JP2006163563A - Cooling device and electronic equipment having the same - Google Patents

Cooling device and electronic equipment having the same Download PDF

Info

Publication number
JP2006163563A
JP2006163563A JP2004350926A JP2004350926A JP2006163563A JP 2006163563 A JP2006163563 A JP 2006163563A JP 2004350926 A JP2004350926 A JP 2004350926A JP 2004350926 A JP2004350926 A JP 2004350926A JP 2006163563 A JP2006163563 A JP 2006163563A
Authority
JP
Japan
Prior art keywords
heat
radiator
cooling device
liquid
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004350926A
Other languages
Japanese (ja)
Inventor
Takeshi Kusakabe
毅 日下部
Takashi Sanada
崇史 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004350926A priority Critical patent/JP2006163563A/en
Publication of JP2006163563A publication Critical patent/JP2006163563A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling device that is a relatively large device used for cooling, or the like utilizing the circulation of the refrigerant of liquid, is made compact, and improves cooling performance and fitting working efficiency. <P>SOLUTION: The cooling device comprises a heat reception integral pump 2 thermally connected to a heat generation electronic component; a liquid flow path 5 in which the liquid refrigerant for conducting heat is sealed; a radiator 3 that is arranged at one portion of the liquid flow path 5 and heat-exchanges with the liquid refrigerant for radiating heat; and an axial flow fan 4 for blowing air in the direction of the radiator 3. The axial flow fan 4 and the radiator 3 are arranged opposingly so that the air supply/exhaust direction of the axial flow fan 4 is the same as the ventilation direction of the radiator 3, and an exhaust duct 7 is provided in the exhaust direction of the radiator 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子機器の筐体の内部に配設された中央処理装置(以下、CPUと称する)などの発熱電子部品の強制冷却を目的としたヒートパイプを用いた冷却方式やポンプを用いた液体の冷媒の循環を強制的に行う液冷却方式などに用いられる冷却装置及びそれを備えた電子機器に関するものである。   The present invention uses a cooling system using a heat pipe or a pump for the purpose of forcibly cooling a heat generating electronic component such as a central processing unit (hereinafter referred to as a CPU) disposed inside a casing of an electronic device. The present invention relates to a cooling device used in a liquid cooling method for forcibly circulating a liquid refrigerant and an electronic device including the same.

最近のコンピュータにおけるデータ処理の高速化の動きはきわめて急速であり、CPUのクロック周波数は以前と比較して格段に大きなものになってきている。その結果、CPUの発熱量が増大し、従来のように放熱部であるヒートシンクや放熱フィンを発熱体に接触させて放熱する方法だけなく、そのヒートシンクをファンで直接冷却する方法、または、受熱部よりヒートパイプを用いて放熱部に熱接続したヒートシンクモジュールにおいてその放熱部をファンにより送風冷却する方法、或いは、熱伝導性の高い液体の冷媒をポンプを用いて強制循環させ受熱部と放熱部との間で熱交換をさせる液冷却方法などが必要不可欠になっており、今後さらにその冷却能力の向上と小型軽量化が必要とされている。   Recently, the speed of data processing in computers has been very rapid, and the clock frequency of the CPU has become much larger than before. As a result, the amount of heat generated by the CPU increases, so that not only the conventional method of dissipating heat by contacting the heat sink or heat dissipating fins with the heat generator, but also the method of directly cooling the heat sink with a fan, or the heat receiving unit In a heat sink module thermally connected to the heat radiating part using a heat pipe, the heat radiating part is blown and cooled by a fan, or a liquid refrigerant having high thermal conductivity is forcibly circulated using a pump, and the heat receiving part and the heat radiating part A liquid cooling method for exchanging heat between the two is indispensable, and further improvement in cooling capacity and reduction in size and weight are required in the future.

そこで、実装された発熱電子部品から発生する熱の放熱を行う冷却装置としては、例えば(特許文献1)に開示されているような、発熱体である発熱電子部品とヒートパイプを用いて熱接続された冷却装置があり、その放熱部の構造としてファンの送風口側に設けられたダクト内に送風方向に沿って複数枚の放熱フィンが並列して設けられ、複数枚の放熱フィンを突き刺すようにヒートパイプの放熱部が取り付けられている冷却ユニットが知られている。   Therefore, as a cooling device that dissipates heat generated from the mounted heat generating electronic component, for example, as disclosed in (Patent Document 1), heat connection is performed using a heat generating electronic component that is a heating element and a heat pipe. As a structure of the heat dissipating part, a plurality of heat dissipating fins are provided in parallel along the air blowing direction in a duct provided on the fan outlet side of the fan so as to pierce the plurality of heat dissipating fins. There is known a cooling unit in which a heat pipe heat dissipating part is attached.

図8は、この冷却装置の放熱部である冷却ユニット20を模式的に拡大図で示しており、ファン21とダクト22を有する。この冷却装置の放熱部ではファン21により吸気した空気を、ファン21を収容するファンケース25の内壁の形状に沿ってほぼ直角方向に空気流の向きを変化させダクト22から排気するようになっている。そしてダクト22の内部には放熱フィン23がダクト22内の送風方向に沿って複数枚が並列状態に配置され、ヒートパイプ24の放熱側がダクト22内の放熱フィン23に突き刺すように取り付けられている。このような構造により、受熱ブロック(図示せず)から運ばれた熱が効率的に放散されるようになるため、この冷却ユニット20を用いた冷却体はスペース効率の面でも優れたものとなる。   FIG. 8 schematically shows an enlarged view of a cooling unit 20 that is a heat radiating portion of the cooling device, and includes a fan 21 and a duct 22. In the heat radiating portion of this cooling device, the air sucked by the fan 21 is exhausted from the duct 22 by changing the direction of the air flow in a substantially right angle direction along the shape of the inner wall of the fan case 25 that houses the fan 21. Yes. A plurality of heat radiation fins 23 are arranged in parallel inside the duct 22 along the air blowing direction in the duct 22, and the heat radiation side of the heat pipe 24 is attached so as to pierce the heat radiation fins 23 in the duct 22. . With such a structure, heat carried from a heat receiving block (not shown) is efficiently dissipated, so that the cooling body using the cooling unit 20 is excellent in terms of space efficiency. .

また、このダクト22からの空気はこの冷却装置の搭載された携帯型パソコンの外部に排気されるようにするので、ダクト22はこの携帯型パソコンの筐体に取り付けておくと簡便となり、このような冷却装置は、例えば携帯型パソコンのようなその内部のスペース制約が強い製品の場合に特に有効なものである。つまりヒートパイプを応用することで、発熱電子部品と近接しない位置に放熱フィンやヒートシンクを配置することができるようになり、放熱フィンやヒートシンクの大型化や、その配置の設計等の自由度が高まる。
特開2000−35291号公報(第4頁、図2)
In addition, since air from the duct 22 is exhausted to the outside of the portable personal computer on which the cooling device is mounted, it is easy to install the duct 22 on the casing of the portable personal computer. Such a cooling device is particularly effective in the case of a product having a strong space constraint such as a portable personal computer. In other words, by applying heat pipes, radiation fins and heat sinks can be placed at positions that are not close to heat-generating electronic components, and the degree of freedom of design of the layout and layout of the radiation fins and heat sinks is increased. .
JP 2000-35291 A (page 4, FIG. 2)

しかしながら、このような冷却装置は携帯型パソコンのようにその内部がスペース的に制約される製品の場合に特に有効なものとして用いられ、ヒートパイプを応用することで、発熱体である発熱電子部品と近接しない位置に放熱フィンやヒートシンクを配置することができるようになり、放熱フィンやヒートシンクの大型化や、その電子機器の筐体の内部での配置の設計等の自由度を高める方法が提案されているが、このような方法で軸流ファンを用いて高風量を確保しようとしても、空気の流入方向と排気方向が直交しているため、吸気された空気流がファンケースの内壁に一旦ぶつかりその方向をほぼ直角に変えるので、送風量も著しく減少してしまい冷却性能が低下するばかりでなく、局部的な圧力損失によりファン騒音が増大するという新たな課題があった。   However, such a cooling device is particularly effective for a product such as a portable personal computer in which the interior is space-constrained. By applying a heat pipe, a heat generating electronic component that is a heating element is used. It is possible to place heat-dissipating fins and heat sinks at positions that are not close to each other, and a method to increase the degree of freedom in designing the arrangement of the heat-dissipating fins and heat sinks in the housing of the electronic equipment is proposed. However, even if an axial flow fan is used to secure a high air volume in this way, the inflow direction of the air and the exhaust direction are orthogonal to each other. Since the direction of the collision is changed to a substantially right angle, not only the air flow rate is significantly reduced and the cooling performance is degraded, but also the fan noise increases due to local pressure loss. There was a new problem that.

上記課題を解決するため、本発明に係わる冷却装置は、CPUなどの発熱電子部品を実装した基板上で液冷却方式により発熱電子部品を冷却する装置であって、発熱電子部品と熱接続する受熱部と、受熱部の熱を伝導する液体の冷媒が封入された液流路と、液流路の一部に配置され液体の冷媒と熱交換することにより放熱を行うラジエータと、ラジエータの方向へ送風する吸気方向と排気方向が同一方向の軸流ファンを備え、軸流ファンの吸排気方向とラジエータの通風方向を同じくするように対向して配置したことを主要な特徴としており、吸気方向と排気方向を変化させることなくしかもラジエータの通風方向と同一であるので、円滑にラジエータへの送風が行えるため冷却に必要な送風量を確保することができる。また、局所的な圧力損失の発生も低減できるので、ファン騒音を抑制することにもなる。   In order to solve the above problems, a cooling device according to the present invention is a device that cools a heat generating electronic component by a liquid cooling method on a substrate on which a heat generating electronic component such as a CPU is mounted, and is a heat receiving member that is thermally connected to the heat generating electronic component. A liquid flow path in which a liquid refrigerant that conducts heat of the heat receiving section is enclosed, a radiator that is disposed in a part of the liquid flow path and performs heat exchange with the liquid refrigerant, and in the direction of the radiator The main feature is that it is equipped with an axial fan with the same direction of intake and exhaust as it blows air, and is arranged so that the intake and exhaust directions of the axial fan and the ventilation direction of the radiator are the same. Since it is the same as the ventilation direction of the radiator without changing the exhaust direction, it is possible to smoothly blow air to the radiator, so that it is possible to secure the amount of air necessary for cooling. In addition, since local pressure loss can be reduced, fan noise can be suppressed.

本発明の冷却装置によれば、発熱電子部品と熱接続する受熱部と、受熱部の熱を伝導する液体の冷媒が封入された液流路と、液流路の一部に配置され液体の冷媒と熱交換することにより放熱を行うラジエータと、ラジエータの方向へ送風する吸気方向と排気方向が同一方向の軸流ファンを備え、軸流ファンの吸排気方向とラジエータの送風方向を同じくするように対向して配置したことにより、冷却性能を向上することが可能となり、しかもファン騒音を抑制しながら、取り付け位置の制約が少なく電子機器への組み込みの容易な冷却装置を提供できる。   According to the cooling device of the present invention, the heat receiving part that is thermally connected to the heat generating electronic component, the liquid flow path in which the liquid refrigerant that conducts heat of the heat receiving part is sealed, and the liquid flow path that is disposed in a part of the liquid flow path A radiator that dissipates heat by exchanging heat with the refrigerant, and an axial fan that has the same direction of intake and exhaust as the direction of the radiator, so that the intake and exhaust directions of the axial fan and the direction of the radiator are the same Thus, it is possible to improve the cooling performance, and to provide a cooling device that can be easily incorporated into an electronic device with less restrictions on the mounting position while suppressing fan noise.

上記課題を解決するためになされた請求項1記載の発明は、CPUなどの発熱電子部品を実装した基板上で液冷却方式により発熱電子部品を冷却する装置であって、発熱電子部品と熱接続する受熱部と、受熱部の熱を伝導する液体の冷媒が封入された液流路と、液流路の一部に配置され液体の冷媒と熱交換することにより放熱を行うラジエータと、ラジエータの方向へ送風する吸気方向と排気方向が同一方向の軸流ファンを備え、軸流ファンの吸排気方向とラジエータの通風方向を同じくするように対向して配置したことを主要な特徴としており、冷却ファンとして吸気方向と排気方向が同一方向の軸流ファンがラジエータを構成する複数枚の放熱フィンとヒートパイプのほぼ全面の領域に対向して配置され、ファンを収容するファンケースなどにより空気流の方向を強制的に変化させることがないので、ラジエータを形成する放熱フィンの全面にほぼ均一的かつ十分な風量が確保でき、ラジエータからの放熱が効率的に行われ、その結果放熱性を向上でき、しかも不要な局所的な圧力損失もなくファン騒音も抑制できる。   In order to solve the above-mentioned problem, the invention according to claim 1 is an apparatus for cooling a heat-generating electronic component by a liquid cooling method on a substrate on which a heat-generating electronic component such as a CPU is mounted. A heat receiving part, a liquid flow path in which a liquid refrigerant that conducts heat of the heat receiving part is enclosed, a radiator that is disposed in a part of the liquid flow path and radiates heat by exchanging heat with the liquid refrigerant, and a radiator The main feature is that it is equipped with an axial fan with the same direction of intake and exhaust as to blow air in the same direction, and is placed so that the intake and exhaust directions of the axial fan and the ventilation direction of the radiator are the same. A fan case in which an axial fan with the same intake direction and exhaust direction as a fan is arranged facing the almost entire area of the plurality of radiating fins and heat pipes constituting the radiator and accommodates the fan The air flow direction is not forcibly changed by the throat, so that an almost uniform and sufficient air volume can be secured on the entire surface of the heat radiating fins forming the radiator, and heat is efficiently radiated from the radiator. The heat dissipation can be improved, and the fan noise can be suppressed without unnecessary local pressure loss.

また、発熱電子部品と熱接続する受熱部と放熱を行うラジエータとの間が液体の冷媒が封入された液流路で構成されているので、液流路を必要に応じて長く設定することにより、比較的大きな構成要素であるラジエータや軸流ファンを発熱電子部品に近接して設置しなくもよくなるので、電子機器の筐体の内部においてCPU実装基板や他の周辺装置との配置を設計する上で自由度が大きくなり、電子機器への組み込みが容易となる。   In addition, the space between the heat receiving part that is thermally connected to the heat generating electronic component and the radiator that dissipates heat is composed of a liquid flow path in which a liquid refrigerant is sealed, so by setting the liquid flow path long as necessary Since it is not necessary to install radiators and axial fans, which are relatively large components, close to the heat-generating electronic components, the arrangement of the CPU mounting board and other peripheral devices inside the housing of the electronic device is designed. The degree of freedom increases, and it is easy to incorporate into electronic devices.

さらには、冷却装置の放熱部に属する主要要素である軸流ファンやラジエータを任意の場所、例えば発熱電子部品と離れた位置やマザーボードのCPU実装面の裏面側などにも設置することも可能となり、その分電子機器の筐体の内部での配置の制約が少なくなり、電子機器の筐体の内部での配置設計の自由度が向上する。   Furthermore, it is also possible to install axial fans and radiators, which are the main elements belonging to the heat dissipation part of the cooling device, at any location, for example, away from heat-generating electronic components or on the back side of the CPU mounting surface of the motherboard. Accordingly, the restriction on the arrangement of the inside of the casing of the electronic device is reduced, and the degree of freedom of the layout design inside the casing of the electronic apparatus is improved.

請求項2記載の発明は、請求項1記載の発明に従属する発明で、CPUなどの発熱電子部品を実装した基板上で液冷却方式により発熱電子部品を冷却する装置であって、発熱電子部品と熱接続する受熱部と、受熱部の熱を伝導する液体の冷媒が封入された液流路と、液流路の一部に配置され液体の冷媒と熱交換することにより放熱を行うラジエータと、ラジエータの方向へ送風する吸気方向と排気方向が同一方向の軸流ファンを備え、軸流ファンの吸排気方向とラジエータの通風方向を同じくするように対向して配置したことに加え、軸流ファンが対向配置されたラジエータの排気方向に排気ダクトを設けたことを特徴としており、軸流ファンが対向配置されたラジエータの排気方向に排気ダクトを設けているので、ラジエータとの熱交換により暖まった空気が電子機器の筐体の内部に滞留することなく円滑に電子機器の筐体に設けられた排気口より排出でき、電子機器全体としての冷却性能をより向上することができる。   The invention described in claim 2 is an invention dependent on the invention described in claim 1, and is an apparatus for cooling a heat generating electronic component by a liquid cooling method on a substrate on which a heat generating electronic component such as a CPU is mounted. A heat receiving part that is thermally connected to the liquid, a liquid flow path in which a liquid refrigerant that conducts heat of the heat receiving part is enclosed, and a radiator that is disposed in a part of the liquid flow path and performs heat dissipation by exchanging heat with the liquid refrigerant. In addition to the axial flow fan in which the intake direction and the exhaust direction for blowing air in the direction of the radiator are the same direction, the axial flow is arranged so that the intake / exhaust direction of the axial flow fan and the ventilation direction of the radiator are the same. It is characterized in that an exhaust duct is provided in the exhaust direction of the radiator with the fan arranged opposite to it, and an exhaust duct is provided in the exhaust direction of the radiator with the axial flow fan arranged in opposition, so that heat exchange with the radiator is possible. Ri warmed air can smoothly be discharged from the exhaust port provided in the housing of an electronic device without staying in the inside of the housing of an electronic device, it is possible to further improve the cooling performance of the entire electronic device.

また、静音性や操作性を重視した電子機器の筐体内で用いた場合には、所定の方向に排気された空気の方向を制御できるので、筐体後部や筐体底部に配置された排気口まで接続することにより、オペレータの作業環境に影響の少ない空気流路を形成することができる。   In addition, when used in a casing of an electronic device that places importance on quietness and operability, the direction of the air exhausted in a predetermined direction can be controlled, so the exhaust vents arranged at the rear of the casing or at the bottom of the casing By connecting to the air flow path, it is possible to form an air flow path that has little influence on the operator's work environment.

請求項3記載の発明は、請求項2記載の発明に従属する発明で、CPUなどの発熱電子部品を実装した基板上で液冷却方式により発熱電子部品を冷却する装置であって、発熱電子部品と熱接続する受熱部と、受熱部の熱を伝導する液体の冷媒が封入された液流路と、液流路の一部に配置され液体の冷媒と熱交換することにより放熱を行うラジエータと、ラジエータの方向へ送風する吸気方向と排気方向が同一方向の軸流ファンを備え、軸流ファンの吸排気方向とラジエータの通風方向を同じくするように対向して配置し、軸流ファンが対向配置されたラジエータの排気方向に排気ダクトを設けたことに加え、排気ダクトがラジエータを収容したことを特徴としており、排気ダクトがラジエータの外郭部材をも兼ねているので、その内部に放熱フィンやパイプを配置しているので、ラジエータを構成する部品点数も減り製作が容易となる。   The invention described in claim 3 is an invention subordinate to the invention described in claim 2, and is an apparatus for cooling a heat generating electronic component by a liquid cooling method on a substrate on which a heat generating electronic component such as a CPU is mounted. A heat receiving part that is thermally connected to the liquid, a liquid flow path in which a liquid refrigerant that conducts heat of the heat receiving part is enclosed, and a radiator that is disposed in a part of the liquid flow path and performs heat dissipation by exchanging heat with the liquid refrigerant. , Equipped with an axial fan with the same direction of intake and exhaust as the direction of the radiator, and arranged so that the intake and exhaust directions of the axial fan and the ventilation direction of the radiator are the same, the axial fan is opposed In addition to providing an exhaust duct in the exhaust direction of the arranged radiator, the exhaust duct houses the radiator, and the exhaust duct also serves as the outer member of the radiator. Because it placed the fin and pipes, also reduced production becomes easier the number of parts that make up the radiator.

また、排気ダクトの製作用部材として熱伝導性のよい金属材料を使用した場合、ラジエータの外郭部材を兼ねた場合は、放熱フィンからの熱伝導により排気ダクト自体でも放熱性を有することになり、ラジエータより排気された空気流を方向制御するだけでなく、ラジエータ自体の放熱性能をも向上できる。   In addition, when using a metal material with good thermal conductivity as the production member of the exhaust duct, when it also serves as the outer member of the radiator, the exhaust duct itself has heat dissipation due to the heat conduction from the radiation fin, Not only can the direction of the air flow exhausted from the radiator be controlled, but also the heat dissipation performance of the radiator itself can be improved.

請求項4記載の発明は、請求項1記載の発明に従属する発明で、CPUなどの発熱電子部品を実装した基板上で液冷却方式により発熱電子部品を冷却する装置であって、発熱電子部品と熱接続する受熱部と、受熱部の熱を伝導する液体の冷媒が封入された液流路と、液流路の一部に配置され液体の冷媒と熱交換することにより放熱を行うラジエータと、ラジエータの方向へ送風する吸気方向と排気方向が同一方向の軸流ファンを備え、軸流ファンの吸排気方向とラジエータの通風方向を同じくするように対向して配置したことに加え、受熱部は、液体の冷媒を液流路内に強制循環させるポンプを内蔵した受熱一体ポンプであることを特徴としており、請求項1記載の発明の効果に加え、受熱部にポンプを内蔵した小型でコンパクトな形態で冷却装置を構成できるので、冷却装置全体の小型化がより容易となる。   The invention described in claim 4 is an invention dependent on the invention described in claim 1, and is an apparatus for cooling a heat generating electronic component by a liquid cooling method on a substrate on which a heat generating electronic component such as a CPU is mounted. A heat receiving part that is thermally connected to the liquid, a liquid flow path in which a liquid refrigerant that conducts heat of the heat receiving part is enclosed, and a radiator that is disposed in a part of the liquid flow path and performs heat dissipation by exchanging heat with the liquid refrigerant. In addition to the axial flow fan in which the intake direction and the exhaust direction for blowing air in the direction of the radiator are the same direction, the intake and exhaust directions of the axial flow fan and the ventilation direction of the radiator are arranged to face each other, in addition to the heat receiving portion Is a heat receiving integrated pump with a built-in pump for forcibly circulating a liquid refrigerant in the liquid flow path. In addition to the effect of the invention of claim 1, the compact and compact with a built-in pump in the heat receiving part. Cold in various forms Can be constructed a device, the overall size of the cooling device becomes easier.

請求項5記載の発明は、請求項4記載の発明に従属する発明で、CPUなどの発熱電子部品を実装した基板上で液冷却方式により発熱電子部品を冷却する装置であって、発熱電子部品と熱接続する受熱部と、受熱部の熱を伝導する液体の冷媒が封入された液流路と、液流路の一部に配置され液体の冷媒と熱交換することにより放熱を行うラジエータと、ラジエータの方向へ送風する吸気方向と排気方向が同一方向の軸流ファンを備え、軸流ファンの吸排気方向とラジエータの通風方向を同じくするように対向して配置し、受熱部は、液体の冷媒を液流路内に強制循環させるポンプを内蔵した受熱一体ポンプであることに加え、受熱一体ポンプとラジエータとの間に設けられた液流路の一部に自在管を用いたことを特徴としており、受熱部である受熱一体ポンプと放熱部であるラジエータとの間に設けられた液流路の一部に自在管を用いているので、受熱一体ポンプをラジエータ、軸流ファン、排気ダクトなどの他の構成要素と位置関係が一定の範囲内で独立して扱えるので、例えばCPUなどの発熱電子部品に熱接続させるための固定作業や発熱電子部品の交換作業などにおいての装着性がより向上しメンテナンスを容易に行える。   The invention described in claim 5 is an invention dependent on the invention described in claim 4, and is an apparatus for cooling a heat generating electronic component by a liquid cooling method on a substrate on which a heat generating electronic component such as a CPU is mounted. A heat receiving part that is thermally connected to the liquid, a liquid flow path in which a liquid refrigerant that conducts heat of the heat receiving part is enclosed, and a radiator that is disposed in a part of the liquid flow path and performs heat dissipation by exchanging heat with the liquid refrigerant. , Equipped with an axial flow fan with the same direction of intake and exhaust as to the direction of the radiator, and arranged so that the intake and exhaust directions of the axial flow fan and the ventilation direction of the radiator are the same, the heat receiving part is liquid In addition to being a heat receiving integrated pump with a built-in pump that forcibly circulates the refrigerant in the liquid flow path, a universal pipe was used as part of the liquid flow path provided between the heat receiving integrated pump and the radiator. The heat receiving part Since a universal pipe is used for a part of the liquid flow path provided between the heat receiving integrated pump and the radiator as the heat radiating unit, the heat receiving integrated pump is connected to other components such as a radiator, an axial fan, and an exhaust duct. Since the positional relationship can be handled independently within a certain range, for example, fixing work for heat connection to a heat generating electronic component such as a CPU or replacement work of the heat generating electronic component is improved and maintenance can be performed easily. .

また、自在管を屈曲させ発熱体であるCPUの実装面側に受熱一体ポンプを熱接続し、マザーボードの裏面側にラジエータ、軸流ファン、排気ダクトなどの他の構成要素を配置することも容易となるので、周辺装置を含めた配置設計の自由度がより大きくなる。   In addition, it is easy to bend the flexible tube and thermally connect the heat receiving integrated pump to the mounting surface side of the CPU, which is a heating element, and arrange other components such as a radiator, an axial fan, and an exhaust duct on the back side of the motherboard. Therefore, the degree of freedom in layout design including peripheral devices is further increased.

請求項6記載の発明は、請求項1から5いずれか1項に記載の冷却装置を備え、その冷却装置の受熱部が発熱電子部品と熱接続されたことを特徴としており、冷却装置の受熱部が発熱電子部品と熱接続された電子機器であり、電子機器全体の冷却性能を向上することが可能となり、電子機器のCPUなどの処理能力を向上し、動作状態の安定性をより確保できる。   The invention described in claim 6 is characterized in that the cooling device according to any one of claims 1 to 5 is provided, and a heat receiving portion of the cooling device is thermally connected to a heat generating electronic component. This is an electronic device whose part is thermally connected to a heat generating electronic component, and it becomes possible to improve the cooling performance of the entire electronic device, improve the processing capability of the electronic device, such as the CPU, and ensure more stable operation state .

以下、本発明の実施の形態は、電子機器としてコンピュータ装置に搭載する液体の冷媒を用いた液冷却方式の冷却装置に関するもので、図面を用いて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention relate to a liquid cooling type cooling apparatus using a liquid refrigerant mounted on a computer device as an electronic apparatus, and will be described with reference to the drawings.

(実施の形態1)
図1〜図3において、図1は本発明に係わる冷却装置の斜視図で、図2は本発明に係わる冷却装置の正面図で、図3は本発明に係わる冷却装置の側面図で、液体の冷媒を用いた冷却装置1の受熱一体ポンプ2の受熱面がCPU(図示せず)の中央に所定の荷重で押し付けられる構造となっている。冷却装置1は、受熱一体ポンプ2、ラジエータ3、軸流ファン4、液流路5、リザーブタンク6、排気ダクト7を主要な構成要素とした液体の冷媒を用いた液冷却方式の冷却装置である。
(Embodiment 1)
1 to 3, FIG. 1 is a perspective view of a cooling device according to the present invention, FIG. 2 is a front view of the cooling device according to the present invention, and FIG. 3 is a side view of the cooling device according to the present invention. The heat receiving surface of the heat receiving integrated pump 2 of the cooling device 1 using this refrigerant is pressed against the center of a CPU (not shown) with a predetermined load. The cooling device 1 is a liquid cooling type cooling device using a liquid refrigerant whose main components are a heat receiving integrated pump 2, a radiator 3, an axial fan 4, a liquid flow path 5, a reserve tank 6, and an exhaust duct 7. is there.

発熱電子部品であるCPUから発生した熱は受熱部である受熱一体ポンプ2の底面2aに位置する受熱面を介して受熱面内部に循環している液体の冷媒である冷却液に伝えられ冷却液の温度が上昇する。暖められた冷却液は受熱一体ポンプ2による強制輸送により、ゴムやPET(ポリエチレンテレフタレート)などを含む薄肉弾性材料を用いて製作したものや金属部材を複合させたものなどの自在管8を経由し、液流路5により直列に接続されたラジエータ3へ送られる。ラジエータ3は排気ダクト7に収容されており、冷却液が流れる金属製のパイプ3aとこれと熱的に接触している複数枚のアルミニウムや銅などの熱伝導性が良好な放熱フィン3bとで構成され、暖められた冷却液の熱が複数枚の放熱フィン3bに効率よく伝わる構造となっている。   The heat generated from the CPU, which is a heat generating electronic component, is transmitted to the coolant, which is the liquid refrigerant circulating inside the heat receiving surface, through the heat receiving surface located on the bottom surface 2a of the heat receiving integrated pump 2, which is the heat receiving portion. Temperature rises. The warmed coolant is forcedly transported by the heat receiving integrated pump 2 and passes through a free pipe 8 such as one made of a thin elastic material including rubber or PET (polyethylene terephthalate) or a composite of metal members. And sent to the radiator 3 connected in series by the liquid flow path 5. The radiator 3 is accommodated in an exhaust duct 7 and is composed of a metal pipe 3a through which a coolant flows and a plurality of heat radiating fins 3b having good thermal conductivity such as aluminum and copper in thermal contact with the pipe 3a. The heat of the coolant that is configured and warmed is efficiently transmitted to the plurality of heat radiation fins 3b.

さらに、図1の矢印で示された方向の吸気方向と同一の方向に排気しラジエータ3の通気方向に空気を送風する軸流ファン4を備え、排気ダクト7に収容されたラジエータ3の一方の面に対向して軸流ファン4が配置されるようにファンケース4aにより保持されており、ファンケース4aの吸気口より導入された空気は、軸流ファン4の回転軸とほぼ平行に送風され、ファンケース4a内に配置された複数枚の放熱フィン3bと金属製のパイプ3aの全面領域にほぼ均一な冷却風を当てることができるような構造となっている。   Furthermore, an axial fan 4 is provided that exhausts air in the same direction as the intake direction indicated by the arrow in FIG. 1 and blows air in the ventilation direction of the radiator 3, and one of the radiators 3 accommodated in the exhaust duct 7 is provided. The axial fan 4 is held by the fan case 4 a so as to face the surface, and the air introduced from the air inlet of the fan case 4 a is blown substantially parallel to the rotational axis of the axial fan 4. The structure is such that substantially uniform cooling air can be applied to the entire area of the plurality of heat dissipating fins 3b and the metal pipe 3a disposed in the fan case 4a.

また、CPUの実装面側に配置される受熱一体ポンプ2は放熱部であるラジエータ3へ屈曲性のある自在管8を用いて接続させているので、容易にラジエータ3、軸流ファン4、リザーブタンク6、及び排気ダクト7などの他の構成要素をCPUなどの発熱電子部品と離れた位置に配置することが可能となり、配置の設計自由度が増すため、冷却装置1の電子機器への装着性も向上し組み込みが容易となっている。そして、受熱一体ポンプ2の上面に取り付けられた固定部材9は、CPUなどの発熱電子部品に受熱一体ポンプ2の底面2aを熱接続させるための部材で、4箇所に固定ネジ9aがあらかじめ取り付けられており、実装基板側の所定のネジ穴に固定することで、CPUなどの発熱電子部品の上面に熱的接続を容易に行える構造となっている。   Further, the heat receiving integrated pump 2 arranged on the mounting surface side of the CPU is connected to the radiator 3 as a heat radiating unit using a flexible tube 8 having flexibility, so that the radiator 3, the axial fan 4 and the reserve are easily provided. Since other components such as the tank 6 and the exhaust duct 7 can be arranged at positions away from the heat generating electronic components such as the CPU, and the degree of freedom in designing the arrangement increases, the cooling device 1 can be mounted on the electronic device. It is easy to install. The fixing member 9 attached to the upper surface of the heat receiving integrated pump 2 is a member for thermally connecting the bottom surface 2a of the heat receiving integrated pump 2 to a heat generating electronic component such as a CPU, and fixing screws 9a are attached in advance at four locations. In addition, by being fixed to a predetermined screw hole on the mounting board side, the thermal connection to the upper surface of a heat generating electronic component such as a CPU can be easily performed.

一方、図4は本発明における冷却装置のラジエータを収容した排気ダクトを説明する正面図で、軸流ファン4、ファンケース4a、さらに受熱一体ポンプ2側に接続された液流路5から先に接続された部分を省略した図であるが、排気ダクト7は、ラジエータ3を収容しており、さらに排気ダクト7がラジエータ3の外郭部材をも兼ねており、その内部に冷却液が流れる金属製のパイプ3aとこのパイプ3aが貫通し熱的に接触しているアルミニウムや銅など熱伝導性が良好な放熱フィン3bが所定の位置に配置されているので、ラジエータ3を外郭部材を構成する部品点数が減り製作が容易となっている。ここで、排気ダクト7は樹脂成型品を用いたが、排気ダクト7の製作用部材としてステンレス鋼やアルミニウムなどの熱伝導性のよい金属材料を用いて、ラジエータ3の外郭部材を兼ねた場合は、放熱フィン3bからの熱伝導により排気ダクト7自体でも放熱性を有することになり、ラジエータ3より排気された空気流の方向を制御するだけでなく、ラジエータ3自体の放熱性能をも向上することが可能となる。   On the other hand, FIG. 4 is a front view for explaining the exhaust duct containing the radiator of the cooling device according to the present invention. The axial flow fan 4, the fan case 4 a, and the liquid flow path 5 connected to the heat receiving integrated pump 2 side first. Although the connected portion is omitted, the exhaust duct 7 accommodates the radiator 3, and the exhaust duct 7 also serves as an outer member of the radiator 3. Since the heat dissipating fins 3b having good thermal conductivity such as aluminum and copper through which the pipe 3a penetrates and is in thermal contact are arranged at predetermined positions, the radiator 3 is a component constituting the outer member. The number of points is reduced, making production easier. Here, the exhaust duct 7 is a resin molded product. However, when the exhaust duct 7 is made of a metal material having good heat conductivity such as stainless steel or aluminum as a production member, the exhaust duct 7 also serves as an outer member of the radiator 3. The exhaust duct 7 itself has heat dissipation due to heat conduction from the radiation fins 3b, and not only controls the direction of the air flow exhausted from the radiator 3, but also improves the heat dissipation performance of the radiator 3 itself. Is possible.

次に、図5〜図7は、それぞれ本発明に係わる冷却装置の取り付け後の状態を示す電子機器の内部斜視図、内部正面図、及び内部側面図である。ここで、図7に示したように、受熱部である受熱一体ポンプ2は発熱電子部品であるCPU16と熱的に接続しており、液体の冷媒が受熱一体ポンプ2と排気ダクト7に収容されたラジエータ3との間を自在管8や液流路5を介して循環している。一方、放熱部を構成している軸流ファン4、ラジエータ3、及び排気ダクト7が電子機器の筐体10の内部の上部に位置する電源11に隣接して固定されており、マザーボード12の電子部品実装面側の方向には、電子機器の主要部品であるHDD13、PCIカード14、メモリボード15などがそれぞれ所定の位置に配置され、受熱一体ポンプ2は、自在管8により位置の制約を受けることなく配置できるので、それら主要部品の配置にも影響を与えることなく、電子機器の筐体10の内部全体の構成部品がコンパクトに配置されている。   Next, FIGS. 5 to 7 are an internal perspective view, an internal front view, and an internal side view of the electronic apparatus, respectively, illustrating a state after the cooling device according to the present invention is attached. Here, as shown in FIG. 7, the heat receiving integrated pump 2 that is the heat receiving unit is thermally connected to the CPU 16 that is the heat generating electronic component, and the liquid refrigerant is accommodated in the heat receiving integrated pump 2 and the exhaust duct 7. The radiator 3 is circulated through the free pipe 8 and the liquid flow path 5. On the other hand, the axial fan 4, the radiator 3, and the exhaust duct 7 constituting the heat radiating unit are fixed adjacent to the power source 11 located in the upper part of the interior 10 of the electronic device, so The HDD 13, the PCI card 14, the memory board 15, etc., which are the main components of the electronic device, are arranged at predetermined positions in the direction of the component mounting surface side, and the heat receiving integrated pump 2 is restricted in position by the universal pipe 8. Therefore, the components in the entire interior of the housing 10 of the electronic device are compactly arranged without affecting the arrangement of these main parts.

つまり、マザーボード12に実装された発熱電子部品であるCPU16の上面には、受熱一体ポンプ2のみが熱的に接続するように配置されているので、受熱一体ポンプ2の真上には、HDD13が配置されており、電子機器の筐体10の内部のスペースが最大限に活用されている。   That is, since only the heat receiving integrated pump 2 is disposed on the upper surface of the CPU 16 that is a heat generating electronic component mounted on the motherboard 12, the HDD 13 is directly above the heat receiving integrated pump 2. The space inside the casing 10 of the electronic device is utilized to the maximum extent.

一方、図5や図6で示されるように、排気ダクト7の排気口7aを、電子機器の筐体10の背面側に設置できるように空気経路を形成しているので、排気口7aでの騒音や排気風などが直接オペレータの作業環境に与える影響を低減する構造としている。   On the other hand, as shown in FIGS. 5 and 6, an air path is formed so that the exhaust port 7a of the exhaust duct 7 can be installed on the back side of the casing 10 of the electronic device. It has a structure that reduces the influence of noise and exhaust air directly on the operator's work environment.

なお、以上説明した実施の形態では、冷却装置として液体の冷媒を用いた液冷却方式の冷却装置であって、その主要な構成要素である受熱一体ポンプや、他の構成要素であるラジエータ、軸流ファン、液流路、リザーブタンク、及び排気ダクトのそれぞれの個数、配設位置、配置方法、及び相互の接続方法などについては本実施の形態に制限されるものではなく、マザーボード12においてCPU16の実装面の他方の面にそれらの一部の構成要素を配設しても別段問題はない。   In the embodiment described above, the cooling device is a liquid cooling method using a liquid refrigerant as the cooling device, and the heat receiving integrated pump that is the main component, the radiator that is the other component, the shaft The number, arrangement position, arrangement method, and mutual connection method of the flow fan, the liquid flow path, the reserve tank, and the exhaust duct are not limited to the present embodiment. There is no particular problem even if some of these components are arranged on the other surface of the mounting surface.

本発明は、液体の冷媒を循環させながら発熱電子部品を冷却する冷却装置及びそれを備えた電子機器に適用できる。   INDUSTRIAL APPLICABILITY The present invention can be applied to a cooling device that cools a heat-generating electronic component while circulating a liquid refrigerant and an electronic apparatus including the same.

本発明の実施の形態1における冷却装置の斜視図The perspective view of the cooling device in Embodiment 1 of this invention 本発明の実施の形態1における冷却装置の正面図Front view of cooling device according to Embodiment 1 of the present invention 本発明の実施の形態1における冷却装置の側面図Side view of cooling device according to Embodiment 1 of the present invention. 本発明の実施の形態1における冷却装置の排気ダクトを説明する正面図The front view explaining the exhaust duct of the cooling device in Embodiment 1 of this invention 本発明の実施の形態1における冷却装置の取り付け後の状態を示す電子機器の内部斜視図The internal perspective view of the electronic device which shows the state after attachment of the cooling device in Embodiment 1 of this invention 本発明の実施の形態1における冷却装置の取り付け後の状態を示す電子機器の内部正面図The internal front view of the electronic device which shows the state after attachment of the cooling device in Embodiment 1 of this invention 本発明の実施の形態1における冷却装置の取り付け後の状態を示す電子機器の内部側面図The internal side view of the electronic device which shows the state after attachment of the cooling device in Embodiment 1 of this invention 従来の特許文献1に記載の冷却装置を示す説明図Explanatory drawing which shows the cooling device of conventional patent document 1

符号の説明Explanation of symbols

1 冷却装置
2 受熱一体ポンプ
2a 受熱一体ポンプの底面
3 ラジエータ
3a パイプ
3b 放熱フィン
4 軸流ファン
4a ファンケース
5 液流路
6 リザーブタンク
7 排気ダクト
7a 排気口
8 自在管
9 固定部材
9a 固定ネジ
10 電子機器の筐体
11 電源
12 マザーボード
13 HDD
14 PCIカード
15 メモリボード
16 CPU
17 ODD
20 冷却ユニット
21 ファン
22 ダクト
23 放熱フィン
24 ヒートパイプ
25 ファンケース
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Heat receiving integrated pump 2a Bottom surface of heat receiving integrated pump 3 Radiator 3a Pipe 3b Radiation fin 4 Axial fan 4a Fan case 5 Liquid flow path 6 Reserve tank 7 Exhaust duct 7a Exhaust port 8 Free pipe 9 Fixing member 9a Fixing screw 10 Electronic device casing 11 Power supply 12 Motherboard 13 HDD
14 PCI card 15 Memory board 16 CPU
17 ODD
20 Cooling Unit 21 Fan 22 Duct 23 Heat Dissipation Fin 24 Heat Pipe 25 Fan Case

Claims (6)

中央処理装置などの発熱電子部品を実装した基板上で液冷却方式により前記発熱電子部品を冷却する装置であって、前記発熱電子部品と熱接続する受熱部と、前記受熱部の熱を伝導する液体の冷媒が封入された液流路と、前記液流路の一部に配置され液体の冷媒と熱交換することにより放熱を行うラジエータと、前記ラジエータの方向へ送風する吸気方向と排気方向が同一方向の軸流ファンを備え、前記軸流ファンの吸排気方向と前記ラジエータの通風方向を同じくするように対向して配置したことを特徴とする冷却装置。 A device for cooling the heat generating electronic component by a liquid cooling method on a substrate on which a heat generating electronic component such as a central processing unit is mounted, and a heat receiving portion thermally connected to the heat generating electronic component, and conducting heat of the heat receiving portion A liquid flow path in which a liquid refrigerant is enclosed; a radiator that is disposed in a part of the liquid flow path and performs heat exchange with the liquid refrigerant; and an intake direction and an exhaust direction in which air is blown toward the radiator A cooling device comprising axial fans in the same direction and arranged to face each other so that the intake / exhaust direction of the axial fans is the same as the ventilation direction of the radiator. 前記軸流ファンが対向配置された前記ラジエータの排気方向に排気ダクトを設けたことを特徴とする請求項1記載の冷却装置。 The cooling device according to claim 1, wherein an exhaust duct is provided in an exhaust direction of the radiator in which the axial fan is disposed so as to face the axial flow fan. 前記排気ダクトが前記ラジエータを収容したことを特徴とする請求項2記載の冷却装置。 The cooling device according to claim 2, wherein the exhaust duct accommodates the radiator. 前記受熱部は、液体の冷媒を前記液流路内に強制循環させるポンプを内蔵した受熱一体ポンプであることを特徴とする請求項1記載の冷却装置。 2. The cooling device according to claim 1, wherein the heat receiving unit is a heat receiving integrated pump having a built-in pump for forcibly circulating a liquid refrigerant in the liquid flow path. 前記受熱一体ポンプと前記ラジエータとの間に設けられた前記液流路の一部に自在管を用いたことを特徴とする請求項4記載の冷却装置。 5. The cooling device according to claim 4, wherein a universal pipe is used as a part of the liquid flow path provided between the heat receiving integrated pump and the radiator. 請求項1から5いずれか1項に記載の冷却装置を備え、前記冷却装置の受熱部が発熱電子部品と熱接続されたことを特徴とする電子機器。 An electronic apparatus comprising the cooling device according to claim 1, wherein a heat receiving portion of the cooling device is thermally connected to a heat generating electronic component.
JP2004350926A 2004-12-03 2004-12-03 Cooling device and electronic equipment having the same Pending JP2006163563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350926A JP2006163563A (en) 2004-12-03 2004-12-03 Cooling device and electronic equipment having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350926A JP2006163563A (en) 2004-12-03 2004-12-03 Cooling device and electronic equipment having the same

Publications (1)

Publication Number Publication Date
JP2006163563A true JP2006163563A (en) 2006-06-22

Family

ID=36665541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350926A Pending JP2006163563A (en) 2004-12-03 2004-12-03 Cooling device and electronic equipment having the same

Country Status (1)

Country Link
JP (1) JP2006163563A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133642A (en) * 2008-12-04 2010-06-17 Fujitsu Ltd Radiator, cooling unit, cooling system and electronic device
CN101976103A (en) * 2010-09-19 2011-02-16 浪潮(北京)电子信息产业有限公司 Computer cooling system
CN105101752A (en) * 2015-08-10 2015-11-25 深圳市萨伏特电池电源有限公司 Charger heat dissipation device
CN109814682A (en) * 2019-01-30 2019-05-28 合肥陆通智能科技有限公司 A kind of all direction multifunctional protection mainboard

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010133642A (en) * 2008-12-04 2010-06-17 Fujitsu Ltd Radiator, cooling unit, cooling system and electronic device
CN101976103A (en) * 2010-09-19 2011-02-16 浪潮(北京)电子信息产业有限公司 Computer cooling system
CN105101752A (en) * 2015-08-10 2015-11-25 深圳市萨伏特电池电源有限公司 Charger heat dissipation device
CN109814682A (en) * 2019-01-30 2019-05-28 合肥陆通智能科技有限公司 A kind of all direction multifunctional protection mainboard

Similar Documents

Publication Publication Date Title
JP3994948B2 (en) Cooling device and electronic equipment
US6639797B2 (en) Computer having cooling device
US7826217B2 (en) Cooling device and electronic apparatus using the same
JP3594900B2 (en) Display integrated computer
JP4997215B2 (en) Server device
JP2006207881A (en) Cooling device and electronic apparatus comprising the same
JP4551261B2 (en) Cooling jacket
JP2008027374A (en) Heat receiver for liquid cooling unit, liquid cooling unit, and electronic device
US20070107441A1 (en) Heat-dissipating unit and related liquid cooling module
JP2006234255A (en) Radiator and liquid cooling system comprising the same
US20050094371A1 (en) Electronic device and heat-dissipating module thereof
KR100939992B1 (en) Cooling Apparatus, and Electric-Electronic Equipment with the Cooling Apparatus
CN100372108C (en) Radiating moudle of electronic device
JP5531400B2 (en) COOLING UNIT, COOLING SYSTEM, AND ELECTRONIC DEVICE
JP2007281213A (en) Heat sink module and cooling apparatus having the same
JP4496978B2 (en) Electronics
JP2006163563A (en) Cooling device and electronic equipment having the same
CN216291941U (en) Water-cooling heat dissipation device and electronic device
JP2005175075A (en) Liquid circulating type cooling device
JP3911525B2 (en) Heat dissipation mechanism and electronic device having the heat dissipation mechanism
JP2007150302A (en) Heat sink and information processor mounting the same
JP2005051127A (en) Cooling module and laminated structure of heat radiator
JP2007335624A (en) Liquid-cooled cooler for electronic appliance
JP2008211001A (en) Electronic device cooling apparatus
JP2006134981A (en) Cooling device and electronic device equipped therewith