JP2005285514A - Cylindrical battery and its manufacturing method - Google Patents

Cylindrical battery and its manufacturing method Download PDF

Info

Publication number
JP2005285514A
JP2005285514A JP2004096961A JP2004096961A JP2005285514A JP 2005285514 A JP2005285514 A JP 2005285514A JP 2004096961 A JP2004096961 A JP 2004096961A JP 2004096961 A JP2004096961 A JP 2004096961A JP 2005285514 A JP2005285514 A JP 2005285514A
Authority
JP
Japan
Prior art keywords
current collector
electrode body
exterior body
battery
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004096961A
Other languages
Japanese (ja)
Other versions
JP4522123B2 (en
Inventor
Ikuko Harada
育幸 原田
Tatsu Yamashita
竜 山下
Makoto Ochi
誠 越智
Masao Takee
正夫 武江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004096961A priority Critical patent/JP4522123B2/en
Publication of JP2005285514A publication Critical patent/JP2005285514A/en
Application granted granted Critical
Publication of JP4522123B2 publication Critical patent/JP4522123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylindrical battery having a current collector realizing high joining strength between an electrode body and an outer jacket, low electric resistance, and the uniformity of reaction in use of the battery, and to provide the manufacturing method of the battery. <P>SOLUTION: The cylindrical battery 1 has winding structure, an electrode body 20 in which a winding core part 20h is hollow, the outer jacket 10 in which the electrode body 20 is housed, and a current collector 42 inserted between the inside bottom of the outer jacket 10 and the electrode body 20 to electrically connect them. When an extension region in which a winding core part 10h of the electrode body 10 is extended in the winding axis direction is imagined, an overlapped region of the extension region and the current collector 42 is decided as the central region 42a of the current collector 42, and a region other than the central region 42a in the current collector 42 is decided as an outer peripheral region 42b, the current collector 42 is joined to the inner bottom of the outer jacket 10 in a plurality of portions 42p, and at least one portion of the plurality of portions 42p is located in the outer peripheral region 42b. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、円筒型電池およびその製造方法に関し、特に、集電体に関わる電池抵抗を低減するための技術に関する。   The present invention relates to a cylindrical battery and a manufacturing method thereof, and more particularly to a technique for reducing battery resistance related to a current collector.

円筒型電池は、従来からも種々のポータブル機器の電力源として用いられてきたが、近年、ハイブリッド電気自動車(HEV;Hybrid Electric Vehicle)や電気自動車(Pure−Electric Vehicle)の電力源としても開発が進められている。円筒型電池は、正極板と負極板とがセパレータを介して巻回された電極体を、有底円筒状の外装体に収納し、電解液を注入した後に、外装体の開口部に蓋体を載置し、封口した構成を有する。外装体および蓋体と電極体との間は、薄い円板状をした集電体を介在させることで電気接合が図られている(特許文献1、特許文献2を参照)。   Cylindrical batteries have been conventionally used as a power source for various portable devices, but in recent years, they have also been developed as a power source for hybrid electric vehicles (HEVs) and electric vehicles (Pure-Electric Vehicles). It is being advanced. In a cylindrical battery, an electrode body in which a positive electrode plate and a negative electrode plate are wound via a separator is housed in a bottomed cylindrical exterior body, and after injecting an electrolytic solution, a lid body is formed at the opening of the exterior body. Is placed and sealed. The outer body, the lid, and the electrode body are electrically joined by interposing a thin disk-shaped current collector (see Patent Document 1 and Patent Document 2).

従来の円筒型電池に用いられている集電体の形状、および集電体と外装体との接続方法について、図7を用いて説明する。なお、以下では、缶底側に配される集電体に関し説明する。
図7(a)に示すように、集電体142は、略円形をした薄板であって、その中央部分にコの字状の切り欠き142sが設けられ、これによって舌部142aが形成されている。また、集電体142の面上の略全域には、外装体110内において電極体120の側に向けてバーリング加工部142wが形成されている。
The shape of the current collector used in the conventional cylindrical battery and the method of connecting the current collector and the exterior body will be described with reference to FIG. Hereinafter, the current collector disposed on the bottom side of the can will be described.
As shown in FIG. 7 (a), the current collector 142 is a thin plate having a substantially circular shape, and a U-shaped notch 142s is provided at the center thereof, thereby forming a tongue 142a. Yes. Further, a burring portion 142w is formed in the exterior body 110 toward the electrode body 120 in a substantially entire region on the surface of the current collector 142.

図7(b)に示すように、外装体110に収納される電極体120には、両端面に集電体が接合されている。この内、缶底側となる電極体120の下側端面に接合されるのが、上述の集電体142である。このように両端面に集電体が接合された状態の電極体120を外装体110に収納し、溶接用電極501を電極体120の巻回芯部分120hからその先端が集電体142に当たるまで挿入する。   As shown in FIG. 7B, current collectors are bonded to both end surfaces of the electrode body 120 housed in the exterior body 110. Among these, the above-described current collector 142 is joined to the lower end surface of the electrode body 120 on the can bottom side. Thus, the electrode body 120 in which the current collector is bonded to the both end faces is housed in the exterior body 110, and the welding electrode 501 is contacted with the current collector 142 from the winding core portion 120 h of the electrode body 120. insert.

外装体110の缶底に集電体142を接合するには、集電体142と外装体110との間に隙間ができないように力Fを印加しながら、溶接用電極501に電流を流すことで、集電体142における舌部142aの下面と外装体110の内側面とが接合されることになる。
ところで、図7のような集電体142を用いた場合には、集電体142と外装体110の缶底との接合箇所が舌部142aの1箇所となり、電気(電池)抵抗、接合強度などの観点から問題を有する。また、図7に示す従来の電池では、集電体142と外装体110との接合箇所が中央部の1箇所であることから、電池使用時において、電流集中による不均一な反応を生じることになり、電池の寿命が短くなる。そこで、特許文献3には、集電体における外装体との接合側面に複数の突起部を設け、この複数の突起部をもって外装体との接合を図ることで上記問題を解決しようとしている。
実開昭57−014968号公報 実開昭61−194959号公報 特開平06−275253号公報
In order to join the current collector 142 to the bottom of the can body 110, a current F is applied to the welding electrode 501 while applying a force F so that there is no gap between the current collector 142 and the exterior body 110. Thus, the lower surface of the tongue 142a of the current collector 142 and the inner surface of the exterior body 110 are joined.
By the way, when the current collector 142 as shown in FIG. 7 is used, the joint portion between the current collector 142 and the can bottom of the exterior body 110 becomes one portion of the tongue 142a, and the electric (battery) resistance and the joint strength are obtained. It has a problem from the point of view. Further, in the conventional battery shown in FIG. 7, the junction between the current collector 142 and the exterior body 110 is one place in the center, and therefore, an uneven reaction due to current concentration occurs when the battery is used. Battery life is shortened. Therefore, Patent Document 3 attempts to solve the above problem by providing a plurality of projections on the side surface of the current collector that is joined to the exterior body and joining the exterior body with the plurality of projections.
Japanese Utility Model Publication No. 57-014968 Japanese Utility Model Publication No. 61-194959 Japanese Patent Laid-Open No. 06-275253

しかしながら、上記特許文献3の円筒型電池では、集電体に複数の突起を設け、この複数の突起をもって外装体との接続を実施しているが、集電体における複数の突起が集電体の中央領域に集中的に配置されているので、接合後における集電体と外装体との間の高い電気抵抗、および電池使用時に電流集中による反応の不均一性を生じるという問題が残る。よって、この特許文献3の円筒型電池では、電池性能が低く、また、電池寿命も短いという問題点を有している。   However, in the cylindrical battery of Patent Document 3, a plurality of protrusions are provided on the current collector, and the plurality of protrusions are connected to the exterior body. However, the plurality of protrusions on the current collector are connected to the current collector. Therefore, there remains a problem that a high electrical resistance between the current collector and the outer package after joining and non-uniform reaction due to current concentration when the battery is used. Therefore, the cylindrical battery of Patent Document 3 has problems that the battery performance is low and the battery life is short.

本発明は、このような問題を解決しようとなされたものであって、集電体と外装体との間の低い電気抵抗、高い接合強度および電池使用時における反応の均一性を高く確保することができる円筒型電池およびその製造方法を提供することを目的とする。   The present invention has been made to solve such problems, and ensures high electrical resistance between the current collector and the exterior body, high joint strength, and high uniformity of reaction during battery use. It is an object of the present invention to provide a cylindrical battery that can be manufactured and a method for manufacturing the same.

上記目的を達成するために、本発明は、次のような特徴を有する。
(1)正負両極板がセパレータを介して巻回され、巻回芯部分が中空となっている電極体と、導電性材料からなる有底円筒状体であり、電極体を収納する外装体と、導電性材料からなり、外装体の内底と電極体との電気接続を図るのに間に介挿される集電体とを有する円筒型電池であって、電極体の巻回芯部分を巻回軸方向に延長した延長領域を想定し、この延長領域と集電体との重畳領域を集電体の中央領域とし、集電体における中央領域を除く領域を外縁領域とするとき、集電体は、外装体の内底に複数の箇所で接合され、且つ、その複数の箇所の少なくとも1箇所は、外縁領域に存在することを特徴とする。
In order to achieve the above object, the present invention has the following characteristics.
(1) An electrode body in which positive and negative bipolar plates are wound through a separator and a winding core portion is hollow, and a bottomed cylindrical body made of a conductive material, and an exterior body that houses the electrode body, A cylindrical battery made of a conductive material and having a current collector interposed between the inner bottom of the exterior body and the electrode body, the winding core portion of the electrode body being wound Assuming an extended area extending in the direction of the rotation axis, the overlapping area between the extended area and the current collector is the central area of the current collector, and the area excluding the central area of the current collector is the outer edge area. The body is bonded to the inner bottom of the exterior body at a plurality of locations, and at least one of the plurality of locations exists in the outer edge region.

(2)上記(1)に係る円筒型電池であって、集電体は、外縁部分に外装体の内底に向けた突起部が複数形成されており、当該複数の突起部の先端領域が前記外装体の内底に接合されていることを特徴とする。
(3)上記(2)に係る円筒型電池であって、複数の突起部は、電極体の巻回軸中心から略等距離に配置されていることを特徴とする。
(2) In the cylindrical battery according to (1) above, the current collector has a plurality of protrusions formed on the outer edge portion toward the inner bottom of the exterior body, and the tip regions of the plurality of protrusions are It is joined to the inner bottom of the exterior body.
(3) In the cylindrical battery according to the above (2), the plurality of protrusions are arranged at substantially equal distances from the center of the winding axis of the electrode body.

(4)上記(1)〜(3)の何れかに係る円筒型電池であって、中央領域における集電体と外装体の内底との間には、絶縁体が介挿されていることを特徴とする。
(5)上記(2)〜(4)の何れかに係る円筒型電池であって、電極体と集電体とは、集電体において電極体の側に向けて形成された接合部と正極板または負極板の端面とで接合されており、突起部は、前記電極体の径方向において、接合部と重畳しない位置に形成されているることを特徴とする。
(4) The cylindrical battery according to any one of (1) to (3), wherein an insulator is interposed between the current collector in the central region and the inner bottom of the exterior body. It is characterized by.
(5) The cylindrical battery according to any one of (2) to (4), wherein the electrode body and the current collector are a junction and a positive electrode formed toward the electrode body side in the current collector. It is joined with the end surface of a board or a negative electrode board, and the projection part is formed in the position which does not overlap with a junction part in the radial direction of the said electrode body.

(6)円筒型電池の製造方法であって、次のステップを有する。
*電極体形成ステップ;セパレータを介して正負両極板を対向配置し、この状態で巻回加工することで、巻回芯部分が中空である電極体を形成する。
*集電体接合ステップ;電極体における巻回軸方向の少なくとも一端面に、導電性材料からなる集電体を接合する。
(6) A method for manufacturing a cylindrical battery, comprising the following steps.
* Electrode body forming step: The positive and negative bipolar plates are opposed to each other with a separator interposed therebetween, and the electrode body having a hollow winding core portion is formed by winding in this state.
* Current collector joining step: A current collector made of a conductive material is joined to at least one end surface of the electrode body in the winding axis direction.

*収納ステップ;集電体が接合されてなる電極体を、集電体の側を内底に向けた状態で、導電性材料からなる有底円筒状の外装体に収納する。
*接合ステップ;集電体を外装体の内底に接合する。
ここで、電極体の巻回芯部分を巻回軸方向に延長した延長領域を想定し、この延長領域と集電体との重畳領域を集電体の中央領域とし、集電体における中央領域を除く領域を外縁領域とするとき、接合ステップにおいて、集電体は、外装体の内底に複数の箇所で接合され、且つ、当該複数の箇所の少なくとも1箇所は、外縁領域に位置することを特徴とする。
* Storage step: The electrode body to which the current collector is bonded is housed in a bottomed cylindrical exterior body made of a conductive material with the current collector side facing the inner bottom.
* Joining step: Joining the current collector to the inner bottom of the outer package.
Here, assuming an extension region in which the winding core portion of the electrode body is extended in the winding axis direction, the overlapping region of the extension region and the current collector is a central region of the current collector, and the central region in the current collector In the joining step, the current collector is joined to the inner bottom of the exterior body at a plurality of locations, and at least one of the plurality of locations is located in the outer edge region. It is characterized by.

(7)上記(6)に係る円筒型電池の製造方法であって、複数の突起部は、電極体の巻回軸中心から略等距離に配置されていることを特徴とする。
(8)上記(6)または(7)に係る円筒型電池の製造方法であって、中央領域において、集電体と外装体の内底との間には、絶縁体が介挿されていることを特徴とする。
(9)上記(6)〜(8)の何れかに係る円筒型電池の製造方法であって、接合ステップにおいては、抵抗溶接法を用いて、集電体と外装体の内底とを接合することを特徴とする。
(7) The method for manufacturing a cylindrical battery according to (6), wherein the plurality of protrusions are arranged at substantially equal distances from the center of the winding axis of the electrode body.
(8) In the method for manufacturing the cylindrical battery according to (6) or (7), an insulator is interposed between the current collector and the inner bottom of the exterior body in the central region. It is characterized by that.
(9) A method for manufacturing a cylindrical battery according to any one of (6) to (8) above, wherein, in the joining step, the current collector and the inner bottom of the exterior body are joined using a resistance welding method. It is characterized by doing.

本発明に係る円筒型電池では、集電体と外装体の内底との間が、少なくとも外縁領域の1箇所を含む複数の箇所で接合された状態となっていることので、集電体と外装体とが確実に複数の箇所で接合されることになり、低い電気抵抗、高い接合強度、および電池使用時における電流の分散による反応の高い均一性などの優位性を有している。このような本発明の優位性について、上記特許文献3に係る円筒型電池との比較において、説明する。   In the cylindrical battery according to the present invention, the current collector and the inner bottom of the exterior body are joined at a plurality of locations including at least one location of the outer edge region. The exterior body is surely joined at a plurality of locations, and has advantages such as low electrical resistance, high joint strength, and high uniformity of reaction due to current dispersion when the battery is used. Such superiority of the present invention will be described in comparison with the cylindrical battery according to Patent Document 3.

上記特許文献3の円筒型電池では、複数の突起が集電体の中央、即ち、集電体と外装体との接合時において溶接用電極が当接される部分の直下およびその近傍領域に集中して設けられている。このため、集電体と外装体とは、複数の突起によって接続されているものの、中央領域の狭い領域でしか接合されないことになる。このため、上記特許文献3の円筒型電池では、集電体と外装体との間の電気抵抗が高く、また、接合箇所が中央領域に集中して配されているので、電池使用時において、電極体の巻回芯部分に反応が集中することになり、電池寿命が短い。   In the cylindrical battery of Patent Document 3, the plurality of protrusions are concentrated in the center of the current collector, that is, directly below and in the vicinity of the portion where the welding electrode contacts when the current collector and the exterior body are joined. Is provided. For this reason, although the current collector and the exterior body are connected by a plurality of protrusions, they are joined only in a narrow region of the central region. For this reason, in the cylindrical battery of Patent Document 3 described above, the electrical resistance between the current collector and the exterior body is high, and the joints are concentrated in the central region. Reaction concentrates on the winding core part of the electrode body, and the battery life is short.

これに対して、本発明に係る円筒型電池では、集電体と外装体とが、外縁領域の少なくとも1箇所を含む複数の箇所で接合されているので、複数の箇所で確実に接合されることになる。よって、集電体と外装体との間の低い電気抵抗が実現され、電池使用時における電流集中が生じることもない。本発明に係る円筒型電池では、その使用時において、電流の集中による反応の不均一を生じ難い。また、本発明に係る出円筒型電池では、集電体と外装体とが複数の箇所で接合されることから、図7に示す従来の円筒型電池に比べて、その間の高い接合強度も確保される。   On the other hand, in the cylindrical battery according to the present invention, the current collector and the exterior body are joined at a plurality of locations including at least one location of the outer edge region, so that they are reliably joined at a plurality of locations. It will be. Therefore, a low electrical resistance between the current collector and the exterior body is realized, and current concentration does not occur when the battery is used. In the cylindrical battery according to the present invention, nonuniform reaction due to current concentration is unlikely to occur during use. Further, in the outgoing cylindrical battery according to the present invention, since the current collector and the exterior body are joined at a plurality of locations, a high joint strength between them is ensured as compared with the conventional cylindrical battery shown in FIG. Is done.

従って、本発明に係る円筒型電池は、集電体と外装体との間の高い接合強度および低い電気抵抗、電池使用時における反応の高い均一性の確保がなされる。
なお、本発明に係る円筒型電池においては、製造時に集電体と外装体との間に押さえつける力を加えた場合にも、中央領域における集電体と外装体との間の間隙をより確実に確保するために、この領域における集電体と外装体の内底との間に絶縁体を介挿させておくことが望ましい。
Therefore, the cylindrical battery according to the present invention ensures high bonding strength and low electrical resistance between the current collector and the exterior body, and high uniformity of reaction when the battery is used.
In the cylindrical battery according to the present invention, even when a pressing force is applied between the current collector and the exterior body during manufacturing, the gap between the current collector and the exterior body in the central region is more sure. Therefore, it is desirable to interpose an insulator between the current collector in this region and the inner bottom of the exterior body.

また、本発明に係る円筒型電池においては、外縁領域に複数の接合箇所を設けておくことが望ましいが、その場合には、外縁領域における複数の接合箇所が必ずしも個別に分かれて存在している必要はない。例えば、接合箇所が一続きにリング状を呈していても、本発明における円筒型電池の構成に含むものである。
本発明に係る円筒型電池の製造方法は、電極体の巻回軸方向の端面に接合する集電体の外縁領域に位置する少なくとも1箇所を含む複数の箇所を用いて集電体と外装体との接合を実施するので、上述のように集電体と外装体との間の低い電気抵抗、高い溶接強度を実現することができる。また、この方法を用いて製造された円筒型電池では、複数の接合箇所の内、少なくとも1箇所が外縁領域に配置されているので、電池使用時において、電流が中央領域に集中することがなく、電流分散による反応の均一性を高く維持し得る。
Moreover, in the cylindrical battery according to the present invention, it is desirable to provide a plurality of joints in the outer edge region, but in that case, the plurality of joints in the outer edge region are not necessarily present separately. There is no need. For example, even if the joining portions continuously form a ring shape, they are included in the configuration of the cylindrical battery in the present invention.
The method for manufacturing a cylindrical battery according to the present invention includes a current collector and an exterior body using a plurality of locations including at least one location located in an outer edge region of the current collector joined to an end surface of the electrode body in the winding axis direction. Therefore, low electrical resistance and high welding strength between the current collector and the exterior body can be realized as described above. In addition, in the cylindrical battery manufactured using this method, at least one of the plurality of joints is disposed in the outer edge region, so that current does not concentrate in the central region when the battery is used. The uniformity of the reaction due to current dispersion can be kept high.

従って、本発明に係る円筒型電池の製造方法では、集電体と外装体との間の高い接合強度および低い電気抵抗、電池使用時における反応の高い均一性が確保された円筒型電池を容易に製造することができる。   Therefore, in the method for manufacturing a cylindrical battery according to the present invention, it is easy to obtain a cylindrical battery in which high bonding strength and low electrical resistance between the current collector and the exterior body and high uniformity of reaction during battery use are ensured. Can be manufactured.

(実施の形態1)
以下では、発明を実施するための最良の形態について、円筒型のニッケル−水素密閉二次電池(以下では、単に「電池」という。)1を一例に、図面を参酌しながら説明する。なお、以下で説明する電池1は、本発明の構成および作用・効果を説明するために一例として用いるものであって、本発明はこれに限定を受けるものではない。
(電池1の全体構成)
本発明の実施の形態に係る電池1の構造について、図1を用いて説明する。
(Embodiment 1)
In the following, the best mode for carrying out the invention will be described by taking a cylindrical nickel-hydrogen sealed secondary battery (hereinafter simply referred to as “battery”) 1 as an example with reference to the drawings. The battery 1 described below is used as an example for explaining the configuration, operation, and effect of the present invention, and the present invention is not limited thereto.
(Overall configuration of battery 1)
The structure of the battery 1 according to the embodiment of the present invention will be described with reference to FIG.

図1に示すように、電池1は、渦巻状に成形された電極体20がその上下端部に正負両集電体41、42が接合された上で、有底筒状の外装体10の内方に収納され構成されている。そして、外装体10における上方開口部は、封口蓋30で封口された構造を有する。また、電極体20の外周面と外装体30の内壁面との間には、電極体20の巻き緩み等を防止(結束)する目的でその外周面に被着されたフィルム体(不図示)が介挿されている。   As shown in FIG. 1, the battery 1 includes a spirally-shaped electrode body 20 in which the positive and negative current collectors 41 and 42 are joined to the upper and lower ends, and It is housed and configured inside. And the upper opening part in the exterior body 10 has the structure sealed with the sealing cover 30. FIG. In addition, a film body (not shown) attached between the outer peripheral surface of the electrode body 20 and the inner wall surface of the exterior body 30 for the purpose of preventing (binding) the electrode body 20 from being loosened or wounded. Is inserted.

図1に示すように、電池1を構成する要素の内、電極体20は、正極板21と負極板22とがセパレータ23を間に挟んだ状態で対向配置され、この状態をもって渦巻状に巻回成型され、巻回芯部分が中空となったものである。
電極体20の構成要素の内、正極板21は、例えば、パンチングメタルからなる芯体の表面にニッケル焼結多孔体を形成した後、このニッケル焼結多孔体の内方に化学含浸法をもって水酸化ニッケルを主体とする活物質を充填して作製されたものである。また、負極板22は、例えば、パンチングメタルを芯体とし、この芯体表面に水素吸蔵合金からなるペースト状活物質を充填し、乾燥させた後に、所定の厚みとなるまで圧延することで作製されるものである。
As shown in FIG. 1, among the elements constituting the battery 1, the electrode body 20 is disposed so as to face each other with a positive electrode plate 21 and a negative electrode plate 22 sandwiching a separator 23 therebetween. The wound core part is hollow and is hollow.
Among the constituent elements of the electrode body 20, the positive electrode plate 21 is formed, for example, by forming a nickel sintered porous body on the surface of a core body made of punching metal, and then using a chemical impregnation method on the inside of the nickel sintered porous body. It is produced by filling an active material mainly composed of nickel oxide. The negative electrode plate 22 is produced, for example, by using a punching metal as a core, filling the surface of the core with a paste-like active material made of a hydrogen storage alloy, drying, and rolling to a predetermined thickness. It is what is done.

正負両集電体41、42は、薄肉の金属製円板を主構成とするものであって、封口蓋30の電極部と正極板21、外装体10の缶底部分10Bと負極板22とのそれぞれの間の良好な電気接合を図るものである。
外装体10は、金属材料からなる有底円筒状体であり、その内径は、電極体20の外径と略同等に設定されている。外装体10の缶底部分10Bの径方向中央部分においては、外装体10と負極集電体42との間に絶縁部材50が介挿されている。
The positive and negative current collectors 41 and 42 are mainly composed of thin metal discs, and include the electrode portion of the sealing lid 30 and the positive electrode plate 21, the can bottom portion 10B of the outer package 10, the negative electrode plate 22, It is intended to achieve a good electrical connection between each of the above.
The exterior body 10 is a bottomed cylindrical body made of a metal material, and the inner diameter thereof is set substantially equal to the outer diameter of the electrode body 20. An insulating member 50 is interposed between the exterior body 10 and the negative electrode current collector 42 at the radial center portion of the can bottom portion 10B of the exterior body 10.

封口蓋30は、上述のように、外装体10の開口部に載置され、間にガスケットを介挿した状態で縁部分がカシメ加工が施されている。封口蓋30には、電池内圧の上昇時におけるガス抜き機構が備えられているが、これについては公知のものであるので、ここでの説明は省略する。
なお、外装体10の内方には、電極体20、正負両集電体41、42および絶縁部材50の他に、例えば、30(mass%)水酸化カリウム水溶液からなる電解液が注入されている(不図示)。
(缶底部分10Bにおける電池1の詳細構造)
次に、電池1の構成の内、本実施の形態の最も特徴的な部分である缶底部分10Bの周辺の構造について、図2を用いて説明する。
As described above, the sealing lid 30 is placed on the opening of the exterior body 10, and the edge portion is crimped with a gasket interposed therebetween. The sealing lid 30 is provided with a gas venting mechanism at the time when the battery internal pressure rises, but since this is a known one, the description thereof is omitted here.
In addition to the electrode body 20, the positive and negative current collectors 41 and 42, and the insulating member 50, for example, an electrolytic solution made of a 30 (mass%) potassium hydroxide aqueous solution is injected into the exterior of the exterior body 10. (Not shown).
(Detailed structure of battery 1 in can bottom portion 10B)
Next, the structure around the can bottom portion 10B which is the most characteristic part of the present embodiment in the configuration of the battery 1 will be described with reference to FIG.

図2に示すように、外装体10の内方に収納される電極体20には、上述のように巻回芯部分20hが中空となっている。この巻回芯部分20hを臨む電極体20の内壁面20aには、セパレータ23が配置されている。そして、電極体20の負極板22は、その芯体22aがZ方向下側に延出された状態となっており、この芯体22aの端面で負極集電体42との接合が図られている。具体的には、負極集電体42にはZ方向上方に向けてバーリング加工部42wが複数形成されている。このバーリング加工部42wは、負極板22との接合部として設けられているものであって、負極板22における芯体22aの端面にその一部が接合されている。ここで、負極集電体42は、NiメッキSPCEなどの導電材料から構成されている。   As shown in FIG. 2, in the electrode body 20 housed inside the exterior body 10, the winding core portion 20h is hollow as described above. A separator 23 is disposed on the inner wall surface 20a of the electrode body 20 facing the winding core portion 20h. The negative electrode plate 22 of the electrode body 20 is in a state where the core body 22a extends downward in the Z direction, and the end face of the core body 22a is joined to the negative electrode current collector 42. Yes. Specifically, the negative electrode current collector 42 is formed with a plurality of burring portions 42 w upward in the Z direction. The burring portion 42 w is provided as a joint with the negative electrode plate 22, and a part thereof is joined to the end surface of the core body 22 a in the negative electrode plate 22. Here, the negative electrode current collector 42 is made of a conductive material such as Ni plating SPCE.

また、上述のように、負極集電体42と外装体10との間には、絶縁部材50が介挿されているが、この絶縁部材50のX方向における設置領域は、次の通りである。
電極体20に負極集電体42を接合した状態において、巻回芯部分20hを巻回方向(Z方向)に延長した領域を想定し、この延長した領域と負極集電体42との重畳する領域を負極集電体42における中央領域42aと仮定するとき、絶縁部材50は、負極集電体42の缶底側(Z方向下側)であって、中央領域42aよりもやや径方向に大きいサイズに設定されている。
Further, as described above, the insulating member 50 is interposed between the negative electrode current collector 42 and the exterior body 10, and the installation region in the X direction of the insulating member 50 is as follows. .
In a state where the negative electrode current collector 42 is bonded to the electrode body 20, a region in which the winding core portion 20 h is extended in the winding direction (Z direction) is assumed, and the extended region and the negative electrode current collector 42 overlap each other. When the region is assumed to be the central region 42a of the negative electrode current collector 42, the insulating member 50 is on the bottom side (lower side in the Z direction) of the negative electrode current collector 42 and is slightly larger in the radial direction than the central region 42a. Set to size.

また、負極集電体42における上記中央領域を除いた領域を外縁領域42bとするとき、負極集電体42は、この外縁領域42bに複数設けられた突起(プロジェクション)部42pの先端部分およびその近傍部分で外装体10に接合されている。なお、突起部42pにおけるZ方向高さは、絶縁部材50のZ方向寸法(厚み)よりもやや大きい寸法に設定されている。   In addition, when the region excluding the central region in the negative electrode current collector 42 is defined as the outer edge region 42b, the negative electrode current collector 42 includes the tip portion of the projection (projection) portion 42p provided in the outer edge region 42b and It is joined to the exterior body 10 in the vicinity. In addition, the Z direction height in the protrusion part 42p is set to a dimension a little larger than the Z direction dimension (thickness) of the insulating member 50. FIG.

なお、負極集電体42における突起部42pの形成数については、2以上であればよいが、本実施の形態では、一例として4箇所としている。
(電池1の優位性)
以上のように、電池1では、外装体10の缶底に収納された負極集電体42が、その外縁部分42bに形成された複数の突起部42pで外装体10と接合されており、集電体142が舌部142aだけで外装体110に接合されている上記図7の従来電池よりも、その接合強度の面で優れる。また、本実施の形態に係る電池1では、外縁領域42bに存在する複数の突起部42pをもって負極集電体42と外装体10とが接合されているので、その間での低い電気抵抗が実現されるとともに、電池使用時において、導電経路の分散により反応の均一性が向上される。
Note that the number of protrusions 42p formed on the negative electrode current collector 42 may be two or more, but in this embodiment, the number is four as an example.
(Superiority of battery 1)
As described above, in the battery 1, the negative electrode current collector 42 housed in the can bottom of the outer package 10 is joined to the outer package 10 by the plurality of protrusions 42 p formed on the outer edge portion 42 b. 7 is superior to the conventional battery of FIG. 7 in which the electric body 142 is bonded to the exterior body 110 only by the tongue 142a. Further, in the battery 1 according to the present embodiment, since the negative electrode current collector 42 and the exterior body 10 are joined with the plurality of protrusions 42p existing in the outer edge region 42b, a low electrical resistance therebetween is realized. In addition, when the battery is used, the uniformity of the reaction is improved by the dispersion of the conductive path.

なお、上記特許文献3の電池については、複数の突起部を集電体に形成しているものの、上述のように、複数の突起部が集電体の中央領域に集中して配置されているので、電池抵抗が高く、また、電池使用時において、電流の集中による反応の不均一を生じる。よって、本実施の形態に係る電池1は、上記特許文献3に係る電池に対しても上記優位性を有する。
(電池1の製造方法)
電池1の製造方法について、図3〜5を用いて説明する。
In addition, about the battery of the said patent document 3, although several protrusion part is formed in the electrical power collector, as above-mentioned, several protrusion part is concentrated and arrange | positioned at the center area | region of an electrical power collector. Therefore, the battery resistance is high, and when the battery is used, non-uniform reaction occurs due to current concentration. Therefore, the battery 1 according to the present embodiment has the above advantages over the battery according to Patent Document 3.
(Method for manufacturing battery 1)
A method for manufacturing the battery 1 will be described with reference to FIGS.

1.電極体20への正負両集電体41、42の接合
図3に示すように、渦巻状の巻回成形された電極体20に対し、その上端面に正極集電体41を接合し、下端面に負極集電体42を接合する。本実施の形態においては、抵抗溶接法を用いて、電極体20の端面に各集電板41、42を接合する。なお、この接合に際しては、抵抗溶接法の他に、レーザビーム溶接法、電子ビーム溶接法なども用いることができ、その場合には、バーリング加工部42wの形成は不要となる。
1. As shown in FIG. 3, the positive electrode current collector 41 is bonded to the upper end surface of the spirally wound electrode body 20 as shown in FIG. The negative electrode current collector 42 is bonded to the end face. In the present embodiment, the current collector plates 41 and 42 are joined to the end face of the electrode body 20 using a resistance welding method. In this connection, in addition to the resistance welding method, a laser beam welding method, an electron beam welding method, or the like can be used. In this case, the burring portion 42w need not be formed.

負極集電体42における電極体20への接合面とは反対側の主面には、絶縁部材50を接合する。
電極体20は、正極板21と負極板22とを間にセパレータ23を挟んだ状態で対向配置し、巻回加工して形成されたものであって、その巻回芯部分20hが中空となっている。そして、電極体20の図3上方からは正極板21の端部が露出しており、また、下方からは負極板22の端部が露出している。
An insulating member 50 is bonded to the main surface of the negative electrode current collector 42 opposite to the bonding surface to the electrode body 20.
The electrode body 20 is formed by facing and arranging a positive electrode plate 21 and a negative electrode plate 22 with a separator 23 interposed therebetween, and is wound, and the winding core portion 20h is hollow. ing. And the edge part of the positive electrode plate 21 is exposed from the upper part of FIG. 3 of the electrode body 20, and the edge part of the negative electrode plate 22 is exposed from the downward direction.

正極集電体41は、円形の板体に楕円断面を有するパイプ状接続体41aが接続され形成されている。正極集電体41における板体には、図3の下向き、即ち、電極体20の方に向けて形成されたバーリング加工部41wが複数形成されている。また、パイプ状接続体41aには、電極体20の巻回芯部分20hと同径あるいは少し大きめの孔41hが形成されており、これに続く孔は、板体にも形成されている(不図示)。   The positive electrode current collector 41 is formed by connecting a pipe-like connecting body 41a having an elliptical cross section to a circular plate. The plate body of the positive electrode current collector 41 has a plurality of burring portions 41 w formed downward in FIG. 3, that is, toward the electrode body 20. The pipe-shaped connecting body 41a is formed with a hole 41h having the same diameter as or slightly larger than the winding core portion 20h of the electrode body 20, and the subsequent hole is also formed in the plate body (not shown). (Illustrated).

図4(a)に示すように、負極集電体42には、複数のバーリング加工部42wと4箇所の突起部42pとが形成されている。図4(b)に示すように、複数のバーリング加工部42wは、負極集電体42の主面が電極体20の側に打ち抜きされ、バリ状に突出した端縁42w2によって打ち抜き開口部42w1を取り囲むように形成されたものである。
また、図4(a)に示すように、4箇所の突起部42pは、負極集電体42の外縁領域42bに形成されており、電極体20の巻回軸を中心とする同一円周上に配されている。そして、図4(c)に示すように、突起部42pは、負極集電体42が外装体10の缶底部分10Bに向けて張り出し加工され形成されたものである。なお、突起部42pの形成については、複数であれば必ずしも4箇所である必要はないが、集電の均一性を確保するという観点から、その位置を外縁部分42bとすることが望ましく、電極体20の巻回軸から等距離にすることが望ましい。
As shown in FIG. 4A, the negative electrode current collector 42 is formed with a plurality of burring portions 42w and four protrusions 42p. As shown in FIG. 4B, the plurality of burring portions 42w are formed by punching the opening 42w1 by the edge 42w2 projecting in a burr shape, with the main surface of the negative electrode current collector 42 punched toward the electrode body 20 side. It is formed so as to surround it.
As shown in FIG. 4A, the four protrusions 42p are formed in the outer edge region 42b of the negative electrode current collector 42, and are on the same circumference with the winding axis of the electrode body 20 as the center. It is arranged in. As shown in FIG. 4C, the protrusion 42 p is formed by projecting the negative electrode current collector 42 toward the can bottom portion 10 </ b> B of the outer package 10. In addition, as for the formation of the protrusion 42p, the number of the protrusions 42p is not necessarily four, but from the viewpoint of ensuring the uniformity of current collection, the position is preferably the outer edge portion 42b. It is desirable to equidistant from the 20 winding axes.

絶縁部材50は、負極集電体42における中央領域42aよりも若干大きいサイズに設定されており、電極体20が接合された主面の裏面において、中央領域42a全体を覆うように接合される。絶縁部材50には、電解液に対して化学的に安定した材料を用いることが必要となり、例えば、ポリプロピレン(PP)、ポリエチレン(PE)、PTFE(ポリテトラフルオロエチレン)などの有機材料や、アルミナ等のセラミクス材料を用いることが可能である。   The insulating member 50 is set to a size slightly larger than the central region 42a of the negative electrode current collector 42, and is bonded so as to cover the entire central region 42a on the back surface of the main surface to which the electrode body 20 is bonded. For the insulating member 50, it is necessary to use a material that is chemically stable with respect to the electrolytic solution. For example, organic materials such as polypropylene (PP), polyethylene (PE), and PTFE (polytetrafluoroethylene), alumina It is possible to use ceramic materials such as

なお、絶縁部材50については、その厚みを負極集電体42の突起部42pの高さよりも小さなものとしておく必要がある。
このようにして、電極体20への集電体41、42の接合が完了する。
2.負極集電体42と外装体10の缶底部分10Bとの接合
次に、電極体20に接合された負極集電体42と外装体10との接合方法について、図5を用いて説明する。
The insulating member 50 needs to have a thickness smaller than the height of the protrusion 42p of the negative electrode current collector 42.
In this way, the joining of the current collectors 41 and 42 to the electrode body 20 is completed.
2. Joining of Negative Electrode Current Collector 42 and Can Bottom Portion 10B of Exterior Body 10 Next, a joining method of the negative electrode current collector 42 joined to the electrode body 20 and the exterior body 10 will be described with reference to FIG.

図5(a)に示すように、有底円筒状の外装体20の内方に集電体41、42および絶縁部材50が接合された電極体20を収納する。このとき、絶縁部材50と外装体10の缶底部分10Bの内底面との間には隙間を有しており、缶底部分10Bの内底面には、負極集電体42の突起部42pの先端部分が接した状態となっている。
電極体20の収納後に、電極体20の巻回芯部分20hを通して溶接用電極501を挿入し、その一端を負極集電体42における中央領域42aに接触させる。そして、溶接用電極501の侵入方向において、外装体10と溶接用電極501との間に所要の加圧力F1をかける。そして、加圧状態を維持したまま、溶接電流I0を一定時間流すことによって、負極集電体42の突起部42pの先端およびその周辺部分が外装体10の缶底部分10Bに溶接される。ここで、溶接用電極501の加圧時においては、同時に加圧部材(例えば、ゴムなどの弾性部材)で正極集電体41の外側主面を缶底部分10Bの側に向かって加圧力F2をかける。これは、負極集電体42と外装体10の缶底部分10Bの内底とがより確実に密着するようにするためのものである。ここで、加圧力F1と加圧力F2とは、必ずしも同一である必要はない。
As shown in FIG. 5A, the electrode body 20 in which the current collectors 41 and 42 and the insulating member 50 are joined is housed inside the bottomed cylindrical exterior body 20. At this time, there is a gap between the insulating member 50 and the inner bottom surface of the can bottom portion 10B of the outer package 10, and the inner bottom surface of the can bottom portion 10B has a protrusion 42p of the negative electrode current collector 42. The tip is in contact.
After the electrode body 20 is stored, the welding electrode 501 is inserted through the winding core portion 20 h of the electrode body 20, and one end thereof is brought into contact with the central region 42 a of the negative electrode current collector 42. Then, a required pressure F 1 is applied between the outer package 10 and the welding electrode 501 in the penetration direction of the welding electrode 501. Then, the tip of the protrusion 42p of the negative electrode current collector 42 and its peripheral portion are welded to the can bottom portion 10B of the outer package 10 by flowing the welding current I 0 for a certain time while maintaining the pressurized state. Here, at the time of pressurization of the welding electrode 501, a pressure F is applied to the outer bottom surface of the positive electrode current collector 41 toward the can bottom portion 10 </ b> B simultaneously with a pressurizing member (for example, an elastic member such as rubber). Multiply 2 . This is for ensuring that the negative electrode current collector 42 and the inner bottom of the can bottom portion 10B of the outer package 10 are in close contact with each other. Here, the applied pressure F 1 and the applied pressure F 2 are not necessarily the same.

溶接条件は、例えば、次に示す通りである。
SQD(加圧状態で通電開始までの時間):100(msec.)
WE(通電時間):8(msec.)
UP SLOPE(電流値立ち上がりまでの時間):4(msec.)
HEAT(通電電流):12(kA)
このように溶接電流I0を溶接用電極501から流したとき、負極集電体42における電流は、図5(a)に示すように、4つ設けられた突起部42pに分岐され、各突起部42pと外装体10の缶底部分10Bとの間には、電流I1が各々流れることになる。そして、負極集電体42における溶接用電極501の先端部分が接触した部分の裏面と、外装体10の底面部分10Bの内底面との間には、絶縁部材50が介挿されているので、加圧力F1をかけて溶接を実行した際にも、負極集電体42の中央領域42a(図2参照。)で溶接電流I0が流れることはない。
The welding conditions are, for example, as shown below.
SQD (Time to start energization in pressurized state): 100 (msec.)
WE (energization time): 8 (msec.)
UP SLOPE (Time to rise of current value): 4 (msec.)
HEAT (energization current): 12 (kA)
When the welding current I 0 is passed from the welding electrode 501 in this way, the current in the negative electrode current collector 42 is branched into four protrusions 42p as shown in FIG. The current I 1 flows between the portion 42p and the can bottom portion 10B of the outer package 10. And since the insulating member 50 is interposed between the back surface of the portion where the tip portion of the welding electrode 501 contacts the negative electrode current collector 42 and the inner bottom surface of the bottom surface portion 10B of the exterior body 10, Even when welding is performed with the applied pressure F 1 , the welding current I 0 does not flow in the central region 42 a (see FIG. 2) of the negative electrode current collector 42.

以上のようにして、外装体10と負極集電体42との接合が完了する。なお、図示はしていないが、この後に外装体10の内方に所要量の電解液を注入し、封口蓋30をもって外装体10の開口部分を封口して、電池1が完成する。
(変形例)
次に、変形例に係る電池について、上記実施の形態に係る電池1との差異部分を中心に、図5(b)を用いて説明する。
As described above, the joining of the outer package 10 and the negative electrode current collector 42 is completed. Although not shown, after that, a required amount of electrolyte is injected into the exterior of the exterior body 10, and the opening portion of the exterior body 10 is sealed with the sealing lid 30 to complete the battery 1.
(Modification)
Next, a battery according to a modification will be described with reference to FIG. 5B with a focus on differences from the battery 1 according to the above embodiment.

図5(b)に示すように、本変形例に係る電池では、上記実施の形態に係る電池1と異なり、負極集電体42と外装体10との間に絶縁距離が設けられているものの、その間に絶縁部材が介挿されていない。即ち、変形例に係る電池の製造過程においては、負極集電体42と外装体10との接合時に溶接用電極501で負極集電体42の中央領域Cを加圧力Fをかけた際に、中央領域Cで負極集電体42と外装体10との間で溶接電流I0のリークを生ずる確率が上記電池1の場合よりも高くなる。 As shown in FIG. 5B, in the battery according to this modification, unlike the battery 1 according to the above embodiment, an insulation distance is provided between the negative electrode current collector 42 and the exterior body 10. In the meantime, an insulating member is not interposed. That is, in the manufacturing process of the battery according to the modified example, when the central region C of the negative electrode current collector 42 is applied with the welding electrode 501 when the negative electrode current collector 42 and the exterior body 10 are joined, In the central region C, the probability of leakage of the welding current I 0 between the negative electrode current collector 42 and the outer package 10 is higher than that in the case of the battery 1.

しかし、変形例に係る電池においても、図7に示すような従来構成の電池や上記特許文献3に係る電池に比べて、負極集電体42と外装体10との間の溶接強度および電気抵抗の両観点から優れている。即ち、本変形例に係る電池の製造過程においても、加圧力F1、F2および他の溶接条件の適正化によって、中央領域Cにおける溶接電流I0のリークを防ぐことは可能であり、溶接電流I0を各突起部42pに分散させることができる。これによって、上記実施の形態に係る電池1と同様の効果を得ることができる。 However, also in the battery according to the modified example, the welding strength and electrical resistance between the negative electrode current collector 42 and the exterior body 10 are compared with the battery having the conventional configuration as shown in FIG. It is excellent from both viewpoints. That is, even in the manufacturing process of the battery according to this modification, it is possible to prevent the leakage of the welding current I 0 in the central region C by optimizing the applied pressures F 1 and F 2 and other welding conditions. The current I 0 can be distributed to each protrusion 42p. Thereby, the same effect as the battery 1 according to the above embodiment can be obtained.

また、本変形例に係る電池では、絶縁部材を省略する分だけ、その材料費および工数などの面で上記実施の形態に係る電池1よりもコスト面で優位である。
なお、本変形例では、負極集電体42の外縁領域に複数の突起部42pを配置することとしたが、突起部42pの配置については、必ずしもその全てが外縁領域である必要はない。突起部42pは、複数存在し、且つ、その内の少なくとも1つが外縁領域に存在すればよい。
(優位性を確認するための実験)
以下では、上述のような優位性を確認するために実施した実験について説明する。本実験においては、以下に示すような各構成の実施例1、2および比較例の各電池を、各々10セルづつ作製し、評価した。
(実施例1)
実施例1に係る電池の構成は、上記実施の形態に係る電池1と同様である。そして、実施例1に係る電池の構成のために用いた部材は次の通りである。
Further, in the battery according to this modification, the cost is superior to the battery 1 according to the above-described embodiment in terms of material cost, man-hours, etc., as much as the insulating member is omitted.
In this modification, the plurality of protrusions 42p are arranged in the outer edge region of the negative electrode current collector 42. However, the arrangement of the protrusions 42p does not necessarily have to be the outer edge region. There may be a plurality of the protrusions 42p, and at least one of them may be present in the outer edge region.
(Experiment to confirm superiority)
Below, the experiment conducted in order to confirm the above superiority is demonstrated. In this experiment, each of the batteries of Examples 1 and 2 and Comparative Example having the following configurations was manufactured and evaluated for each 10 cells.
(Example 1)
The configuration of the battery according to Example 1 is the same as that of the battery 1 according to the above embodiment. And the member used for the structure of the battery which concerns on Example 1 is as follows.

負極集電体;NiメッキSPCE(t=0.4mm)
バーリング高さ:0.6mm
突起部高さ:0.4mm
絶縁部材;PPテープ(t=0.04mm)
電解液;30(mass%)の水酸化カリウム水溶液
注入量:12(ml)
負極集電体と外装体との溶接条件についても、上記実施の形態と同様である。
(実施例2)
実施例2に係る電池の構成は、上記実施例1の電池と、絶縁部材を有していない点だけが相違する。それ以外の構成に変更はない。
(比較例)
比較例に係る電池の構成は、図7に示す従来の電池の構成と同様であって、負極集電体に突起部の形成がなく、中央領域に舌部を有したものである。
Negative electrode current collector; Ni-plated SPCE (t = 0.4 mm)
Burring height: 0.6mm
Projection height: 0.4 mm
Insulating member; PP tape (t = 0.04mm)
Electrolyte: 30% (mass%) potassium hydroxide aqueous solution
Injection volume: 12 (ml)
The welding conditions between the negative electrode current collector and the exterior body are also the same as in the above embodiment.
(Example 2)
The configuration of the battery according to Example 2 differs from the battery of Example 1 only in that it does not have an insulating member. There is no change in other configurations.
(Comparative example)
The configuration of the battery according to the comparative example is the same as the configuration of the conventional battery shown in FIG. 7, and the negative electrode current collector has no protrusion and has a tongue in the central region.

なお、負極集電体と外装体との溶接条件については、次に示す通りとした。
SQD(加圧状態で通電開始までの時間):100(msec.)
WE(通電時間):8(msec.)
UP SLOPE(電流値立ち上がりまでの時間):4(msec.)
HEAT(通電電流):10(kA)
(評価方法)
まず、上記実施例1、2および比較例に係る各電池に対して、1200(mAh)で6(hr.)充電し、続いて、同電流値をもって終止電圧0.8(V)まで放電させるという充放電サイクルを、25(℃)の雰囲気温度下で10回繰り返した。
The welding conditions for the negative electrode current collector and the outer package were as follows.
SQD (Time to start energization in pressurized state): 100 (msec.)
WE (energization time): 8 (msec.)
UP SLOPE (Time to rise of current value): 4 (msec.)
HEAT (energization current): 10 (kA)
(Evaluation methods)
First, the batteries according to Examples 1 and 2 and the comparative example are charged 6 (hr.) At 1200 (mAh), and then discharged to the final voltage 0.8 (V) with the same current value. This charge / discharge cycle was repeated 10 times at an ambient temperature of 25 (° C.).

次に、図6に示すように、実施例1、2および比較例に係る各電池について、外装体の側壁における缶底近傍部分に窓部10hを設け、負極集電体および外装体の各々に電圧測定用のリード511、512を取り付けた。この後に、各電池に対し、3(Ah)、若しくは、6(A)で30(min.)の充電を実施し、各電池に対して、次のような条件で充放電を繰り返した。   Next, as shown in FIG. 6, for each battery according to Examples 1 and 2 and the comparative example, a window portion 10 h is provided in the vicinity of the bottom of the can on the side wall of the exterior body, and each of the negative electrode current collector and the exterior body is provided. Voltage measurement leads 511 and 512 were attached. Thereafter, charging was performed on each battery at 30 (min.) At 3 (Ah) or 6 (A), and charging and discharging were repeated for each battery under the following conditions.

充放電条件;40(A)放電⇒40(A)充電⇒80(A)放電⇒80(A)充電⇒120(A)放電⇒120(A)充電⇒160(A)放電⇒160(A)充電
なお、各ステップの間には、10(min.)の休止期間を設け、各放電ステップ実施後の10(min.)休止後において、10(sec.)間づつ放電を行い、この10(sec.)経過時点における各電圧値を上記リード511、512を介して測定した。そして、この値を各電池毎にプロットし、その傾きより電池抵抗を求め、各構成の電池についての平均値を表1に示す。
Charging / discharging conditions: 40 (A) discharging ⇒ 40 (A) charging ⇒ 80 (A) discharging ⇒ 80 (A) charging ⇒ 120 (A) discharging ⇒ 120 (A) charging ⇒ 160 (A) discharging ⇒ 160 (A) Charging In addition, a 10 (min.) Rest period is provided between each step, and after 10 (min.) Rest after each discharge step, discharging is performed every 10 (sec.). sec.) Each voltage value at the time of elapse was measured through the leads 511 and 512. And this value is plotted for every battery, battery resistance is calculated | required from the inclination, and the average value about the battery of each structure is shown in Table 1.

Figure 2005285514
表1に示すように、比較例に係る電池の電池抵抗が平均で0.28(mΩ)であったのに対して、実施例1、2の電池では、それぞれ0.10、0.14(mΩ)となった。これように、比較例に係る電池で電池抵抗が大きなものとなったのは、図7に示すように、負極集電体と外装体との接続ポイントが1箇所であるためと考えられる。これに対して、実施例1、2の電池の電池抵抗を比較例の電池に比べて1/2〜1/3に低減できたのは、負極集電体と外装体との接続ポイントが4箇所であるためと考えられる。
Figure 2005285514
As shown in Table 1, the battery resistance of the battery according to the comparative example was 0.28 (mΩ) on the average, whereas in the batteries of Examples 1 and 2, 0.10 and 0.14 ( mΩ). As described above, the reason why the battery according to the comparative example has a large battery resistance is considered to be that there is one connection point between the negative electrode current collector and the exterior body as shown in FIG. On the other hand, the battery resistance of the batteries of Examples 1 and 2 was reduced to 1/2 to 1/3 of the battery of the comparative example because the connection point between the negative electrode current collector and the exterior body was 4 This is thought to be due to the location.

また、実施例1と実施例2とを比較するとき、電池抵抗のMin.値が互いに0.08(mΩ)で同一であったのに対して、Max.値が実施例1のものが0.10(mΩ)、実施例2のものが0.18(mΩ)と差異を生じた。これは、実施例2の電池が絶縁部材としてのPPテープを備えていないことから、負極集電体と外装体との溶接時における溶接状態にバラツキを生じたことに起因するものと考えられる。即ち、溶接時において、負極集電体の中央領域で外装体と接触する確率が高くなったためであると考えられる。   When comparing Example 1 and Example 2, the battery resistance Min. The values were equal to each other at 0.08 (mΩ), whereas Max. The value of Example 1 was 0.10 (mΩ), and that of Example 2 was 0.18 (mΩ). This is probably because the battery of Example 2 did not include the PP tape as the insulating member, and thus the welded state at the time of welding between the negative electrode current collector and the exterior body varied. That is, it is considered that the probability of contact with the exterior body in the central region of the negative electrode current collector is increased during welding.

以上の結果より、上記実施の形態に係る電池1および変形例に係る電池の優位性が確認された。
(その他の事項)
なお、上記実施の形態および変形例については、本発明の一例を示すものであって、本発明がこれらに限定を受けるものではない。例えば、上記実施の形態および変形例においては、電池種類としてNi−MH電池を一例としたが、円筒形の外観を有し、渦巻状電極体および集電体を備えるような電池であれば、本発明を適用することができる。具体的には、Ni−Cd電池やLi電池などにも適用することができる。
From the above results, the superiority of the battery 1 according to the above embodiment and the battery according to the modification was confirmed.
(Other matters)
In addition, about the said embodiment and modification, an example of this invention is shown, and this invention is not limited to these. For example, in the above-described embodiment and modification, Ni-MH battery is taken as an example of the battery type. However, if the battery has a cylindrical appearance and includes a spiral electrode body and a current collector, The present invention can be applied. Specifically, the present invention can be applied to Ni-Cd batteries, Li batteries, and the like.

また、上記実施の形態および変形例に係る電池では、外装体10の缶底側に負極集電体が配される構成を採っているので、負極集電体42に複数の突起部42pを形成することとしたが、同位置に正極集電体が配される場合には、正極集電体に突起部42pを設けるようにすればよい。
本発明は、突起部42pの形成個数およびその形成位置についても、複数の箇所(リング状に連続したものも含む。)上記実施の形態および変形例に限定を受けるものではない。ただし、集電体42と外装体10との溶接時における高い溶接性を確保するためには、集電体42における中央領域42aの中心から同距離に複数の突起部42pを設けるようにすることが望ましい。
In addition, since the battery according to the embodiment and the modification has a configuration in which the negative electrode current collector is disposed on the can bottom side of the outer package 10, a plurality of protrusions 42p are formed on the negative electrode current collector 42. However, when the positive electrode current collector is arranged at the same position, the protrusion 42p may be provided on the positive electrode current collector.
The present invention is not limited to the above-described embodiments and modifications in terms of the number of protrusions 42p and the positions where they are formed, including a plurality of locations (including those that are continuous in a ring shape). However, in order to ensure high weldability during welding of the current collector 42 and the exterior body 10, a plurality of protrusions 42p are provided at the same distance from the center of the central region 42a of the current collector 42. Is desirable.

また、集電体42の形状については、上記実施の形態では略円板形状としたが、多角形状や十字形状とすることもできる。
また、外装体10には密封性が要求されるのに対して集電体42には密封性が要求されることはないので、集電体42の側に突起部42pを設けるようにすることが望ましいが、逆に外装体10の缶底部分10Bの内底面の側に突起部を設ける構成としても、上記同様の効果を得ることができる。
Further, the shape of the current collector 42 is a substantially disc shape in the above embodiment, but may be a polygonal shape or a cross shape.
Further, since the exterior body 10 is required to have a sealing property, the current collector 42 is not required to have a sealing property. Therefore, the protrusion 42p is provided on the side of the current collector 42. However, conversely, the same effect as described above can be obtained even when a protrusion is provided on the inner bottom surface side of the can bottom portion 10B of the outer package 10.

また、集電体42における各接合部分の周辺に、例えば、コの字状の切り欠きを設けることにしても良い。
さらに、本発明は、上記電池1のように渦巻状の電極体20と集電体42とを備えるような構成の場合には、一次電池に対しても適用が可能である。
Moreover, you may decide to provide a U-shaped notch around the junction part in the electrical power collector 42, for example.
Furthermore, the present invention can also be applied to a primary battery in the case of the configuration including the spiral electrode body 20 and the current collector 42 as in the battery 1 described above.

本発明は、HEVなどのように大電流出力を要するような用途においても高い発電効率が求められるような円筒型電池を実現するのに有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for realizing a cylindrical battery that requires high power generation efficiency even in applications that require a large current output such as HEV.

実施の形態に係る円筒型電池1を示す斜視図(一部断面図)である。1 is a perspective view (partially sectional view) showing a cylindrical battery 1 according to an embodiment. 円筒型電池1における外装体10の底部分の詳細構成を示す断面図である。2 is a cross-sectional view showing a detailed configuration of a bottom portion of an exterior body 10 in the cylindrical battery 1. FIG. 円筒型電池1に内蔵される電極体20と集電体41、42との位置関係を示す展開斜視図である。3 is a developed perspective view showing a positional relationship between an electrode body 20 and current collectors 41 and 42 built in the cylindrical battery 1. FIG. 負極集電体42の構成を示す平面図(a)、および詳細断面図(b)、(c)である。It is the top view (a) which shows the structure of the negative electrode collector 42, and detailed sectional drawing (b), (c). 負極集電体42と外装体との接合ステップを示す模式断面図である。FIG. 6 is a schematic cross-sectional view showing a joining step between a negative electrode current collector 42 and an exterior body. 確認実験において電位差計測のために施したリード511、512の接続形態を示す模式断面図である。It is a schematic cross section which shows the connection form of the leads 511 and 512 given for the potential difference measurement in the confirmation experiment. 従来の円筒型電池に用いられてきた負極集電体142の平面図(a)と、負極集電体142と外装体110との接続ステップを示す模式断面図(b)である。It is the top view (a) of the negative electrode collector 142 used for the conventional cylindrical battery, and a schematic cross section (b) which shows the connection step of the negative electrode collector 142 and the exterior body 110.

符号の説明Explanation of symbols

1.円筒型電池
10.外装体
20.渦巻電極体
21.正極板
22.負極板
23.セパレータ
30.封口蓋
41.正極集電体
42.負極集電体
50.絶縁部材
1. Cylindrical battery 10. Exterior body 20. Spiral electrode body 21. Positive plate 22. Negative electrode plate 23. Separator 30. Sealing lid 41. Positive electrode current collector 42. Negative electrode current collector 50. Insulating material

Claims (9)

正負両極板がセパレータを介して巻回され、巻回芯部分が中空となっている電極体と、導電性材料からなる有底円筒状体であり、前記電極体を収納する外装体と、導電性材料からなり、前記外装体の内底と前記電極体との電気接続を図るのに間に介挿される集電体とを有する円筒型電池であって、
前記電極体の巻回芯部分を巻回軸方向に延長した延長領域を想定し、この延長領域と前記集電体との重畳領域を前記集電体の中央領域とし、前記集電体における前記中央領域を除く領域を外縁領域とするとき、
前記集電体は、前記外装体の内底に複数の箇所で接合され、
前記複数の箇所の少なくとも1箇所は、前記外縁領域に存在する
ことを特徴とする円筒型電池。
An electrode body in which positive and negative bipolar plates are wound through a separator and a winding core portion is hollow, a bottomed cylindrical body made of a conductive material, an exterior body that houses the electrode body, and a conductive body A cylindrical battery having a current collector made of a conductive material and interposed between the inner bottom of the exterior body and the electrode body,
Assuming an extended region in which the winding core portion of the electrode body is extended in the winding axis direction, an overlapping region of the extended region and the current collector is a central region of the current collector, and the current collector When the area excluding the central area is the outer edge area,
The current collector is joined to the inner bottom of the exterior body at a plurality of locations,
At least one of the plurality of locations is present in the outer edge region. A cylindrical battery, wherein:
前記集電体は、前記外縁部分に前記外装体の内底に向けた突起部が複数形成されており、当該複数の突起部の先端領域が前記外装体の内底に接合されている
ことを特徴とする請求項1に記載の円筒型電池。
The current collector has a plurality of protrusions formed on the outer edge portion toward the inner bottom of the exterior body, and tip regions of the plurality of protrusions are joined to the inner bottom of the exterior body. The cylindrical battery according to claim 1, wherein:
前記複数の突起部は、前記電極体の巻回軸中心から略等距離に配置されている
ことを特徴とする請求項2に記載の円筒型電池。
The cylindrical battery according to claim 2, wherein the plurality of protrusions are disposed at substantially equal distances from a winding axis center of the electrode body.
前記中央領域における前記集電体と外装体の内底との間には、絶縁体が介挿されている
ことを特徴とする請求項1から3の何れかに記載の円筒型電池。
The cylindrical battery according to any one of claims 1 to 3, wherein an insulator is interposed between the current collector and the inner bottom of the exterior body in the central region.
前記電極体と集電体とは、前記集電体において前記電極体の側に向けて形成された接合部と前記正極板または負極板の端面とで接合されており、
前記突起部は、前記電極体の径方向において、前記接合部と重畳しない位置に形成されている
ことを特徴とする請求項2から4の何れかに記載の円筒型電池。
The electrode body and the current collector are joined at a joint portion formed toward the electrode body side in the current collector and an end face of the positive electrode plate or the negative electrode plate,
The cylindrical battery according to any one of claims 2 to 4, wherein the protrusion is formed at a position that does not overlap with the joint in the radial direction of the electrode body.
セパレータを介して正負両極板を対向配置し、この状態で巻回加工することで、巻回芯部分が中空である電極体を形成する電極体形成ステップと、
前記電極体における巻回軸方向の少なくとも一端面に、導電性材料からなる集電体を接合する集電体接合ステップと、
前記集電体が接合されてなる電極体を、前記集電体の側を内底に向けた状態で、導電性材料からなる有底円筒状の外装体に収納する収納ステップと、
前記集電体を外装体の内底に接合する接合ステップとを有し、
電極体の巻回芯部分を巻回軸方向に延長した延長領域を想定し、この延長領域と前記集電体との重畳領域を前記集電体の中央領域とし、前記集電体における前記中央領域を除く領域を外縁領域とするとき、
前記接合ステップにおいて、前記集電体は、前記外装体の内底に複数の箇所で接合され、且つ、当該複数の箇所の少なくとも1箇所は、前記外縁領域に位置する
ことを特徴とする円筒型電池の製造方法。
An electrode body forming step for forming an electrode body in which the winding core portion is hollow by arranging the positive and negative bipolar plates to face each other via a separator and winding in this state,
A current collector bonding step of bonding a current collector made of a conductive material to at least one end surface of the electrode body in the winding axis direction;
A storage step of storing the electrode body to which the current collector is joined in a bottomed cylindrical exterior body made of a conductive material, with the current collector side facing the inner bottom;
Joining the current collector to the inner bottom of the exterior body,
Assuming an extended region in which the winding core portion of the electrode body is extended in the winding axis direction, the overlapping region of the extended region and the current collector is a central region of the current collector, and the center of the current collector When the area excluding the area is the outer edge area,
In the joining step, the current collector is joined to the inner bottom of the exterior body at a plurality of locations, and at least one of the plurality of locations is located in the outer edge region. Battery manufacturing method.
前記複数の突起部は、前記電極体の巻回軸中心から略等距離に配置されている
ことを特徴とする請求項6に記載の円筒型電池の製造方法。
The method for manufacturing a cylindrical battery according to claim 6, wherein the plurality of protrusions are disposed at substantially equal distances from a winding axis center of the electrode body.
前記中央領域において、前記集電体と外装体の内底との間には、絶縁体が介挿されている
ことを特徴とする請求項6または7に記載の円筒型電池の製造方法。
The method for manufacturing a cylindrical battery according to claim 6, wherein an insulator is interposed between the current collector and the inner bottom of the exterior body in the central region.
前記接合ステップにおいては、抵抗溶接法を用いて、前記集電体と外装体の内底とを接合する
ことを特徴とする請求項6から8の何れかに記載の円筒型電池の製造方法。
The method for manufacturing a cylindrical battery according to any one of claims 6 to 8, wherein, in the joining step, the current collector and the inner bottom of the exterior body are joined using a resistance welding method.
JP2004096961A 2004-03-29 2004-03-29 Cylindrical battery and manufacturing method thereof Expired - Fee Related JP4522123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004096961A JP4522123B2 (en) 2004-03-29 2004-03-29 Cylindrical battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004096961A JP4522123B2 (en) 2004-03-29 2004-03-29 Cylindrical battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005285514A true JP2005285514A (en) 2005-10-13
JP4522123B2 JP4522123B2 (en) 2010-08-11

Family

ID=35183671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004096961A Expired - Fee Related JP4522123B2 (en) 2004-03-29 2004-03-29 Cylindrical battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4522123B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187742B2 (en) 2007-04-20 2012-05-29 Samsung Sdi Co., Ltd. Rechargeable battery
JP2013211172A (en) * 2012-03-30 2013-10-10 Gs Yuasa Corp Power storage element
WO2014068870A1 (en) * 2012-10-30 2014-05-08 三洋電機株式会社 Cylindrical storage battery and storage battery module
JP2014527705A (en) * 2011-09-27 2014-10-16 エルジー・ケム・リミテッド Secondary battery with excellent manufacturing process and safety
JP2019145478A (en) * 2018-02-23 2019-08-29 パナソニックIpマネジメント株式会社 Power storage device and power storage module
KR20190133563A (en) * 2018-05-23 2019-12-03 주식회사 엘지화학 Can-Type Battery Having Center of Mass Located at Lower Part
WO2021208218A1 (en) * 2020-04-17 2021-10-21 福建南平延平区南孚新能源科技有限公司 Rechargeable button battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330697A (en) * 1996-06-10 1997-12-22 Fuji Photo Film Co Ltd Battery
JPH11307076A (en) * 1998-04-24 1999-11-05 Sony Corp Secondary battery
JP2000340210A (en) * 1999-05-25 2000-12-08 Sanyo Electric Co Ltd Electrical energy storing device
JP2002141099A (en) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd Sealed battery
JP2003045402A (en) * 2001-07-27 2003-02-14 Yuasa Corp Method of manufacturing for battery, battery, and resistance welding device
JP2003272599A (en) * 2002-03-13 2003-09-26 Sanyo Electric Co Ltd Secondary battery
JP2005100949A (en) * 2003-08-25 2005-04-14 Matsushita Electric Ind Co Ltd Cylindrical battery and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330697A (en) * 1996-06-10 1997-12-22 Fuji Photo Film Co Ltd Battery
JPH11307076A (en) * 1998-04-24 1999-11-05 Sony Corp Secondary battery
JP2000340210A (en) * 1999-05-25 2000-12-08 Sanyo Electric Co Ltd Electrical energy storing device
JP2002141099A (en) * 2000-10-31 2002-05-17 Sanyo Electric Co Ltd Sealed battery
JP2003045402A (en) * 2001-07-27 2003-02-14 Yuasa Corp Method of manufacturing for battery, battery, and resistance welding device
JP2003272599A (en) * 2002-03-13 2003-09-26 Sanyo Electric Co Ltd Secondary battery
JP2005100949A (en) * 2003-08-25 2005-04-14 Matsushita Electric Ind Co Ltd Cylindrical battery and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187742B2 (en) 2007-04-20 2012-05-29 Samsung Sdi Co., Ltd. Rechargeable battery
JP2014527705A (en) * 2011-09-27 2014-10-16 エルジー・ケム・リミテッド Secondary battery with excellent manufacturing process and safety
US9236630B2 (en) 2011-09-27 2016-01-12 Lg Chem, Ltd. Secondary battery comprising insulator and reinforcing filler
JP2013211172A (en) * 2012-03-30 2013-10-10 Gs Yuasa Corp Power storage element
WO2014068870A1 (en) * 2012-10-30 2014-05-08 三洋電機株式会社 Cylindrical storage battery and storage battery module
JP2019145478A (en) * 2018-02-23 2019-08-29 パナソニックIpマネジメント株式会社 Power storage device and power storage module
JP7340804B2 (en) 2018-02-23 2023-09-08 パナソニックIpマネジメント株式会社 Energy storage devices and energy storage modules
KR20190133563A (en) * 2018-05-23 2019-12-03 주식회사 엘지화학 Can-Type Battery Having Center of Mass Located at Lower Part
KR102568569B1 (en) * 2018-05-23 2023-08-21 주식회사 엘지에너지솔루션 Can-Type Battery Having Center of Mass Located at Lower Part
WO2021208218A1 (en) * 2020-04-17 2021-10-21 福建南平延平区南孚新能源科技有限公司 Rechargeable button battery

Also Published As

Publication number Publication date
JP4522123B2 (en) 2010-08-11

Similar Documents

Publication Publication Date Title
JP3960877B2 (en) Battery manufacturing method
JP4749130B2 (en) Secondary battery and method for forming the same
JP4974734B2 (en) Secondary battery and secondary battery module
JP4124756B2 (en) Sealed battery
JP6427460B2 (en) Square secondary battery
JP5342090B1 (en) Electricity storage element
KR20060097603A (en) Battery and method of manufacturing same
JP3709197B2 (en) Cylindrical battery and manufacturing method thereof
WO2012090599A1 (en) Cylindrical battery and method of manufacturing thereof
WO2003077332A1 (en) Secondary battery
US20080038632A1 (en) Sealed Battery And Method Of Manufacturing The Sealed Battery
JP2021125304A (en) Power storage device
JP3751782B2 (en) Cylindrical alkaline storage battery and manufacturing method thereof
JP3951526B2 (en) Cylindrical storage battery
JP2018139190A (en) Power storage element
US20210005936A1 (en) Electrode assembly and secondary battery comprising same
JP2008243811A (en) Battery
US7709147B2 (en) Storage battery and production method thereof
JP2004071266A (en) Nonaqueous electrolyte secondary battery and its manufacturing process
JP2007066604A (en) Secondary battery and battery module
JP4522123B2 (en) Cylindrical battery and manufacturing method thereof
JP2018139191A (en) Power storage element and method of manufacturing power storage element
JP4596842B2 (en) Sealed battery and manufacturing method thereof
JP2014049253A (en) Square secondary battery and method of manufacturing the same
US20220294089A1 (en) Terminal component and electricity storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees