉末状の成形材料を金型で圧縮成形する方法がある(例えば、非特許文献1参照)。しかし、この方法は、成形されるセパレータの板厚の寸法のばらつきが生じやすく、サイクルタイムが長く、自動化・無人化が困難であるという欠点がある。   As a method for manufacturing a fuel cell separator, there is a method in which a powdered molding material is compression-molded with a mold (see, for example, Non-Patent Document 1). However, this method has the disadvantages that the thickness of the separator to be molded tends to vary, the cycle time is long, and it is difficult to automate and unmanned.

セパレータの板厚のばらつきは、燃料電池内の燃料ガスや空気等の漏れの原因となると共に、セパレータと隣接する部材との間で電気抵抗の増大の原因となって燃料電池の出力密度(単位体積あたりの出力であり、小型化および高出力化が要求される燃料電池の品質を評価する上での指標となる)を低下させる原因となる。
”平成13年度 成果報告書 固体高分子形燃料電池の研究開発 カーボン樹脂モールドセパレータの開発 (公開用)報告書”、[online]、平成14年3月、新エネルギー・産業技術総合開発機構、委託先:三菱電機株式会社、インターネット<URL:http://www.tech.nedo.go.jp/>
The variation in the separator plate thickness causes leakage of fuel gas, air, etc. in the fuel cell, and also causes an increase in electrical resistance between the separator and adjacent members. This is an output per volume, which is a cause of lowering (which is an index for evaluating the quality of a fuel cell that requires miniaturization and high output).
"Fiscal 2001 Results Report Research and Development of Solid Polymer Fuel Cell Development of Carbon Resin Mold Separator (for Public Use)", [online], March 2002, New Energy and Industrial Technology Development Organization, Consignment Destination: Mitsubishi Electric Corporation, Internet <URL: http://www.tech.nedo.go.jp/>

本発明は、上記従来技術に伴う課題を解決するためになされたものであり、コストの削減が可能で高品質な燃料電池用セパレータの製造方法、燃料電池用セパレータおよび燃料電池を提供することを目的とする。   The present invention has been made to solve the problems associated with the above-described conventional technology, and provides a high-quality manufacturing method of a fuel cell separator, a fuel cell separator, and a fuel cell that can reduce costs. Objective.

上記目的を達成する本発明に係る燃料電池用セパレータの製造方法は、シート状カーボンに形状保持材を含浸させてシート状セパレータ材料とする含浸工程と、前記シート状セパレータ材料を押圧してセパレータを成形するプレス工程と、を有することを特徴とする。   The manufacturing method of a fuel cell separator according to the present invention that achieves the above object includes an impregnation step of impregnating a sheet-like carbon with a shape-retaining material to form a sheet-like separator material, and pressing the sheet-like separator material to remove the separator. And a pressing step for molding.

上記目的を達成する本発明に係る燃料電池用セパレータは、シート状カーボンに形状保持材を含浸させて所定の形状に保持されていることを特徴とする。   The fuel cell separator according to the present invention that achieves the above object is characterized in that a sheet-like carbon is impregnated with a shape-retaining material and held in a predetermined shape.

上記目的を達成する本発明に係る燃料電池は、シート状カーボンに形状保持材を含浸させて所定の形状に保持されている燃料電池用セパレータを有することを特徴とする。   A fuel cell according to the present invention that achieves the above object includes a separator for a fuel cell that is held in a predetermined shape by impregnating a sheet-like carbon with a shape-retaining material.

上記のように構成した本発明に係る燃料電池用セパレータの製造方法は、粉末状の成形材料ではなくシート状カーボンを用いてプレス加工するため、寸法精度がよいセパレータを製造することができる。   Since the manufacturing method of the separator for a fuel cell according to the present invention configured as described above is pressed using sheet-like carbon instead of a powdery molding material, a separator with good dimensional accuracy can be produced.

上記のように構成した本発明に係る燃料電池用セパレータは、カーボン材に形状保持材が含浸されているためカーボン製のセパレータの形状を保持することができ、また導電性に優れている。   The fuel cell separator according to the present invention configured as described above can retain the shape of the carbon separator because the carbon material is impregnated with the shape maintaining material, and is excellent in conductivity.

上記のように構成した本発明に係る燃料電池は、セパレータの寸法精度がよいため出力性能に優れ、また燃料ガスや空気等の漏れが生じ難い。   The fuel cell according to the present invention configured as described above has excellent output performance since the dimensional accuracy of the separator is good, and leakage of fuel gas, air, and the like hardly occurs.

本発明の実施形態を、図面を参照しつつ説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は本発明に係る燃料電池の単セルを示す要部断面図である。   FIG. 1 is a cross-sectional view of a principal part showing a single cell of a fuel cell according to the present invention.

燃料電池は、図1に示すような単セル10をスタックの形態で多数集成してなり、例えば、自動車の駆動源として使用される。   A fuel cell is formed by assembling a large number of unit cells 10 as shown in FIG. 1 in the form of a stack, and is used, for example, as a drive source for an automobile.

単セル10は、水の電気分解の逆の原理を利用し、水素と酸素とを反応させて水を得る過程で電気を得ることができるデバイスであり、膜電極接合体20、ガス拡散層21A,21B、セパレータ30A,30Bを有する。膜電極接合体20は、固体高分子膜の両面に、触媒層が形成された電極を配置して形成される。ガス拡散層21A,21Bは、膜電極接合体20の両面に配置される。セパレータ30A,30Bは、ガス拡散層21A,21Bの外面に配置される。   The single cell 10 is a device that can obtain electricity in the process of obtaining water by reacting hydrogen and oxygen by utilizing the reverse principle of electrolysis of water, and includes a membrane electrode assembly 20 and a gas diffusion layer 21A. , 21B and separators 30A, 30B. The membrane electrode assembly 20 is formed by arranging electrodes on which catalyst layers are formed on both sides of a solid polymer membrane. The gas diffusion layers 21 </ b> A and 21 </ b> B are disposed on both surfaces of the membrane electrode assembly 20. Separator 30A, 30B is arrange | positioned on the outer surface of gas diffusion layer 21A, 21B.

セパレータ30A,30Bは、複数の凹凸の溝が連続する形状であり、セパレータ30Aには冷却水を流通させるための冷却水用流路溝31Aと、燃料ガス(水素)を流通させるための燃料ガス用流路溝32が交互に形成される。また、セパレータ30Bには冷却水を流通させるための冷却水用流路溝31Bと、酸化剤ガス(酸素)を流通させるための酸化剤用流路溝33が交互に形成される。   The separators 30A and 30B have a shape in which a plurality of concave and convex grooves are continuous, and in the separator 30A, a cooling water channel groove 31A for circulating cooling water and a fuel gas for circulating fuel gas (hydrogen). The flow channel grooves 32 are formed alternately. The separator 30B is alternately formed with a cooling water channel groove 31B for circulating cooling water and an oxidant channel groove 33 for circulating oxidizing gas (oxygen).

セパレータ30A,30Bは、全面的または部分的に形状保持材が含浸されたカーボン材であり、形状保持材には、例えば熱硬化性樹脂や熱可塑性樹脂が使用される。セパレータ30A,30Bは電流を導通する必要があるため、形状保持材も導電性の高いものが好ましい。   The separators 30A and 30B are carbon materials that are completely or partially impregnated with a shape retention material, and for example, a thermosetting resin or a thermoplastic resin is used as the shape retention material. Since the separators 30A and 30B need to conduct current, it is preferable that the shape retaining material also has high conductivity.

図2はセパレータの材料を示す斜視図であり、(A)はシート状カーボンを示す斜視図、(B)はシート状セパレータ材料を示す斜視図である。   FIG. 2 is a perspective view showing the material of the separator, (A) is a perspective view showing the sheet-like carbon, and (B) is a perspective view showing the sheet-like separator material.

かかるセパレータ30は、まずシート状カーボンW1に形状保持材40を含浸させてシート状セパレータ材料W2を成形し(図2参照)、このシート状セパレータ材料W2を所定の形状に加工することにより成形される。なお、図2(B)では形状保持材が含浸された状態を理解し易いように、便宜上、含浸された部位を仮想的に積層させて表している。   The separator 30 is formed by first impregnating the sheet-like carbon W1 with the shape holding material 40 to form the sheet-like separator material W2 (see FIG. 2), and processing the sheet-like separator material W2 into a predetermined shape. The In FIG. 2B, the impregnated portions are virtually stacked for convenience for easy understanding of the state impregnated with the shape-retaining material.

<シート状セパレータ材料の成形方法>
シート状カーボンW1は、例えば厚さが0.01〜1.0mm、密度が0.8〜2.0g/cm、電気伝導度が0.05〜1.0mΩ/cm、耐熱性が100℃以上のシート状に形成されたカーボン材である。
<Method for forming sheet separator material>
For example, the sheet-like carbon W1 has a thickness of 0.01 to 1.0 mm, a density of 0.8 to 2.0 g / cm 3 , an electric conductivity of 0.05 to 1.0 mΩ / cm, and a heat resistance of 100 ° C. It is a carbon material formed in the above sheet shape.

シート状カーボンW1に形状保持材40を含浸する理由は、カーボンをプレス成形した形状を確実に保持するためである。   The reason why the shape holding material 40 is impregnated into the sheet-like carbon W1 is to reliably hold the shape obtained by press-molding carbon.

形状保持材40をシート状カーボンW1に含浸させる方法は、例えば熱硬化性樹脂と熱可塑性樹脂で異なる。   The method of impregnating the shape-holding material 40 into the sheet-like carbon W1 is different between, for example, a thermosetting resin and a thermoplastic resin.

熱硬化性樹脂を用いる場合には、溶剤に溶かしてワニス状にした硬化性樹脂をシート状カーボンW1に含浸させた後、乾燥させて溶剤を揮発させ、シート状セパレータ材料W2が成形される。熱硬化性樹脂には、例えばフェノール樹脂、エポキシ樹脂または不飽和ポリエステル等が使用できる。   When the thermosetting resin is used, the sheet-like carbon W1 is impregnated with a curable resin dissolved in a solvent to form a varnish, and then dried to volatilize the solvent, thereby forming the sheet-like separator material W2. As the thermosetting resin, for example, a phenol resin, an epoxy resin, an unsaturated polyester, or the like can be used.

熱可塑性樹脂を用いる場合には、加熱融解した熱可塑性樹脂をシート状カーボンW1に含浸させた後、冷却してシート状セパレータ材料W2が成形される。熱可塑性樹脂には、例えばテフロン(登録商標)、ポリエステル、ポリフェニエンサルファイド、シリコン、オレフィン系(PP,PE等)、ポリアミド、ポリフッ化ビニリデン、ポリイミドまたはエチレンビニルアセテート等が使用できる。   When the thermoplastic resin is used, the sheet-like carbon W1 is impregnated with the heat-melted thermoplastic resin and then cooled to form the sheet-like separator material W2. As the thermoplastic resin, for example, Teflon (registered trademark), polyester, polyphenylene sulfide, silicon, olefin-based (PP, PE, etc.), polyamide, polyvinylidene fluoride, polyimide, ethylene vinyl acetate, or the like can be used.

前述の含浸方法には、形状保持材40の特性に応じて真空含浸、滴下含浸または印刷含浸が適宜用いられ、シート状カーボンW1の全面に、または部分的に行われる。部分的に含浸させることによる利点は、成形後のセパレータの形状を保持するために必要な部位には含浸させ、他の部材と接触して導電する部位等には含浸させずに、導電性を高めることができることである。全面に含浸させることによる利点は、含浸工程が容易であり、また成形後のセパレータの形状を確実に保持でき、導電性も比較的優れていることである。   In the above impregnation method, vacuum impregnation, dripping impregnation, or printing impregnation is appropriately used according to the characteristics of the shape-retaining material 40, and is performed on the entire surface of the sheet-like carbon W1 or partially. The advantage of partly impregnating is that the part necessary for maintaining the shape of the separator after molding is impregnated, and the part that conducts electricity in contact with other members is not impregnated. It can be increased. The advantages of impregnating the entire surface are that the impregnation step is easy, the shape of the separator after molding can be reliably maintained, and the conductivity is relatively excellent.

シート状カーボンW1を部分的に含浸させる場合には、印刷含浸が好ましい。   When the sheet-like carbon W1 is partially impregnated, printing impregnation is preferable.

図3はシート状カーボンを部分的に含浸させる状態を示す図であり、(A)はシート状カーボンに型枠が設けられた斜視図、(B)はシート状カーボンに樹脂を含浸させる状態を示す側面図、(C)は部分的に含浸されたシート状セパレータ材料を示す斜視図である。   FIG. 3 is a diagram showing a state in which sheet-like carbon is partially impregnated, (A) is a perspective view in which a form frame is provided on sheet-like carbon, and (B) is a state in which sheet-like carbon is impregnated with resin. The side view to show, (C) is a perspective view which shows the sheet-like separator material impregnated partially.

初めに、図3(A)に示すように、開口部51が設けられた型枠50でシート状カーボンW1を覆い、その上から図3(B)に示すように、ワニス状にした熱硬化性樹脂または加熱融解した熱可塑性樹脂がノズル52より吐出される。このようにして、シート状カーボンW1が開口部51と一致する部分に形状保持材40が印刷含浸され、含浸部35と非含浸部36とが交互に形成される(図3(C)参照)。   First, as shown in FIG. 3 (A), the sheet-like carbon W1 is covered with a mold 50 provided with an opening 51, and from above, varnish-like thermosetting is performed as shown in FIG. 3 (B). Or a thermoplastic resin that has been melted by heating is discharged from the nozzle 52. In this way, the shape retaining material 40 is printed and impregnated in the portion where the sheet-like carbon W1 coincides with the opening 51, and the impregnated portion 35 and the non-impregnated portion 36 are alternately formed (see FIG. 3C). .

この作業をシート状カーボンW1の両面または片面に行うが、両面の場合には、ノズル52を両面に設けて同時に含浸させることも可能である(不図示)。なお、通常、含浸を行った場合にはシート状カーボンW1の内部のみではなく、表面にも多少の形状保持材40が残る場合が多いため、場合に応じて形状保持材40の樹脂を除去することが好ましい。   This operation is performed on both surfaces or one surface of the sheet-like carbon W1, but in the case of both surfaces, it is also possible to provide the nozzles 52 on both surfaces and impregnate them simultaneously (not shown). Usually, when impregnation is performed, not only the inside of the sheet-like carbon W1 but also the shape retaining material 40 often remains on the surface, so the resin of the shape retaining material 40 is removed depending on the case. It is preferable.

型枠50は、所望のシート状セパレータ材料W2に応じて任意に変更可能であり、この変更によりシート状カーボンW1の所望の部位に含浸することができる。   The mold 50 can be arbitrarily changed according to a desired sheet-like separator material W2, and by this change, a desired portion of the sheet-like carbon W1 can be impregnated.

<セパレータの成形方法>
前述のように成形されたシート状セパレータ材料W2をプレス加工し、セパレータ30を成形するには、下記の方法により行う。
<第1の実施形態>
第1の実施形態は、形状保持材40に熱硬化性樹脂を使用する場合のセパレータの成形方法であり、全面または部分的に含浸させたシート状セパレータ材料W2の両方に適用できる。
<Method of molding separator>
In order to form the separator 30 by pressing the sheet-like separator material W2 formed as described above, the following method is used.
<First Embodiment>
The first embodiment is a separator molding method in the case where a thermosetting resin is used for the shape-retaining material 40, and can be applied to both the sheet-like separator material W2 impregnated on the entire surface or a part thereof.

図4は第1の実施形態の金型によるシート状セパレータ材料の加工状態を示す断面図であり、(A)は加工前の状態を示す断面図、(B)は加工後の状態を示す断面図である。   FIG. 4 is a cross-sectional view showing a processed state of the sheet-like separator material by the mold according to the first embodiment, (A) is a cross-sectional view showing a state before processing, and (B) is a cross-sectional view showing a state after processing. FIG.

初めに、上型61および下型62に設けられている加熱源63により、上型61および下型62を、シート状セパレータ材料W2に使用されている熱硬化性樹脂(形状保持材)40の硬化温度以上に加熱する。   First, the upper mold 61 and the lower mold 62 are made of the thermosetting resin (shape holding material) 40 used for the sheet-like separator material W2 by the heating source 63 provided in the upper mold 61 and the lower mold 62. Heat above the curing temperature.

次に、図4(A)に示すように、下型62の上にシート状セパレータ材料W2を設置する。この後、図4(B)に示すように上型61と下型62を互いに近接させてシート状セパレータ材料W2を押圧し、この状態のまま保持する。この間に、熱硬化性樹脂は溶融した後、硬化する。熱硬化性樹脂が硬化するために必要な時間が経過するまで上型61および下型62を保持した後、離型して成形されたセパレータ30を取り出す。   Next, as shown in FIG. 4A, a sheet-like separator material W2 is placed on the lower mold 62. Thereafter, as shown in FIG. 4B, the upper mold 61 and the lower mold 62 are brought close to each other to press the sheet-like separator material W2, and are held in this state. During this time, the thermosetting resin is cured and then cured. The upper mold 61 and the lower mold 62 are held until the time necessary for the thermosetting resin to cure is passed, and then the separator 30 molded by releasing is taken out.

図5は全面に含浸されたシート状セパレータ材料およびセパレータを示す断面図であり、(A)は全面に含浸されたシート状セパレータ材料を示す要部断面図、(B)は成形されたセパレータを示す要部断面図、(C)は表面の樹脂が取り除かれた要部断面図である。   FIG. 5 is a cross-sectional view showing a sheet-like separator material and a separator impregnated on the entire surface, (A) is a main-part cross-sectional view showing the sheet-like separator material impregnated on the entire surface, and (B) is a molded separator. The principal part sectional drawing shown, (C) is the principal part sectional drawing from which the resin of the surface was removed.

シート状セパレータ材料W2を加工した場合、図5(B)に示すように、成形されたセパレータ30の隣接する部材と接する接触面34の表面に熱硬化性樹脂40が残されている。この場合には、接触面34が他の部材と接触した場合の導電性を確保するために、表面の熱硬化性樹脂40がショットピーリング等により取り除く(図5(C)参照)。これにより、熱硬化性樹脂40が含浸されたセパレータ30のカーボン材が、隣接する部材と直接的に接触することができる。なお、表面に残されている熱硬化性樹脂40を取り除く場合には、接触面34のみではなくてセパレータ30の全面を行ってもよく、またシート状セパレータ材料W2(図5(A)参照)の段階で行ってもよい。   When the sheet-like separator material W2 is processed, as shown in FIG. 5B, the thermosetting resin 40 is left on the surface of the contact surface 34 in contact with the adjacent member of the molded separator 30. In this case, in order to ensure conductivity when the contact surface 34 comes into contact with another member, the surface thermosetting resin 40 is removed by shot peeling or the like (see FIG. 5C). Thereby, the carbon material of the separator 30 impregnated with the thermosetting resin 40 can be in direct contact with the adjacent member. In addition, when removing the thermosetting resin 40 remaining on the surface, not only the contact surface 34 but the entire surface of the separator 30 may be used, and the sheet-like separator material W2 (see FIG. 5A). It may be performed at the stage.

通常、シート状カーボンW1に熱硬化性樹脂40を含浸させていない場合には、カーボン材の特性上、プレス加工の後にセパレータ30の形状を維持することは困難であるが、本実施形態においては熱硬化性樹脂40が含浸されているため、プレス加工の後も形状を確実に保持することができる。   Usually, when the sheet-like carbon W1 is not impregnated with the thermosetting resin 40, it is difficult to maintain the shape of the separator 30 after press working due to the characteristics of the carbon material. Since the thermosetting resin 40 is impregnated, the shape can be reliably maintained even after the press working.

また、本実施形態の方法によるセパレータ30は、材料が粉体ではなく板状であるため、板厚方向の寸法精度がよく、隣接する部材と良好に接触することができる。   Moreover, since the material of the separator 30 according to the method of the present embodiment is not a powder but a plate shape, the dimensional accuracy in the plate thickness direction is good, and the separator 30 can be in good contact with an adjacent member.

また、例えば金属をセパレータに使用した場合には腐食防止のために貴金属がコーティングされるが、樹脂が含浸されたカーボンは腐食の問題がないため貴金属のコーティングを施す必要が無く、コストを削減できる。   For example, when a metal is used for a separator, a noble metal is coated to prevent corrosion. However, carbon impregnated with resin does not have a problem of corrosion, so there is no need to apply a noble metal coating, and the cost can be reduced. .

また、本実施形態の方法は、粉末状の材料を圧縮成形する方法と比較して、サイクルタイムを短縮させることができ、また自動化、無人化が容易であるため、コストを低減することができる。   In addition, the method according to the present embodiment can shorten the cycle time compared with the method of compression molding a powdery material, and can reduce costs because it is easy to automate and unmanned. .

また、材料を圧力で流動させて金型のキャビティに充填させるトランスファー成形や射出成形においては、金型内の樹脂の通り道となるスプルーやランナーで廃材が発生し、また設備や金型が高価であるが、これらの方法と比較して本実施形態に係る方法では廃材が発生せず、設備や金型が安価であるためコストを低減できる。   Also, in transfer molding and injection molding in which the material is flowed by pressure and filled into the mold cavity, waste material is generated by sprues and runners that serve as resin paths in the mold, and the equipment and mold are expensive. However, compared with these methods, the method according to the present embodiment does not generate waste materials, and the cost can be reduced because the equipment and the mold are inexpensive.

図6は部分的に含浸されたシート状セパレータ材料により加工されるセパレータを示す断面図であり、(A)は部分的に含浸されたシート状セパレータ材料を示す要部断面図、(B)は成形されたセパレータを示す要部断面図である。   FIG. 6 is a cross-sectional view showing a separator processed by a partially impregnated sheet-like separator material, (A) is a main part cross-sectional view showing a partially impregnated sheet-like separator material, and (B) It is principal part sectional drawing which shows the shape | molded separator.

部分的に樹脂が含浸されているシート状セパレータ材料W2を加工した場合、図6(B)に示すように、樹脂が含浸されていない非含浸部36を、セパレータ30の隣接する部材と接する面とすることができる。このように形成されたセパレータ30は、前述の全面に熱硬化性樹脂40が含浸されているシート状セパレータ材料W2を用いたセパレータ30の効果に加え、さらに非含浸部36に樹脂が含浸されていないために導電性がより優れている。また、非含浸部36の裏面には樹脂が含浸されているため、セパレータ30の形状を確実に保持すると共に、冷却水、燃料ガスおよび酸化剤ガスの漏れを抑止することができる。   When the sheet-shaped separator material W2 partially impregnated with the resin is processed, the non-impregnated portion 36 not impregnated with the resin is in contact with the adjacent member of the separator 30 as shown in FIG. It can be. In addition to the effect of the separator 30 using the sheet separator material W2 in which the entire surface is impregnated with the thermosetting resin 40, the separator 30 formed in this way is further impregnated with resin in the non-impregnated portion 36. Therefore, conductivity is better. Further, since the back surface of the non-impregnated portion 36 is impregnated with resin, the shape of the separator 30 can be reliably maintained and leakage of cooling water, fuel gas, and oxidant gas can be suppressed.

図7は部分的に樹脂が含浸されたセパレータを使用した燃料電池の要部を示す断面図である。   FIG. 7 is a cross-sectional view showing the main part of a fuel cell using a separator partially impregnated with resin.

図7に示すように、燃料電池は単セル10をスタックの形態で多数集成して形成されている。図7の矢印は、燃料電池における、電流が流れる経路を例示的に示している。本実施形態に係るセパレータ30は、寸法精度に優れ隣接する部材と良好に接触すると共に、非含浸部36に熱硬化性樹脂40が含浸されていないため、接触抵抗が低減されて電気抵抗が減少し、燃料電池の出力密度を向上させることができる。また、含浸部35に含浸された熱硬化性樹脂40により冷却水、燃料ガスおよび酸化剤ガスの漏れを低減させることができる。   As shown in FIG. 7, the fuel cell is formed by assembling a large number of single cells 10 in the form of a stack. The arrows in FIG. 7 exemplify paths through which current flows in the fuel cell. The separator 30 according to the present embodiment has excellent dimensional accuracy and is in good contact with an adjacent member, and since the non-impregnated portion 36 is not impregnated with the thermosetting resin 40, the contact resistance is reduced and the electrical resistance is reduced. In addition, the output density of the fuel cell can be improved. Further, leakage of cooling water, fuel gas, and oxidant gas can be reduced by the thermosetting resin 40 impregnated in the impregnation portion 35.

全面に熱硬化性樹脂40を含浸させたセパレータ30(図5(C)参照)を使用した燃料電池(不図示)においても、非含浸部36を有するセパレータ30ほどではないが導電性に優れ、また、熱硬化性樹脂40によってセパレータ30の形状を確実に保持し、冷却水、燃料ガスおよび酸化剤ガスの漏れをより確実に抑止することができる。   Even in a fuel cell (not shown) using the separator 30 (see FIG. 5C) in which the entire surface is impregnated with the thermosetting resin 40, the conductivity is not as high as the separator 30 having the non-impregnated portion 36, Moreover, the shape of the separator 30 can be reliably held by the thermosetting resin 40, and leakage of cooling water, fuel gas, and oxidant gas can be more reliably suppressed.

<第2の実施形態>
第2の実施形態は、形状保持材40に熱可塑性樹脂を使用する場合のセパレータの成形方法であり、形状保持材に熱硬化性樹脂を使用する第1の実施形態と金型や工程が多少異なる。
<Second Embodiment>
The second embodiment is a method for forming a separator in the case where a thermoplastic resin is used for the shape-retaining material 40. The mold and processes are somewhat different from those of the first embodiment in which a thermosetting resin is used for the shape-retaining material. Different.

本実施形態のセパレータの成形方法は、全面または部分的に含浸させたシート状セパレータ材料W2の両方に適用できる。   The separator molding method of the present embodiment can be applied to both the whole or partly impregnated sheet-like separator material W2.

図8は第2の実施形態における加熱源を示す側面図、図9は第2の実施形態における金型によりシート状セパレータ材料の加工状態を示す断面図であり、(A)は加工前の状態を示す断面図、(B)は加工後の状態を示す断面図である。なお、第1の実施形態と同様の機能を有する部材については同一の符号を使用し、重複を避けるためその説明を省略する。   FIG. 8 is a side view showing a heating source in the second embodiment, FIG. 9 is a cross-sectional view showing a processing state of a sheet-like separator material by a mold in the second embodiment, and (A) is a state before processing. (B) is sectional drawing which shows the state after a process. In addition, about the member which has the same function as 1st Embodiment, the same code | symbol is used and the description is abbreviate | omitted in order to avoid duplication.

まず、熱可塑性樹脂(形状保持材)40が含浸されたシート状セパレータ材料W2を、図8に示すように例えばホットプレート等の加熱源70により加熱し、熱可塑性樹脂40を溶融させる。その後、シート状セパレータ材料W2が急激に冷却されない程度に冷却されている上型61および下型62の内部に設置して押圧し(図9(A),(B)参照)、この状態で保持する。この間に、熱可塑性樹脂40は上型61および下型62により冷却されて硬化する。熱可塑性樹脂40が硬化するために必要な時間が経過した後、離型してセパレータ30を取り出す。   First, as shown in FIG. 8, the sheet-like separator material W2 impregnated with the thermoplastic resin (shape holding material) 40 is heated by a heating source 70 such as a hot plate to melt the thermoplastic resin 40. After that, the sheet-shaped separator material W2 is placed and pressed inside the upper mold 61 and the lower mold 62 that are cooled to such an extent that they are not rapidly cooled (see FIGS. 9A and 9B) and held in this state. To do. During this time, the thermoplastic resin 40 is cooled and cured by the upper mold 61 and the lower mold 62. After the time necessary for the thermoplastic resin 40 to cure has elapsed, the separator 30 is removed and the separator 30 is taken out.

また、図8に示すような加熱源70を使用せずに、上型61および下型62に別途設けられた加熱源により上型61,下型62を加熱し、この加熱された上型61および下型62でシート状セパレータ材料W2を加熱すると共に加圧した後、加圧した状態で保持したまま上型61および下型62を冷却することもできる。   Further, without using the heating source 70 as shown in FIG. 8, the upper die 61 and the lower die 62 are heated by a heating source separately provided in the upper die 61 and the lower die 62, and the heated upper die 61 is heated. And after heating and pressurizing the sheet-like separator material W2 with the lower mold 62, the upper mold 61 and the lower mold 62 can be cooled while being held in the pressurized state.

この後、成形されたセパレータ30を使用して燃料電池が形成されるが、第1の実施形態と同様であるため、説明を省略する。   Thereafter, a fuel cell is formed using the molded separator 30, but the description is omitted because it is similar to the first embodiment.

<第3の実施形態>
第3の実施形態は、形状保持材を含浸させる含浸工程と、セパレータを成形するプレス工程と、を同時に行うセパレータの成形方法であり、形状保持材には熱硬化性樹脂を使用する。
<Third Embodiment>
The third embodiment is a separator molding method in which an impregnation step of impregnating a shape holding material and a pressing step of molding the separator are performed simultaneously, and a thermosetting resin is used as the shape holding material.

図10は第3の実施形態における金型によるシート状セパレータ材料の加工状態を示す断面図であり、(A)は加工前の状態を示す断面図、(B)は加工後の状態を示す断面図である。なお、前述の実施形態と同様の機能を有する部材については同一の符号を使用し、重複を避けるためその説明を省略する。   FIG. 10 is a cross-sectional view showing a processing state of a sheet-like separator material by a mold in the third embodiment, (A) is a cross-sectional view showing a state before processing, and (B) is a cross-section showing a state after processing. FIG. In addition, about the member which has the same function as the above-mentioned embodiment, the same code | symbol is used and the description is abbreviate | omitted in order to avoid duplication.

まず、図10(A)に示すように、シート状カーボンW1を2枚のシート状熱硬化性樹脂で挟み、加熱源63により、使用される硬化性樹脂(形状保持材)40の硬化温度よりも高い温度に加熱された下型62の内部に設置する。この後、図10(B)に示すように下型62と同様に加熱された上型61を下型62に近接させて、シート状カーボンW1とシート状熱硬化性樹脂41を押圧して保持する。これにより、61シート状カーボンW1が上型61、下型62により所定の形状に成形されると同時に、加熱されて流動性を持った熱硬化性樹脂が加圧されてシート状カーボンW1に含浸される。熱硬化性樹脂が硬化して形状を保持するために必要な時間が経過した後、離型して熱硬化性樹脂40が含浸されたセパレータ30を取り出す。   First, as shown in FIG. 10A, the sheet-like carbon W1 is sandwiched between two sheet-like thermosetting resins, and the heating source 63 determines the curing temperature of the curable resin (shape holding material) 40 to be used. It is installed inside the lower mold 62 heated to a higher temperature. Thereafter, as shown in FIG. 10B, the heated upper die 61 is brought close to the lower die 62 in the same manner as the lower die 62, and the sheet-like carbon W1 and the sheet-like thermosetting resin 41 are pressed and held. To do. As a result, 61 sheet-like carbon W1 is formed into a predetermined shape by the upper die 61 and the lower die 62, and at the same time, a thermosetting resin having heat and fluidity is pressurized and impregnated into the sheet-like carbon W1. Is done. After the time necessary for the thermosetting resin to cure and retain its shape has elapsed, the mold is released and the separator 30 impregnated with the thermosetting resin 40 is taken out.

この後、成形されたセパレータ30を使用して燃料電池が形成されるが、第1の実施形態と同様であるため、説明を省略する。   Thereafter, a fuel cell is formed using the molded separator 30, but the description is omitted because it is similar to the first embodiment.

<第4の実施形態>
第4の実施形態は、第3の実施形態と同様に、形状保持材を含浸させる含浸工程とセパレータを成形するプレス工程とを同時に行うセパレータの成形方法であるが、形状保持材には熱可塑性樹脂を使用し、形状保持材に熱硬化性樹脂を使用する第3の実施形態と金型や工程が多少異なる。
<Fourth Embodiment>
As in the third embodiment, the fourth embodiment is a separator molding method in which an impregnation step for impregnating a shape-retaining material and a pressing step for molding the separator are performed simultaneously. The mold and process are slightly different from those of the third embodiment in which a resin is used and a thermosetting resin is used for the shape-retaining material.

図11は第4の実施形態における加熱源を示す側面図、図12は第4の実施形態における金型によるシート状セパレータ材料の加工状態を示す断面図であり、(A)は加工前の状態を示す断面図、(B)は加工後の状態を示す断面図である。なお、前述の実施形態と同様の機能を有する部材については同一の符号を使用し、重複を避けるためその説明を省略する。   FIG. 11 is a side view showing a heating source in the fourth embodiment, FIG. 12 is a cross-sectional view showing a processing state of a sheet-like separator material by a mold in the fourth embodiment, and (A) is a state before processing. (B) is sectional drawing which shows the state after a process. In addition, about the member which has the same function as the above-mentioned embodiment, the same code | symbol is used and the description is abbreviate | omitted in order to avoid duplication.

まず、図11に示すように、シート状カーボンW1を、シート状に形成されている2枚のシート状熱可塑性樹脂42で挟み、このシート状熱可塑性樹脂42を加熱源70により加熱して融解させる。次に、図12(A)に示すように、加熱されたシート状カーボンW1およびシート状熱可塑性樹脂42を、冷却された下型62の内部に設置する。この後、図12(B)に示すように下型62と同様に冷却された上型61を下型62に近接させて、シート状カーボンW1とシート状熱可塑性樹脂42を押圧して保持する。これにより、シート状カーボンW1が上型61、下型62により所定の形状に成形されると同時に、加熱されて流動性を持った熱可塑性樹脂が加圧されてシート状カーボンW1に含浸される。熱可塑性樹脂が冷却されて硬化して形状を保持するために必要な時間が経過した後、離型して熱可塑性樹脂が含浸されたセパレータ30を取り出す。   First, as shown in FIG. 11, the sheet-like carbon W1 is sandwiched between two sheet-like thermoplastic resins 42 formed in a sheet shape, and the sheet-like thermoplastic resin 42 is heated and melted by a heating source 70. Let Next, as shown in FIG. 12A, the heated sheet-like carbon W <b> 1 and the sheet-like thermoplastic resin 42 are placed inside the cooled lower mold 62. Thereafter, as shown in FIG. 12B, the upper die 61 cooled in the same manner as the lower die 62 is brought close to the lower die 62, and the sheet-like carbon W1 and the sheet-like thermoplastic resin 42 are pressed and held. . As a result, the sheet-like carbon W1 is molded into a predetermined shape by the upper die 61 and the lower die 62, and at the same time, the heated and fluid thermoplastic resin is pressurized and impregnated into the sheet-like carbon W1. . After the time necessary for the thermoplastic resin to cool and harden and retain its shape has elapsed, the mold is released and the separator 30 impregnated with the thermoplastic resin is taken out.

この後、成形されたセパレータ30を使用して燃料電池が形成されるが、第1の実施形態と同様であるため、説明を省略する。   Thereafter, a fuel cell is formed using the molded separator 30, but the description is omitted because it is similar to the first embodiment.

第4の実施形態では、別途用意した加熱源によりシート状熱可塑性樹脂を加熱した後に、シート状カーボンW1とシート状熱可塑性樹脂42を金型内に設置しているが、加熱された金型内で、シート状カーボンW1とシート状熱可塑性樹脂42を加熱する同時に加圧し、その状態を保持したまま金型を冷却してもよい。   In the fourth embodiment, after the sheet-like thermoplastic resin is heated by a separately prepared heating source, the sheet-like carbon W1 and the sheet-like thermoplastic resin 42 are installed in the mold, but the heated mold The sheet-like carbon W1 and the sheet-like thermoplastic resin 42 may be heated and pressurized simultaneously, and the mold may be cooled while the state is maintained.

なお、本発明は上述した実施の形態に限定されるものではなく、特許請求の範囲の範囲内で種々改変することができる。例えば、セパレータの流路溝の形状は、断面が長方形形状に限らず、例えば台形形状や円弧形状であってもよい。また、セパレータ30A,30Bは対称形状でなくてもよい。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims. For example, the shape of the flow path groove of the separator is not limited to the rectangular shape in cross section, and may be, for example, a trapezoidal shape or an arc shape. Further, the separators 30A and 30B may not be symmetrical.

燃料電池の単セルを示す要部断面図である。It is principal part sectional drawing which shows the single cell of a fuel cell. セパレータの材料を示す斜視図であり、(A)はシート状カーボンを示す斜視図、(B)はシート状セパレータ材料を示す斜視図である。It is a perspective view which shows the material of a separator, (A) is a perspective view which shows sheet-like carbon, (B) is a perspective view which shows sheet-like separator material. シート状カーボンを部分的に含浸させる状態を示す図であり、(A)はシート状カーボンに型枠が設けられた斜視図、(B)はシート状カーボンに樹脂を含浸させる状態を示す斜視図、(C)は部分的に含浸されたシート状セパレータ材料を示す斜視図である。It is a figure which shows the state which impregnates sheet-like carbon partially, (A) is a perspective view in which the formwork was provided in sheet-like carbon, (B) is a perspective view which shows the state which impregnates resin in sheet-like carbon (C) is a perspective view showing a sheet-like separator material partially impregnated. 第1の実施形態の金型によるシート状セパレータ材料の加工状態を示す断面図であり、(A)は加工前の断面図、(B)は加工後の断面図である。It is sectional drawing which shows the processing state of the sheet-like separator material by the metal mold | die of 1st Embodiment, (A) is sectional drawing before a process, (B) is sectional drawing after a process. 全面に含浸されたシート状セパレータ材料およびセパレータを示す断面図であり、(A)は全面に含浸されたシート状セパレータ材料を示す要部断面図、(B)は成形されたセパレータを示す要部断面図、(C)は表面の樹脂が取り除かれた要部断面図である。It is sectional drawing which shows the sheet-like separator material and separator which were impregnated on the whole surface, (A) is principal part sectional drawing which shows the sheet-like separator material impregnated on the whole surface, (B) is principal part which shows the formed separator. Sectional drawing, (C) is a principal part sectional view from which the resin on the surface has been removed. 部分的に含浸されたシート状セパレータ材料により加工されるセパレータを示す断面図であり、(A)は部分的に含浸されたシート状セパレータ材料を示す要部断面図、(B)は成形されたセパレータを示す要部断面図である。It is sectional drawing which shows the separator processed with the sheet-like separator material impregnated partially, (A) is principal part sectional drawing which shows the sheet-like separator material impregnated partially, (B) was shape | molded It is principal part sectional drawing which shows a separator. 第1の実施形態に係るセパレータを使用した燃料電池の要部を示す断面図である。It is sectional drawing which shows the principal part of the fuel cell using the separator which concerns on 1st Embodiment. 第2の実施形態における加熱源を示す側面図である。It is a side view which shows the heating source in 2nd Embodiment. 第2の実施形態における金型によるシート状セパレータ材料の加工状態を示す断面図であり、(A)は加工前の断面図、(B)は加工後の断面図である。It is sectional drawing which shows the processing state of the sheet-like separator material by the metal mold | die in 2nd Embodiment, (A) is sectional drawing before a process, (B) is sectional drawing after a process. 第3の実施形態における金型によるシート状セパレータ材料の加工状態を示す断面図であり、(A)は加工前の断面図、(B)は加工後の断面図である。It is sectional drawing which shows the processing state of the sheet-like separator material by the metal mold | die in 3rd Embodiment, (A) is sectional drawing before a process, (B) is sectional drawing after a process. 第4の実施形態における加熱源を示す側面図である。It is a side view which shows the heating source in 4th Embodiment. 第4の実施形態における金型によるシート状セパレータ材料の加工状態を示す断面図であり、(A)は加工前の断面図、(B)は加工後の断面図である。It is sectional drawing which shows the processing state of the sheet-like separator material by the metal mold | die in 4th Embodiment, (A) is sectional drawing before a process, (B) is sectional drawing after a process.

符号の説明Explanation of symbols

10 単セル、
20 膜電極接合体、
21A,21B ガス拡散層、
30A,30B セパレータ、
31A,31B 冷却水用流路溝、
32 燃料ガス用流路溝、
33 酸化剤用流路溝、
35 含浸部、
36 非含浸部、
40 形状保持材、
41 シート状熱硬化性樹脂、
42 シート状熱可塑性樹脂、
50 型枠、
51 開口部、
52 ノズル、
60 金型、
61 上型、
62 下型、
63 加熱源、
70 加熱源、
W1 シート状カーボン、
W2 シート状セパレータ材料。
10 single cell,
20 Membrane electrode assembly,
21A, 21B gas diffusion layer,
30A, 30B separator,
31A, 31B Channel groove for cooling water,
32 fuel gas channel groove,
33 Channel groove for oxidizing agent,
35 impregnation part,
36 Non-impregnated part,
40 shape retaining material,
41 sheet-like thermosetting resin,
42 sheet-like thermoplastic resin,
50 formwork,
51 opening,
52 nozzles,
60 molds,
61 Upper mold,
62 Lower mold,
63 Heat source,
70 heating source,
W1 sheet carbon,
W2 Sheet separator material.

Claims (13)

シート状カーボンに形状保持材を含浸させてシート状セパレータ材料とする含浸工程と、
前記シート状セパレータ材料を押圧してセパレータを成形するプレス工程と、を有することを特徴とする燃料電池用セパレータの製造方法。
An impregnation step of impregnating a sheet-like carbon with a shape-retaining material to form a sheet-like separator material;
And a pressing step of molding the separator by pressing the sheet-like separator material.
前記含浸工程は、前記形状保持材が前記シート状カーボンに部分的に含浸させることを特徴とする請求項1に記載の燃料電池用セパレータの製造方法。   2. The method for producing a fuel cell separator according to claim 1, wherein in the impregnation step, the shape-retaining material is partially impregnated into the sheet-like carbon. 前記含浸工程は、印刷含浸により行われることを特徴とする請求項1または2に記載の燃料電池用セパレータの製造方法。   The method for producing a separator for a fuel cell according to claim 1 or 2, wherein the impregnation step is performed by printing impregnation. 前記含浸工程は、プレス工程における加圧と共に行われることを特徴とする請求項1〜3のいずれか1項に記載の燃料電池用セパレータの製造方法。   The said impregnation process is performed with the pressurization in a press process, The manufacturing method of the separator for fuel cells of any one of Claims 1-3 characterized by the above-mentioned. 前記形状保持材は、樹脂であることを特徴とする請求項1〜4のいずれか1項に記載の燃料電池用セパレータの製造方法。   The method of manufacturing a fuel cell separator according to any one of claims 1 to 4, wherein the shape retaining material is a resin. 前記シート状カーボンに形状保持材が含浸されて所定の形状に保持されていることを特徴とする燃料電池用セパレータ。   A fuel cell separator, wherein the sheet-like carbon is impregnated with a shape-retaining material and held in a predetermined shape. 前記燃料電池用セパレータは、前記形状保持材が含浸された含浸部と、当該形状保持材が含浸されていない非含浸部と、を有することを特徴とする請求項6に記載の燃料電池用セパレータ。   7. The fuel cell separator according to claim 6, wherein the fuel cell separator has an impregnated portion impregnated with the shape retaining material and a non-impregnated portion not impregnated with the shape retaining material. . 前記非含浸部は、前記燃料電池用セパレータが隣接する部材と導電する部位に設けられることを特徴とする請求項6または7に記載の燃料電池用セパレータ。   The fuel cell separator according to claim 6 or 7, wherein the non-impregnated portion is provided in a portion where the fuel cell separator conducts electricity with an adjacent member. 前記形状保持材は、樹脂であることを特徴とする請求項6〜8のいずれか1項に記載の燃料電池用セパレータ。   The fuel cell separator according to any one of claims 6 to 8, wherein the shape retaining material is a resin. シート状カーボンに形状保持材が含浸されて所定の形状に保持されている燃料電池用セパレータを有することを特徴とする燃料電池。   A fuel cell comprising a fuel cell separator in which a sheet-like carbon is impregnated with a shape-retaining material and held in a predetermined shape. 前記燃料電池用セパレータは、前記形状保持材が含浸された含浸部と、当該形状保持材が含浸されていない非含浸部と、を有することを特徴とする請求項10に記載の燃料電池。   The fuel cell according to claim 10, wherein the fuel cell separator has an impregnated portion impregnated with the shape retaining material and an unimpregnated portion not impregnated with the shape retaining material. 前記非含浸部は、前記燃料電池用セパレータが隣接する部材と導電する部位に設けられることを特徴とする請求項10または11に記載の燃料電池。   The fuel cell according to claim 10 or 11, wherein the non-impregnated portion is provided in a portion where the fuel cell separator conducts electricity with an adjacent member. 前記形状保持材は、樹脂であることを特徴とする請求項10〜12のいずれか1項に記載の燃料電池。   The fuel cell according to claim 10, wherein the shape retaining material is a resin.
JP2004358242A 2004-12-10 2004-12-10 Method for producing separator for fuel cell using carbon and separator for fuel cell Expired - Fee Related JP4882227B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004358242A JP4882227B2 (en) 2004-12-10 2004-12-10 Method for producing separator for fuel cell using carbon and separator for fuel cell
PCT/JP2005/019166 WO2006061951A1 (en) 2004-12-10 2005-10-19 Method for manufacturing fuel cell separator using carbon, fuel cell separator, and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004358242A JP4882227B2 (en) 2004-12-10 2004-12-10 Method for producing separator for fuel cell using carbon and separator for fuel cell

Publications (2)

Publication Number Publication Date
JP2006164889A true JP2006164889A (en) 2006-06-22
JP4882227B2 JP4882227B2 (en) 2012-02-22

Family

ID=36577782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004358242A Expired - Fee Related JP4882227B2 (en) 2004-12-10 2004-12-10 Method for producing separator for fuel cell using carbon and separator for fuel cell

Country Status (2)

Country Link
JP (1) JP4882227B2 (en)
WO (1) WO2006061951A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134732A (en) * 1995-11-10 1997-05-20 Tanaka Kikinzoku Kogyo Kk Thin conductive gas-impermeable board, its manufacture, component member for fuel cell stack and fuel cell stack
JP2000164226A (en) * 1998-11-27 2000-06-16 Mitsubishi Plastics Ind Ltd Manufacture of separator for fuel cell
JP2000208153A (en) * 1999-01-18 2000-07-28 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JP2000243408A (en) * 1998-12-21 2000-09-08 Toyota Motor Corp Metal separator for fuel cell and its manufacture
JP2001076737A (en) * 1999-09-01 2001-03-23 Nichias Corp Separator for fuel cell
JP2003303598A (en) * 2002-04-11 2003-10-24 Jfe Chemical Corp Mold for molding separator for solid polymer type fuel cell, method of manufacturing the separator, and the separator
JP2004311031A (en) * 2003-02-21 2004-11-04 Sumitomo Bakelite Co Ltd Separator for polymer electrolyte fuel cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134732A (en) * 1995-11-10 1997-05-20 Tanaka Kikinzoku Kogyo Kk Thin conductive gas-impermeable board, its manufacture, component member for fuel cell stack and fuel cell stack
JP2000164226A (en) * 1998-11-27 2000-06-16 Mitsubishi Plastics Ind Ltd Manufacture of separator for fuel cell
JP2000243408A (en) * 1998-12-21 2000-09-08 Toyota Motor Corp Metal separator for fuel cell and its manufacture
JP2000208153A (en) * 1999-01-18 2000-07-28 Fuji Electric Co Ltd Solid polymer electrolyte fuel cell
JP2001076737A (en) * 1999-09-01 2001-03-23 Nichias Corp Separator for fuel cell
JP2003303598A (en) * 2002-04-11 2003-10-24 Jfe Chemical Corp Mold for molding separator for solid polymer type fuel cell, method of manufacturing the separator, and the separator
JP2004311031A (en) * 2003-02-21 2004-11-04 Sumitomo Bakelite Co Ltd Separator for polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP4882227B2 (en) 2012-02-22
WO2006061951A1 (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JP6245194B2 (en) FUEL CELL SINGLE CELL AND METHOD FOR PRODUCING FUEL CELL SINGLE CELL
JP6237675B2 (en) FUEL CELL SINGLE CELL AND METHOD FOR PRODUCING FUEL CELL SINGLE CELL
JP5638508B2 (en) Manufacturing method of electrolyte membrane / electrode structure with resin frame for fuel cell
JP5855540B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP4736787B2 (en) Membrane electrode assembly and method for producing reinforced electrolyte membrane in polymer electrolyte fuel cell
JP2008004486A (en) Manufacturing method of electrolyte film for fuel cell, and membrane electrode assembly
WO2001067532A1 (en) Polymer electrolyte fuel cell and method of manufacturing the same
JP6026561B2 (en) Membrane electrode assembly and method for producing membrane electrode assembly
TW200304244A (en) Improved mold for compression molding in the preparation of a unitized membrane electrode assembly
JP6618762B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cell and production method thereof
CN112204782A (en) Separator for fuel cell and method for manufacturing separator for fuel cell
JP2013239316A (en) Manufacturing method of electrolytic membrane/electrode structure with resin frame for fuel cell
JP2016162650A (en) Method for manufacturing fuel battery single cell
JP4645790B2 (en) Fuel cell separator and polymer electrolyte fuel cell
JP5368828B2 (en) Separation plate for fuel cell stack and method for producing the same
WO2006072923A1 (en) In-situ molding of fuel cell separator plate reinforcement
JP6432398B2 (en) Fuel cell single cell
JP4882227B2 (en) Method for producing separator for fuel cell using carbon and separator for fuel cell
JP2008166138A (en) Fuel cell stack and method for manufacturing same
JP2017004607A (en) Manufacturing method of electrolyte membrane electrode structure with resin frame for fuel battery
US20180131014A1 (en) Composite Material Separation Plate for Fuel Cell and Method for Manufacturing Same
JP6442393B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
JP2019125524A (en) Method for manufacturing fuel cell separator and apparatus for manufacturing fuel cell separator
KR102556470B1 (en) Separator for fuel cell manufactured using curved core member manufactured by injection molding and method of manufacturing same
JP6424354B2 (en) Method of manufacturing metal separator for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees