JP6424354B2 - Method of manufacturing metal separator for fuel cell - Google Patents

Method of manufacturing metal separator for fuel cell Download PDF

Info

Publication number
JP6424354B2
JP6424354B2 JP2014551166A JP2014551166A JP6424354B2 JP 6424354 B2 JP6424354 B2 JP 6424354B2 JP 2014551166 A JP2014551166 A JP 2014551166A JP 2014551166 A JP2014551166 A JP 2014551166A JP 6424354 B2 JP6424354 B2 JP 6424354B2
Authority
JP
Japan
Prior art keywords
metal
pack
metal object
layer
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014551166A
Other languages
Japanese (ja)
Other versions
JPWO2014088114A1 (en
Inventor
渡辺 政廣
政廣 渡辺
壽生 山下
壽生 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Publication of JPWO2014088114A1 publication Critical patent/JPWO2014088114A1/en
Application granted granted Critical
Publication of JP6424354B2 publication Critical patent/JP6424354B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0221Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

この発明は,金属板その他の金属対象物の表面に高分子樹脂を含有する被覆層を形成する燃料電池用金属セパレータの作製方法に関する。 The present invention relates to a method for producing a metal separator for a fuel cell, in which a coating layer containing a polymer resin is formed on the surface of a metal plate or other metal object.

金属板などの金属対象物の耐食性,導電性,装飾性を高めるために,その表面に高分子樹脂層を形成することがよく行なわれる。このような金属対象物の作製方法において,樹脂層を均一な密度で積層し,金属対象物表面に密着させ,かつ大量生産に適した方法が求められている。   In order to enhance the corrosion resistance, conductivity and decorativeness of a metal object such as a metal plate, a polymer resin layer is often formed on the surface. In such a method of producing a metal target, there is a demand for a method in which resin layers are laminated at a uniform density, brought into close contact with the surface of the metal target, and suitable for mass production.

一例として,固体高分子電解質形燃料電池(Polymer Electrolyte Fuel Cell :PEFC)を挙げると,これは,燃料の水素ガスと酸化剤の酸素とを反応させて,電気エネルギーを得るものである。この燃料電池は次のような多数の単セルをスタックしたものである。すなわち単セルは,高分子電解質膜と,その両側に密着させた一対の多孔質電極(多孔質支持層+触媒層)とからなるMEA(Membrane Electrode Assembly :電極/膜接合体)を有し,その両側を燃料または酸化剤を供給する流路が形成された一対のセパレータによって挟持したものである。セパレータは,積層する際の機械強度部材としての機能の他に,集電機能,および燃料または酸化剤の供給機能(カソード側セパレータはさらに反応生成物の排出機能)を持つ。セパレータはその材料の観点から,炭素系と金属系に大別される。   As an example, when mentioning a polymer electrolyte fuel cell (PEFC), this is a reaction of hydrogen gas of the fuel with oxygen of the oxidant to obtain electric energy. This fuel cell is a stack of many single cells as follows. That is, a single cell has an MEA (Membrane Electrode Assembly: electrode / membrane assembly) composed of a polymer electrolyte membrane and a pair of porous electrodes (porous support layer + catalyst layer) adhered to both sides, Both sides thereof are sandwiched by a pair of separators in which flow paths for supplying fuel or oxidant are formed. The separator has a current collecting function and a function of supplying a fuel or an oxidant (a cathode side separator further has a function of discharging a reaction product), in addition to the function as a mechanical strength member at the time of lamination. Separators are roughly classified into carbon-based and metal-based from the viewpoint of the material.

炭素系のセパレータには,黒鉛ブロックを機械加工したもの,カーボン樹脂モールド品および膨脹黒鉛モールド成形物などがある。しかし,これらには高価,切削加工工数が多い,または割れやすいなどの問題がある。   Carbon-based separators include those obtained by machining a graphite block, carbon resin molded articles, and expanded graphite molded articles. However, these have problems such as high cost, a large number of machining steps, or fragile.

金属セパレータは,高い電導性,熱伝導性,機械強度,および水素ガスの不透過性という特長を有している。さらに,原料流体の流路を成形する機械加工が容易であるため製造コストを低減できる。そして,薄型化できる有望な材料として,主に,オーステナイト系ステンレス鋼を用いた金属セパレータを中心に開発されている。しかし,金属セパレータは,耐食性が低いことが問題である。   The metal separator has the features of high conductivity, thermal conductivity, mechanical strength, and impermeability of hydrogen gas. Furthermore, since the machining for forming the flow path of the raw material fluid is easy, the manufacturing cost can be reduced. And, as a promising material that can be thinned, it is mainly developed mainly for metal separators using austenitic stainless steel. However, metal separators have the problem of low corrosion resistance.

これを解決する手段として,金属セパレータの表面に,導電性の高分子被膜を形成する方法,金,白金メッキ等の耐食性の金属被覆層を形成する方法などがとられている。たとえば,特許文献1では,流路をプレス成形した金属基材を,密着性の高い被覆層で被覆した金属セパレータが開示されている。これによれば,被覆層の剥離が起こりにくく,金属基材の腐食が防止できるとされている。   As a means for solving this, a method of forming a conductive polymer film on the surface of a metal separator, a method of forming a corrosion-resistant metal coating layer such as gold, platinum plating and the like are taken. For example, Patent Document 1 discloses a metal separator in which a metal base obtained by press-forming a channel is coated with a highly adhesive coating layer. According to this, it is said that peeling of a coating layer does not occur easily, and corrosion of a metal substrate can be prevented.

また,特許文献2では,流路溝をプレス加工成形することが容易な中間金属層の外表面に耐食性の金属層を設け,この金属層の表面に導電剤と樹脂結着剤とからなる被覆層を形成した金属セパレータが開示されている。これによれば,金属セパレータの耐食性を保持できるとされている。   Further, in Patent Document 2, a corrosion resistant metal layer is provided on the outer surface of the intermediate metal layer which is easy to press-process and form the flow channel, and the surface of the metal layer is covered with a conductive agent and a resin binder. A layered metal separator is disclosed. According to this, it is supposed that the corrosion resistance of the metal separator can be maintained.

また,特許文献3には,導電性流路板と金属製平板とを重ね合わせたセパレータ構造が開示されている。   Further, Patent Document 3 discloses a separator structure in which a conductive flow channel plate and a metal flat plate are superimposed.

特開2000−243408号公報JP, 2000-243408, A 特開2003−272659号公報Unexamined-Japanese-Patent No. 2003-272659 特開2005−294155号公報JP 2005-294155 A

金属セパレータ表面に合成樹脂を含む被覆層を設ける場合に,その密着性が問題となる。密着性を高めるために熱圧着プレスを用いると,プレスによる応力(ひずみ)が金属板に残り,長時間の使用により応力腐食割れが生じる可能性がある。また,充分な密着性が得られなければ被覆層が剥離することも起こりうる。   When the coating layer containing a synthetic resin is provided on the surface of the metal separator, the adhesion becomes a problem. If a thermocompression-bonding press is used to improve adhesion, stress (strain) from the press may remain on the metal plate, and stress corrosion cracking may occur due to long-term use. In addition, if sufficient adhesion can not be obtained, the coating layer may peel off.

この発明は,金属対象物表面に高分子樹脂層を,金属対象物に残留応力を生じさせることなく密着させることができる作製方法を提供するものである。   SUMMARY OF THE INVENTION The present invention provides a method for producing a polymer resin layer on a surface of a metal object without causing residual stress on the metal object.

この発明はさらに,樹脂層を均一に密着させることができる方法を提供するものである。   The present invention further provides a method capable of uniformly adhering the resin layer.

さらにこの発明は,大量生産に適した樹脂被覆層の作製方法を提供するものである。   Furthermore, the present invention provides a method for producing a resin coating layer suitable for mass production.

この発明による金属対象物表面への被覆層の作製方法は,金属対象物の表面の少なくとも一部に樹脂を含有する被覆層を形成し,その後,金属対象物の表面の被覆層を流体を用いて等方加圧することにより,被覆層を硬化させるものである。   According to the method of the present invention, a method of producing a coating layer on the surface of a metal object forms a coating layer containing a resin on at least a part of the surface of the metal object, and then uses a fluid to coat the surface of the metal object. The coating layer is cured by isostatic pressing.

この発明によると,金属対象物表面の樹脂を含有する被覆層を,流体を用いて等方加圧,すなわちあらゆる方向から同じ圧力で加圧して硬化させているので,金属対象物に加圧による残留応力を生じさせることなく,かつ均一に被覆層を金属対象物表面に密着させることができる。   According to the present invention, since the coating layer containing the resin on the surface of the metal object is cured by isotropic pressure using a fluid, that is, by pressing with the same pressure from all directions, pressure is applied to the metal object. The coating layer can be brought into intimate contact with the surface of the metal object without causing any residual stress and uniformly.

被覆層が緻密層などの場合には,金属対象物表面の被覆層を直接的に流体で等方加圧することができる。   In the case where the covering layer is a dense layer or the like, the covering layer on the surface of the metal object can be directly pressurized with fluid.

好ましくは,金属対象物を薄膜パック内に入れ,パック内を脱気し,その後,パックの外部から被覆層を流体で等方加圧する。この場合には,金属対象物とパックとの間に離型フィルムを介在させるとよい。   Preferably, the metal object is placed in a thin film pack, the inside of the pack is degassed, and then the coating layer is isostatically pressurized with fluid from the outside of the pack. In this case, a release film may be interposed between the metal object and the pack.

熱硬化性樹脂,熱可塑性樹脂のいずれも用いることができる。熱硬化性樹脂を用いて被覆層を形成した場合には,等方加圧するとともに加熱する。熱可塑性樹脂を用いて被覆層を形成した場合には,等方加圧するとともに加熱し,その後,急冷する。   Both thermosetting resins and thermoplastic resins can be used. When a coating layer is formed using a thermosetting resin, it is pressurized while it is heated. When a coating layer is formed using a thermoplastic resin, it is isostatically pressurized and heated, and then rapidly cooled.

被覆層に導電性をもたせる場合には,高分子樹脂に加えて導電材を含有する構成の被覆層とする。導電材の含有量の調整により,被覆層を緻密層にすることも,多孔質層にすることもできる。   In the case where the coating layer has conductivity, the coating layer is configured to contain a conductive material in addition to the polymer resin. By adjusting the content of the conductive material, the covering layer can be a dense layer or a porous layer.

金属対象物と被覆層には種々の態様がある。一態様としては,金属対象物が金属板であり,その少なくとも一面に緻密な被覆層が形成されている。他の態様では,金属対象物が金属板であり,その両面に緻密な被覆層が形成されている。さらに他の態様では,金属対象物が金属板であり,被覆層が金属板の少なくとも一面を覆う緻密な耐食層であり,耐食層の上に耐食層の周囲を囲む枠層が形成されている。さらに他の態様では,金属対象物が金属板であり,少なくともその一面に緻密な被覆層を形成し,被覆層の表面の少なくとも一部の上に多孔質層を形成し,被覆層と多孔質層を同時に等方加圧する。他の態様では,金属対象物が波形加工された金属板である。   There are various aspects of the metal object and the covering layer. In one aspect, the metal object is a metal plate, and a dense covering layer is formed on at least one surface thereof. In another aspect, the metal object is a metal plate, and a dense covering layer is formed on both sides thereof. In still another aspect, the metal object is a metal plate, the covering layer is a dense corrosion resistant layer covering at least one surface of the metal plate, and a frame layer surrounding the periphery of the corrosion resistant layer is formed on the corrosion resistant layer . In still another aspect, the metal object is a metal plate, a dense covering layer is formed on at least one surface, a porous layer is formed on at least a part of the surface of the covering layer, the covering layer and the porous layer The layers are simultaneously isostatically pressed. In another aspect, the metal object is a corrugated metal plate.

大量生産に適したこの発明による作製方法は,金属対象物が樹脂による被覆層が形成された金属板であり,複数の金属板を帯状の薄膜パック内に間隔をあけて入れ,隣接する金属板が重なるようにパックを折り畳むとともに,隣接する金属板を包むパックの間にスペーサを入れ,スペーサを介在させてスタックされた複数の金属板をパックごと耐圧容器内に入れて,流体で等方加圧する。スペーサは多孔質であることが好ましい。   The manufacturing method according to the present invention suitable for mass production is a metal plate in which a metal object is a coating layer formed of a resin, and a plurality of metal plates are spaced apart in a thin film pack and adjacent metal plates Fold the pucks so that they overlap, put a spacer between the pucks that wrap adjacent metal plates, put a plurality of stacked metal plates with the spacer interposed in the pressure container together with the packs, and apply the fluid isostatically Press down. The spacer is preferably porous.

この発明によると,上記の方法により燃料電池用金属セパレータを作製することができる。   According to this invention, the metal separator for fuel cells can be produced by the above-mentioned method.

この発明による金属対象物表面に被覆層を作製するための装置は,表面の少なくとも一部に樹脂を含有する被覆層が形成された金属対象物を入れる耐圧容器と,加圧流体を貯留するための貯留タンクと,貯留タンク内の加圧流体を耐圧容器内に加圧して導入する加圧ポンプとを有する。耐圧容器内を負圧にするための真空ポンプをさらに備えるとよい。   An apparatus for producing a coating layer on the surface of a metal object according to the present invention comprises a pressure vessel containing a metal object having a coating layer containing a resin formed on at least a part of the surface, and a pressurized fluid. And a pressure pump for pressurizing and introducing the pressurized fluid in the storage tank into the pressure resistant container. It is preferable to further include a vacuum pump for providing a negative pressure in the pressure resistant container.

この装置を用いて金属対象物の表面に被覆層を作製するためには,金属対象物を薄膜のパック内に入れ,金属対象物を収納したパックを耐圧容器内に入れ,耐圧容器内に貯留タンク内の加圧流体を加圧ポンプにより加圧して導入する。または,金属対象物を薄膜のパック内に入れ,金属対象物を収納したパックを耐圧容器内に入れ,耐圧容器内を真空ポンプにより脱気し,これによりパック内も脱気し,その後,耐圧容器内に貯留タンク内の加圧流体を加圧ポンプにより加圧して導入する。この場合に,金属対象物とパックとの間に離型フィルムを介在させるとよい。   In order to produce a coating layer on the surface of a metal object using this apparatus, the metal object is placed in a thin film pack, the pack containing the metal object is placed in a pressure container, and stored in the pressure container. The pressurized fluid in the tank is pressurized by a pressurizing pump and introduced. Alternatively, the metal object is put in a thin film pack, the pack containing the metal object is put in a pressure container, the inside of the pressure container is deaerated by a vacuum pump, and the inside of the pack is also deaerated, after which The pressurized fluid in the storage tank is pressurized by a pressurizing pump and introduced into the container. In this case, a release film may be interposed between the metal object and the pack.

この発明の実施例による形成品の一例を示す斜視図である。It is a perspective view which shows an example of the formation by the Example of this invention. 図1のII−II線にそう拡大断面図である。FIG. 2 is an enlarged sectional view taken along line II-II of FIG. この発明の実施例による他の形成品の一例を示す斜視図である。It is a perspective view which shows an example of the other formed article by the Example of this invention. 図3のIV−IV線にそう拡大断面図である。FIG. 4 is an enlarged cross-sectional view taken along line IV-IV of FIG. 3; さらに他の形成品の例を示す図2に相当する拡大断面図の一部を示すものである。FIG. 16 is a part of an enlarged cross-sectional view corresponding to FIG. 2 showing an example of another formed article. さらに他の形成品の例を示す図2に相当する拡大断面図の一部を示すものである。FIG. 16 is a part of an enlarged cross-sectional view corresponding to FIG. 2 showing an example of another formed article. さらに他の形成品の例を示す図2に相当する拡大断面図の一部を示すものである。FIG. 16 is a part of an enlarged cross-sectional view corresponding to FIG. 2 showing an example of another formed article. この発明の実施例によるさらに他の形成品の例を示す斜視図である。FIG. 7 is a perspective view showing an example of still another formed article according to the embodiment of the present invention. 図8のIX−IX線にそう拡大断面図である。FIG. 9 is an enlarged sectional view taken along line IX-IX in FIG. 8; この発明による実施例によるさらに他の形成品の例を示す斜視図である。FIG. 10 is a perspective view showing an example of still another formed article according to the embodiment of the present invention. 図10のXI−XI線にそう拡大断面図の一部を示す。The XI-XI line of FIG. 10 shows a part of an enlarged sectional view. 形成品のさらに他の例を示す図11に相当する拡大断面図である。It is an expanded sectional view equivalent to FIG. 11 which shows the further another example of a formation. 形成品のさらに他の例を示す図11に相当する拡大断面図である。It is an expanded sectional view equivalent to FIG. 11 which shows the further another example of a formation. 形成品のさらに他の例を示す図11に相当する拡大断面図である。It is an expanded sectional view equivalent to FIG. 11 which shows the further another example of a formation. 形成品のさらに他の例を示す図11に相当する拡大断面図である。It is an expanded sectional view equivalent to FIG. 11 which shows the further another example of a formation. 大量生産に適したシステムの一部を示すもので,帯状パックを形成する過程を示す斜視図である。FIG. 10 shows a part of a system suitable for mass production and is a perspective view showing a process of forming a band pack. 形成された帯状パック内に半形成品が収納されている様子を示す。The state where the semi-formed product is housed in the formed band-like pack is shown. 帯状パックを半形成品ごとに折り重ねてスタックしていく様子を示す。A state is shown in which the band-shaped pack is folded and stacked for each semi-formed product. 等方加圧により樹脂被覆層を硬化させるシステムを示す系統図である。It is a systematic diagram showing the system which hardens a resin coating layer by isostatic pressure.

金属対象物の表面に被覆層を作製して得られる形成品の例を述べる。金属対象物は金属板である。   The example of the formation obtained by producing a coating layer on the surface of a metallic subject is described. The metal object is a metal plate.

図1および図2に示される形成品10Aは,方形の金属平板11Aの一表面上に被覆層(耐食層)12Aを作製したものである。   The formed product 10A shown in FIG. 1 and FIG. 2 is obtained by producing a coating layer (anticorrosion layer) 12A on one surface of a rectangular metal flat plate 11A.

図3および図4に示される形成品10Bは,一方向に湾曲した金属平板11Bの一表面上に被覆層(耐食層)12Bを作製したものである。   In the formed product 10B shown in FIGS. 3 and 4, a coating layer (corrosion resistant layer) 12B is produced on one surface of a flat metal plate 11B curved in one direction.

図5に示される形成品10Cは,一方向にのびる溝13Aと凸条(またはリブ)13Bとが交互に形成された金属平板11Cの一表面(溝部と凸条部の表面)に被覆層(耐食層)12Cを作製したものである。   The formed product 10C shown in FIG. 5 has a covering layer (one surface of the groove and the ridge) of a flat metal plate 11C in which grooves 13A extending in one direction and ridges (or ribs) 13B are alternately formed. Corrosion-resistant layer 12C is produced.

図6に示す形成品10Dは,一方向にのびる断面が台形の溝14Aと凸条(またはリブ)14Bが交互に形成された金属平板11Dの一表面(溝部と凸条部の表面)に被覆層(耐食層)12Dが形成されたものである。   The formed product 10D shown in FIG. 6 covers one surface (the surface of the groove and the ridge) of a flat metal plate 11D in which grooves 14A and ridges (or ribs) 14B having a trapezoidal cross section extending in one direction are alternately formed. A layer (corrosion resistant layer) 12D is formed.

図7に示す形成品10Eは,金属平板11Eの表面に凹凸による模様を有する被覆層(装飾層)12Eが形成されたものである。   In a formed product 10E shown in FIG. 7, a covering layer (decorative layer) 12E having a pattern of irregularities is formed on the surface of a metal flat plate 11E.

図8および図9に示す形成品10Fは,方形の金属平板11Fの一表面上に,枠12fを有する被覆層(耐食層)12Fが形成されたものである。枠12fは方形であり,被覆層12Fの周囲全体にわたって形成され,被覆層12Fの平面部よりも突出している。   In a formed product 10F shown in FIGS. 8 and 9, a covering layer (anticorrosion layer) 12F having a frame 12f is formed on one surface of a rectangular metal flat plate 11F. The frame 12f is rectangular, is formed over the entire periphery of the covering layer 12F, and protrudes beyond the flat portion of the covering layer 12F.

図10および図11に示す形成品10Gは,方形の金属平板11Gの一表面に,多数のリブ15Aと枠12gとを有する被覆層(耐食層)12Gが形成されたものである。枠12gは方形で被覆層12Gの全周囲に突出状(凸条)に設けられている。多数のリブ15Aは,枠12g内に等間隔で平行に設けられ,その両端と枠12gとの間には間隔があけられている。隣接するリブ15Aの間,およびリブ15Aと枠12gとの間は溝(流路)15Bとなっている。リブ15Aの高さは枠12gの高さと同じである。   A formed product 10G shown in FIGS. 10 and 11 has a covering layer (corrosion resistant layer) 12G having a large number of ribs 15A and a frame 12g formed on one surface of a rectangular metal flat plate 11G. The frame 12g is rectangular and provided in a projecting shape (convex line) around the entire periphery of the covering layer 12G. The large number of ribs 15A are provided in parallel at equal intervals in the frame 12g, and a space is provided between the both ends thereof and the frame 12g. Grooves (channels) 15B are formed between the adjacent ribs 15A and between the ribs 15A and the frame 12g. The height of the rib 15A is the same as the height of the frame 12g.

このような形成品12Gは,たとえば固体高分子電解質形燃料電池(PEFC)のセパレータとして利用できる(図10では,カソード・ガス,アノード・ガスまたは冷却水の導入口,排出口の図示が省略されている)。この場合に,リブ15Aは蛇行状など,種々の形態をとりうる。   Such a formed product 12G can be used, for example, as a separator for a solid polymer electrolyte fuel cell (PEFC) (in FIG. 10, the inlet and outlet for the cathode gas, anode gas or cooling water are omitted) ing). In this case, the rib 15A can take various forms such as a serpentine shape.

以上に述べた形成品10A〜10Gは,それぞれ金属平板11A〜11Gの一表面上に高分子樹脂を含有する被覆層12A〜12Gを形成し,その後,金属板の表面の被覆層を,流体を用いて等方加圧することにより,被覆層を硬化させることにより作製される。   The formed articles 10A to 10G described above form the coating layers 12A to 12G containing the polymer resin on one surface of the flat metal plates 11A to 11G, respectively, and then the coating layer on the surface of the metal plate is used as a fluid. It is produced by curing the coating layer by using isostatic pressure.

金属平板11A〜11Gは表面の引張残留応力が小さいものであることが好ましい。金属平板11A〜11Gは,インコネル,ニッケル,金,銀,白金のうち一以上からなる金属,またはオーステナイト系ステンレス鋼板へ前記金属をめっきしたもの,もしくはクラッド材であることが好ましい。これらの金属を用いることにより,耐食性を向上できる。   The flat metal plates 11A to 11G preferably have small surface tensile residual stress. The metal flat plates 11A to 11G are preferably a metal consisting of one or more of inconel, nickel, gold, silver and platinum, or a metal obtained by plating the metal on an austenitic stainless steel plate, or a clad material. Corrosion resistance can be improved by using these metals.

被覆層12A〜12Gの高分子樹脂には熱硬化性樹脂,熱可塑性樹脂のいずれも用いることができる。高分子樹脂の例には,フェノール樹脂,エポキシ樹脂,メラミン樹脂,ゴム系樹脂,フラン樹脂,フッ化ビニリデン樹脂などがある。   For the polymer resin of the covering layers 12A to 12G, either a thermosetting resin or a thermoplastic resin can be used. Examples of the polymer resin include phenol resin, epoxy resin, melamine resin, rubber resin, furan resin, vinylidene fluoride resin and the like.

被覆層に導電性をもたせるときには,被覆層(リブ,枠を含む)12A〜12Gを導電材(好ましくは炭素系導電材)と高分子樹脂の混合物を含む構成とする。高分子樹脂に炭素系導電材を混合することにより,高分子樹脂に高い導電性を付与することができ,また高分子樹脂の耐食性を向上させることができる。高分子樹脂の含有率を高めて,導電性を確保しつつ緻密化する(気体,液体を通過,透過させない)と,耐食層となる。   When the cover layer is made conductive, the cover layers (including ribs and frames) 12A to 12G are configured to include a mixture of a conductive material (preferably a carbon-based conductive material) and a polymer resin. By mixing a carbon-based conductive material with the polymer resin, high conductivity can be imparted to the polymer resin, and the corrosion resistance of the polymer resin can be improved. When the content of the polymer resin is increased to ensure conductivity and densify (do not allow gas and liquid to pass or permeate), it becomes a corrosion resistant layer.

炭素系導電材としては,黒鉛,カーボンブラック,ダイヤモンド被覆カーボンブラック,炭化ケイ素,炭化チタン,カーボン繊維,カーボンナノチューブなどを用いることができる。   As the carbon-based conductive material, graphite, carbon black, diamond-coated carbon black, silicon carbide, titanium carbide, carbon fibers, carbon nanotubes, etc. can be used.

一例として,炭素系導電材粉末,熱硬化性樹脂粉末および揮発性溶剤を混練してペースト状にし,このペーストを用いてロールコート,スクリーンプリント,スプレーコート,スタンプ,絞り出し法などにより,均一な厚さの薄膜状の被覆層,または枠もしくはリブを有する被覆層を金属板上に形成する,被覆層を乾燥(溶剤を揮発)させた後,被覆層を有する金属板を耐圧容器内に入れ,加圧流体(水,油等)を耐圧容器内に導入して等方加圧,加熱し,樹脂を硬化させる。被覆層が緻密層の場合には,直接に流体と接してもよい。または,被覆層が形成された金属板全体を軟質の薄いゴム・パック(または樹脂フィルム・パック)内に入れ,パック内を真空に脱気した後,ゴム・パックを耐圧容器内に入れ(耐圧容器内でゴム・パック内を脱気してもよい),加圧流体を容器内に導入して等方加圧して樹脂を硬化させる。金属板とゴム・パックとの間にフッ素系樹脂による離型フィルムを介在させるとよい。   As an example, carbon-based conductive material powder, thermosetting resin powder and volatile solvent are kneaded to form a paste, and this paste is used to form a uniform thickness by roll coating, screen printing, spray coating, stamping, squeezing method, etc. Forming a thin film-like coating layer or a coating layer with a frame or a rib on a metal plate, drying the coating layer (volatilizing the solvent), and then placing the metal plate with the coating layer in a pressure container; A pressurized fluid (water, oil, etc.) is introduced into the pressure container, isostatic pressing and heating, and the resin is cured. When the covering layer is a dense layer, it may be in direct contact with the fluid. Alternatively, the entire metal plate on which the covering layer is formed is placed in a soft thin rubber pack (or resin film pack), the inside of the pack is evacuated to a vacuum, and then the rubber pack is placed in a pressure container (pressure resistance The rubber pack may be degassed in the container), a pressurized fluid is introduced into the container and isostatic pressing to cure the resin. It is preferable to interpose a release film of fluorine resin between the metal plate and the rubber pack.

薄膜(フィルム)パックの材質は,加圧に耐え,流体を浸透しない材質であればよく,ゴムであれば,アクリルゴム(140〜150℃),シリコーンゴム(180〜200℃),フッ素ゴム(> 200℃),また樹脂であれば,ポリフェニレンスルフィド,ポリエチレンナフタレート,ポリアリーレンアミド,ポリイミド,ポリエーテル,エーテルケトン等を用いることができる。   The material of the thin film (film) pack may be any material that can withstand pressure and does not permeate the fluid, and in the case of rubber, acrylic rubber (140 to 150 ° C.), silicone rubber (180 to 200 ° C.), fluoro rubber > 200 ° C.), and if it is a resin, polyphenylene sulfide, polyethylene naphthalate, polyarylene amide, polyimide, polyether, ether ketone and the like can be used.

熱硬化性樹脂を用いて被覆層を形成した場合には,流体によって等方加圧するとともに加熱する。熱可塑性樹脂を用いて前記被覆層を形成した場合には,流体によって等方加圧するとともに加熱し(被覆層が変形しない程度に),その後,急冷するとよい。   When a coating layer is formed using a thermosetting resin, the fluid is pressurized and heated by the fluid. When the covering layer is formed using a thermoplastic resin, it is preferable to apply isostatic pressing and heating with a fluid (to the extent that the covering layer is not deformed) and then rapidly cool it.

以上のようにして,被覆層を金属板表面に形成したのち,これを流体を用いて等方加圧して硬化させているから,被覆層を金属板に残留応力を生じさせることなく密着させることができるとともに,被覆層を均一に密着させることができる。   As described above, after the coating layer is formed on the surface of the metal plate, the coating layer is cured by isostatic pressing using a fluid, so that the coating layer adheres to the metal plate without causing any residual stress. And the covering layer can be uniformly adhered.

図12に示す形成品10Hは,金属平板11Hの一表面に,枠12hを有する被覆層(耐食層)12Hが形成され,被覆層12Hの上に,さらに枠12hと同じ高さの多数の多孔質リブ16を間隔をあけて平行に設けたものである。多孔質リブ16により図10に示すものと同じような流路が形成される。   In a formed product 10H shown in FIG. 12, a covering layer (corrosion resistant layer) 12H having a frame 12h is formed on one surface of a flat metal plate 11H, and on the covering layer 12H, a large number of pores having the same height as the frame 12h are formed. The texture ribs 16 are provided in parallel at intervals. The porous rib 16 forms a flow path similar to that shown in FIG.

図13に示す形成品10Jにおいては,金属平板11Jの一表面に,枠11jを有する被覆層(耐食層)12Jが形成され,被覆層12Jの上に枠11jと同じ高さの多数の多孔質リブ16が平行に形成されているとともに,金属平板11Jの他表面にも被覆層(耐食層)17が形成されたものである。   In a formed product 10J shown in FIG. 13, a covering layer (corrosion resistant layer) 12J having a frame 11j is formed on one surface of a flat metal plate 11J, and many porous layers having the same height as the frame 11j are formed on the covering layer 12J. The ribs 16 are formed in parallel, and the coating layer (corrosion resistant layer) 17 is also formed on the other surface of the flat metal plate 11J.

図14に示す形成品10Kにおいては,金属平板11Kの両面に被覆層(耐食層)12K,17が形成され,これらの被覆層12K,17の上に,多数の多孔質リブ18,19が平行に形成されているものである。多孔質リブ18と19の高さ,幅等は異なる。   In the formed product 10K shown in FIG. 14, the coating layers (corrosion resistant layers) 12K and 17 are formed on both sides of the flat metal plate 11K, and a large number of porous ribs 18 and 19 are parallel on these coating layers 12K and 17. It is formed in The height, width, etc. of the porous ribs 18 and 19 are different.

図15に示す形成品10Mにおいては,金属平板11Mの両面に被覆層(耐食層)12M,17が形成され,これらの被覆層12M,17の上に,断面台形状の多数の多孔質リブ18A,19Aが平行に形成されているものである。多孔質リブ18Aと19Aの高さ,幅等は異なる。   In the formed product 10M shown in FIG. 15, the coating layers (corrosion resistant layers) 12M and 17 are formed on both surfaces of the metal flat plate 11M, and a large number of porous ribs 18A having a trapezoidal cross section are formed on these coating layers 12M and 17. , 19A are formed in parallel. The height, width, etc. of the porous ribs 18A and 19A are different.

図12から図15に示す形成品10H〜10Mもまた燃料電池のセパレータとして利用できる。多孔質リブ内を気体または流体が通過することができる。   The formations 10H to 10M shown in FIGS. 12 to 15 can also be used as a fuel cell separator. Gas or fluid can pass through the porous rib.

多孔質リブもまた導電材と高分子樹脂の混合物を含む構成とすることができる。炭素系導電材の含有率を調整することにより,多孔質リブの流体抵抗(気孔率)を調整(制御)することができる。特に炭素繊維を多く混入すると流体抵抗が減少する(気孔率が大きくなる)。逆に,高分子樹脂の含有率を増加させることにより流体抵抗を高くする(気孔率を小さくする)ことができる。   The porous rib can also be configured to include a mixture of a conductive material and a polymer resin. By adjusting the content of the carbon-based conductive material, the fluid resistance (porosity) of the porous rib can be adjusted (controlled). In particular, when a large amount of carbon fiber is mixed, the fluid resistance is reduced (the porosity is increased). Conversely, the fluid resistance can be increased (porosity can be decreased) by increasing the content of the polymer resin.

このような形成品10H〜10Mもまた,流体による等方加圧により形成することができる。たとえば熱硬化性樹脂を用いる場合,炭素系導電材粉末(および,必要ならば炭素繊維),樹脂粉末および揮発性溶剤を混練してペースト状にする。このペーストには,被覆層(耐食層)用のものと,多孔質リブ用のものを用意しておく。そして,金属平板上に,まず被覆層のパターンをプリント,スタンプ,絞り出し等により形成し,乾燥させて溶剤を揮発させる。次に,多孔質リブのパターンを被覆層上に同様の方法により形成し,乾燥させて溶剤を揮発させる。上記のすべてのパターンが形成された金属平板の全体を軟質の薄いゴム・パックに入れ,ゴム・パック内を真空に脱気した後,ゴム・パックを耐圧容器に入れ(または耐圧容器内で脱気し),加熱流体を容器内に導入して,加圧,加熱流体で等方加圧,加熱して樹脂を硬化させる。被覆層の枠の高さと多孔質リブの高さ(厚さ)を最終的に同じ高さ(厚さ)にするために,樹脂硬化の際の収縮の程度に応じて,これらの枠やリブ等の高さ(厚さ)をパターン作製時に調整しておくことが好ましい。   Such formations 10H to 10M can also be formed by isostatic pressing with fluid. For example, in the case of using a thermosetting resin, carbon-based conductive material powder (and carbon fiber if necessary), resin powder and volatile solvent are kneaded to form a paste. For this paste, one for the coating layer (corrosion resistant layer) and one for the porous rib are prepared. Then, a pattern of the covering layer is first formed on the metal flat plate by printing, stamping, squeezing, etc., and dried to evaporate the solvent. Next, a pattern of porous ribs is formed on the coating layer by the same method and dried to evaporate the solvent. Put the whole of the flat metal plate on which all the above patterns are formed in a soft thin rubber pack, degas the inside of the rubber pack in vacuum, and then put the rubber pack in a pressure container (or remove it in a pressure container) Note) The heating fluid is introduced into the container, isostatic pressing and heating with the heating fluid, and the resin is cured. In order to make the height of the coating frame and the height (thickness) of the porous rib finally the same height (thickness), depending on the degree of shrinkage during resin curing, these frames and ribs It is preferable to adjust the height (thickness) of the like at the time of pattern production.

上述した種々の形成品の大量生産の方法について,図10に示す形成品10Gを例に用いて,図16から図19を参照して説明する。形成品10Gは被覆層12Gが等方加圧により硬化された後のものである。被覆層の樹脂を硬化させる前の半形成品を10gで示す。   A method for mass production of the various articles described above will be described with reference to FIGS. 16 to 19 using the article 10G shown in FIG. 10 as an example. The formed article 10G is after the covering layer 12G is cured by isostatic pressing. The semi-formed article before curing the resin of the coating layer is shown at 10 g.

合成ゴムまたは合成樹脂によるパック(包装)用フィルム31がロール31Aに巻回されている。また,フッ素系樹脂による離型フィルム32がロール32Aに巻回されている。これらのフィルム31,32をロール31A,32Aから引き出し,ローラ33,34等で案内しながら,漸次,幅方向の中央が最下端で折返すように,幅方向に2つ折りにしていく。離型フィルム32がフィルム31の内側になる。2つ折りにされて搬送されていくフィルム32内に,上から半形成品10gを入れる。フィルム31,32の幅方向の上端部は熱ローラ35により挟持されて熱溶着される。このようにして,多数の半形成品10gを適当な間隔をあけて包み込んだ細長い帯状のパック41ができる。このパック41の先端はあらかじめの熱溶着等により封止されている。   A film (packing) film 31 made of synthetic rubber or synthetic resin is wound around a roll 31A. Further, a release film 32 made of a fluorine-based resin is wound around a roll 32A. These films 31, 32 are drawn out from the rolls 31A, 32A, guided by rollers 33, 34, etc., and folded in half in the width direction so that the center in the width direction is gradually folded back at the lowermost end. The release film 32 is on the inside of the film 31. 10 g of the semi-formed article is put from above into the film 32 which is folded and conveyed in two. The upper end portions in the width direction of the films 31 and 32 are sandwiched by the heat roller 35 and thermally welded. In this manner, an elongated band-like pack 41 can be obtained which wraps a large number of semi-formed products 10g at appropriate intervals. The tip of the pack 41 is sealed in advance by heat welding or the like.

すなわち,図17に示すように,帯状のパック41は折り返された側辺を除いて,他の側辺および両端で密着され(密着部分を二重のハッチング41Aで示す),閉じている。一端には脱気用の細孔42をあけておく。脱気孔に,一方向弁または逆流防止弁(パック内から脱気する方向にのみ気体を通す)を取付けておいてもよい。半形成品10gは間をあけてパック41内に入っている。離型フィルムが半形成品10gに直接に接していることになる。離型フィルム32は部分41Aでフィルム31と一緒に密着しなくてもよい。離型フィルムは半形成品の表面を覆っていればよい。   That is, as shown in FIG. 17, the band-like pack 41 is in close contact with the other side and at both ends (the close contact portion is indicated by double hatching 41A) except for the side which is folded back. A pore 42 for degassing is opened at one end. The degassing hole may be fitted with a one way valve or a non-return valve (passing gas only in the direction of degassing from inside the pack). The semi-formed product 10 g is contained in the pack 41 with an interval. The release film is in direct contact with 10 g of the semi-formed product. The release film 32 may not be in close contact with the film 31 at the portion 41A. The release film may cover the surface of the semi-formed product.

図18に示すように,多数の半形成品10gを間隔をあけて封入した帯状パック41はコンベア52によって搬送され,スタッカの台50に積み重ねられていく。すなわち,まず,最初の半形成品10gを入れた部分を台50に載せ,台50を少し下げながら,コンベア52によって次の半形成品10gを送り出していくとともに,コンベア52自体も前方向,または後方向に移動させながら,台50上に置かれた半形成品10gの部分の上に次の半形成品10gの部分を重ねていく。このとき,上下の半形成品10gの間に,多孔質のスペーサ51を挿入する(紙面のこちら側,または向こう側から挿入する)。   As shown in FIG. 18, a strip pack 41 in which a large number of semi-formed products 10g are enclosed at intervals is transported by a conveyor 52 and stacked on a stacker table 50. That is, first, the portion containing the first semi-formed product 10g is placed on the table 50, and while the table 50 is lowered slightly, the next semi-formed product 10g is sent out by the conveyor 52. While moving in the backward direction, the portion of the next semi-formed product 10 g is stacked on the portion of the semi-formed product 10 g placed on the table 50. At this time, the porous spacer 51 is inserted between the upper and lower semi-formed products 10g (inserted from the side or the other side of the drawing).

このようにして,スペーサ51を間に入れながら,パック内の半形成品10gの部分ごとに折り返されて積み重ねられスタック全体を,図19に示す耐圧容器(タンク)61内に入れる。ポンプ装置64は耐圧容器61内を真空に引くとともに,加熱流体容器62または冷却流体容器63内を加圧するものである。   In this manner, the entire stack is put back in the pressure container (tank) 61 shown in FIG. The pump device 64 draws the inside of the pressure resistant container 61 in vacuum and pressurizes the inside of the heating fluid container 62 or the cooling fluid container 63.

半形成品10gの被覆層12Gが熱硬化性樹脂の場合の樹脂硬化処理について説明する。   A resin curing process in the case where the covering layer 12G of the semi-formed product 10 g is a thermosetting resin will be described.

ポンプ装置64から耐圧容器61および冷却流体容器63に空気管が引かれ,ここにバルブ72,78が設けられている。冷却流体容器63と耐圧容器61との間の液体配管にバルブ79が設けられている。ポンプ装置64から加熱流体容器62に配設された空気管にバルブ74が,加熱流体容器62と耐圧容器61の上,下部との間の配管にバルブ76,75がそれぞれ設けられている。各容器61,62,63にはガス抜き用のバルブ71,73,77が設けられている。 An air pipe is drawn from the pump device 64 to the pressure resistant container 61 and the cooling fluid container 63, and valves 72 and 78 are provided therein. A valve 79 is provided in the liquid pipe between the cooling fluid container 63 and the pressure container 61. A valve 74 is provided in the air pipe disposed in the heating fluid container 62 from the pump device 64, and valves 76 and 75 are provided in the piping between the heating fluid container 62 and the upper and lower portions of the pressure container 61, respectively. The respective vessels 61, 62, 63 are provided with valves 71, 73, 77 for degassing.

耐圧容器61に連通する管のバルブ71,75,76,79を閉じ,バルブ72のみを開いて,ポンプ64を真空ポンプとして作動させる。耐圧容器61内は脱気されていく。これにより,耐圧容器61内に収容されたスタックの帯状パック41の内部も脱気孔42(または一方向弁)を通して脱気されていく。パック41の内部が真空になればよい。   The valves 71, 75, 76, and 79 of the pipe communicating with the pressure container 61 are closed, and only the valve 72 is opened to operate the pump 64 as a vacuum pump. The inside of the pressure container 61 is degassed. As a result, the inside of the strip pack 41 of the stack housed in the pressure resistant container 61 is also degassed through the degassing holes 42 (or one-way valve). The inside of the pack 41 may be evacuated.

この後,バルブ72を閉じる。加熱流体容器62内には加熱した流体(油,水等)が入っている。バルブ73を閉じ,バルブ74,75を開いて,ポンプ64を加圧ポンプとして作動させる。ポンプ64からの加圧空気はバルブ74を通して容器62内に送られ,容器62内の加熱流体を押し出す。加熱流体はバルブ75を通って容器61に送られる。容器61が加熱流体で満たされると,容器61内を加圧した状態に保持して(バルブ75を閉じて)所定時間放置する。これにより,パック41内の半形成品10gの被覆層12Gは加熱,加圧され,その樹脂が硬化する。パック内の半形成品10g間には多孔質スペーサ51が介装されているので,半形成品10gの表面には,加熱流体によってあらゆる方向から等しい圧力が加わる(等方加圧)。これにより被覆層12Gは金属平板11Gに均等に密着して硬化する。   After this, the valve 72 is closed. The heated fluid container 62 contains a heated fluid (oil, water, etc.). The valve 73 is closed and the valves 74 and 75 are opened to operate the pump 64 as a pressure pump. Pressurized air from the pump 64 is pumped into the vessel 62 through the valve 74 to push out the heated fluid in the vessel 62. The heating fluid is delivered to the vessel 61 through the valve 75. When the container 61 is filled with the heating fluid, the inside of the container 61 is kept pressurized (the valve 75 is closed) and left for a predetermined time. Thereby, the covering layer 12G of the semi-formed article 10g in the pack 41 is heated and pressurized, and the resin is cured. Since the porous spacer 51 is interposed between the semi-formed products 10 g in the pack, equal pressure is applied to the surface of the semi-formed product 10 g from all directions by the heating fluid (isotropic pressure). Thus, the covering layer 12G adheres uniformly to the flat metal plate 11G and is cured.

被覆層12Gが硬化したのち,バルブ76を開き,バルブ78,79を開いて,ポンプ64により冷却流体を容器63から押し出し,容器61内に下から流入させる。容器61内の加熱流体はバルブ76を通して容器62に戻る。 After the covering layer 12G is cured, the valve 76 is opened, the valves 78 and 79 are opened, and the cooling fluid is pushed out of the container 63 by the pump 64 and flows into the container 61 from below. The heated fluid in vessel 61 returns to vessel 62 through valve 76.

冷却流体を容器61内に満たしてパック41とその内部の形成品10Gを冷却させると,バルブ71,バルブ79,77を開いて流体を自重によりバルブ79を通して容器63内に戻す。   When the cooling fluid is filled in the container 61 to cool the pack 41 and the formed product 10G therein, the valve 71 and the valves 79 and 77 are opened and the fluid is returned to the container 63 through the valve 79 by its own weight.

熱可塑性樹脂により形成された被覆層を持つ半形成品の場合には,半形成品を耐圧容器61内で加熱流体により樹脂が少し軟らかくなる程度に加熱し,その後,冷却流体を容器61内に導入して急冷し,樹脂を硬化させるとよい。   In the case of a semi-formed product having a coating layer formed of a thermoplastic resin, the semi-formed product is heated in the pressure container 61 to such an extent that the resin is slightly softened by the heating fluid, and then the cooling fluid is contained in the container 61 It is recommended to introduce and quench rapidly to cure the resin.

この後,形成品が入ったパックのスタックを耐圧容器61から取出し,パックの表面の流体を洗浄し,カッターでパックを開いて,内部の形成品を取り出せばよい。   Thereafter, the stack of packs containing the formed product is taken out from the pressure container 61, the fluid on the surface of the pack is cleaned, the pack is opened with a cutter, and the formed product in the inside can be taken out.

以上のようにして,多数の半形成品を帯状パック内に入れて一挙に等方加圧して樹脂を硬化させるので,上述した方法とシステムは大量生産に適している。   As described above, since a large number of semi-formed products are placed in a band-like pack and isostatic pressing is performed once to cure the resin, the above-described method and system are suitable for mass production.

この発明による方法により製作した形成品は,金属板の表面に樹脂による被覆層が均一に密着しているので燃料電池のセパレータ,その他の用途に利用できる。   The formed article manufactured by the method according to the present invention can be used for fuel cell separators and other applications because the resin coating layer is uniformly adhered to the surface of the metal plate.

Claims (20)

金属対象物の表面の少なくとも一部に樹脂を含有する被覆層を形成し,その後,前記金属対象物の表面の前記被覆層を流体を用いて全方位等方加圧することにより,前記被覆層を硬化させ,前記金属対象物表面へ被覆層を形成する燃料電池用金属セパレータの作製方法。   A coating layer containing a resin is formed on at least a part of the surface of a metal object, and then the coating layer is pressed by applying a fluid to all directions of the coating layer on the surface of the metal object. A method for producing a metal separator for a fuel cell, which is cured to form a coating layer on the surface of the metal object. 前記金属対象物表面の前記被覆層を直接的に流体で全方位等方加圧する,請求項1に記載の燃料電池用金属セパレータの作製方法。   The method for producing a metal separator for a fuel cell according to claim 1, wherein the covering layer on the surface of the metal object is directly pressurized in all directions and isotropically with a fluid. 前記金属対象物を薄膜パック内に入れ,前記パック内を脱気し,その後,前記パックの外部から前記被覆層を流体で全方位等方加圧する,請求項1に記載の燃料電池用金属セパレータの作製方法。   The metal separator according to claim 1, wherein the metal object is placed in a thin film pack, the inside of the pack is degassed, and then the covering layer is pressurized in all directions with a fluid from the outside of the pack. How to make 前記金属対象物と前記パックとの間に離型フィルムを介在させる,請求項3に記載の燃料電池用金属セパレータの作製方法。   The method for producing a metal separator for a fuel cell according to claim 3, wherein a release film is interposed between the metal object and the pack. 表面の少なくとも一部に樹脂を含有する被覆層を形成した金属対象物を加圧流体内で多孔質スペーサにより支持する,請求項1から4のいずれか一項に記載の燃料電池用金属セパレータの作製方法。   The metal separator for fuel cells according to any one of claims 1 to 4, wherein a metal object having a coating layer containing a resin formed on at least a part of its surface is supported by a porous spacer in a pressurized fluid. Method. 熱硬化性樹脂を用いて前記被覆層を形成する,請求項1から5のいずれか一項に記載の燃料電池用金属セパレータの作製方法。   The method for producing a metal separator for a fuel cell according to any one of claims 1 to 5, wherein the covering layer is formed using a thermosetting resin. 熱可塑性樹脂を用いて前記被覆層を形成する,請求項1から5のいずれか一項に記載の燃料電池用金属セパレータの作製方法。   The method for producing a metal separator for a fuel cell according to any one of claims 1 to 5, wherein the covering layer is formed using a thermoplastic resin. 前記被覆層が樹脂に加えて導電材を含有する,請求項1から7のいずれか一項に記載の燃料電池用金属セパレータの作製方法。   The method for producing a metal separator for a fuel cell according to any one of claims 1 to 7, wherein the covering layer contains a conductive material in addition to the resin. 前記被覆層が流体の透過を防止する緻密な層である,請求項1から8のいずれか一項に記載の燃料電池用金属セパレータの作製方法。   The method for producing a metal separator for a fuel cell according to any one of claims 1 to 8, wherein the covering layer is a dense layer that prevents fluid permeation. 前記金属対象物が金属板であり,その少なくとも一面に流体の透過を防止する緻密な前記被覆層が形成されている,請求項1から8のいずれか一項に記載の燃料電池用金属セパレータの作製方法。   The metal separator for fuel cells according to any one of claims 1 to 8, wherein the metal object is a metal plate, and the dense coating layer for preventing fluid permeation is formed on at least one surface of the metal object. How to make it. 前記金属対象物が金属板であり,その両面に流体の透過を防止する緻密な被覆層が形成されている,請求項1から8のいずれか一項に記載の燃料電池用金属セパレータの作製方法。   The method for producing a metal separator for a fuel cell according to any one of claims 1 to 8, wherein the metal object is a metal plate, and a dense coating layer for preventing fluid permeation is formed on both surfaces thereof. . 前記金属対象物が金属板であり,前記被覆層が前記金属板の少なくとも一面を覆いかつ流体の透過を防止する緻密な耐食層であり,前記耐食層の上に前記耐食層の周囲を囲む枠層が形成されている,請求項1から8のいずれか一項に記載の燃料電池用金属セパレータの作製方法。   The metal object is a metal plate, and the covering layer is a dense corrosion resistant layer covering at least one surface of the metal plate and preventing fluid permeation, and a frame surrounding the periphery of the corrosion resistant layer on the corrosion resistant layer The method for producing a metal separator for a fuel cell according to any one of claims 1 to 8, wherein a layer is formed. 前記金属対象物が金属板であり,複数の前記金属板を帯状の薄膜パック内に間隔をあけて入れ,隣接する前記金属板が重なるように前記パックを折り畳むとともに,隣接する金属板を包むパックの間に多孔質スペーサを入れ,前記多孔質スペーサを介在させてスタックされた複数の金属板を前記パックごと耐圧容器内に入れて,流体で全方位等方加圧する,請求項1から8のいずれか一項に記載の燃料電池用金属セパレータの作製方法。   The metal object is a metal plate, and a plurality of the metal plates are spaced apart in a thin film pack, and the pack is folded so that the adjacent metal plates overlap, and the adjacent metal plate is wrapped. 9. A porous spacer is interposed between the plurality of metal plates stacked with the porous spacer interposed therebetween, and the pack and the pack are placed in a pressure container, and fluid is isotropically pressurized with fluid in all directions. The manufacturing method of the metal separator for fuel cells as described in any one. 前記金属対象物が波形加工された金属板である,請求項1から8のいずれか一項に記載の燃料電池用金属セパレータの作製方法。   The method for producing a metal separator for a fuel cell according to any one of claims 1 to 8, wherein the metal object is a corrugated metal plate. 前記金属対象物が金属平板である,請求項1から13のいずれか一項に記載の燃料電池用金属セパレータの作製方法。   The method for producing a metal separator for a fuel cell according to any one of claims 1 to 13, wherein the metal target is a flat metal plate. 表面の少なくとも一部に樹脂を含有する被覆層が形成された金属対象物を入れる薄膜のパックと,
前記金属対象物を入れた前記パックを支持する多孔質スペーサと,
前記金属対象物を入れた前記パックと前記多孔質スペーサとを入れる耐圧容器と,
加圧流体を貯留するための貯留タンクと,
前記貯留タンク内の加圧流体を前記耐圧容器内に加圧して導入する加圧ポンプと,
を有する金属対象物表面被覆層を硬化させるための装置。
A thin film pack for containing a metal object having a coating layer containing a resin formed on at least a part of the surface;
A porous spacer supporting the pack containing the metal object;
A pressure vessel containing the pack containing the metal object and the porous spacer;
A storage tank for storing pressurized fluid;
A pressurizing pump for pressurizing and introducing pressurized fluid in the storage tank into the pressure container;
Device order to cure the coating layer of the metal object surface having.
脱気孔を有する前記パック内と前記耐圧容器内を負圧にするための真空ポンプをさらに備える,請求項16に記載の装置。   The apparatus according to claim 16, further comprising a vacuum pump for applying a negative pressure in the pack having a vent and the pressure vessel. 前記金属対象物を薄膜のパック内に入れ,
前記金属対象物を収納した前記パックと前記パックを支持する多孔質スペーサとを前記耐圧容器内に入れ,
脱気孔を有する前記パック内と前記耐圧容器内を前記真空ポンプにより脱気し,
前記耐圧容器内に前記貯留タンク内の加圧流体を前記加圧ポンプにより加圧して導入する,
請求項17に記載の装置を用いた方法。
Place the metal object in a thin film pack,
The pack containing the metal object and a porous spacer for supporting the pack are placed in the pressure container,
Degassing the inside of the pack having the degassing holes and the inside of the pressure container by the vacuum pump;
The pressurized fluid in the storage tank is pressurized by the pressurizing pump and introduced into the pressure resistant container,
A method using the device according to claim 17.
前記金属対象物が金属板であり,前記薄膜パックが帯状であり,複数の前記金属板を帯状の前記薄膜パック内に間隔をあけて入れ,隣接する前記金属板が重なるように前記パックを折り畳むとともに,隣接する金属板を包むパックの間に前記多孔質スペーサを入れ,前記多孔質スペーサを介在させてスタックされた複数の金属板を前記パックごと耐圧容器内に入れる,請求項18に記載の方法。   The metal object is a metal plate, the thin film pack is a strip, and a plurality of the metal plates are spaced apart in the thin film pack, and the pack is folded so that the adjacent metal plates overlap. 19. The method according to claim 18, further comprising: inserting the porous spacer between packs enclosing adjacent metal plates, and putting a plurality of metal plates stacked with the porous spacers interposed in the pressure container together with the packs. Method. 前記金属対象物と前記パックとの間に離型フィルムを介在させる,請求項18または19に記載の方法。   The method according to claim 18 or 19, wherein a release film is interposed between the metal object and the pack.
JP2014551166A 2012-12-04 2013-12-03 Method of manufacturing metal separator for fuel cell Active JP6424354B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012265713 2012-12-04
JP2012265713 2012-12-04
PCT/JP2013/082904 WO2014088114A1 (en) 2012-12-04 2013-12-03 Method for forming covering layer on surface of metal substrate

Publications (2)

Publication Number Publication Date
JPWO2014088114A1 JPWO2014088114A1 (en) 2017-01-05
JP6424354B2 true JP6424354B2 (en) 2018-11-21

Family

ID=50883525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014551166A Active JP6424354B2 (en) 2012-12-04 2013-12-03 Method of manufacturing metal separator for fuel cell

Country Status (2)

Country Link
JP (1) JP6424354B2 (en)
WO (1) WO2014088114A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016226328A1 (en) * 2016-12-29 2018-07-05 Robert Bosch Gmbh Gas distributor plate for a fuel cell and fuel cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61173911A (en) * 1985-01-30 1986-08-05 Ashida Seisakusho:Kk Manufacture of laminated plate
JPS6319897A (en) * 1986-07-11 1988-01-27 株式会社 芦田製作所 Method of molding multilayer printed interconnection board
JP2007149661A (en) * 2005-10-27 2007-06-14 Mitsubishi Plastics Ind Ltd Separator for fuel cell, fuel cell using the separator, and coating composition for preparing separator
US7658217B2 (en) * 2006-12-28 2010-02-09 United Technologies Corporation High temperature lamination tool
JP2009266740A (en) * 2008-04-28 2009-11-12 Idemitsu Kosan Co Ltd Battery module, manufacturing method of battery module, and device equipped with battery module

Also Published As

Publication number Publication date
WO2014088114A1 (en) 2014-06-12
JPWO2014088114A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
KR100980927B1 (en) End plate for fuel cell stack and method for manufacturing the same
US8518603B2 (en) Sheet molding compound flow field plate, bipolar plate and fuel cell
US7659028B2 (en) Polymer electrolyte fuel cell
JP5638508B2 (en) Manufacturing method of electrolyte membrane / electrode structure with resin frame for fuel cell
WO2015072584A1 (en) Separator and cell stack for fuel cell
JP5368738B2 (en) Separation plate for fuel cell and method for producing the same
JP5643146B2 (en) Fuel cell
EP1751811A2 (en) Electrochemical power source designs and components
JP6863129B2 (en) Manufacturing method of separator for fuel cell
TWI500210B (en) Methods of manufacturing electrochemical cells
WO2018105301A1 (en) Gas diffusion electrode and production method therefor
JP5594021B2 (en) Membrane electrode assembly and manufacturing method thereof
JP6424354B2 (en) Method of manufacturing metal separator for fuel cell
WO2015004969A1 (en) Fuel cell unit cell
KR102053791B1 (en) A method for preparing a composite separation plate for battery using spread tow carbon fiber fabric and a composite separation plate for battery prepared therefrom
EP2647075A1 (en) Fuel cell modules
US11670780B2 (en) Fuel cell gas supply and diffusion layer, fuel cell separator and fuel cell stack
JP2016076372A (en) Method for manufacturing resin frame-attached electrolyte membrane-electrode structure for fuel cell
WO2007007859A1 (en) Electrolyte membrane and process for producing the same
KR101306686B1 (en) Separation plate for fuel cell and method for manufacturing the same
CA2641032A1 (en) Method of forming membrane electrode assemblies for electrochemical devices
JP6063284B2 (en) Manufacturing method of electrolyte membrane / electrode structure for fuel cell
US20100159358A1 (en) Separator for fuel cell and fuel cell comprising the same
JP2019057460A (en) Manufacturing method of fuel cell separator
JP2009080976A (en) Method of sealing fuel cell unit cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180928

R150 Certificate of patent or registration of utility model

Ref document number: 6424354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250