JP2006164713A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2006164713A
JP2006164713A JP2004353624A JP2004353624A JP2006164713A JP 2006164713 A JP2006164713 A JP 2006164713A JP 2004353624 A JP2004353624 A JP 2004353624A JP 2004353624 A JP2004353624 A JP 2004353624A JP 2006164713 A JP2006164713 A JP 2006164713A
Authority
JP
Japan
Prior art keywords
current collector
cylindrical body
collector plate
bottomed cylindrical
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004353624A
Other languages
Japanese (ja)
Other versions
JP4780954B2 (en
Inventor
Koichi Sato
広一 佐藤
Takaaki Ikemachi
隆明 池町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004353624A priority Critical patent/JP4780954B2/en
Publication of JP2006164713A publication Critical patent/JP2006164713A/en
Application granted granted Critical
Publication of JP4780954B2 publication Critical patent/JP4780954B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a secondary battery in which a current collector jointed to an electrode body being a power generation element can be welded to the bottom of a battery can with a large jointing area, capable of reducing the internal resistance of the battery. <P>SOLUTION: The secondary battery is constructed by housing a wound-up electrode body 4 inside a battery can 1, in which a sealing plate 2 is fixed at the opening part of a bottomed cylinder 11. A positive electrode current collector 51 is connected to the end fringe of the core 45 on the positive electrode side of the wound-up electrode body 4, and a negative electrode current collector 5 is connected to the end fringe of the core 47 on negative electrode side. The surface of the negative electrode current collector 5 is welded to the bottom of the bottomed cylindrical body. A projection 14 protruding toward the inside of the battery can 1 is formed at the bottom of the bottomed cylinder 11 and a recessed face 56 which is engaged with the projection 14 is formed on the surface of the negative electrode current collector 5, and a resistance welding is applied to the engaging portion of the recessed face 56 and the projection 14. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は二次電池に関し、特に、発電要素となる電極体に接合された正極集電板及び負極集電板の内、何れか一方の集電板が電池缶の底面に溶接されている二次電池に関するものである。   The present invention relates to a secondary battery, and in particular, one of a positive current collector plate and a negative current collector plate joined to an electrode body serving as a power generation element is welded to the bottom surface of a battery can. The present invention relates to a secondary battery.

円筒型リチウムイオン二次電池は、図5に示す如く、円筒状の電池缶(7)の内部に巻き取り電極体(4)を収容して構成されている。電池缶(7)は、有底筒体(71)の開口部に絶縁部材(13)を介して封口板(2)をかしめ固定してなり、巻き取り電極体(4)は、それぞれ帯状の正極(41)と負極(43)の間にセパレータ(42)を介在させてこれらを渦巻き状に巻回して形成され、巻回軸心部に貫通孔(49)を有している。
巻き取り電極体(4)の正極(41)の端縁には、正極集電板(51)が溶接され、該正極集電板(51)に突設されたリード部(53)の先端部が、封口板(2)の裏面に溶接されている。
As shown in FIG. 5, the cylindrical lithium ion secondary battery is configured by accommodating a winding electrode body (4) inside a cylindrical battery can (7). The battery can (7) is formed by caulking and fixing the sealing plate (2) to the opening of the bottomed cylindrical body (71) via the insulating member (13), and the take-up electrode body (4) has a belt-like shape. The separator (42) is interposed between the positive electrode (41) and the negative electrode (43), and these are wound in a spiral shape, and have a through hole (49) in the winding axis.
The positive electrode current collector plate (51) is welded to the edge of the positive electrode (41) of the winding electrode body (4), and the tip of the lead portion (53) protruding from the positive electrode current collector plate (51) Is welded to the back surface of the sealing plate (2).

封口板(2)は、鋼鉄製の板状基材の表面にニッケル鍍金を施した鉄−ニッケル鍍金板(21)とアルミニウム板(22)とが互いに接合された2層構造を有し、封口板(2)が有底筒体(71)の開口部にかしめ固定された状態で、鉄−ニッケル鍍金板(21)は電池缶(7)の外部に面し、アルミニウム板(22)は電池缶(7)の内部に面している。
鉄−ニッケル鍍金板(21)には中央孔(26)が開設され、アルミニウム板(22)には、鉄−ニッケル鍍金板(21)の中央孔(26)と対向する領域に、内圧が所定値を超えたときに開放すべき弁膜(23)が形成されている。鉄−ニッケル鍍金板(21)の表面には、正極端子(24)が取り付けられている。一方、巻き取り電極体(4)の負極(43)の端縁には、負極集電板(72)が溶接され、更に、該負極集電板(72)の表面が有底筒体(71)の底面に溶接されている(特許文献1参照)。
The sealing plate (2) has a two-layer structure in which an iron-nickel plating plate (21) and an aluminum plate (22), which are plated with nickel on the surface of a steel plate-like base material, are joined together. With the plate (2) being caulked and fixed to the opening of the bottomed cylinder (71), the iron-nickel plating plate (21) faces the outside of the battery can (7), and the aluminum plate (22) is the battery. Facing the inside of the can (7).
The iron-nickel plating plate (21) has a central hole (26), and the aluminum plate (22) has a predetermined internal pressure in a region facing the central hole (26) of the iron-nickel plating plate (21). A valve membrane (23) to be opened when the value is exceeded is formed. A positive electrode terminal (24) is attached to the surface of the iron-nickel plating plate (21). On the other hand, the negative electrode current collector plate (72) is welded to the edge of the negative electrode (43) of the take-up electrode body (4), and the surface of the negative electrode current collector plate (72) has a bottomed cylindrical body (71). ) (See Patent Document 1).

図7に示す如く、負極集電板(72)の表面には、前記巻き取り電極体(4)の貫通孔(49)との対向部に、有底筒体(71)の底面に向けて突出する複数のプロジェクション(73)が同一円周上に形成されている。   As shown in FIG. 7, on the surface of the negative electrode current collector plate (72), facing the through hole (49) of the winding electrode body (4), facing the bottom surface of the bottomed cylindrical body (71). A plurality of projecting projections (73) are formed on the same circumference.

従来、負極集電板(72)を有底筒体(71)の底面に溶接する際には、図6に示す如く、負極集電板(72)が溶接された巻き取り電極体(4)を有底筒体(71)内に収容した状態で、該巻き取り電極体(4)の貫通孔(49)に円柱状電極棒(61)を挿入し、該電極棒(61)の先端を負極集電板(72)の裏面に接触させると共に、該電極棒(61)に対向させて有底筒体(71)の裏面に電極片(62)を接触させる。そして、電極棒(61)と電極片(62)との間に電流を流すことにより、負極集電板(72)と有底筒体(71)とを互いに抵抗溶接する。
これによって、負極集電板(72)と有底筒体(71)とが、負極集電板(72)の各プロジェクション(73)の頂部と有底筒体(71)の底面にて接合され、互いに電気的に接続されることになる。
特開平6−275653号公報 [H01M 2/22]
Conventionally, when the negative electrode current collector plate (72) is welded to the bottom surface of the bottomed cylindrical body (71), as shown in FIG. 6, the take-up electrode body (4) to which the negative electrode current collector plate (72) is welded is shown. Is inserted into the through hole (49) of the wound electrode body (4), and the tip of the electrode bar (61) is inserted into the through hole (49) of the wound electrode body (4). While making it contact with the back surface of a negative electrode current collecting plate (72), an electrode piece (62) is made to contact the back surface of a bottomed cylinder (71) facing this electrode rod (61). Then, by passing a current between the electrode rod (61) and the electrode piece (62), the negative electrode current collector plate (72) and the bottomed cylindrical body (71) are resistance-welded to each other.
Thus, the negative electrode current collector plate (72) and the bottomed cylindrical body (71) are joined at the top of each projection (73) of the negative electrode current collector plate (72) and the bottom surface of the bottomed cylindrical body (71). Are electrically connected to each other.
JP-A-6-275653 [H01M 2/22]

しかしながら、上記従来の円筒型リチウムイオン二次電池において、負極集電板(72)と有底筒体(71)とは、前記プロジェクション(73)の頂点にて互いに溶接されているに過ぎないので、両者の接合面積は小さなものとなる。このため、負極集電板(72)と有底筒体(71)との間の接続抵抗が大きなものとなり、これによって電池の内部抵抗が増大して、高い充放電性能が得られない問題があった。
又、前記複数のプロジェクション(73)の内、一部のプロジェクションが有底筒体(71)の底面から離間した状態で、負極集電板(72)と有底筒体(71)とが抵抗溶接されることがあり、この結果、負極集電板(72)と有底筒体(71)との間の接続抵抗が更に大きなものとなることがあった。
そこで本発明の目的は、集電板と有底筒体とを互いに大きな接合面積で溶接することが出来、これによって集電板と有底筒体との間の接続抵抗を低減させることが出来る二次電池を提供することである。
However, in the conventional cylindrical lithium ion secondary battery, the negative electrode current collector (72) and the bottomed cylindrical body (71) are merely welded to each other at the apex of the projection (73). The junction area between the two becomes small. For this reason, the connection resistance between the negative electrode current collector plate (72) and the bottomed cylindrical body (71) becomes large, which increases the internal resistance of the battery, and there is a problem that high charge / discharge performance cannot be obtained. there were.
The negative current collector (72) and the bottomed cylinder (71) are resistant to each other while a part of the plurality of projections (73) is separated from the bottom surface of the bottomed cylinder (71). As a result, the connection resistance between the negative electrode current collector plate (72) and the bottomed cylindrical body (71) may be further increased.
Therefore, an object of the present invention is to be able to weld the current collector plate and the bottomed cylindrical body to each other with a large joint area, thereby reducing the connection resistance between the current collector plate and the bottomed cylindrical body. It is to provide a secondary battery.

本発明に係る二次電池は、有底筒体(11)の開口部に絶縁部材(13)を介して封口板(2)を固定して電池缶(1)が構成され、該電池缶(1)の内部に電極体(4)が収容されている。該電極体(4)の両端部には一対の電極(41)(43)が突出し、該一対の電極(41)(43)の内、一方の電極が前記封口板(2)に対して電気的に接続されている。他方の電極の端縁には集電板(5)が接合され、該集電板(5)の表面と前記有底筒体(11)の底面とが互いに溶接されている。これによって、封口板(2)と有底筒体(11)から電極体(4)の発生電力を取り出すことが出来る。
前記有底筒体(11)の底面には、電池缶(1)の内部に向けて突出する凸面(14)が形成される一方、前記集電板(5)の表面には、前記有底筒体(11)の凸面(14)と嵌合する凹面(56)が形成され、該凸面(14)と凹面(56)の嵌合部に溶接が施されている。
In the secondary battery according to the present invention, a sealing plate (2) is fixed to an opening of a bottomed cylindrical body (11) through an insulating member (13) to form a battery can (1). The electrode body (4) is accommodated inside 1). A pair of electrodes (41) and (43) protrude from both ends of the electrode body (4), and one of the pair of electrodes (41) and (43) is electrically connected to the sealing plate (2). Connected. A current collector plate (5) is joined to the edge of the other electrode, and the surface of the current collector plate (5) and the bottom surface of the bottomed cylindrical body (11) are welded together. Thereby, the electric power generated by the electrode body (4) can be taken out from the sealing plate (2) and the bottomed cylindrical body (11).
A convex surface (14) protruding toward the inside of the battery can (1) is formed on the bottom surface of the bottomed cylindrical body (11), while the bottom surface of the current collector plate (5) A concave surface (56) that fits with the convex surface (14) of the cylindrical body (11) is formed, and the fitting portion between the convex surface (14) and the concave surface (56) is welded.

上記本発明の二次電池においては、集電板(5)の表面と有底筒体(11)の底面との溶接の際、集電板(5)の表面に形成した凹面(56)を有底筒体(11)の底面に突設した凸面(14)に嵌合させる。これによって、集電板(5)の凹面(56)と有底筒体(11)の凸面(14)とが互いに密着する。そして、該凸面(14)と凹面(56)の嵌合部にて、集電板(5)と有底筒体(11)とが互いに溶接されることになる。この様に、集電板(5)と有底筒体(11)とが前記嵌合部で互いに面接触した状態で溶接されるので、集電板と有底筒体とが点接触した状態で溶接されていた従来に比べて、集電板(5)と有底筒体(11)との接合面積は大きなものとなる。これによって、集電板(5)と有底筒体(11)との間の接続抵抗は小さなものとなる。この結果、二次電池の内部抵抗を低減させることが出来、高い充放電性能が得られることになる。   In the secondary battery of the present invention, when welding the surface of the current collector plate (5) and the bottom surface of the bottomed cylindrical body (11), the concave surface (56) formed on the surface of the current collector plate (5) is provided. The bottom surface of the bottomed cylindrical body (11) is fitted to a convex surface (14) projecting from the bottom surface. Thereby, the concave surface (56) of the current collector plate (5) and the convex surface (14) of the bottomed cylindrical body (11) are in close contact with each other. The current collector plate (5) and the bottomed cylindrical body (11) are welded to each other at the fitting portion between the convex surface (14) and the concave surface (56). In this way, the current collector plate (5) and the bottomed cylinder (11) are welded in a state where they are in surface contact with each other at the fitting portion, so that the current collector plate and the bottomed cylinder are in point contact with each other. Compared to the conventional case where the current collector plate (5) and the bottomed cylindrical body (11) are joined together, the joining area is large. Thereby, the connection resistance between the current collector plate (5) and the bottomed cylindrical body (11) becomes small. As a result, the internal resistance of the secondary battery can be reduced, and high charge / discharge performance can be obtained.

具体的構成において、前記集電板(5)の凹面(56)が前記有底筒体(11)の凸面(14)に嵌合した状態で、前記集電板(5)の表面の内、前記凹面(56)を除く領域は、前記有底筒体(11)の底面から離間している。   In a specific configuration, in a state where the concave surface (56) of the current collector plate (5) is fitted to the convex surface (14) of the bottomed cylindrical body (11), The region excluding the concave surface (56) is separated from the bottom surface of the bottomed cylindrical body (11).

該具体的構成によれば、集電板(5)の凹面(56)と有底筒体(11)の凸面(14)の嵌合部以外の領域で、集電板(5)と有底筒体(11)とが互いに接触することはないので、集電板(5)の凹面(56)を有底筒体(11)の凸面(14)に確実に嵌合させることが出来、これによって、集電板(5)の凹面(56)と有底筒体(11)の凸面(14)との密着状態をより確実なものとすることが出来る。   According to the specific configuration, the current collector plate (5) and the bottomed surface are provided in a region other than the fitting portion between the concave surface (56) of the current collector plate (5) and the convex surface (14) of the bottomed cylindrical body (11). Since the cylindrical body (11) does not contact each other, the concave surface (56) of the current collector plate (5) can be securely fitted to the convex surface (14) of the bottomed cylindrical body (11). Thus, the contact state between the concave surface (56) of the current collector plate (5) and the convex surface (14) of the bottomed cylindrical body (11) can be made more reliable.

又、具体的には、前記有底筒体(11)の凸面(14)と前記集電板(5)の凹面(56)の嵌合部に抵抗溶接が施されている。   Specifically, resistance welding is applied to a fitting portion between the convex surface (14) of the bottomed cylindrical body (11) and the concave surface (56) of the current collector plate (5).

該具体的構成において、集電板(5)の凹面(56)と有底筒体(11)の凸面(14)とを互いに密着させた状態で、該凹面(56)と凸面(14)の間に通電すると、該凸面(14)と凹面(56)の嵌合部に発熱が生じ、これによって該嵌合部が溶融して、集電板(5)と有底筒体(11)とが互いに抵抗溶接されることになる。   In the specific configuration, the concave surface (56) and the convex surface (14) of the current collector plate (5) and the convex surface (14) of the bottomed cylindrical body (11) are in close contact with each other. When energized between them, heat is generated in the fitting portion between the convex surface (14) and the concave surface (56), thereby melting the fitting portion, and the current collector plate (5) and the bottomed cylindrical body (11) Will be resistance welded together.

或いは、前記有底筒体(11)の凸面(14)と前記集電板(5)の凹面(56)の嵌合部にレーザ溶接が施されている。   Alternatively, laser welding is applied to a fitting portion between the convex surface (14) of the bottomed cylindrical body (11) and the concave surface (56) of the current collector plate (5).

該具体的構成によれば、該集電板(5)の凹面(56)と有底筒体(11)の凸面(14)とを互いに密着させた状態で、該凹面(56)と凸面(14)の嵌合部にレーザ光を照射することにより、該嵌合部の略全体を溶融させて集電板(5)と有底筒体(11)とを互いに溶接することが出来る。これによって、集電板(5)と有底筒体(11)との接合面積は、集電板(5)と有底筒体(11)とを抵抗溶接した場合に比べて大きくなる。この結果、集電板(5)と有底筒体(11)との間の接続抵抗は、集電板(5)と有底筒体(11)とを抵抗溶接した場合に比べて更に小さくなる。   According to the specific configuration, the concave surface (56) and the convex surface (56) are in close contact with the concave surface (56) of the current collector plate (5) and the convex surface (14) of the bottomed cylindrical body (11). By irradiating the fitting portion of 14) with laser light, substantially the entire fitting portion can be melted to weld the current collector plate (5) and the bottomed cylindrical body (11) to each other. As a result, the joint area between the current collector plate (5) and the bottomed cylinder (11) becomes larger than when the current collector plate (5) and the bottomed cylinder (11) are resistance-welded. As a result, the connection resistance between the current collector plate (5) and the bottomed cylindrical body (11) is smaller than that when the current collector plate (5) and the bottomed cylindrical body (11) are resistance-welded. Become.

具体的構成において、前記電極体(4)は、それぞれ帯状の正極(41)と負極(43)の間にセパレータ(42)を介在させてこれらを渦巻き状に巻回して構成され、その巻回軸心部に貫通孔(49)を有し、前記集電板(5)には、前記電極体(4)の貫通孔(49)と対向する位置に前記凹面(56)を有する凹部(54)が形成され、前記有底筒体(11)の底面には、該凹部(54)と対向する位置に前記凸面(14)を有する凸部(12)が形成されている。   In a specific configuration, each of the electrode bodies (4) is configured by winding a separator (42) between a strip-like positive electrode (41) and a negative electrode (43) in a spiral shape. A through hole (49) is provided in the shaft center part, and the current collector plate (5) has a concave part (54) having the concave surface (56) at a position facing the through hole (49) of the electrode body (4). ) And a convex portion (12) having the convex surface (14) at a position facing the concave portion (54) is formed on the bottom surface of the bottomed cylindrical body (11).

該具体的構成において、集電板(5)を有底筒体(11)の底面に抵抗溶接する際には、電極体(4)を有底筒体(11)内に収容した状態で、該電極体(4)の貫通孔(49)に電極棒を挿入し、該電極棒の先端を、電極体(4)の貫通孔(49)と対向する位置に形成された集電板(5)の凹部(54)に接触させる。これによって、集電板(5)の凹部(54)に形成された凹面(56)が、これに対向して有底筒体(11)の底面に形成された凸部(12)の凸面(14)に嵌合する。そして、有底筒体(11)の凸部(12)の裏面に電極片を接触させ、該電極片と前記電極棒との間に通電することにより、前記凸面(14)と凹面(56)の嵌合部に電流が流れ、該嵌合部が溶融して、集電板(5)と有底筒体(11)とが互いに抵抗溶接されることになる。   In the specific configuration, when the current collector plate (5) is resistance-welded to the bottom surface of the bottomed cylindrical body (11), the electrode body (4) is accommodated in the bottomed cylindrical body (11), An electrode rod is inserted into the through hole (49) of the electrode body (4), and a current collector plate (5) formed at a position where the tip of the electrode rod faces the through hole (49) of the electrode body (4) ) Is brought into contact with the recess (54). Accordingly, the concave surface (56) formed in the concave portion (54) of the current collector plate (5) is opposed to the convex surface (12) of the convex portion (12) formed on the bottom surface of the bottomed cylindrical body (11). Fit to 14). Then, by contacting an electrode piece to the back surface of the convex portion (12) of the bottomed cylindrical body (11) and energizing between the electrode piece and the electrode rod, the convex surface (14) and the concave surface (56) A current flows through the fitting portion, the fitting portion melts, and the current collector plate (5) and the bottomed cylindrical body (11) are resistance-welded to each other.

本発明の二次電池によれば、集電板と有底筒体とを互いに大きな接合面積で溶接することが出来、これによって集電板と有底筒体との間の接続抵抗を低減させることが出来る。   According to the secondary battery of the present invention, the current collector plate and the bottomed cylinder can be welded to each other with a large joint area, thereby reducing the connection resistance between the current collector and the bottomed cylinder. I can do it.

以下、本発明を円筒型リチウムイオン二次電池に実施した形態につき、図面に沿って具体的に説明する。
本発明に係る円筒型リチウムイオン二次電池は、図1に示す如く、円筒形の電池缶(1)の内部に巻き取り電極体(4)を収容してなり、電池缶(1)は、鉄−ニッケル鍍金板からなる有底筒体(11)の開口部にリング状の絶縁部材(13)を介して封口板(2)をかしめ固定して構成される。
Hereinafter, embodiments of the present invention applied to a cylindrical lithium ion secondary battery will be described in detail with reference to the drawings.
As shown in FIG. 1, a cylindrical lithium ion secondary battery according to the present invention has a winding electrode body (4) housed inside a cylindrical battery can (1). The sealing plate (2) is caulked and fixed to the opening of the bottomed cylindrical body (11) made of an iron-nickel plating plate via a ring-shaped insulating member (13).

封口板(2)は、鋼鉄製の板状基材の表面にニッケル鍍金を施した鉄−ニッケル鍍金板(21)とアルミニウム板(22)とが互いに接合された2層構造を有し、封口板(2)が有底筒体(11)の開口部にかしめ固定された状態で、鉄−ニッケル鍍金板(21)は電池缶(1)の外部に面し、アルミニウム板(22)は電池缶(1)の内部に面している。
鉄−ニッケル鍍金板(21)には円形の中央孔(26)が開設され、アルミニウム板(22)には、鉄−ニッケル鍍金板(21)の中央孔(26)と対向する領域に、内圧が所定値(0.98〜1.18MPa)を超えたときに開放すべき弁膜(23)が形成されている。
The sealing plate (2) has a two-layer structure in which an iron-nickel plating plate (21) and an aluminum plate (22), which are plated with nickel on the surface of a steel plate-like base material, are joined together. With the plate (2) caulked and fixed to the opening of the bottomed cylinder (11), the iron-nickel plating plate (21) faces the outside of the battery can (1), and the aluminum plate (22) is the battery. Facing the inside of the can (1).
The iron-nickel plating plate (21) has a circular central hole (26), and the aluminum plate (22) has an internal pressure in a region facing the central hole (26) of the iron-nickel plating plate (21). A valve membrane (23) to be opened is formed when the pressure exceeds a predetermined value (0.98 to 1.18 MPa).

巻き取り電極体(4)は、図2に示す如く、厚さ15μmのアルミニウム箔からなる芯体(45)の表面にコバルト酸リチウムからなる正極活物質(44)を塗布してなる正極(41)と、厚さ10μmの銅箔からなる芯体(47)の表面に炭素材料を含む負極活物質(46)を塗布してなる負極(43)と、非水電解液が含浸されたイオン透過性のポリプロピレン製微多孔膜からなるセパレータ(42)とから構成され、正極(41)及び負極(43)はそれぞれセパレータ(42)上に幅方向にずらして重ね合わされ、渦巻き状に巻き取られている。これによって、巻き取り電極体(4)の巻き軸方向の両端部の内、一方の端部では、セパレータ(42)の端縁よりも外方へ正極(41)の芯体(45)の端縁(48)が突出すると共に、他方の端部では、セパレータ(42)の端縁よりも外方へ負極(43)の芯体(47)の端縁(48)が突出している。更に、巻き取り電極体(4)は、巻回軸心部に貫通孔(49)を有している。   As shown in FIG. 2, the wound electrode body (4) has a positive electrode (41) formed by applying a positive electrode active material (44) made of lithium cobalt oxide on the surface of a core body (45) made of an aluminum foil having a thickness of 15 μm. ), A negative electrode (43) obtained by applying a negative electrode active material (46) containing a carbon material to the surface of a core (47) made of a copper foil having a thickness of 10 μm, and an ion permeation impregnated with a nonaqueous electrolytic solution The separator (42) is made of a porous polypropylene microporous membrane, and the positive electrode (41) and the negative electrode (43) are superimposed on the separator (42) while being shifted in the width direction and wound in a spiral shape. Yes. As a result, the end of the core body (45) of the positive electrode (41) is more outward than the edge of the separator (42) at one end of both ends in the winding axis direction of the winding electrode body (4). The edge (48) protrudes, and at the other end, the end edge (48) of the core (47) of the negative electrode (43) protrudes outward from the end edge of the separator (42). Furthermore, the winding electrode body (4) has a through hole (49) in the winding shaft center portion.

巻き取り電極体(4)の正極(41)側の端縁(48)には、リード部(53)を具えたアルミニウム製の正極集電板(51)がレーザ溶接され、巻き取り電極体(4)の負極(43)側の端縁(48)には、ニッケル製の負極集電板(5)がレーザ溶接される。   A positive electrode current collector plate (51) having a lead portion (53) is laser-welded to the edge (48) on the positive electrode (41) side of the winding electrode body (4), and the winding electrode body ( The negative electrode current collector plate (5) made of nickel is laser-welded to the edge (48) on the negative electrode (43) side of 4).

図1の如く、正極集電板(51)のリード部(53)の先端は、封口板(2)を構成するアルミニウム板(22)の表面に溶接されている。又、負極集電板(5)は、有底筒体(11)の底面に溶接されている。
これによって、正極端子(24)及び有底筒体(11)の裏面から巻き取り電極体(4)の発生電力を取り出すことが出来る。
As shown in FIG. 1, the tip of the lead portion (53) of the positive electrode current collector plate (51) is welded to the surface of the aluminum plate (22) constituting the sealing plate (2). The negative electrode current collector plate (5) is welded to the bottom surface of the bottomed cylindrical body (11).
Thereby, the electric power generated by the winding electrode body (4) can be taken out from the back surface of the positive electrode terminal (24) and the bottomed cylindrical body (11).

図1及び図3に示す如く、有底筒体(11)の底面には、電池缶(1)の内部に向けて突出した半球状の凸面(14)を有する凸部(12)が形成される一方、負極集電板(5)の表面には、有底筒体(11)の凸部(12)の凸面(14)に緊密に嵌合する半球状の凹面(56)を有する凹部(54)が形成されている。図3に示す如く、凹部(54)の裏面(55)は、巻き取り電極体(4)の貫通孔(49)に侵入している。
尚、有底筒体(11)の外径は35mm、負極集電板(5)の直径は33mm、有底筒体(11)及び負極集電板(5)の厚さは0.5mm、巻き取り電極体(4)の貫通孔(49)の内径は10mm、有底筒体(11)の凸部(12)及び負極集電板(5)の凹部(54)の外径は8mmである。
As shown in FIGS. 1 and 3, the bottom surface of the bottomed cylindrical body (11) is formed with a convex portion (12) having a hemispherical convex surface (14) projecting toward the inside of the battery can (1). On the other hand, on the surface of the negative electrode current collector plate (5), a concave portion (56) having a hemispherical concave surface (56) tightly fitted to the convex surface (14) of the convex portion (12) of the bottomed cylindrical body (11) ( 54) is formed. As shown in FIG. 3, the back surface (55) of the concave portion (54) enters the through hole (49) of the winding electrode body (4).
The bottomed cylinder (11) has an outer diameter of 35 mm, the negative electrode current collector (5) has a diameter of 33 mm, and the bottomed cylinder (11) and the negative electrode current collector (5) have a thickness of 0.5 mm. The inner diameter of the through hole (49) of the winding electrode body (4) is 10 mm, and the outer diameter of the convex part (12) of the bottomed cylindrical body (11) and the concave part (54) of the negative electrode current collector plate (5) is 8 mm. is there.

従来の構成においては、負極集電板の表面と有底筒体の底面との間に、負極集電板の表面に形成されたプロジェクションの突出量に応じた大きな隙間が形成されることになっていたが、本発明の構成によれば、負極集電板(5)の凹部(54)が有底筒体(11)の凸部(12)に嵌合した状態で、負極集電板(5)の表面の内、前記凹面(56)を除く領域を有底筒体(11)の底面から離間させるために必要な最小限の隙間があればよい。
従って、有底筒体(11)の底面と負極集電板(5)の表面との間の無駄な空間は、従来に比べて小さくなる。これによって、省体積で効率の良い集電を行なうことが出来る。
In the conventional configuration, a large gap corresponding to the projection amount of the projection formed on the surface of the negative electrode current collector plate is formed between the surface of the negative electrode current collector plate and the bottom surface of the bottomed cylindrical body. However, according to the configuration of the present invention, the negative electrode current collector plate (5) in the state in which the concave portion (54) of the negative electrode current collector plate (5) is fitted to the convex portion (12) of the bottomed cylindrical body (11). Of the surface of 5), it is sufficient if there is a minimum gap necessary for separating the region excluding the concave surface (56) from the bottom surface of the bottomed cylindrical body (11).
Therefore, a useless space between the bottom surface of the bottomed cylindrical body (11) and the surface of the negative electrode current collector plate (5) is reduced as compared with the conventional case. This makes it possible to collect electricity efficiently with a small volume.

負極集電板(5)を有底筒体(11)に溶接する際には、図3に示す如く、負極集電板(5)が接合された巻き取り電極体(4)を有底筒体(11)内に収容した状態で、該巻き取り電極体(4)の貫通孔(49)に円柱状電極棒(61)を挿入し、該電極棒(61)により負極集電板(5)を有底筒体(11)の底面に押しつける。一方、該電極棒(61)に対向させて有底筒体(11)の裏面には、電極片(62)を接触させる。   When welding the negative electrode current collector plate (5) to the bottomed cylindrical body (11), as shown in FIG. 3, the winding electrode body (4) to which the negative electrode current collector plate (5) is joined is used. A cylindrical electrode rod (61) is inserted into the through hole (49) of the winding electrode body (4) while being accommodated in the body (11), and the negative electrode current collector plate (5 ) Against the bottom of the bottomed cylinder (11). On the other hand, the electrode piece (62) is brought into contact with the back surface of the bottomed cylindrical body (11) so as to face the electrode rod (61).

ここで、図4に示す如く、有底筒体(11)の底面から有底筒体(11)の凸面(14)の頂部までの高さL1は、負極集電板(5)の表面から負極集電板(5)の凹面(56)の底部までの深さL2より僅かに大きく形成されているので、有底筒体(11)と負極集電板(5)とが、凹面(56)と凸面(14)の嵌合部以外の領域で互いに接触することはない。これによって、負極集電板(5)の凹面(56)は、有底筒体(11)の凸面(14)に確実に密着することになる。   Here, as shown in FIG. 4, the height L1 from the bottom surface of the bottomed cylinder (11) to the top of the convex surface (14) of the bottomed cylinder (11) is from the surface of the negative electrode current collector (5). Since it is formed slightly larger than the depth L2 to the bottom of the concave surface (56) of the negative electrode current collector plate (5), the bottomed cylindrical body (11) and the negative electrode current collector plate (5) have a concave surface (56 ) And the convex surface (14) are not in contact with each other in the region other than the fitting portion. This ensures that the concave surface (56) of the negative electrode current collector plate (5) is in close contact with the convex surface (14) of the bottomed cylindrical body (11).

この状態で、電極棒(61)と電極片(62)の間に通電すると、負極集電板(5)の凹面(56)と有底筒体(11)の凸面(14)の嵌合部に集中して電流が流れることにより発熱が生じ、これによって該嵌合部が溶融して、負極集電板(5)と有底筒体(11)とが互いに抵抗溶接されることになる。この結果、負極集電板(5)と有底筒体(11)との接合面積は、集電板と有底筒体とが点接触した状態で溶接されていた従来に比べて大きなものとなり、負極集電板(5)と有底筒体(11)との間の接続抵抗は従来に比べて小さなものとなる。   In this state, when a current is applied between the electrode rod (61) and the electrode piece (62), the fitting portion between the concave surface (56) of the negative electrode current collector plate (5) and the convex surface (14) of the bottomed cylindrical body (11). When the current flows concentratedly, heat is generated, the fitting portion is melted, and the negative electrode current collector plate (5) and the bottomed cylindrical body (11) are resistance-welded to each other. As a result, the joining area of the negative electrode current collector plate (5) and the bottomed cylindrical body (11) is larger than the conventional case where the current collector plate and the bottomed cylindrical body are welded in a point contact state. The connection resistance between the negative electrode current collector plate (5) and the bottomed cylindrical body (11) is smaller than that in the prior art.

他の構成として、負極集電板(5)と有底筒体(11)とは、互いにレーザ溶接することも可能である。この場合には、負極集電板(5)の凹面(56)を有底筒体(11)の凸面(14)に嵌合させた状態で、凹面(56)と凸面(14)の嵌合部に有底筒体(11)の裏面側からレーザ光を照射する。これによって、嵌合部の略全体を溶融させて負極集電板(5)と有底筒体(11)とを互いに溶接することが出来る。   As another configuration, the negative electrode current collector plate (5) and the bottomed cylindrical body (11) can be laser-welded to each other. In this case, the concave surface (56) and the convex surface (14) are fitted in a state where the concave surface (56) of the negative electrode current collector plate (5) is fitted to the convex surface (14) of the bottomed cylindrical body (11). The laser beam is irradiated to the part from the back side of the bottomed cylindrical body (11). Thereby, the negative electrode current collector plate (5) and the bottomed cylindrical body (11) can be welded to each other by melting the substantially entire fitting portion.

これによって、負極集電板(5)と有底筒体(11)との接合面積は、負極集電板(5)と有底筒体(11)とを抵抗溶接した場合に比べて大きくなる。この結果、負極集電板(5)と有底筒体(11)との間の接続抵抗は、負極集電板(5)と有底筒体(11)とを抵抗溶接した場合に比べて更に小さくなる。   As a result, the joining area between the negative electrode current collector plate (5) and the bottomed cylinder (11) becomes larger than when the negative electrode current collector plate (5) and the bottomed cylinder (11) are resistance welded. . As a result, the connection resistance between the negative electrode current collector plate (5) and the bottomed cylindrical body (11) is higher than that in the case where the negative electrode current collector plate (5) and the bottomed cylindrical body (11) are resistance-welded. It becomes even smaller.

上述の如く本発明に係る二次電池によれば、負極集電板(5)と有底筒体(11)の底面との溶接時に、負極集電板(5)の凹部(54)を有底筒体(11)の凸部(12)に嵌合させることにより、負極集電板(5)の凹面(56)と有底筒体(11)の凸面(14)とを確実に密着させることが出来る。
従って、負極集電板(5)と有底筒体(11)とが、負極集電板(5)の凹面(56)と有底筒体(11)の凸面(14)の嵌合部にて互いに溶接されることにより、負極集電板(5)と有底筒体(11)との接合面積は、従来に比べて大きなものとなる。これによって、負極集電板(5)と有底筒体(11)との間の接続抵抗を低減させることが出来る。この結果、電池の内部抵抗が低減され、高い充放電性能が得られる。
As described above, the secondary battery according to the present invention has the concave portion (54) of the negative electrode current collector plate (5) when welding the negative electrode current collector plate (5) and the bottom surface of the bottomed cylindrical body (11). By fitting into the convex portion (12) of the bottom cylindrical body (11), the concave surface (56) of the negative electrode current collector plate (5) and the convex surface (14) of the bottomed cylindrical body (11) are securely adhered. I can do it.
Therefore, the negative electrode current collector plate (5) and the bottomed cylinder (11) are fitted to the fitting portion between the concave surface (56) of the negative electrode current collector plate (5) and the convex surface (14) of the bottomed cylinder (11). As a result of being welded to each other, the joining area between the negative electrode current collector plate (5) and the bottomed cylindrical body (11) becomes larger than in the prior art. Thereby, the connection resistance between the negative electrode current collector plate (5) and the bottomed cylindrical body (11) can be reduced. As a result, the internal resistance of the battery is reduced, and high charge / discharge performance is obtained.

本発明の効果を確認すべく、後述する方法で2種類の円筒型リチウムイオン二次電池(実施例及び比較例)を作製し、両電池の抵抗値を比較した。
実施例
図2に示す如く、2枚の芯体(45)(47)にそれぞれ正極及び負極活物質(44)(46)を塗布して作製した正極(41)及び負極(43)を、セパレータ(42)を間に挟んで重ね合わせ、これらを渦巻き状に巻回して巻き取り電極体(4)を作製した。
図1に示す如く、負極となる有底筒体(11)の底面には、電池缶(1)の内部に向けて突出する外径8mmの凸面(14)を有する凸部(12)を形成する一方、有底筒体(11)の底面に溶接すべきニッケル製の負極集電板(5)の表面には、有底筒体(11)の凸面(14)に密着する凹面(56)を有する凹部(54)を形成した。
In order to confirm the effect of the present invention, two types of cylindrical lithium ion secondary batteries (Example and Comparative Example) were prepared by the method described later, and the resistance values of both batteries were compared.
EXAMPLE As shown in FIG. 2, a positive electrode (41) and a negative electrode (43) prepared by applying a positive electrode and a negative electrode active material (44) (46) to two cores (45) and (47), respectively, were separated into separators. (42) was sandwiched between them, and these were spirally wound to produce a wound electrode body (4).
As shown in FIG. 1, a convex portion (12) having a convex surface (14) having an outer diameter of 8 mm protruding toward the inside of the battery can (1) is formed on the bottom surface of the bottomed cylindrical body (11) serving as a negative electrode. On the other hand, on the surface of the negative electrode current collector plate (5) made of nickel to be welded to the bottom surface of the bottomed cylindrical body (11), a concave surface (56) closely contacting the convex surface (14) of the bottomed cylindrical body (11). A recess (54) having

次に、図2に示す如く、巻き取り電極体(4)の正極側の端縁(48)には、アルミニウム製の正極集電板(51)をレーザ溶接し、巻き取り電極体(4)の負極側の端縁(48)には、前記負極集電板(5)をレーザ溶接した。
そして、図3に示す如く、正極集電板(51)及び負極集電板(5)が溶接された巻き取り電極体(4)を有底筒体(11)内に収容して、負極集電板(5)の凹面(56)を有底筒体(11)の凸面(14)に嵌合させ、該凹面(56)と凸面(14)の嵌合部に抵抗溶接を施した。
更に、図1に示す如く、正極集電板(51)のリード部(53)を封口板(2)の裏面に抵抗溶接し、有底筒体(11)の開口部から有底筒体(11)内に電解液を注入した後、有底筒体(11)の開口部に絶縁部材(13)を介して封口板(2)をかしめ固定して、実施例の円筒型リチウムイオン二次電池を作製した。
Next, as shown in FIG. 2, a positive electrode current collector plate (51) made of aluminum is laser-welded to the edge (48) on the positive electrode side of the winding electrode body (4), and the winding electrode body (4) The negative electrode current collector plate (5) was laser welded to the negative electrode side edge (48).
Then, as shown in FIG. 3, the winding electrode body (4) welded to the positive electrode current collector plate (51) and the negative electrode current collector plate (5) is accommodated in the bottomed cylindrical body (11), and the negative electrode current collector plate is collected. The concave surface (56) of the electric plate (5) was fitted to the convex surface (14) of the bottomed cylindrical body (11), and resistance welding was applied to the fitting portion between the concave surface (56) and the convex surface (14).
Further, as shown in FIG. 1, the lead portion (53) of the positive electrode current collector plate (51) is resistance-welded to the back surface of the sealing plate (2), and the bottomed tube body (11) is opened from the opening of the bottomed tube body (11). 11) After injecting the electrolyte into the bottomed cylinder (11), the sealing plate (2) is caulked and fixed to the opening of the bottomed cylinder (11) via the insulating member (13), and the cylindrical lithium ion secondary of the embodiment A battery was produced.

比較例
図5に示す如く、ニッケル製の負極集電板(72)の表面に、電池缶の外部に向けて突出する外径2mmの3個のプロジェクション(73)を同一円周上に形成し、有底筒体(71)の平坦な底面と負極集電板(72)の各プロジェクション(73)との接触部に抵抗溶接を施したこと以外は上記実施例と同様にして、比較例の円筒型リチウムイオン二次電池を作製した。
Comparative Example As shown in FIG. 5, three projections (73) having an outer diameter of 2 mm projecting toward the outside of the battery can are formed on the same circumference on the surface of the negative electrode current collector plate (72) made of nickel. The comparative example was the same as the above example except that resistance welding was performed on the contact portion between the flat bottom surface of the bottomed cylindrical body (71) and each projection (73) of the negative electrode current collector plate (72). A cylindrical lithium ion secondary battery was produced.

電池の抵抗測定
実施例及び比較例における周波数1kHzでの電池の抵抗値を測定した。
抵抗測定の結果を下記表1に示す。
Battery Resistance Measurement The battery resistance value at a frequency of 1 kHz in Examples and Comparative Examples was measured.
The results of resistance measurement are shown in Table 1 below.

Figure 2006164713
Figure 2006164713

測定結果から明らかなように、実施例のリチウムイオン二次電池は、比較例のリチウムイオン二次電池に比べて抵抗値が小さく、充放電性能が向上したことが分かる。
これは、負極集電板の凹面と有底筒体の凸面の嵌合部に溶接を施した実施例のリチウムイオン二次電池の方が、負極集電板の各プロジェクションと有底筒体の底面との接触部に溶接を施した比較例のリチウムイオン二次電池に比べて、有底筒体と負極集電板との接合面積が大きく、これによって低抵抗になったものである。
従って、本発明の二次電池によれば、電池の低抵抗化を図ることが出来、高い充放電性能が得られる。
As is clear from the measurement results, it can be seen that the lithium ion secondary battery of the example has a smaller resistance value and improved charge / discharge performance compared to the lithium ion secondary battery of the comparative example.
This is because the lithium ion secondary battery of the example in which the concave portion of the negative electrode current collector plate and the convex portion of the bottomed cylindrical body are welded is different in each projection of the negative electrode current collector plate and the bottomed cylindrical body. Compared with the lithium ion secondary battery of the comparative example which welded to the contact part with a bottom face, the junction area of a bottomed cylinder and a negative electrode current collector plate was large, and became low resistance by this.
Therefore, according to the secondary battery of the present invention, the resistance of the battery can be reduced, and high charge / discharge performance can be obtained.

尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、有底筒体(11)の底面に複数の凸面を形成すると共に、負極集電板(5)の表面に有底筒体(11)の各凸面に密着する複数の凹面を形成し、負極集電板(5)の各凹面を有底筒体(11)の各凸面に密着させた状態で、負極集電板(5)と有底筒体(11)とを互いに溶接する構成を採用することも可能である。
又、有底筒体(11)の凸面(14)及び負極集電板(5)の凹面(56)の形状は半球状に限らず、有底筒体(11)の凸面(14)と負極集電板(5)の凹面(56)とが互いに密着し得る種々の形状を採用することが可能である。
In addition, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim. For example, a plurality of convex surfaces are formed on the bottom surface of the bottomed cylindrical body (11), and a plurality of concave surfaces closely contacting each convex surface of the bottomed cylindrical body (11) are formed on the surface of the negative electrode current collector plate (5). A structure in which the negative electrode current collector plate (5) and the bottomed cylindrical body (11) are welded to each other in a state where the concave surfaces of the negative electrode current collector plate (5) are in close contact with the convex surfaces of the bottomed cylindrical body (11). It is also possible to adopt.
Moreover, the shape of the convex surface (14) of the bottomed cylindrical body (11) and the concave surface (56) of the negative electrode current collector plate (5) is not limited to a hemispherical shape, and the convex surface (14) of the bottomed cylindrical body (11) and the negative electrode It is possible to adopt various shapes that allow the concave surface (56) of the current collector plate (5) to be in close contact with each other.

本発明の円筒型リチウムイオン二次電池の断面図である。It is sectional drawing of the cylindrical lithium ion secondary battery of this invention. 巻き取り電極体の一部展開斜視図である。It is a partial expansion perspective view of a winding electrode body. 負極集電板と有底筒体の溶接工程を説明する断面図である。It is sectional drawing explaining the welding process of a negative electrode current collecting plate and a bottomed cylindrical body. 図3の要部を示す拡大断面図である。It is an expanded sectional view which shows the principal part of FIG. 従来の円筒型リチウムイオン二次電池の断面図である。It is sectional drawing of the conventional cylindrical lithium ion secondary battery. 従来の負極集電板と有底筒体の溶接工程を説明する断面図である。It is sectional drawing explaining the welding process of the conventional negative electrode current collecting plate and a bottomed cylinder. 従来の負極集電板の平面図である。It is a top view of the conventional negative electrode current collecting plate.

符号の説明Explanation of symbols

(1) 電池缶
(11) 有底筒体
(12) 凸部
(14) 凸面
(2) 封口板
(4) 巻き取り電極体
(41) 正極
(43) 負極
(49) 貫通孔
(5) 負極集電板
(51) 正極集電板
(54) 凹部
(56) 凹面
(1) Battery can
(11) Bottomed cylinder
(12) Convex
(14) Convex surface
(2) Sealing plate
(4) Winding electrode body
(41) Positive electrode
(43) Negative electrode
(49) Through hole
(5) Negative current collector
(51) Positive current collector
(54) Concave
(56) Concave

Claims (5)

有底筒体(11)の開口部に絶縁部材(13)を介して封口板(2)を固定して電池缶(1)が構成され、該電池缶(1)の内部に電極体(4)が収容され、該電極体(4)の両端部には一対の電極(41)(43)が突出し、該一対の電極(41)(43)の内、一方の電極が前記封口板(2)に対して電気的に接続され、他方の電極の端縁には集電板(5)が接合され、該集電板(5)の表面と前記有底筒体(11)の底面とが互いに溶接され、封口板(2)と有底筒体(11)から電極体(4)の発生電力を取り出すことが出来る二次電池において、前記有底筒体(11)の底面には、電池缶(1)の内部に向けて突出する凸面(14)が形成される一方、前記集電板(5)の表面には、前記有底筒体(11)の凸面(14)と嵌合する凹面(56)が形成され、該凸面(14)と凹面(56)の嵌合部に溶接が施されていることを特徴とする二次電池。   A sealing plate (2) is fixed to the opening of the bottomed cylindrical body (11) via an insulating member (13) to form a battery can (1), and an electrode body (4) is formed inside the battery can (1). ) And a pair of electrodes (41) and (43) project from both ends of the electrode body (4), and one of the pair of electrodes (41) and (43) is connected to the sealing plate (2 The current collector plate (5) is joined to the edge of the other electrode, and the surface of the current collector plate (5) and the bottom surface of the bottomed cylindrical body (11) are connected to each other. In the secondary battery that is welded to each other and can take out the generated power of the electrode body (4) from the sealing plate (2) and the bottomed cylinder (11), the bottom of the bottomed cylinder (11) has a battery A convex surface (14) protruding toward the inside of the can (1) is formed, and the surface of the current collector plate (5) is fitted with the convex surface (14) of the bottomed cylindrical body (11). A secondary battery, wherein a concave surface (56) is formed, and a fitting portion between the convex surface (14) and the concave surface (56) is welded. 前記集電板(5)の凹面(56)が前記有底筒体(11)の凸面(14)に嵌合した状態で、前記集電板(5)の表面の内、前記凹面(56)を除く領域は、前記有底筒体(11)の底面から離間している請求項1に記載の二次電池。   The concave surface (56) among the surfaces of the current collector plate (5) in a state where the concave surface (56) of the current collector plate (5) is fitted to the convex surface (14) of the bottomed cylindrical body (11). The secondary battery according to claim 1, wherein the region excluding is separated from the bottom surface of the bottomed cylindrical body (11). 前記有底筒体(11)の凸面(14)と前記集電板(5)の凹面(56)の嵌合部に抵抗溶接が施されている請求項1又は請求項2に記載の二次電池。   The secondary according to claim 1 or 2, wherein resistance welding is applied to a fitting portion between the convex surface (14) of the bottomed cylindrical body (11) and the concave surface (56) of the current collector plate (5). battery. 前記有底筒体(11)の凸面(14)と前記集電板(5)の凹面(56)の嵌合部にレーザ溶接が施されている請求項1又は請求項2に記載の二次電池。   The secondary according to claim 1 or 2, wherein a laser welding is applied to a fitting portion between the convex surface (14) of the bottomed cylindrical body (11) and the concave surface (56) of the current collector plate (5). battery. 前記電極体(4)は、それぞれ帯状の正極(41)と負極(43)の間にセパレータ(42)を介在させてこれらを渦巻き状に巻回して構成され、その巻回軸心部に貫通孔(49)を有し、前記集電板(5)には、前記電極体(4)の貫通孔(49)と対向する位置に前記凹面(56)を有する凹部(54)が形成され、前記有底筒体(11)の底面には、該凹部(54)と対向する位置に前記凸面(14)を有する凸部(12)が形成されている請求項1乃至請求項4の何れかに記載の二次電池。   Each of the electrode bodies (4) is formed by winding a separator (42) between a strip-like positive electrode (41) and a negative electrode (43) in a spiral shape, and penetrating through the winding axis. A recess (54) having the concave surface (56) is formed in the current collector plate (5) at a position facing the through hole (49) of the electrode body (4); 5. The convex portion (12) having the convex surface (14) is formed on the bottom surface of the bottomed cylindrical body (11) at a position facing the concave portion (54). Secondary battery described in 1.
JP2004353624A 2004-12-07 2004-12-07 Secondary battery Expired - Fee Related JP4780954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353624A JP4780954B2 (en) 2004-12-07 2004-12-07 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353624A JP4780954B2 (en) 2004-12-07 2004-12-07 Secondary battery

Publications (2)

Publication Number Publication Date
JP2006164713A true JP2006164713A (en) 2006-06-22
JP4780954B2 JP4780954B2 (en) 2011-09-28

Family

ID=36666482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353624A Expired - Fee Related JP4780954B2 (en) 2004-12-07 2004-12-07 Secondary battery

Country Status (1)

Country Link
JP (1) JP4780954B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282696A (en) * 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd Secondary battery
WO2009128335A1 (en) * 2008-04-14 2009-10-22 トヨタ自動車株式会社 Battery and method for manufacturing the same
JP2011134663A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Sealed secondary battery
CN102569709A (en) * 2010-12-16 2012-07-11 日立汽车系统株式会社 Welded construction and resistance welding method
WO2012132266A1 (en) * 2011-03-31 2012-10-04 パナソニック株式会社 Nonaqueous electrolyte battery
JP2016532990A (en) * 2013-09-25 2016-10-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for producing electrochemical bundle of lithium battery
KR20190033026A (en) 2017-09-20 2019-03-28 주식회사 엘지화학 Cylindrical Secondary Battery Consisting of Curved Bottom
JP2020047709A (en) * 2018-09-18 2020-03-26 太陽誘電株式会社 Electrochemical device
US10658633B2 (en) 2011-02-16 2020-05-19 Panasonic Intellectual Property Management Co., Ltd. Battery and manufacturing method of the battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108930U (en) * 1978-01-19 1979-07-31
JP2000077040A (en) * 1998-08-31 2000-03-14 Sanyo Electric Co Ltd Battery
JP2000268850A (en) * 1999-03-18 2000-09-29 Sanyo Electric Co Ltd Alkaline storage battery and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54108930U (en) * 1978-01-19 1979-07-31
JP2000077040A (en) * 1998-08-31 2000-03-14 Sanyo Electric Co Ltd Battery
JP2000268850A (en) * 1999-03-18 2000-09-29 Sanyo Electric Co Ltd Alkaline storage battery and its manufacture

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282696A (en) * 2007-05-11 2008-11-20 Matsushita Electric Ind Co Ltd Secondary battery
WO2009128335A1 (en) * 2008-04-14 2009-10-22 トヨタ自動車株式会社 Battery and method for manufacturing the same
CN101999185A (en) * 2008-04-14 2011-03-30 丰田自动车株式会社 Battery and its method for manufacturing
KR101124844B1 (en) 2008-04-14 2012-03-26 도요타지도샤가부시키가이샤 Battery and method for manufacturing the same
US8580428B2 (en) 2008-04-14 2013-11-12 Toyota Jidosha Kabushiki Kaisha Battery and method for manufacturing the same
JP2011134663A (en) * 2009-12-25 2011-07-07 Sanyo Electric Co Ltd Sealed secondary battery
CN102569709A (en) * 2010-12-16 2012-07-11 日立汽车系统株式会社 Welded construction and resistance welding method
US9095924B2 (en) 2010-12-16 2015-08-04 Hitachi Automotive Systems, Ltd. Welded construction and resistance welding method
US10658633B2 (en) 2011-02-16 2020-05-19 Panasonic Intellectual Property Management Co., Ltd. Battery and manufacturing method of the battery
WO2012132266A1 (en) * 2011-03-31 2012-10-04 パナソニック株式会社 Nonaqueous electrolyte battery
JP2016532990A (en) * 2013-09-25 2016-10-20 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Method for producing electrochemical bundle of lithium battery
KR20190033026A (en) 2017-09-20 2019-03-28 주식회사 엘지화학 Cylindrical Secondary Battery Consisting of Curved Bottom
JP2020047709A (en) * 2018-09-18 2020-03-26 太陽誘電株式会社 Electrochemical device
JP7040740B2 (en) 2018-09-18 2022-03-23 太陽誘電株式会社 Electrochemical device

Also Published As

Publication number Publication date
JP4780954B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
US8603670B2 (en) Secondary battery
JP6093874B2 (en) Prismatic secondary battery
JP5917407B2 (en) Prismatic secondary battery
JP4401065B2 (en) Secondary battery and manufacturing method thereof
JP5587061B2 (en) Energizing block for resistance welding, sealed battery manufacturing method using the energizing block, and sealed battery
JP2006252890A (en) Cylinder-shaped secondary battery and manufacturing method of the same
EP1484808B1 (en) Secondary battery
JP6915616B2 (en) Secondary battery
KR20120022071A (en) Square-sealed type secondary battery
KR20120025389A (en) Square-sealed type secondary battery
WO2012090599A1 (en) Cylindrical battery and method of manufacturing thereof
WO2013031668A1 (en) Rectangular battery
JP6939566B2 (en) Power storage element
KR20120007467A (en) Square-sealed type secondary battery and manufacturing method thereof
JP6729137B2 (en) Secondary battery, manufacturing method thereof, and assembled battery using the same
JP4780954B2 (en) Secondary battery
JP4641731B2 (en) battery
JP2005071677A (en) Battery and battery unit using this
JP2002352789A (en) Secondary battery
JP2005285514A (en) Cylindrical battery and its manufacturing method
JP4428965B2 (en) Battery unit
JP2015162270A (en) Method of manufacturing cylindrical secondary battery
JP5835448B2 (en) Prismatic secondary battery
JP2006172780A (en) Battery, and manufacturing method of the battery
JP6061005B2 (en) Prismatic secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100714

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees