JP2006162310A - Air duct structure of wind tunnel system - Google Patents

Air duct structure of wind tunnel system Download PDF

Info

Publication number
JP2006162310A
JP2006162310A JP2004350868A JP2004350868A JP2006162310A JP 2006162310 A JP2006162310 A JP 2006162310A JP 2004350868 A JP2004350868 A JP 2004350868A JP 2004350868 A JP2004350868 A JP 2004350868A JP 2006162310 A JP2006162310 A JP 2006162310A
Authority
JP
Japan
Prior art keywords
air
opening
air flow
wind tunnel
measurement chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004350868A
Other languages
Japanese (ja)
Other versions
JP4194993B2 (en
Inventor
Takashi Yoshida
崇 吉田
Yoshitsugu Yamamoto
芳嗣 山本
Satoshi Katsuya
訓 勝屋
Hiroshi Ohira
宏 大平
Tomoyuki Yanase
智之 柳瀬
Masahiro Ogawa
雅弘 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taikisha Ltd
Original Assignee
Taikisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taikisha Ltd filed Critical Taikisha Ltd
Priority to JP2004350868A priority Critical patent/JP4194993B2/en
Publication of JP2006162310A publication Critical patent/JP2006162310A/en
Application granted granted Critical
Publication of JP4194993B2 publication Critical patent/JP4194993B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the effects of the occurrence of background noise in a wind tunnel system, and to improve the performance of the wind tunnel. <P>SOLUTION: Air flow A, sent by a blower measure 3 provided in an air duct 1, is blown from an exit piece 7a of the air-blow portion 1A of the air duct 1 to a measuring room 2 and the air flow A, blown out to the measuring chamber 2, is introduced from a suction piece 8a with a rectangular shape or nearly rectangular shape at the suction portion 1B of the air duct 1 provided at the opposite position of the exit piece 7a in the measuring chamber 2 into the air duct 1 by the blower measure 3 in the air duct structure of the wind tunnel system W. An opening 11 for feeding back a part A' of the air flow A, introduced from the suction piece 8a of the air duct 1 to the measuring chamber 2, is formed at one end part or both end parts in the wall width direction at a location close to the suction piece of at least one wall part 1a among 4 wall parts 1a forming the suction portion 1B of the air duct 1, in a state leaving at least the middle part of the wall width direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車や航空機等の実験における空力や空力特性、空力騒音の測定に使用する風洞装置の風路構造に関し、詳しくは、風路に設けた送風手段によって送出された空気流を前記風路の送風側部分の吹出し口から測定室に吹き出し、その測定室に吹き出された空気流を、測定室における前記吹出し口の対向位置に設けられた前記風路の吸気側部分の断面矩形状又は略矩形状の吸込み口から前記送風手段により風路内に導入する風洞装置の風路構造に関する。   The present invention relates to a wind channel structure of a wind tunnel device used for measurement of aerodynamics, aerodynamic characteristics, and aerodynamic noise in experiments on automobiles, aircrafts, and the like. More specifically, the air flow sent by a blowing means provided in a wind channel is used as the wind flow. The airflow blown into the measurement chamber from the blowout port of the airflow side portion of the passage, and the air flow blown into the measurement chamber has a rectangular shape in the cross section of the intake side portion of the airway provided at the position facing the blowout port in the measurement chamber or The present invention relates to an air channel structure of a wind tunnel device that is introduced into an air channel by a blowing means from a substantially rectangular suction port.

風洞装置において、風路の送風側部分の吹出し口から測定室内に吹き出された空気流は、測定室内の空気を誘引して風路の吸気側部分の断面矩形状又は略矩形状の吸込み口に進入していくため、この誘引された余剰空気により、風路に設けられた送風手段による送風量よりも吸込み口からの吸気量が大きくなり、風路の吸気側部分の静圧が上昇してしまうとともに、断面矩形状又は略矩形状の吸込み口における空気流の動圧分布は、図4に示すように、吸込み口の中心に対して吸込み口の四隅部分が0〜10%程度、それら四隅部分どうしの間の吸込み口の周縁中央部分が20〜30%程度となる。   In the wind tunnel device, the air flow blown into the measurement chamber from the blowout port on the air passage side of the air passage attracts the air in the measurement chamber to the suction port having a rectangular or substantially rectangular cross section on the air intake side portion of the air passage. As the air enters, the surplus air that has been attracted increases the amount of intake air from the suction port rather than the amount of air blown by the air blowing means provided in the air passage, and the static pressure at the intake side of the air passage increases. In addition, as shown in FIG. 4, the dynamic pressure distribution of the air flow at the suction port having a rectangular or substantially rectangular cross section is such that the four corners of the suction port are about 0 to 10% with respect to the center of the suction port. The central part of the peripheral edge of the suction port between the parts is about 20 to 30%.

そして、これら風路の吸気側部分の静圧上昇と吸込み口の四隅部分における動圧低下とが相俟って、この四隅部分において空気流の逆流を起こしてしまう恐れがあり、この逆流によって吸込み口に導入される空気流が不安定(乱流)となって、測定室における気流性状の低下(つまり、風洞装置全体としての性能低下)に繋がるとともに、吸込み口における発生騒音も増大してしまい、特に、風洞装置自体からの暗騒音発生を抑制しなければならない空力騒音測定に使用するのが困難であった。   The combined increase in static pressure at the intake side of these air passages and decrease in dynamic pressure at the four corners of the suction port may cause a backflow of air flow at these four corners. The air flow introduced into the mouth becomes unstable (turbulent flow), leading to a decrease in airflow properties in the measurement chamber (that is, a decrease in the performance of the entire wind tunnel device) and an increase in noise generated at the suction port. In particular, it has been difficult to use for aerodynamic noise measurement in which background noise generation from the wind tunnel device itself must be suppressed.

そこで、従来の風洞装置の風路構造は、風路の吸気側部分101Bを形成する4つの壁部101aの吸込み口近傍箇所における幅方向中央部分に壁部幅方向に長い長孔の開口部111を設けて、この開口部111より空気流Aの一部(誘引による余剰空気分)を測定室102に吹き出すことで、風路の吸気側部分の静圧上昇を抑制して逆流空気流の発生を防止して、吸込み口108aから導入される空気流Aの不安定化を抑制し、測定室102における気流性状の低下及び吸込み口108aにおける発生騒音の増大防止を図っていた。   Therefore, the conventional air channel structure of the wind tunnel device has a long hole opening 111 long in the wall width direction at the central portion in the width direction in the vicinity of the suction port of the four wall portions 101a forming the intake side portion 101B of the air path. And a part of the air flow A (excess air due to attraction) is blown out from the opening 111 to the measurement chamber 102, thereby suppressing the increase in static pressure in the intake side portion of the air passage and generating the backflow air flow. The air flow A introduced from the suction port 108a is prevented from becoming unstable, and the air flow property in the measurement chamber 102 is reduced and the generated noise in the suction port 108a is prevented from increasing.

これに近似する技術としては、測定室内に位置する4つの壁部を多孔板で形成したものがあった(例えば、特許文献1参照。)。
特開平11−64156号公報
As a technique that approximates this, there is a technique in which four wall portions located in the measurement chamber are formed of a perforated plate (see, for example, Patent Document 1).
JP-A-11-64156

しかしながら、従来の風洞装置の風路構造では、壁部101aに壁部幅方向に長い長孔の開口部111が形成されているため、この開口部111において開口部111の長手方向両端部に近傍する部分(すなわち、吸込み口108aの四隅部分に近傍する位置)から開口部111の長手方向中央部分に亘る動圧分布が異なるので(図4参照。)、この空気流Aの動圧の差により開口部111から吹き出される空気流が一定に吹き出されずに、開口部111から吹き出される空気流が乱れてしまい、これによって、開口部111において騒音が発生したり、測定室102における気流性状を低下させたりする恐れもあった(図7並びに図8参照。)。   However, in the conventional wind channel structure of the wind tunnel device, since the opening portion 111 having a long hole in the wall width direction is formed in the wall portion 101a, the opening portion 111 is adjacent to both ends in the longitudinal direction of the opening portion 111. Since the dynamic pressure distribution from the portion to be moved (that is, the position near the four corners of the suction port 108a) to the central portion in the longitudinal direction of the opening 111 is different (see FIG. 4), the difference in the dynamic pressure of the air flow A The air flow blown out from the opening 111 is not blown out uniformly, and the air flow blown out from the opening 111 is disturbed, thereby generating noise in the opening 111 and air flow characteristics in the measurement chamber 102. (See FIGS. 7 and 8).

また、開口部111が壁部幅方向に長い長孔であり、開口部111における動圧分布が異なることで、開口部111から空気流Aによって誘引された余剰空気を吹き出すと同時に開口部111から測定室102の空気を誘引して吸い込んでしまう恐れもあり、逆流空気流の発生を確実に防止するのが困難であった。   Further, the opening 111 is a long hole extending in the wall width direction, and the distribution of dynamic pressure in the opening 111 is different, so that excess air attracted by the air flow A is blown out from the opening 111 and simultaneously from the opening 111. There is a possibility that air in the measurement chamber 102 is attracted and sucked, and it is difficult to reliably prevent the generation of a backflow airflow.

なお、上述した近似技術においても同様の問題があった。   Note that the above-described approximation technique has the same problem.

この実情に鑑み、本発明の主たる課題は、合理的な改良をもって上記問題を効果的に解消する点にある。   In view of this situation, the main problem of the present invention is to effectively solve the above problems with a rational improvement.

本発明の第1特徴構成は、風洞装置の風路構造に係り、その特徴は、
風路に設けた送風手段によって送出された空気流を前記風路の送風側部分の吹出し口から測定室に吹き出し、その測定室に吹き出された空気流を、測定室における前記吹出し口の対向位置に設けられた前記風路の吸気側部分の断面矩形状又は略矩形状の吸込み口から前記送風手段により風路内に導入する風洞装置の風路構造であって、
前記風路の吸気側部分を形成する4つの壁部のうち、少なくとも1つの壁部の前記吸込み口近傍箇所において、少なくとも壁部幅方向の中央部分を残した状態で壁部幅方向の一側端部分又は両側端部分に、前記風路の吸込み口から導入された空気流の一部を前記測定室に還流させるための開口部を形成してある点にある。
The first characteristic configuration of the present invention relates to a wind path structure of a wind tunnel device,
The air flow sent out by the blowing means provided in the air passage is blown out from the blow-out port of the air passage side portion of the air passage to the measurement chamber, and the air flow blown into the measurement chamber is opposed to the blow-out port in the measurement chamber. The air channel structure of the wind tunnel device that is introduced into the air channel by the air blowing means from the suction port having a rectangular or substantially rectangular cross section of the air intake side portion of the air channel provided in the air channel,
Of the four wall portions forming the air intake side portion of the air passage, at one side of the wall portion width direction with at least a central portion in the wall width direction remaining at a location near the suction port of at least one wall portion An opening for returning a part of the air flow introduced from the suction port of the air passage to the measurement chamber is formed in the end portion or both end portions.

つまり、この構成であれば、風路の吸気側部分を形成する壁部の吸込み口近傍箇所に、吸込み口から導入された空気流の一部を測定室に還流させるための開口部を形成してあるので、空気流に誘引された余剰空気を還流空気流として測定室に還流させることができて、風路の吸気側部分における静圧上昇を抑制することができ、これによって、風路の吸気側部分に逆流空気流が発生することを防止する。   In other words, with this configuration, an opening for returning a part of the air flow introduced from the suction port to the measurement chamber is formed in the vicinity of the suction port of the wall that forms the suction side portion of the air passage. Therefore, surplus air attracted by the air flow can be recirculated to the measurement chamber as a recirculation air flow, and an increase in static pressure in the intake side portion of the air passage can be suppressed. Prevents backflow airflow from occurring on the intake side.

そして、その開口部を空気流の動圧が最も低い吸込み口の隅部となる位置に形成すると共に、風路の吸気側部分を形成する壁部の壁部幅方向の中央部分を残した状態にしてあるので、従来例のように開口部における動圧分布にばらつきが起きず、開口部から吹き出して測定室に還流する還流空気流の風量及び風速がほぼ一定でかつ低速となり、これによって、開口部から還流空気流を吹き出した際に発生する騒音を極力抑制することができる。   And the state which left the central part of the wall part width direction of the wall part which forms the opening part in the position used as the corner part of the suction port where the dynamic pressure of air flow is the lowest, and forms the suction side part of an air passage Therefore, there is no variation in the dynamic pressure distribution in the opening as in the conventional example, the air volume and the wind speed of the reflux air flow that blows out from the opening and returns to the measurement chamber is substantially constant and low speed, Noise generated when a recirculation air flow is blown out from the opening can be suppressed as much as possible.

また、空気流の動圧が最も低い吸込み口の隅部となる位置に開口部を設けることで、開口部を通じて測定室の空気が空気流に誘引されることも抑止することができるので、より確実に風路の吸気側部分の静圧上昇を抑制し、逆流空気流の発生を防止することができる。   In addition, by providing an opening at a position that becomes the corner of the suction port where the dynamic pressure of the air flow is the lowest, it is possible to prevent the air in the measurement chamber from being attracted by the air flow through the opening. It is possible to reliably suppress an increase in static pressure in the intake side portion of the air passage, and to prevent the occurrence of a backflow airflow.

従って、逆流空気流の発生を確実に防止することができることにより、吸込み口に導入される空気流が不安定化を原因とする測定室における気流性状の低下を抑制することができ、風洞装置全体としての風洞性能を向上させることができるとともに、吸込み口における発生騒音も低下することができ、風洞装置自体からの暗騒音発生を効果的に抑制することができる。   Therefore, the generation of the backflow airflow can be reliably prevented, so that the deterioration of the airflow property in the measurement chamber caused by the instability of the airflow introduced into the suction port can be suppressed, and the entire wind tunnel device As a result, it is possible to improve the wind tunnel performance as well as to reduce the noise generated at the suction port, and to effectively suppress the generation of background noise from the wind tunnel device itself.

本発明の第2特徴構成は、第1特徴構成の実施において好適な構成であり、その特徴は、
前記開口部が、空気流通過方向に長い長孔に形成されてある点にある。
The second feature configuration of the present invention is a preferred configuration in the implementation of the first feature configuration.
The opening is formed in a long hole that is long in the air flow passage direction.

つまり、この構成であれば、開口部を長孔にすることで、逆流空気流の発生を防止するのに十分な還流空気流の風量を確保することができるとともに、開口部の開口長手方向と空気流通過方向とを一致させることで、空気流の通過方向と対向する開口部の開口周縁部を極力少なくして、空気流と開口周縁部との衝突による空気流の乱れを抑制することができ、これによって、風洞装置全体としての風洞性能を向上させることができるとともに、その衝突による騒音の発生も極力抑えることができる。   In other words, with this configuration, by making the opening a long hole, it is possible to secure a sufficient amount of recirculation airflow to prevent the occurrence of a backflow airflow, and the opening longitudinal direction of the opening By matching the air flow passage direction with the air flow passage direction, the opening peripheral edge of the opening facing the air flow passage direction can be reduced as much as possible to suppress the disturbance of the air flow due to the collision between the air flow and the opening peripheral edge. Thus, the wind tunnel performance of the entire wind tunnel device can be improved, and the generation of noise due to the collision can be suppressed as much as possible.

本発明の第3特徴構成は、第2特徴構成の実施において好適な構成であり、その特徴は、
前記開口部が、その開口面積を調整可能な構成に形成されてある点にある。
The third characteristic configuration of the present invention is a preferable configuration in the implementation of the second characteristic configuration.
The opening is formed so that the opening area can be adjusted.

つまり、この構成であれば、開口部の開口面積を調整することで、送風手段による送風量や風洞装置における吹出し口の開口面積、吹出し口から吸込み口までの距離、測定室の大きさ、吸込み口の形状等に応じて、開口部から測定室に還流される還流空気流の風量を最適な風量に調整することができるので、風路内における逆流空気流の発生をより一層確実に防止することができ、発生騒音の低減並びに風洞性能の向上を図ることができる。   In other words, with this configuration, by adjusting the opening area of the opening, the amount of air blown by the blowing means, the opening area of the outlet in the wind tunnel device, the distance from the outlet to the inlet, the size of the measurement chamber, the suction Depending on the shape of the mouth, etc., the flow rate of the return air flow returned from the opening to the measurement chamber can be adjusted to the optimum flow rate, so that the generation of a backflow air flow in the air path can be prevented more reliably. Therefore, it is possible to reduce the generated noise and improve the wind tunnel performance.

なお、開口部の開口面積調整は、通常、風洞装置設置時における試運転時に行うが、測定試験における送風量の変更に伴って適宜調整するようにしてもよい。   In addition, although the opening area adjustment of an opening part is normally performed at the time of the test run at the time of wind tunnel apparatus installation, you may make it adjust suitably with the change of the ventilation volume in a measurement test.

本発明の第4特徴構成は、第1〜第3特徴構成のいずれか1つの特徴構成の実施において好適な構成であり、その特徴は、
前記開口部が、その開口位置を調整可能に構成されてある点にある。
The fourth feature configuration of the present invention is a preferred configuration in the implementation of any one of the first to third feature configurations.
The said opening part exists in the point comprised so that adjustment of the opening position is possible.

つまり、この構成であれば、壁部の一側端部分に開口部を設けたり、壁部の両側端部分に開口部を設けたり、また、空気流通過方向における開口部の開口位置を変更したりすることによって、送風手段による送風量や風洞装置における吹出し口の開口面積、吹出し口から吸込み口までの距離、測定室の大きさ、吸込み口の形状等に応じて、最も好適に余剰空気を測定室へ還流空気流として吹き出すことができる位置に開口部を設けることができるので、風洞装置全体としての風洞性能を向上させるための調整をより一層効果的に行うことができる。   In other words, with this configuration, an opening is provided at one end portion of the wall portion, an opening portion is provided at both end portions of the wall portion, and the opening position of the opening portion in the air flow passage direction is changed. In accordance with the amount of air blown by the air blowing means, the opening area of the air outlet in the wind tunnel device, the distance from the air outlet to the air inlet, the size of the measurement chamber, the shape of the air inlet, etc. Since the opening can be provided at a position where it can be blown out as a reflux air flow to the measurement chamber, the adjustment for improving the wind tunnel performance of the entire wind tunnel device can be performed more effectively.

なお、第3特徴構成と同様に、開口部の開口位置の調整は、通常、風洞装置設置時における試運転時に行うが、測定試験における送風量の変更に伴って適宜調整するようにしてもよい。   As with the third characteristic configuration, the opening position of the opening is normally adjusted during a trial operation when the wind tunnel device is installed, but may be appropriately adjusted according to a change in the air flow rate in the measurement test.

本発明の第5特徴構成は、第1〜第4特徴構成のいずれか1つの特徴構成の実施において好適な構成であり、その特徴は、
前記開口部に、開口部から前記測定室に還流する還流空気流の開口部における風量分布を均一化するための抵抗体が配設されてある点にある。
The fifth feature configuration of the present invention is a preferred configuration in the implementation of any one of the first to fourth feature configurations.
The opening is provided with a resistor for equalizing the air volume distribution in the opening of the reflux air flow flowing back from the opening to the measurement chamber.

つまり、この構成であれば、抵抗体によって開口部における還流空気流の風量分布が均一化されるので、開口部において局所的に還流空気流の風量が大きくなったり、小さくなったりすることを防止することができ、これによって、開口部における騒音発生を効果的に抑制することができる。   In other words, with this configuration, the flow rate distribution of the return air flow at the opening is made uniform by the resistor, so that the flow rate of the return air flow at the opening is not locally increased or reduced. Thus, noise generation at the opening can be effectively suppressed.

また、抵抗係数の異なる抵抗体を交換して設置することにより、開口部からの還流空気流の風量調整も行うことができる。   In addition, by replacing and installing resistors having different resistance coefficients, it is possible to adjust the air volume of the reflux air flow from the opening.

本発明の第6特徴構成は、第1〜第5特徴構成のいずれか1つの特徴構成の実施において好適な構成であり、その特徴は、
前記風路の壁部の外周面における開口部形成箇所に、前記開口部を覆うように消音手段が設けられてある点にある。
The sixth feature configuration of the present invention is a preferred configuration in the implementation of any one of the first to fifth feature configurations.
There exists a point in which the noise reduction means is provided in the opening formation location in the outer peripheral surface of the wall part of the said air path so that the said opening part may be covered.

つまり、この構成であれば、開口部を覆うように消音手段を設けることで、測定室に還流する還流空気流が開口部を通過する際に発生する騒音を、この消音手段により確実に消音することができ、これによって、風洞装置全体として暗騒音の発生をより一層効果的に、かつ、確実に抑制することができる。   In other words, with this configuration, by providing a silencer so as to cover the opening, the noise generated when the reflux air flow returning to the measurement chamber passes through the opening is surely silenced by the silencer. As a result, it is possible to more effectively and reliably suppress the generation of background noise in the entire wind tunnel device.

〔第1実施形態〕
図1〜図4は、本発明の第1実施形態として、自動車や航空機等の実験対象物における空力、空力特性、空力騒音等を測定するための風洞装置Wを示し、4つの壁部1aによって断面矩形状(詳しくは、四隅部分のそれぞれを弧状に形成してある略矩形状)に形成された風路1と測定室2との間を送風手段であるファン3により空気流Aを循環させており、風路1は、ファン3の下流側で測定室2に断面矩形状(四隅部分のそれぞれを弧状に形成してある略矩形状)の吹出し口7aを備えた送風側部分1Aと、ファン3の上流側で測定室2に断面矩形状(四隅部分のそれぞれを弧状に形成してある略矩形状)の吸込み口8aを備えた吸気側部分1Bとから構成されている。
[First Embodiment]
1 to 4 show a wind tunnel device W for measuring aerodynamics, aerodynamic characteristics, aerodynamic noise and the like in an experimental object such as an automobile or an aircraft as a first embodiment of the present invention. The air flow A is circulated between the air passage 1 and the measurement chamber 2 formed in a rectangular cross section (specifically, a substantially rectangular shape in which each of the four corners is formed in an arc shape) by a fan 3 which is a blowing means. The air passage 1 has a blower side portion 1A provided with a blowout port 7a having a rectangular cross section (a substantially rectangular shape in which each of the four corner portions is formed in an arc shape) in the measurement chamber 2 on the downstream side of the fan 3, On the upstream side of the fan 3, the measurement chamber 2 is composed of an intake side portion 1B provided with a suction port 8a having a rectangular cross section (a substantially rectangular shape in which each of the four corner portions is formed in an arc shape).

風路1の送風側部分1Aは、ファン3から測定室2に亘って、断面積が次第に大きくなるテーパー形状の第1拡大洞部4と、断面積が一定の第1中間洞部5と、断面積が次第に小さくなるテーパー形状の第1縮流洞部6と、吹出し口7aを備えたノズル部7とからその順に一体的に接続されて構成され、風路1の吸気側部分1Bは、測定室2からファン3に亘って、吸込み口8aを備えたベルマウス形状のコレクタ部8と、断面積が次第に大きくなる第2拡大洞部9と、断面積が一定の第2中間洞部10とからその順に一体的に接続されて構成されているとともに、送風側部分1Aの第1拡大洞部4と吸気側部分1Bの第2中間洞部10が接続されており、それら風路1の送風側部分1Aのノズル部7及び吸気側部分1Bのコレクタ部8は測定室2内に配置されている。   The blower side portion 1A of the air passage 1 includes a taper-shaped first enlarged cave portion 4 having a gradually increasing cross-sectional area from the fan 3 to the measurement chamber 2, a first intermediate cave portion 5 having a constant cross-sectional area, A tapered first reduced-current cave portion 6 with a gradually decreasing cross-sectional area and a nozzle portion 7 provided with a blowout port 7a are integrally connected in that order. From the measurement chamber 2 to the fan 3, a bell mouth-shaped collector portion 8 having a suction port 8 a, a second enlarged sinus portion 9 having a gradually increasing cross-sectional area, and a second intermediate sinus portion 10 having a constant cross-sectional area. Are connected integrally in that order, and the first enlarged cave portion 4 of the blower side portion 1A and the second intermediate cave portion 10 of the intake side portion 1B are connected to each other. The nozzle portion 7 of the blower side portion 1A and the collector portion 8 of the intake side portion 1B are measured. It is arranged in the chamber 2.

ファン3によって送風された空気流Aは、第1拡大洞部4を通過することで空気流A全体としての風速(動圧)を低下させて第1中間洞部5における圧力(静圧)を上昇させた後、第1縮流洞部6を通過させることで、測定するのに必要十分な風量(風速)の空気流Aをノズル部7の吹出し口7aから測定室2に吹き出すことができる。   The air flow A blown by the fan 3 passes through the first enlarged cave portion 4 to reduce the wind speed (dynamic pressure) as the whole air flow A, and the pressure (static pressure) in the first intermediate cave portion 5 is reduced. After being raised, the air flow A having a sufficient air volume (wind speed) necessary for measurement can be blown out from the blowout port 7a of the nozzle unit 7 into the measurement chamber 2 by passing through the first contracted cave portion 6. .

風路1の吸気側部分1Bを形成する4つの壁部1aのコレクタ部形成箇所(吸込み口近傍箇所)における壁部幅方向の両側端部分には、壁部1aの両側端縁の形状に沿って空気流通過方向に長いスリット孔11aを壁部幅方向に複数並列させたブリーザー11(開口部)が形成されていて、吸込み口8aより進入する空気流Aが誘引した余剰空気を還流空気流A′としてこのブリーザー11から測定室2内に戻すことができる。   The two wall end portions of the four wall portions 1a forming the air intake side portion 1B of the air passage 1 in the width direction of the collector portion (location near the suction port) follow the shape of the side edges of the wall portion 1a. A breather 11 (opening) in which a plurality of slit holes 11a that are long in the air flow passage direction are juxtaposed in the wall width direction is formed, and excess air induced by the air flow A entering from the suction port 8a is returned to the reflux air flow. A ′ can be returned from the breather 11 into the measurement chamber 2.

そして、ブリーザー11を構成する各スリット孔11aの長手方向が空気流通過方向と一致してあるので、空気流Aの通過方向と対向する各スリット孔11aの周縁部を極力少なくして、空気流Aとスリット孔11aの周縁部との衝突による空気流Aの乱れを抑制することができ、これによって、風洞装置W全体としての風洞性能を向上させることができるとともに、その衝突による騒音の発生も極力抑えることができる。   And since the longitudinal direction of each slit hole 11a which comprises the breather 11 corresponds with the air flow passage direction, the peripheral part of each slit hole 11a which opposes the passage direction of the air flow A is reduced as much as possible. The turbulence of the air flow A due to the collision between A and the peripheral edge of the slit hole 11a can be suppressed, thereby improving the wind tunnel performance of the entire wind tunnel device W and generating noise due to the collision. It can be suppressed as much as possible.

各ブリーザー11の外面側には、薄板状の可動式の蓋材12が配設されており、この蓋材12で複数のスリット孔11aを開閉してスリット孔11aの開口数を変更することでブリーザー11の開口面積を調整することができ、これによって、ブリーザー11から吹き出す還流空気流A′の風量調整を行うことができる。   A thin plate-shaped movable lid member 12 is disposed on the outer surface side of each breather 11, and the lid member 12 opens and closes a plurality of slit holes 11a to change the numerical aperture of the slit holes 11a. The opening area of the breather 11 can be adjusted, whereby the flow rate of the reflux air flow A ′ blown out from the breather 11 can be adjusted.

また、蓋材12によるスリット孔11aの閉口位置を変更することで、ブリーザー11の開口位置も変更することができる。   Moreover, the opening position of the breather 11 can also be changed by changing the closing position of the slit hole 11 a by the lid member 12.

更に、ブリーザー11には、通気性の抵抗体として不織布13がブリーザー11を覆うように(詳しくは、ブリーザー11と蓋材12との間に)配設されていて、このブリーザー11から測定室2に還流する還流空気流A′のブリーザー11における風量分布を均一化することができ、これによって、ブリーザー11における風量分布の偏りを解消することができ、ブリーザー11における騒音の発生を効果的に抑制している。   Further, the breather 11 is provided with a non-woven fabric 13 as a breathable resistor so as to cover the breather 11 (specifically, between the breather 11 and the lid 12). The air flow distribution in the breather 11 of the reflux air flow A ′ recirculating to the air can be made uniform, thereby eliminating the uneven air flow distribution in the breather 11 and effectively suppressing noise generation in the breather 11. is doing.

また、不織布13には、抵抗係数の異なる複数のものが用意されており、抵抗係数の異なる不織布13を交換することで、ブリーザー11からの還流空気流A′の風量の調整を行うことができる。   In addition, a plurality of nonwoven fabrics 13 having different resistance coefficients are prepared. By replacing the nonwoven fabrics 13 having different resistance coefficients, the air volume of the reflux air flow A ′ from the breather 11 can be adjusted. .

つまり、ブリーザー11の開口面積調整、及び、抵抗係数の異なる不織布13の交換により、還流空気流A′の風量を風洞装置Wの運転において最適な風量にすることができる。   That is, by adjusting the opening area of the breather 11 and replacing the non-woven fabric 13 having a different resistance coefficient, the air volume of the reflux air flow A ′ can be set to an optimum air volume in the operation of the wind tunnel device W.

図4はコレクタ部8の吸込み口8aの正面視における空気流Aの動圧分布を示し、ノズル部7の吹出し口7aから吹き出された空気流Aは、図4に示すように、コレクタ部8の四隅部分付近における動圧が、コレクタ部8の中心部分付近の動圧に比べて10%以下となる。   FIG. 4 shows the dynamic pressure distribution of the air flow A in the front view of the suction port 8a of the collector part 8, and the air flow A blown from the outlet 7a of the nozzle part 7 is as shown in FIG. The dynamic pressure in the vicinity of the four corners is 10% or less compared to the dynamic pressure in the vicinity of the central portion of the collector portion 8.

つまり、壁部1aに形成されたブリーザー11は、コレクタ部8の四隅部分に相当する位置(空気流Aの動圧が最も低い部分)に形成されている。   That is, the breather 11 formed on the wall portion 1a is formed at a position corresponding to the four corner portions of the collector portion 8 (portion where the dynamic pressure of the air flow A is the lowest).

以上、ブリーザー11(開口部)をこのように設けることにより、空気流Aに誘引された余剰空気を還流空気流A′として測定室2に還流させることができて、風路1の吸気側部分1Bにおける静圧上昇を抑制することができ、これによって、風路1の吸気側部分1Bに逆流空気流が発生することを防止する。   As described above, by providing the breather 11 (opening) in this way, surplus air attracted by the air flow A can be recirculated to the measurement chamber 2 as the recirculation air flow A ′. An increase in static pressure in 1B can be suppressed, thereby preventing a backflow air flow from being generated in the intake side portion 1B of the air passage 1.

そして、空気流Aの動圧が最も低いコレクタ部8の吸込み口8aの四隅部分となる位置にブリーザー11を形成すると共に、風路1の吸気側部分1Bを形成する壁部1aの壁部幅方向の中央部分を残した状態にしてあるので、ブリーザー11における動圧分布にばらつきが起きず、ブリーザー11から吹き出して測定室2に還流する還流空気流A′の風量及び風速はほぼ一定でかつ低速となり、これによって、ブリーザー11から還流空気流A′を吹き出した際に発生する騒音を極力抑制することができる。   And while forming the breather 11 in the position used as the four corner parts of the suction inlet 8a of the collector part 8 where the dynamic pressure of the airflow A is the lowest, the wall part width of the wall part 1a which forms the intake side part 1B of the air path 1 Since the central portion of the direction is left, there is no variation in the dynamic pressure distribution in the breather 11, the air flow rate and the wind speed of the reflux air flow A ′ that blows out from the breather 11 and returns to the measurement chamber 2 are substantially constant and Thus, the noise generated when the recirculation air flow A ′ is blown out from the breather 11 can be suppressed as much as possible.

また、ブリーザー11を通じて測定室2の空気が空気流Aに誘引されることも抑止することができるので、より確実に風路1の吸気側部分1Bの静圧上昇を抑制し、逆流空気流の発生を防止することができる。   In addition, since the air in the measurement chamber 2 can be prevented from being attracted by the air flow A through the breather 11, the increase in static pressure of the intake side portion 1B of the air passage 1 can be suppressed more reliably, and the backflow air flow can be prevented. Occurrence can be prevented.

従って、逆流空気流の発生を確実に防止することができることにより、コレクタ部8の吸込み口8aに導入される空気流Aが不安定化を原因とする測定室2における気流性状の低下を抑制することができ、風洞装置W全体としての風洞性能を向上させることができるとともに、コレクタ部8の吸込み口8aにおける発生騒音も低下することができ、風洞装置W自体からの暗騒音の発生を効果的に抑制することができる。   Therefore, the generation of the backflow airflow can be surely prevented, so that the airflow A introduced into the suction port 8a of the collector portion 8 is prevented from deteriorating the airflow property in the measurement chamber 2 due to destabilization. The wind tunnel performance of the wind tunnel device W as a whole can be improved, and the noise generated at the suction port 8a of the collector portion 8 can be reduced, so that the generation of background noise from the wind tunnel device W itself is effective. Can be suppressed.

〔第2実施形態〕
図5及び図6は、本発明の第2実施形態として、自動車や航空機等の実験対象物における空力、空力特性、空力騒音等を測定するための風洞装置Wを示し、断面矩形状(詳しくは、四隅部分のそれぞれを弧状に形成してある略矩形状)の風路1の吸気側部分1Bを形成する4つの壁部1aのうち、相対向する2つの壁部1aのコレクタ部形成箇所(吸込み口近傍箇所)における壁部幅方向の両側端部分に、壁部1aの両側端縁の形状に沿って空気流通過方向に長いスリット孔11aを壁部幅方向に複数並列させたブリーザー11(開口部)が形成されていて、吸込み口8aより進入する空気流Aが誘引した余剰空気を還流空気流A′としてこのブリーザー11から測定室2内に戻すことができる。
[Second Embodiment]
5 and 6 show a wind tunnel device W for measuring aerodynamics, aerodynamic characteristics, aerodynamic noise, etc. in an experimental object such as an automobile or an aircraft as a second embodiment of the present invention. Of the four wall portions 1a forming the intake side portion 1B of the air passage 1 having a substantially rectangular shape in which each of the four corner portions is formed in an arc shape, the collector portion forming locations of the two opposite wall portions 1a ( A breather 11 in which a plurality of slit holes 11a which are long in the air flow passage direction along the shape of both side edges of the wall portion 1a are arranged in parallel in the wall width direction at both end portions in the wall width direction in the vicinity of the suction port). The surplus air attracted by the air flow A entering from the suction port 8a can be returned from the breather 11 into the measurement chamber 2 as a recirculation air flow A '.

そして、ブリーザー11を構成する各スリット孔11aの長手方向が空気流通過方向と一致してあるので、空気流Aの通過方向と対向する各スリット孔11aの周縁部を極力少なくして、空気流Aとスリット孔11aの周縁部との衝突による空気流Aの乱れを抑制することができ、これによって、風洞装置W全体としての風洞性能を向上させることができるとともに、その衝突による騒音の発生も極力抑えることができる。   And since the longitudinal direction of each slit hole 11a which comprises the breather 11 corresponds with the air flow passage direction, the peripheral part of each slit hole 11a which opposes the passage direction of the air flow A is reduced as much as possible. The turbulence of the air flow A due to the collision between A and the peripheral edge of the slit hole 11a can be suppressed, thereby improving the wind tunnel performance of the entire wind tunnel device W and generating noise due to the collision. It can be suppressed as much as possible.

各ブリーザー11の内面側には、薄板状の可動式の蓋材12が配設されており、この蓋材12で複数のスリット孔11aを開閉してスリット孔11aの開口数を変更することでブリーザー11の開口面積を調整することができ、これによって、ブリーザー11から吹き出す還流空気流A′の風量調整を行うことができる。   A thin plate-shaped movable lid member 12 is disposed on the inner surface side of each breather 11, and the lid member 12 opens and closes a plurality of slit holes 11a to change the numerical aperture of the slit holes 11a. The opening area of the breather 11 can be adjusted, whereby the flow rate of the reflux air flow A ′ blown out from the breather 11 can be adjusted.

また、蓋材12によるスリット孔11aの閉口位置を変更することで、ブリーザー11の開口位置も変更することができる。   Moreover, the opening position of the breather 11 can also be changed by changing the closing position of the slit hole 11 a by the lid member 12.

更に、ブリーザー11には、通気性の抵抗体として不織布13がブリーザー11を塞ぐように(詳しくは、ブリーザー11と蓋材12との間に)配設されていて、このブリーザー11から測定室2に還流する還流空気流A′のブリーザー11における風量分布を均一化することができ、これによって、ブリーザー11における風量分布の偏りを解消することができ、ブリーザー11における騒音の発生を効果的に抑制している。   Further, the breather 11 is provided with a non-woven fabric 13 as a breathable resistor so as to block the breather 11 (specifically, between the breather 11 and the lid 12). The air flow distribution in the breather 11 of the reflux air flow A ′ recirculating to the air can be made uniform, thereby eliminating the uneven air flow distribution in the breather 11 and effectively suppressing noise generation in the breather 11. is doing.

また、不織布13には、抵抗係数の異なる複数のものが用意されており、抵抗係数の異なる不織布13を交換することで、ブリーザー11からの還流空気流A′の風量の調整を行うことができる。   In addition, a plurality of nonwoven fabrics 13 having different resistance coefficients are prepared, and the air volume of the reflux air flow A ′ from the breather 11 can be adjusted by replacing the nonwoven fabrics 13 having different resistance coefficients. .

つまり、ブリーザー11の開口面積調整、及び、抵抗係数の異なる不織布13の交換により、還流空気流A′の風量を風洞装置Wの運転において最適な風量にすることができる。   That is, by adjusting the opening area of the breather 11 and replacing the non-woven fabric 13 having a different resistance coefficient, the air volume of the reflux air flow A ′ can be set to an optimum air volume in the operation of the wind tunnel device W.

ブリーザー11が形成されている壁部1aの外周面のコレクタ部形成箇所には、ブリーザー11を覆うように消音手段Sが設けられており、消音手段Sは、内面14aに吸音材15が配設された消音チャンバー14と、同様に内面16aに吸音材15が配設された消音器16とから構成されている。   A silencer S is provided to cover the breather 11 at the collector portion forming position on the outer peripheral surface of the wall 1a where the breather 11 is formed. The silencer S has a sound absorbing material 15 disposed on the inner surface 14a. The muffler chamber 14 is formed, and the muffler 16 having the sound absorbing material 15 disposed on the inner surface 16a.

消音チャンバー14の各ブリーザー11に対向する位置には、ブリーザー11から吹き出す還流空気流A′を取り入れるため入口14Aが形成されており、チャンバー入口14Aから消音チャンバー14内に進入した還流空気流A′は、消音チャンバー14内からチャンバー出口14Bに設けられた消音器16を通過して測定室2に戻される。   An inlet 14A is formed at a position facing each breather 11 in the silencer chamber 14 to take in the reflux airflow A ′ blown out from the breather 11, and the reflux airflow A ′ entering the silencer chamber 14 from the chamber inlet 14A. Passes through the silencer 16 provided at the chamber outlet 14B from the inside of the silencer chamber 14 and is returned to the measurement chamber 2.

還流空気流A′がブリーザー11を通過する際に発生した騒音は、消音チャンバー14及び消音器16内に配設されている吸音材15によって吸音することで、騒音をより効果的に消音させる。   Noise generated when the reflux air flow A ′ passes through the breather 11 is absorbed by the sound absorbing material 15 disposed in the silencer chamber 14 and the silencer 16, so that the noise is more effectively silenced.

以上、このように構成することで、測定室2に還流する還流空気流A′がブリーザー11を通過する際に発生する騒音を、この消音手段Sにより確実に消音することができるので、風洞装置W全体として暗騒音の発生をより一層効果的に、かつ、確実に抑制することができる。   As described above, the noise generated when the recirculated air flow A ′ returning to the measurement chamber 2 passes through the breather 11 can be reliably silenced by the silencing means S. The generation of background noise can be more effectively and reliably suppressed for the entire W.

なお、その他の構成は、前記第1実施形態と同一であり、第1実施形態で記載した構成部分と同一構成又は同一機能を有する構成部分には同一番号を付記してそれの説明を省略する。   The other configurations are the same as those in the first embodiment, and the same components as those described in the first embodiment or components having the same functions are denoted by the same reference numerals and description thereof is omitted. .

〔別実施形態〕
次に別実施形態を列記する。
[Another embodiment]
Next, another embodiment will be listed.

上記第1実施形態では、ブリーザー11(開口部)を4つの壁部1a全ての両側端部分に形成し、第2実施形態では、ブリーザー11を4つの壁部1aのうち相対向する2つの壁部1aの両側端部分に形成したが、ブリーザー11はコレクタ部8の吸込み口8aにおける四隅部分に相当する位置に形成されてあればよく、ブリーザー11の数及び形成箇所はこれらに限るものではない。   In the said 1st Embodiment, the breather 11 (opening part) is formed in the both-sides edge part of all the four wall parts 1a, and in 2nd Embodiment, the two walls which face each other among the four wall parts 1a are the breather 11 Although it formed in the both-ends part of the part 1a, the breather 11 should just be formed in the position corresponded to the four corner parts in the suction inlet 8a of the collector part 8, and the number and formation location of the breather 11 are not restricted to these. .

また、上述の第1実施形態では、形成したブリーザー11の全てを開口させた状態にしてあるが、ブリーザー11の開口位置のパターンはこれに限るものではなく、種々のパターン(例えば、各壁部1aの一方側のブリーザー11を開口させ、他方側のブリーザー11を蓋材12により閉口している状態など)にすることができる。   In the first embodiment described above, all of the formed breathers 11 are opened. However, the pattern of the opening positions of the breathers 11 is not limited to this, and various patterns (for example, each wall portion) 1a of the breather 11 on one side can be opened, and the breather 11 on the other side can be closed by the lid member 12).

上記第1及び第2実施形態では、ブリーザー11をスリット孔11aを壁部1aの幅方向に複数並列させて構成していたが、ブリーザー11を一つの長孔で構成してもよく、また、壁部1aの幅方向だけでなく空気流通過方向に複数並列させて構成してもよい。   In the first and second embodiments, the breather 11 is configured by arranging a plurality of slit holes 11a in parallel in the width direction of the wall portion 1a. However, the breather 11 may be configured by one long hole. You may comprise in parallel not only the width direction of the wall part 1a but the air flow passage direction.

また、スリット孔11aを蓋材12で閉口することで、ブリーザー11の開口面積の調整を行う構成にしていたが、ブリーザー11の開口面積調整のための構成はこの構成に限るものではなく、ブリーザー11をダンパー形式に構成し、ダンパーのハネを開閉してブリーザー11の開口面積を調整するもの等種々の構成を採用してもよい。   Also, the opening area of the breather 11 is adjusted by closing the slit hole 11a with the lid member 12. However, the structure for adjusting the opening area of the breather 11 is not limited to this structure. 11 may be configured in a damper form, and various configurations such as a configuration in which the opening area of the breather 11 is adjusted by opening and closing the damper spring may be employed.

上記第1及び第2実施形態では、ブリーザー11に抵抗体として不織布13を採用して配設しているが、抵抗体は不織布13に限るものではなく、種々のものを採用することができ、また、抵抗体として吸音性を有するものを採用すれば、より効果的に騒音の発生を抑制することができる。   In the first and second embodiments, the nonwoven fabric 13 is employed as the resistor in the breather 11, but the resistor is not limited to the nonwoven fabric 13, and various types can be employed. Moreover, if a resistor having a sound absorbing property is employed, the generation of noise can be more effectively suppressed.

上記第1及び第2実施形態では、ブリーザー11を壁部1aの両側端縁の形状に沿って空気流通過方向に長く形成したが、この形状に限るものではなく、ブリーザー11の長手方向が空気流通過方向と一致していればよく、ブリーザー11を壁部1aの両側端縁の形状に沿わない長方形状等に形成してもよい。   In the said 1st and 2nd embodiment, although the breather 11 was formed long in the air flow passage direction along the shape of the both-ends edge of the wall part 1a, it is not restricted to this shape, The longitudinal direction of the breather 11 is air. The breather 11 may be formed in a rectangular shape that does not follow the shape of the side edges of the wall portion 1a as long as it matches the flow passage direction.

上記第2実施形態では、消音手段Sにおける消音器16として、それの内面16aに吸音材15を配設した吸音式の消音器16を採用したが、消音器16の構成はこれに限るものではなく、共鳴式消音器や種々の構成の消音器を採用することができる。   In the second embodiment, as the silencer 16 in the silencer S, the sound absorption type silencer 16 in which the sound absorbing material 15 is disposed on the inner surface 16a thereof is adopted. However, the configuration of the silencer 16 is not limited to this. However, it is possible to employ a resonance muffler or a muffler having various configurations.

本発明の第1実施形態にある風洞装置を示す概要図Schematic diagram showing a wind tunnel device according to the first embodiment of the present invention. 第1実施形態のコレクタ部の拡大側面図The enlarged side view of the collector part of a 1st embodiment 第1実施形態のコレクタ部の拡大正面図The enlarged front view of the collector part of a 1st embodiment コレクタ部の吸込み口における空気流の動圧分布を示す図Diagram showing the dynamic pressure distribution of air flow at the inlet of the collector 本発明の第2実施形態のコレクタ部の拡大側面図The enlarged side view of the collector part of 2nd Embodiment of this invention 第2実施形態のコレクタ部の拡大正面図The enlarged front view of the collector part of a 2nd embodiment 従来の風洞装置におけるコレクタ部の拡大側面図Enlarged side view of collector part in conventional wind tunnel device 従来のコレクタ部の拡大正面図Enlarged front view of conventional collector

符号の説明Explanation of symbols

1 風路
1A 送風側部分
1B 吸気側部分
1a 壁部
2 測定室
3 送風手段
7a 吹出し口
8a 吸込み口
11 開口部
13 抵抗体
A 空気流
A′ 還流空気流
S 消音手段
W 風洞装置

DESCRIPTION OF SYMBOLS 1 Air path 1A Blower side part 1B Intake side part 1a Wall part 2 Measurement chamber 3 Blowing means 7a Blowing port 8a Suction port 11 Opening part 13 Resistor A Air flow A 'Reflux air flow S Silencer W Wind tunnel device

Claims (6)

風路に設けた送風手段によって送出された空気流を前記風路の送風側部分の吹出し口から測定室に吹き出し、その測定室に吹き出された空気流を、測定室における前記吹出し口の対向位置に設けられた前記風路の吸気側部分の断面矩形状又は略矩形状の吸込み口から前記送風手段により風路内に導入する風洞装置の風路構造であって、
前記風路の吸気側部分を形成する4つの壁部のうち、少なくとも1つの壁部の前記吸込み口近傍箇所において、少なくとも壁部幅方向の中央部分を残した状態で壁部幅方向の一側端部分又は両側端部分に、前記風路の吸込み口から導入された空気流の一部を前記測定室に還流させるための開口部を形成してある風洞装置の風路構造。
The air flow sent out by the blowing means provided in the air passage is blown out from the blowout port of the blower side portion of the air passage to the measurement chamber, and the air flow blown into the measurement chamber is opposed to the blowout port in the measurement chamber. The air channel structure of the wind tunnel device that is introduced into the air channel by the blowing means from a suction port having a rectangular or substantially rectangular cross section of the air intake side portion of the air channel provided in the air channel,
Of the four wall portions forming the air intake side portion of the air passage, at one side of the wall portion width direction with at least a central portion in the wall width direction remaining at a location near the suction port of at least one wall portion An air channel structure of a wind tunnel device in which an opening for returning a part of an air flow introduced from an inlet of the air channel to the measurement chamber is formed in an end portion or both end portions.
前記開口部が、空気流通過方向に長い長孔に形成されてある請求項1記載の風洞装置の風路構造。   The air channel structure of the wind tunnel device according to claim 1, wherein the opening is formed as a long hole that is long in the air flow passage direction. 前記開口部が、その開口面積を調整可能な構成に形成されてある請求項1又は2記載の風洞装置の風路構造。   The air channel structure of the wind tunnel device according to claim 1 or 2, wherein the opening is formed to have a configuration capable of adjusting an opening area thereof. 前記開口部が、その開口位置を調整可能に構成されてある請求項1〜3のいずれか1項に記載の風洞装置の風路構造。   The air channel structure of the wind tunnel device according to any one of claims 1 to 3, wherein the opening is configured to be able to adjust an opening position thereof. 前記開口部に、開口部から前記測定室に還流する還流空気流の開口部における風量分布を均一化するための抵抗体が配設されてある請求項1〜4のいずれか1項に記載の風洞装置の風路構造。   5. The resistor according to claim 1, wherein the opening is provided with a resistor for uniformizing the air volume distribution in the opening of the reflux air flow that flows back from the opening to the measurement chamber. Wind channel structure of the wind tunnel device. 前記風路の壁部の外周面における開口部形成箇所に、前記開口部を覆うように消音手段が設けられてある請求項1〜5のいずれか1項に記載の風洞装置の風路構造。

The wind path structure of the wind tunnel apparatus of any one of Claims 1-5 by which the silencer is provided in the opening formation location in the outer peripheral surface of the wall part of the said wind path so that the said opening part may be covered.

JP2004350868A 2004-12-03 2004-12-03 Wind channel structure of wind tunnel device Active JP4194993B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350868A JP4194993B2 (en) 2004-12-03 2004-12-03 Wind channel structure of wind tunnel device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350868A JP4194993B2 (en) 2004-12-03 2004-12-03 Wind channel structure of wind tunnel device

Publications (2)

Publication Number Publication Date
JP2006162310A true JP2006162310A (en) 2006-06-22
JP4194993B2 JP4194993B2 (en) 2008-12-10

Family

ID=36664505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350868A Active JP4194993B2 (en) 2004-12-03 2004-12-03 Wind channel structure of wind tunnel device

Country Status (1)

Country Link
JP (1) JP4194993B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076304A (en) * 2006-09-22 2008-04-03 Mitsubishi Heavy Ind Ltd Circulation flow type wind tunnel device
WO2010116658A1 (en) * 2009-03-30 2010-10-14 社団法人日本航空宇宙工業会 Method of reducing noise of air vehicle, leg structure of air vehicle and air vehicle
JP2015004616A (en) * 2013-06-21 2015-01-08 株式会社東洋製作所 Circular stream type open type wind tunnel device, and method for rectifying air stream in circular stream type open type wind tunnel
JP2019117129A (en) * 2017-12-27 2019-07-18 株式会社コーアツ Air duct structure of wind tunnel device
CN114414194A (en) * 2021-09-07 2022-04-29 中国空气动力研究与发展中心空天技术研究所 Parameter adjusting device and method for hypersonic-speed variable Mach number wind tunnel
CN117490968A (en) * 2023-12-22 2024-02-02 中国空气动力研究与发展中心低速空气动力研究所 Jet simulator rectifying device and jet design method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076304A (en) * 2006-09-22 2008-04-03 Mitsubishi Heavy Ind Ltd Circulation flow type wind tunnel device
WO2010116658A1 (en) * 2009-03-30 2010-10-14 社団法人日本航空宇宙工業会 Method of reducing noise of air vehicle, leg structure of air vehicle and air vehicle
JP2010234822A (en) * 2009-03-30 2010-10-21 Society Of Japanese Aerospace Co Inc Noise reducing method of flying body, leg part structure of flying body and flying body
US9327829B2 (en) 2009-03-30 2016-05-03 The Society Of Japanese Aerospace Companies Method of attenuating noise in aircraft landing gear and structure
JP2015004616A (en) * 2013-06-21 2015-01-08 株式会社東洋製作所 Circular stream type open type wind tunnel device, and method for rectifying air stream in circular stream type open type wind tunnel
JP2019117129A (en) * 2017-12-27 2019-07-18 株式会社コーアツ Air duct structure of wind tunnel device
JP7043698B2 (en) 2017-12-27 2022-03-30 株式会社コーアツ Wind tunnel structure of wind tunnel device
CN114414194A (en) * 2021-09-07 2022-04-29 中国空气动力研究与发展中心空天技术研究所 Parameter adjusting device and method for hypersonic-speed variable Mach number wind tunnel
CN117490968A (en) * 2023-12-22 2024-02-02 中国空气动力研究与发展中心低速空气动力研究所 Jet simulator rectifying device and jet design method
CN117490968B (en) * 2023-12-22 2024-03-08 中国空气动力研究与发展中心低速空气动力研究所 Jet simulator rectifying device and jet design method

Also Published As

Publication number Publication date
JP4194993B2 (en) 2008-12-10

Similar Documents

Publication Publication Date Title
JP3913334B2 (en) Ventilation blower and ventilation blower system
JP6112302B2 (en) Wind tunnel experiment equipment
WO2012001735A1 (en) Air conditioner
JPH06159789A (en) Mixture discharge flow distributor
CN107415969B (en) A kind of allocation of the amount of air structure of rail vehicle air delivery duct
JP4194993B2 (en) Wind channel structure of wind tunnel device
WO2018065363A1 (en) Supply air device for controlling supply air flow
EP3715730A1 (en) Ceiling embedded air conditioner
JP4738301B2 (en) Convection type wind tunnel device
JP2002349944A (en) Uniform flow blow-out apparatus
CN102538161B (en) Air conditioning system and the air conditioning system of information processing equipment room
CN214822466U (en) Air door of air conditioner module and air conditioner module
JP6448264B2 (en) Blowing device and suction device for air conditioning equipment
JP4193966B2 (en) Uniform flow blowing device
JP4866643B2 (en) Air duct for defroster
JPH09145534A (en) Supersonic nozzle
JP6885265B2 (en) Humidification method
JP2002022256A (en) Wind direction control plate of air conditioner
JP2022022107A (en) Environment control system for use in aircraft
JP3670825B2 (en) Air-conditioning blowout grill
JP7386387B2 (en) Air blower
JP3271875B2 (en) Air duct for clean room
WO2023181535A1 (en) Airflow formation system
TW201325961A (en) Air-conditioning system and railway train having the same
JP4375851B2 (en) Air volume adjusting plate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

R150 Certificate of patent or registration of utility model

Ref document number: 4194993

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250