JP6112302B2 - Wind tunnel experiment equipment - Google Patents
Wind tunnel experiment equipment Download PDFInfo
- Publication number
- JP6112302B2 JP6112302B2 JP2013178302A JP2013178302A JP6112302B2 JP 6112302 B2 JP6112302 B2 JP 6112302B2 JP 2013178302 A JP2013178302 A JP 2013178302A JP 2013178302 A JP2013178302 A JP 2013178302A JP 6112302 B2 JP6112302 B2 JP 6112302B2
- Authority
- JP
- Japan
- Prior art keywords
- air
- jet
- port
- measurement chamber
- collecting port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002474 experimental method Methods 0.000 title claims description 8
- 238000005259 measurement Methods 0.000 claims description 40
- 238000009434 installation Methods 0.000 claims description 12
- 230000006641 stabilisation Effects 0.000 claims description 8
- 238000011105 stabilization Methods 0.000 claims description 8
- 230000001629 suppression Effects 0.000 claims description 8
- 238000012360 testing method Methods 0.000 claims description 5
- 230000010349 pulsation Effects 0.000 description 15
- 230000000087 stabilizing effect Effects 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
Landscapes
- Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)
Description
本発明は、自動車、航空機、列車等々の空力特性や発生騒音の測定などを行う風洞実験装置に関し、詳しくは、送風機により供給される空気を、周辺に渦流が発生する自由噴流の状態で噴出口から開放型の測定室に噴出して前記測定室に通過させるのに伴い、この噴出口からの噴出空気を、測定室において噴出口に対向する集風口を通じて吸込風路に吸い込む風洞実験装置に関する。 The present invention relates to a wind tunnel experimental apparatus for measuring aerodynamic characteristics and generated noise of automobiles, airplanes, trains, and the like, and more particularly, air outlets supplied by a blower in a free jet state in which a vortex flow is generated in the vicinity. The present invention relates to a wind tunnel experimental apparatus for sucking air blown from an outlet from a suction port facing a jet outlet in a measurement chamber as it is ejected from an open type measurement chamber and passed through the measurement chamber.
従来、この種の風洞実験装置では、特許文献1に見られるように、コレクタ部と称される集風口に続く吸込風路のうち測定室内に位置する部分の風路壁を通気性材により形成する、あるいは、特許文献2に見られるように、集風口を通じて吸込風路に流入した空気の一部をダクトを通じて短絡的に測定室に導く短絡用開口を吸込風路の風路壁に形成する、あるいはまた、特許文献3に見られるように、集風口に続く吸込風路のうち音圧ピークが生じる部分の風路壁に音圧透過用開口を形成するなどのことで、測定室における圧力脈動を抑制するようにしたものが提案されている。 Conventionally, in this type of wind tunnel experimental apparatus, as can be seen in Patent Document 1, the air passage wall of the portion located in the measurement chamber of the suction air passage that follows the air collecting port called the collector portion is formed of a breathable material. Or, as can be seen in Patent Document 2, a short-circuit opening is formed in the air passage wall of the suction air passage so that a part of the air flowing into the suction air passage through the air collecting port is short-circuited to the measurement chamber through the duct. Alternatively, as can be seen in Patent Document 3, the pressure in the measurement chamber is formed by forming an opening for sound pressure transmission on the air passage wall where the sound pressure peak occurs in the suction air passage that follows the air collection port. The thing which suppressed the pulsation is proposed.
即ち、これら特許文献1〜3に見られる風洞実験装置は、噴出口からの噴出空気の自由噴流に伴う渦流が集風口部分に衝突することで圧力脈動が発生し、この発生した圧力脈動が空気流れ方向における上流側に伝播して噴出口に到達することで新たな渦流を誘発するフィードバック現象が生じ、このことで特定周波数の圧力脈動が測定室において生じるのに対し、この特定周波数が集風口に続く吸込風路の固有周波数に一致することで生じる風路共振現象により測定室における圧力脈動が増幅されるとの考察に基づいて提案されたものであり、上記の如き通気性材からなる風路壁や短絡用開口あるいは音圧透過用開口を設けることで上記の風路共振現象を回避し、これにより測定室における圧力脈動の抑制を図ったものである。 That is, in the wind tunnel experimental devices shown in these Patent Documents 1 to 3, pressure pulsation is generated by the vortex accompanying the free jet of the air jetted from the jet outlet colliding with the air collecting port portion, and the generated pressure pulsation is generated by the air pulsation. A feedback phenomenon that induces a new vortex flow by propagating upstream in the flow direction and reaching the jet outlet causes a pressure pulsation with a specific frequency in the measurement chamber. It was proposed based on the consideration that the pressure pulsation in the measurement chamber is amplified by the air path resonance phenomenon caused by the coincidence with the natural frequency of the suction air path that follows. By providing a road wall, a short-circuit opening or a sound pressure transmission opening, the above-described air path resonance phenomenon is avoided, thereby suppressing pressure pulsation in the measurement chamber.
しかし、風洞実験装置においては、風洞実験において正確で精度の高い測定結果を得るために次の式1で表される噴出空気の乱流度I(即ち、上記従来装置で言えば測定室における圧力脈動に伴う噴出空気の風速変動の度合)を極力小さくすることが要求されるが、風路共振現象の回避により測定室における圧力脈動の抑制を図る上記の如き従来装置では、噴出口から測定室に噴出する空気の風速変動を確実かつ効果的に抑制することが未だ難しく、この点、上記乱流度Iを低減する上で更なる改善の余地があった。 However, in the wind tunnel experiment device, in order to obtain an accurate and highly accurate measurement result in the wind tunnel experiment, the turbulence degree I of the blown air expressed by the following equation 1 (that is, the pressure in the measurement chamber in the conventional device) Although it is required to reduce as much as possible the degree of variation in the wind speed of the ejected air that accompanies pulsation, in the conventional apparatus as described above that suppresses pressure pulsation in the measurement chamber by avoiding the wind path resonance phenomenon, However, it is still difficult to reliably and effectively suppress the wind speed fluctuations of the air jetted out, and there is room for further improvement in reducing the turbulence degree I.
I=u′×100/Uav ………(式1)
ここで、I:乱流度[%]
u′:風速変動の2乗平均平方根[km/h]
Uav:平均風速[km/h]
I = u ′ × 100 / Uav (Equation 1)
Where I: degree of turbulence [%]
u ′: root mean square of wind speed fluctuation [km / h]
Uav: Average wind speed [km / h]
この実情に鑑み、本発明の主たる課題は、自由噴流の状態で噴出される噴出空気の風速変動に関する新たな研究結果に基づいて合理的な変動抑制構成を採ることで、噴出口から測定室に自由噴流の状態で噴出する空気の風速変動を確実かつ効果的に抑制する点にある。 In view of this situation, the main problem of the present invention is to adopt a rational fluctuation suppression configuration based on a new research result on the wind speed fluctuation of the jet air ejected in the state of a free jet, and from the jet nozzle to the measurement chamber. It is in the point which suppresses the wind speed fluctuation | variation of the air ejected in the state of a free jet reliably and effectively.
本発明の第1特徴構成は風洞実験装置に関し、その特徴は、
送風機により供給される空気を、周辺に渦流が発生する自由噴流の状態で噴出口から開放型の測定室に噴出して前記測定室に通過させるのに伴い、この噴出口からの噴出空気を、前記測定室において前記噴出口に対向する集風口を通じて吸込風路に吸い込む風洞実験装置であって、
前記測定室における実験物の設置部よりも空気流れ方向における下流側に位置して、前記集風口に流入する前記噴出口からの噴出空気の自由噴流に抵抗を付与する気流安定化及び渦流抑制用の通気性抵抗体を設け、
この通気性抵抗体として、空気流れ方向に対し直交又は斜交する姿勢の棒状体を前記集風口の開口面方向に間隔を開けて並列状態で複数並べた棒状体並置列を設けてある点にある。
The first characteristic configuration of the present invention relates to a wind tunnel experiment device,
As the air supplied by the blower is ejected from the ejection port to the open measurement chamber in a free jet state where vortex flow is generated in the vicinity and passed through the measurement chamber, the ejection air from the ejection port is In the measurement chamber, a wind tunnel experimental device for sucking into the suction air passage through the air collecting port facing the jet port,
For air flow stabilization and eddy current suppression that provides resistance to the free jet of the jet air from the jet port that flows into the air collecting port, and is located on the downstream side in the air flow direction from the installation part of the test object in the measurement chamber provided breathable resistor,
As this air-permeable resistor, there is provided a rod-like juxtaposed row in which a plurality of rod-like bodies in a posture orthogonal or oblique to the air flow direction are arranged in parallel at intervals in the opening surface direction of the air collecting port. is there.
本発明者による研究によれば、噴出口から自由噴流の状態で噴出する噴出空気の乱流度上昇は次の(イ)〜(ハ)の発生原理で生じると考えられる。 According to the study by the present inventor, it is considered that the increase in the turbulence degree of the ejected air ejected from the ejection port in a free jet state is caused by the following generation principles (a) to (c).
(イ)渦流の発生
図7に模式的に示すように、噴出口3から自由噴流の状態で開放型測定室1へ噴出した噴出空気流Aの周辺では渦流Tが発生し、その発生渦流Tが噴出空気流Aとともに集風口4に向けて進行するのに伴い大きく発達する。
(A) Generation of vortex As shown schematically in FIG. 7, vortex T is generated in the vicinity of the jet air flow A jetted from the outlet 3 to the open type measurement chamber 1 in a free jet state, and the generated vortex T Develops with the air flow A toward the air collecting port 4.
(ロ)集風口部分に対する渦流の衝突
噴出空気流Aの周辺で発達した渦流Tが噴出口3に対向する集風口4部分に衝突し、この衝突により集風口4周辺で気流が乱れて集風口4周辺の圧力や気流風速が変動する(この圧力変動が特許文献1,3で言う渦流衝突により生じる圧力脈動に該当する)。
(B) Collision of the vortex flow with the air collection port portion The vortex flow T developed around the jet air flow A collides with the air collection port 4 portion facing the jet port 3 and the air flow is disturbed around the air collection port 4 due to this collision. 4 pressure and airflow wind speed fluctuate (this pressure fluctuation corresponds to the pressure pulsation caused by the vortex collision described in Patent Documents 1 and 3).
図8(a)〜図8(b)は、この渦流衝突による集風口4近傍での気流変化を可視化したものであり、この図では渦流衝突による大きな気流変化(気流乱れ)が見られ、この気流変化よる大きな風速変動の存在が認められる。 FIG. 8A to FIG. 8B visualize the air flow change in the vicinity of the air collecting port 4 due to the vortex collision. In this figure, a large air flow change (air turbulence) due to the vortex collision is seen. Existence of large fluctuations in wind speed due to changes in airflow.
(ハ)噴出口からの噴出空気の風速変動
自由噴流である噴出口3からの噴出空気流Aは元来、不安定であり、このため、上記渦流衝突による集風口4周辺での気流の乱れや圧力変動、風速変動の影響を受けて噴出口3からの噴出空気流Aが、装置条件(特に測定室の各部寸法や風速)によって決まる特定周波数においてピークを持つ状態で揺動し、このことで前記式1で表される乱流度Iが上昇する。
(C) Air velocity fluctuation of the air jetted from the jet outlet The jet air flow A from the jet outlet 3, which is a free jet, is inherently unstable. The air flow A from the outlet 3 is affected by the influence of pressure fluctuation, wind speed fluctuation, etc., and it oscillates with a peak at a specific frequency determined by the equipment conditions (particularly the dimensions and wind speed of each part of the measurement chamber). Thus, the turbulence degree I expressed by the above formula 1 increases.
このことは図9に示す風速変動データ、及び、図10に示す同風速変動データのフーリエ解析結果からも認められる。 This is also recognized from the wind speed fluctuation data shown in FIG. 9 and the Fourier analysis result of the same wind speed fluctuation data shown in FIG.
なお、この噴出空気流Aの揺動には、集風口4周辺での圧力変動が空気流れ方向の上流側に伝播すること、また、集風口4に続く吸込風路の下流端を送風機を介して噴出口3に連通させた回流式装置の場合では、集風口4周辺での圧力変動や気流の乱れが空気流れ方向で下流側における吸込風路(回流風路)を通じて噴出口3まで及ぶことや、集風口4周辺での圧力・風速の変動や気流の乱れで吸込風路への吸込風量が変動することで噴出口3からの噴出風量も変動してしまうことなども影響していると考えられる。 In order to oscillate the air flow A, the pressure fluctuation around the air collecting port 4 propagates to the upstream side in the air flow direction, and the downstream end of the suction air passage following the air collecting port 4 is passed through a blower. In the case of a recirculation device connected to the jet outlet 3, pressure fluctuations and turbulence in the air flow around the air collecting port 4 reach the jet outlet 3 through the suction air passage (circulation air passage) on the downstream side in the air flow direction. In addition, there is an influence that the amount of air blown out from the outlet 3 also changes due to fluctuations in the amount of air drawn into the air intake passage due to fluctuations in the pressure and wind speed around the air collecting port 4 and turbulence of the airflow. Conceivable.
つまり、噴出口から開放型測定室へ噴出する噴出空気流が自由噴流で不安定であり、また、自由噴流である噴出空気流の周辺で渦流が発生し易くて、その発生渦流が噴出空気流とともに集風口に向けて進行するのに伴い大きく発達することが発端となって乱流度上昇が生じるが、これに対し、本発明者による研究によれば、集風口に流入する噴出口からの噴出空気の自由噴流に対して通気性抵抗体により抵抗を付与するようにすれば、その抵抗体への渦流衝突による気流の乱れや圧力・風速の変動は抵抗体の通気性により回避しながらも、その抵抗付与による気流拘束により自由噴流である噴出空気流を安定化することができるとともに、その噴出空気流の周辺での渦流の発生及び発達を効果的に抑制することができることが判明し、さらにまた、既に発生し発達段階にある渦流を消滅ないし減衰させる効果を期待し得ることも判明した。 In other words, the ejected air flow ejected from the ejection port to the open type measurement chamber is unstable as a free jet, and eddy currents are likely to occur around the ejected air flow that is a free jet. However, according to the study by the inventor, the development from the spout that flows into the air collecting port is caused by the fact that it develops greatly as it progresses toward the air collecting port. If resistance is given to the free jet of ejected air by a breathable resistor, turbulence of the air flow and fluctuations in pressure and wind speed due to vortex impingement on the resistor are avoided by the breathability of the resistor. In addition, it was found that the air flow that is a free jet can be stabilized by restraining the air flow by providing resistance, and the generation and development of vortex around the jet air can be effectively suppressed, further Was, it was also found that already may expect the effect of eliminating or attenuating the vortex in the generated developmental stage.
図11(a)〜図11(b)は、この通気性抵抗体Xを設けた場合における集風口4近傍での気流変化を可視化したものであり、通気性抵抗体Xがない場合の先の図8との比較からも判るように、同図11では、通気性抵抗体Xによる気流の安定化や渦流の抑制により気流の変化(気流乱れ)が効果的に緩和されており、このことから風速変動が効果的に抑制されていることが認められる。 FIG. 11A to FIG. 11B show the change in the airflow in the vicinity of the air collecting port 4 when the air-permeable resistor X is provided, and the previous case when there is no air-permeable resistor X is shown. As can be seen from the comparison with FIG. 8, in FIG. 11, the change of the airflow (airflow turbulence) is effectively mitigated by stabilizing the airflow and suppressing the eddy current by the air-permeable resistor X. It can be seen that the wind speed fluctuation is effectively suppressed.
したがって、集風口に流入する噴出口からの噴出空気の自由噴流に抵抗を付与する気流安定化及び渦流抑制用の通気性抵抗体を設ける上記第1特徴構成によれば、自由噴流である噴出空気流を安定化するとともに噴出空気流の周辺での渦流の発生発達を抑制して、乱流度上昇の根本的原因そのものを効果的に抑止することができ、これにより、吸込風路との共振(風路共振現象)を回避してその風路共振現象による圧力脈動の増幅だけを抑制しようとする前述の従来装置に比べ、噴出口から測定室に自由噴流の状態で噴出する空気の風速変動を一層確実かつ効果的に抑制することができて、その噴出空気の乱流度を確実かつ効果的に低減することができ、ひいては、風洞実験の正確さや測定精度を一層高めることができる。 Therefore, according to the first characteristic configuration in which the air-flow resistance for imparting resistance to the free jet flow of the jet air from the jet port flowing into the air collecting port and for suppressing the vortex flow is provided , the jet air that is the free jet flow flow and to suppress the generation development of a vortex around the injected air flow while stabilizing, root cause itself turbulence degree rise can be effectively suppressed, thereby, the resonance of the suction air passage Compared with the above-mentioned conventional device that avoids (air path resonance phenomenon) and suppresses only the amplification of pressure pulsation due to the air path resonance phenomenon, the fluctuation of the wind speed of the air jetted from the jet port to the measurement chamber in a free jet state Can be more reliably and effectively suppressed, the degree of turbulence of the jet air can be reliably and effectively reduced, and the accuracy and measurement accuracy of the wind tunnel experiment can be further enhanced.
図12は通気性抵抗体を設けない場合と通気性抵抗体の開口率を変えた場合との夫々における乱流度Iを示し、この図では通気性抵抗体を設けることで乱流度が効果的に低減されることが判り、また、通気性抵抗体の開口率が小さいほど(即ち、付与抵抗が大きいほど)乱流度の低減効果が大きいことが判る。 FIG. 12 shows the degree of turbulence I in the case where the air-permeable resistor is not provided and in the case where the aperture ratio of the air-permeable resistor is changed. In this figure, the turbulence is effective by providing the air-permeable resistor. It can be seen that the effect of reducing the degree of turbulence is greater as the aperture ratio of the air-permeable resistor is smaller (that is, the greater the applied resistance).
図13は、通気性抵抗体を設けない場合と通気性抵抗体の開口率を変えた場合との夫々における風速変動データのフーリエ解析結果を示し、この図では通気性抵抗体を設けることで特定周波数にピークを持つ風速変動が効果的に抑制(特にそのピークが抑制)されることが判り、また、通気性抵抗体の開口率が小さいほど特定周波数にピークを持つ風速変動(特にそのピーク)に対する抑制効果が高いことが判る。 FIG. 13 shows the Fourier analysis results of the wind speed fluctuation data in the case where the air-permeable resistor is not provided and in the case where the aperture ratio of the air-permeable resistor is changed. It can be seen that the fluctuation in the wind speed having a peak in frequency is effectively suppressed (especially the peak is suppressed), and the fluctuation in the wind speed having a peak in a specific frequency (especially the peak) as the aperture ratio of the air-permeable resistor is smaller It can be seen that the inhibitory effect on is high.
なお、上記第1特徴構成において気流安定化及び渦流抑制用の通気性抵抗体は測定室における実験物の設置部よりも空気流れ方向における下流側に配置するから、実験物の設置部に通過させる噴出口からの噴出空気流に対して気流安定化及び渦流抑制用の通気性抵抗体が直接の影響を与えることはない。 In the first characteristic configuration, since the air-permeable resistor for stabilizing the airflow and suppressing the eddy current is disposed on the downstream side in the air flow direction from the installation portion of the experimental product in the measurement chamber, it passes through the installation portion of the experimental product. There is no direct influence of the airflow resistance for stabilizing the air flow and suppressing the vortex flow on the air flow from the jet outlet.
また、第1特徴構成の実施において気流安定化及び渦流抑制用の通気性抵抗体は、集風口に対する正面視において集風口の開口域の全域を覆う状態に配置する設置形態、あるいは、集風口に対する正面視において集風口の開口域の一部(例えば中央部や外周縁部)のみを覆う状態に配置する設置形態のいずれを採ってもよい。 Further, in the implementation of the first characteristic configuration, the air-permeable resistor for stabilizing the airflow and suppressing the eddy current is disposed in a state of covering the entire opening area of the air collecting port in a front view with respect to the air collecting port, or with respect to the air collecting port. Any of the installation forms arranged so as to cover only a part of the opening area of the air collecting opening (for example, the central part and the outer peripheral edge part) in the front view may be adopted.
また、上記の第1特徴構成では、前記通気性抵抗体として、空気流れ方向に対し直交又は斜交する姿勢の棒状体を前記集風口の開口面方向に間隔を開けて並列状態で複数並べた棒状体並置列を設けるから次の効果も得ることができる。 In the first characteristic configuration described above , a plurality of rod-like bodies in a posture orthogonal or oblique to the air flow direction are arranged in parallel in the opening direction of the air collecting port as the air-permeable resistor. since Ru provided like body juxtaposed columns can be obtained the following effects.
つまり、個々の棒状体による抵抗付与により、集風口に流入する噴出口からの噴出空気の自由噴流に対して、棒状体並置列の配置範囲の全範囲にわたり均一に抵抗付与して均一に気流拘束することができ、これにより、噴出口から測定室に自由噴流の状態で噴出する噴出空気の乱流度を確実かつ効果的に低減することができる。 In other words, by applying resistance by individual rod-shaped bodies, the air jets are uniformly restrained against the free jet of the air jetted from the jet port flowing into the air collecting port and uniformly applied over the entire arrangement range of the rod-shaped body juxtaposed rows. Accordingly, it is possible to reliably and effectively reduce the degree of turbulence of the ejected air ejected from the ejection port to the measurement chamber in a free jet state .
(削除)(Delete)
(削除)(Delete)
(削除)(Delete)
本発明の第2特徴構成は、第1特徴構成の実施に好適な構成を特定するものであり、その特徴は、
前記通気性抵抗体を空気流れ方向に間隔を開けて複数配置してある点にある。
The second feature configuration of the present invention specifies a configuration suitable for the implementation of the first feature configuration .
A plurality of the breathable resistors are arranged at intervals in the air flow direction.
この第2特徴構成によれば、複数の通気性抵抗体の夫々による抵抗付与により、集風口に流入する噴出口からの噴出空気の自由噴流に対して一層効果的に抵抗付与することができ、これにより、噴出口から測定室に噴出する噴出空気の乱流度を更に確実かつ効果的に低減することができる。 According to the second characteristic configuration, by providing resistance by each of the plurality of air-permeable resistors, it is possible to more effectively provide resistance to the free jet of the jet air from the jet port flowing into the air collecting port, Thereby, the turbulence degree of the jet air which jets from a jet nozzle to a measurement chamber can be reduced more reliably and effectively.
本発明の第3特徴構成は、第1又は第2特徴構成の実施に好適な構成を特定するものであり、その特徴は、
前記集風口を通じて前記吸込風路に流入した空気の一部を短絡的に前記測定室に導く短絡用開口、又は、前記吸込風路の音圧ピーク発生箇所に位置して音圧を前記吸込風路の外部へ透過させる音圧透過用開口を、前記通気性抵抗体よりも空気流れ方向における下流側において前記吸込風路の風路壁に形成してある点にある。
The third feature configuration of the present invention specifies a configuration suitable for the implementation of the first or second feature configuration .
The suction pressure is positioned at a short-circuit opening for short-circuiting a part of the air flowing into the suction air passage through the air collecting port to the measurement chamber, or at a position where a sound pressure peak is generated in the suction air passage. The sound pressure transmitting opening that transmits the outside of the passage is formed in the air passage wall of the suction air passage on the downstream side in the air flow direction from the air-permeable resistor.
この第3特徴構成によれば、集風口に流入する噴出口からの噴出空気の自由噴流に対して気流安定化及び渦流抑制用の通気性抵抗体により抵抗付与することで噴出口からの噴出空気の風速変動を効果的に抑制した状態でも未だ噴出空気の風速変動や圧力脈動がある程度残存するような場合、その残存する風速変動や圧力脈動を上記の短絡用開口又は音圧透過用開口による風路共鳴回避により抑制することができ、これにより、噴出口から測定室に噴出する噴出空気の乱流度を全体として更に確実かつ効果に低減することができる。 According to the third characteristic configuration, the air jetted from the jet outlet is provided by providing resistance to the free jet of the jet air flowing from the jet outlet flowing into the air collecting port by the air-permeable resistor for stabilizing the airflow and suppressing the vortex flow. If there is still some wind speed fluctuation or pressure pulsation of the ejected air even in a state where the wind speed fluctuation is effectively suppressed, the remaining wind speed fluctuation or pressure pulsation is reduced by the above-mentioned short-circuit opening or sound pressure transmission opening. By avoiding the path resonance, the degree of turbulence of the ejected air ejected from the ejection port to the measurement chamber can be further reliably and effectively reduced as a whole.
図1は自動車、航空機、列車等々の空力特性や発生騒音の測定などを行う風洞実験装置の全体構成を示し、この風洞実験装置では開放型の測定室1を設け、この測定室1には、室内における実験物の設置部2に向けて空気Aを設定風速の自由噴流の状態で噴出する噴出口3、及び、実験物の設置部2を通過した噴出口3からの噴出空気Aを流入させる集風口4を設けてある。 FIG. 1 shows the overall configuration of a wind tunnel experimental apparatus for measuring aerodynamic characteristics and generated noise of automobiles, airplanes, trains, and the like. In this wind tunnel experimental apparatus, an open type measurement chamber 1 is provided. Injecting the air A from the jet outlet 3 through which the air A is jetted in the state of a free jet at a set wind speed and the jet air A from the jet outlet 3 that has passed through the experimental installation section 2 toward the experimental installation section 2 in the room A wind collecting port 4 is provided.
噴出口3と集風口4とは測定室1の外部において回流風路5を通じて連通させ、この回流風路5の途中箇所には、噴出口3に空気Aを送給してその送給空気Aを噴出口3から噴出させる送風機6を装備してある。 The jet outlet 3 and the air collecting port 4 are communicated with each other through the circulating air passage 5 outside the measurement chamber 1, and air A is supplied to the jet outlet 3 in the middle of the circulating air passage 5 to supply air A. Is provided with a blower 6 for ejecting the air from the jet outlet 3.
つまり、この風洞実験装置は、回流風路5における送風機6と集風口4との間の部分を吸込風路5Bにするとともに、回流風路5における送風機6と噴出口3との間の部分を給気風路5Aにして、送風機6の運転により集風口4を通じて吸込風路5Bに吸い込んだ空気Aを給気風路5Aを通じて噴出口3から開放型の測定室1に自由噴流の状態で噴出する回流式の風洞実験装置にしてある。 That is, this wind tunnel experimental device uses the portion between the blower 6 and the air collecting port 4 in the circulating air passage 5 as the suction air passage 5B, and the portion between the blower 6 and the outlet 3 in the circulating air passage 5. supply air path in the 5A, ejecting air a sucked into the suction air passage 5B through wind collecting port 4 by the operation of the blower 6 in the form of a free jet in the measuring chamber 1 of open type from jetting port 3 through supply air path 5A circumfluence This is a wind tunnel experimental device of the type
噴出口3及び集風口4はともに正面視で矩形状の開口にしてあり、給気風路5Aにおける噴出口3の近傍部分(即ち、給気風路5Aの出口近傍部)は、空気流れ方向の下流側ほど風路断面積が漸次的に小さくなって噴出口3に至る縮風部5aにしてある。 Both the jet port 3 and the air collecting port 4 are rectangular openings in front view, and the vicinity of the jet port 3 in the supply air passage 5A (that is, the vicinity of the outlet of the supply air passage 5A) is downstream in the air flow direction. The air passage cross-sectional area is gradually reduced toward the side, and the compressed air portion 5a that reaches the outlet 3 is formed.
一方、集風口4は、測定室1に向かって拡がるラッパ状集風部4aを備えるものにしてあり、吸込風路5Bにおける集風口4の近傍部分(即ち、吸込風路5Bの入口近傍部)は、空気流れ方向の下流側ほど風路断面積が漸次的に大きくなる拡風部5bにしてある。 On the other hand, the air collecting port 4 is provided with a trumpet-shaped air collecting portion 4a that expands toward the measurement chamber 1, and a portion in the vicinity of the air collecting port 4 in the suction air passage 5B (that is, a portion near the inlet of the suction air passage 5B). Is a wind expansion portion 5b in which the air passage cross-sectional area gradually increases toward the downstream side in the air flow direction.
そして、ラッパ状集風部4aを備える集風口4と噴出口3とは、いずれも測定室1の内部に突出させた状態で実験物の設置部2を挟んで正対的に対向させてある。 The air collecting port 4 provided with the trumpet-shaped air collecting unit 4a and the jet port 3 are opposed to each other with the experimental product installation unit 2 sandwiched between the air collecting port 4 and the ejection port 3 that protrude into the measurement chamber 1. .
この種の風洞実験装置では、図7に模式的に示すように、噴出口3から開放型測定室1へ自由噴流の状態で噴出した噴出空気流Aの周辺で渦流Tが発生して発達し、その発達渦流Sが集風口4部分(具体的には、ラッパ状集風部4aや集風口4近傍における吸込風路5Bの風路壁)に衝突することで、集風口4周辺において気流が乱れ集風口4周辺の圧力や風速が変動する。 In this type of wind tunnel experimental apparatus, as schematically shown in FIG. 7, a vortex flow T is generated and developed around a jet air flow A jetted from the jet nozzle 3 to the open type measurement chamber 1 in a free jet state. The developed vortex S collides with the air collecting port 4 (specifically, the trumpet air collecting portion 4a or the air channel wall of the suction air channel 5B in the vicinity of the air collecting port 4). The pressure and wind speed around the turbulent air collection port 4 fluctuate.
そして、不安定な自由噴流である噴出口3からの噴出空気流Aが、上記渦流衝突による集風口4周辺での気流の乱れや圧力変動、風速変動の影響を受けることで、装置条件(特に測定室の各部寸法や風速)によって決まる特定周波数においてピークを持つ状態で揺動し、これが原因で、次の式1で表される噴出空気Aの乱流度Iが上昇して風洞実験装置の性能が低く制限される問題があった。 The air flow A from the outlet 3 which is an unstable free jet is affected by the turbulence, pressure fluctuations, and wind speed fluctuations around the air collecting port 4 due to the vortex collision. It swings in a state having a peak at a specific frequency determined by the dimensions of each part of the measurement chamber and the wind speed), and this causes the turbulence degree I of the ejected air A expressed by the following equation 1 to rise and There was a problem that performance was limited to a low level.
I=u′×100/Uav ………(式1)
I:乱流度[%]
u′:風速変動の2乗平均平方根[km/h]
Uav:平均風速[km/h]
I = u ′ × 100 / Uav (Equation 1)
I: Turbulence degree [%]
u ′: root mean square of wind speed fluctuation [km / h]
Uav: Average wind speed [km / h]
これに対し、本例の風洞実験装置では図1,図2に示すように、実験物の設置部2よりも空気流れ方向の下流側において、集風口4に流入する噴出口3からの噴出空気Aの自由噴流に対して抵抗を付与する気流安定化及び渦流抑制用の通気性抵抗体Xを、集風口4に対する正面視において集風口4の開口域の全域にわたらせる状態で設置してあり、この通気性抵抗体Xによる抵抗付与により噴出口3からの噴出空気Aの自由噴流を拘束することで、噴出口3からの噴出空気流Aを安定化するとともに、その噴出空気流Aの周辺での渦流の発生発達を抑制して、乱流度上昇の根本的原因そのものを効果的に抑止し、また、既に発生し発達段階にある渦流Tを消滅ないし減衰させる効果も望めるようにし、これにより、噴出口3から自由噴流の状態で噴出される噴出空気Aの乱流度Iを効果的に低下させるようにしてある。 On the other hand, in the wind tunnel experimental device of this example, as shown in FIGS. 1 and 2, the air ejected from the ejection port 3 flowing into the air collection port 4 on the downstream side in the air flow direction from the installation portion 2 of the experimental product. A breathable resistor X for airflow stabilization and eddy current suppression that imparts resistance to the free jet of A is installed in a state that extends over the entire opening area of the air collecting port 4 in a front view with respect to the air collecting port 4. By restricting the free jet of the jet air A from the jet port 3 by applying resistance by the air-permeable resistor X, the jet air flow A from the jet port 3 is stabilized and the periphery of the jet air flow A is This suppresses the generation and development of eddy currents, effectively suppresses the root cause of the increase in turbulence, and also hopes to have the effect of extinguishing or attenuating eddy currents T that have already occurred and are in the developmental stage. by Zhou of a free jet from the spout 3 In are as effectively reducing the turbulence degree I of injected air A to be ejected.
具体的には、空気流れ方向に対して直交する水平姿勢の丸棒状や角棒状の棒状体7aを集風口4の手前箇所において等間隔に間隔を開けて上下方向に並列状態で複数並べて棒状体並置列7を形成し、この棒状体並置列7を上記気流安定化及び渦流抑制用の通気性抵抗体Xとしてある。 Specifically, a plurality of rod-like bodies 7a in a horizontal posture perpendicular to the air flow direction are arranged in parallel in the up-down direction at equal intervals at a position in front of the air collecting port 4. The juxtaposed row 7 is formed, and this rod-like body juxtaposed row 7 is used as the air-permeable resistor X for stabilizing the airflow and suppressing the eddy current.
〔別実施形態〕
次に本発明の別実施形態を列記する。
[Another embodiment]
Next, other embodiments of the present invention will be listed.
前述の実施形態では、水平姿勢の棒状体7aからなる棒状体並置列7を気流安定化及び渦流抑制用の通気性抵抗体Xとしたが、これに代えて、縦姿勢の棒状体を横方向に並列状態で並べた棒状体並置列を気流安定化及び渦流抑制用の通気性抵抗体Xにしてもよい。 In the above-described embodiment, the rod-like juxtaposed row 7 composed of the rod-like bodies 7a in the horizontal posture is the air-permeable resistor X for stabilizing the airflow and suppressing the eddy current. Instead, the rod-like body in the vertical posture is used in the horizontal direction. Alternatively, the rod-like juxtaposed rows arranged in parallel to each other may be used as the air-permeable resistor X for airflow stabilization and eddy current suppression .
なお、参考例として、棒状体並置列7に代え、あるいは、棒状体並置列7とともに、図3に示す如き網状体8や図4に示す如きハニカム構造体9を、気流安定化及び渦流抑制用の通気性抵抗体Xとして設置することも考えられ、その他、パンチング板などの多孔板状体、縦横格子体やジャングルジム状体などの格子状体、さらにフィルター状体などを気流安定化及び渦流抑制用の通気性抵抗体Xとして使用することも考えられる。 As a reference example , instead of the rod-like juxtaposed row 7 or together with the rod-like juxtaposed row 7, a mesh-like body 8 as shown in FIG. 3 or a honeycomb structure 9 as shown in FIG. 4 is used for airflow stabilization and eddy current suppression. It is also possible to install as a breathable resistor X. In addition, air flow stabilization and vortex flow of porous plate bodies such as punching plates, lattice bodies such as vertical and horizontal lattice bodies and jungle gym bodies, and filter bodies, etc. It is also conceivable to use it as a breathable resistor X for suppression .
気流安定化及び渦流抑制用の通気性抵抗体Xとしての棒状体並置列は、図5(a)に示すように、集風口4に対する正面視において集風口4の開口域の全域を覆う状態に配置するに限らず、図5(b)に示すように、集風口4に対する正面視において集風口4の開口域の外周縁部のみを覆う状態に配置したり、図5(c)に示すように、集風口4に対する正面視において集風口4の開口域の中央部のみを覆う状態に配置するなど、集風口4に対する正面視において集風口4の開口域の一部のみを覆う状態に配置するようにしてもよい。 As shown in FIG. 5 (a), the rod-like juxtaposed row as the air-permeable resistor X for stabilizing the airflow and suppressing the eddy current covers the entire opening area of the air collecting port 4 in a front view with respect to the air collecting port 4. As shown in FIG. 5 (b), the arrangement is not limited to the arrangement, and it is arranged so as to cover only the outer peripheral edge of the opening area of the air collection port 4 in a front view with respect to the air collection port 4, or as shown in FIG. Furthermore, it arrange | positions in the state which covers only the center part of the opening area of the air collection opening 4 in the front view with respect to the air collection opening 4, for example, arrange | positions in the state which covers only a part of opening area of the air collection opening 4 in the front view with respect to the air collection opening 4. You may do it.
また、気流安定化及び渦流抑制用通気性抵抗体Xとしての棒状体並置列の空気流れ方向における設置個所は、実験物の設置部2よりも空気流れ方向の下流側であれば、図6に示す如く集風口4の手前箇所から集風口4の奥部箇所(すなわち、吸込風路5Bに入った箇所)までの範囲内において適宜決定すればよい。 Moreover, if the installation location in the air flow direction of the juxtaposed rod-shaped body as the air-permeable resistor X for airflow stabilization and vortex suppression is downstream in the air flow direction from the installation portion 2 of the test object, FIG. What is necessary is just to determine suitably in the range from the near part of the air collection port 4 to the innermost part of the air collection port 4 (namely, the location which entered the suction air path 5B) as shown.
同図6に破線で示すように、集風口4を通じて吸込風路5Bに流入した空気Aの一部をダクト(図示省略)を通じて短絡的に測定室1に導く短絡用開口10、又は、吸込風路5Bの音圧ピーク発生箇所に位置して音圧を吸込風路5Bの外部へ透過させる音圧透過用開口11を通気性抵抗体Xよりも空気流れ方向における下流側において吸込風路5Bの風路壁に形成してもよい。 As indicated by a broken line in FIG. 6, a short-circuit opening 10 for leading a part of the air A flowing into the suction air passage 5 </ b> B through the air collecting port 4 to the measurement chamber 1 through a duct (not shown), or the suction air The sound pressure transmitting opening 11 that is located at the sound pressure peak occurrence position of the path 5B and transmits the sound pressure to the outside of the suction air path 5B is located downstream of the breathable resistor X in the air flow direction of the suction air path 5B. You may form in an air channel wall.
このようにすれば、集風口4に流入する噴出口3からの噴出空気Aの自由噴流に対して気流安定化及び渦流抑制用の通気性抵抗体Xにより抵抗付与することで噴出口3からの噴出空気Aの風速変動を効果的に抑制した状態でも未だ噴出空気Aの風速変動や圧力脈動がある程度残存するような場合、その残存する風速変動や圧力脈動を上記の短絡用開口10又は音圧透過用開口11による風路共鳴回避により抑制することができる。 In this way, resistance is imparted to the free jet flow of the jet air A from the jet port 3 flowing into the air collecting port 4 by the breathable resistor X for stabilizing the airflow and suppressing the vortex flow . In the case where the wind speed fluctuation and pressure pulsation of the jet air A still remain to some extent even in the state where the wind speed fluctuation of the jet air A is effectively suppressed, the remaining wind speed fluctuation and pressure pulsation are represented by the short-circuit opening 10 or the sound pressure. This can be suppressed by avoiding wind path resonance by the transmission opening 11.
本発明は、回流式風洞実験装置に限らず、吸込風路5Bに流入した空気Aを噴出口3に戻さない一過式の風洞実験装置に適用してもよい。 The present invention is not limited to the circulating wind tunnel experimental device, and may be applied to a transient wind tunnel experimental device that does not return the air A flowing into the suction air passage 5B to the jet outlet 3.
本発明による風洞実験装置は種々の風洞実験に利用することができる。 The wind tunnel experiment apparatus according to the present invention can be used for various wind tunnel experiments.
6 送風機
A 噴出空気
3 噴出口
1 測定室
4 集風口
5B 吸込風路
2 実験物設置部
X 気流安定化及び渦流抑制用の通気性抵抗体
7a 棒状体
7 棒状体並置列
10 短絡用開口
11 音圧透過用開口
6 Air blower A Blowing air 3 Spout 1 Measurement chamber 4 Ventilation port 5B Suction air passage 2 Test material installation part X Breathable resistor 7 for air flow stabilization and eddy current control 7a Rod body 7 Parallel arrangement of rod bodies 10 Short circuit opening 11 Sound Pressure transmission opening
Claims (3)
前記測定室における実験物の設置部よりも空気流れ方向における下流側に位置して、前記集風口に流入する前記噴出口からの噴出空気の自由噴流に抵抗を付与する気流安定化及び渦流抑制用の通気性抵抗体を設け、
この通気性抵抗体として、空気流れ方向に対し直交又は斜交する姿勢の棒状体を前記集風口の開口面方向に間隔を開けて並列状態で複数並べた棒状体並置列を設けてある風洞実験装置。 As the air supplied by the blower is ejected from the ejection port to the open measurement chamber in a free jet state where vortex flow is generated in the vicinity and passed through the measurement chamber, the ejection air from the ejection port is In the measurement chamber, a wind tunnel experimental device for sucking into the suction air passage through the air collecting port facing the jet port,
For air flow stabilization and eddy current suppression that provides resistance to the free jet of the jet air from the jet port that flows into the air collecting port, and is located on the downstream side in the air flow direction from the installation part of the test object in the measurement chamber provided breathable resistor,
A wind tunnel experiment in which a plurality of rod-like body juxtaposed rows arranged in a parallel state at intervals in the opening surface direction of the air collecting port are arranged as this air-permeable resistor in a posture orthogonal or oblique to the air flow direction. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013178302A JP6112302B2 (en) | 2013-08-29 | 2013-08-29 | Wind tunnel experiment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013178302A JP6112302B2 (en) | 2013-08-29 | 2013-08-29 | Wind tunnel experiment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015045620A JP2015045620A (en) | 2015-03-12 |
JP6112302B2 true JP6112302B2 (en) | 2017-04-12 |
Family
ID=52671224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013178302A Active JP6112302B2 (en) | 2013-08-29 | 2013-08-29 | Wind tunnel experiment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6112302B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108693897B (en) * | 2018-05-30 | 2021-01-08 | 中国空气动力研究与发展中心高速空气动力研究所 | Injection-driven temporary-impulse type sub-transonic wind tunnel flow field control method for closed-loop backflow |
CN109611139B (en) * | 2018-10-29 | 2020-04-28 | 同济大学 | Natural draft tunnel ventilation mechanism test system |
CN110174234B (en) * | 2019-01-15 | 2024-06-28 | 昆山市三维换热器有限公司 | Multifunctional wind system |
CN110412315A (en) * | 2019-08-07 | 2019-11-05 | 中国气象局气象探测中心 | Integral-type wind element calibrating installation |
CN110361157B (en) * | 2019-08-26 | 2020-12-22 | 沈阳航空航天大学 | Method for controlling wind speed stability of low-speed backflow wind tunnel |
CN110542531B (en) * | 2019-10-23 | 2024-06-21 | 恒菱机电科技(苏州)有限公司 | Material model environment experiment bin based on improvement of coal power generation efficiency |
CN113358320B (en) * | 2021-08-10 | 2021-10-15 | 中国空气动力研究与发展中心高速空气动力研究所 | Method for measuring force of interference of jet flow of upstream air for high-speed wind tunnel |
CN114838902B (en) * | 2022-03-31 | 2023-06-23 | 上海交通大学 | Small-sized turbulent wind tunnel based on synthetic jet |
CN115575074B (en) * | 2022-12-09 | 2023-03-10 | 中国空气动力研究与发展中心高速空气动力研究所 | High-speed wind tunnel ventilation model internal resistance measurement uncertainty analysis method |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4942190Y1 (en) * | 1970-05-19 | 1974-11-19 | ||
JPS5925449U (en) * | 1982-08-11 | 1984-02-17 | 三菱重工業株式会社 | wind tunnel |
JPS5992837U (en) * | 1982-12-14 | 1984-06-23 | 株式会社小松製作所 | wind tunnel equipment |
JPH0297650U (en) * | 1989-01-23 | 1990-08-03 | ||
JP2597583Y2 (en) * | 1990-10-16 | 1999-07-05 | 富士重工業株式会社 | Low-speed wind tunnel rectifier |
JPH1164156A (en) * | 1997-08-20 | 1999-03-05 | Mitsubishi Heavy Ind Ltd | Collector duct for jet |
-
2013
- 2013-08-29 JP JP2013178302A patent/JP6112302B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015045620A (en) | 2015-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6112302B2 (en) | Wind tunnel experiment equipment | |
JP6195544B2 (en) | Wind tunnel experimental device and method for designing absorption opening in the wind tunnel experimental device | |
CN108513740A (en) | Rack and unmanned vehicle | |
JP2004084669A5 (en) | ||
CN108279080A (en) | System and method for the freezing total air temperature probe with air jet | |
CN210893411U (en) | Jet flow channel for jet flow noise test | |
TR201809766T4 (en) | Suppression of cavity acoustic tones. | |
JP2019035718A (en) | Wind tunnel device | |
JP5018967B2 (en) | Vehicle intake structure | |
JP2011162154A (en) | High lift force-generating device, wing and slat | |
JP6221051B2 (en) | Active silencer | |
JP6813497B2 (en) | A device for injecting microjets to reduce jet noise in turbine engines | |
WO2019224918A1 (en) | Air blowing device and air conditioner | |
JP6448264B2 (en) | Blowing device and suction device for air conditioning equipment | |
CN202932852U (en) | Dust collector | |
JP2006162310A (en) | Air duct structure of wind tunnel system | |
US7237434B2 (en) | Slotted damping section for aerodynamic wind tunnel | |
JP2014141908A (en) | Intake system of engine | |
CN105857576A (en) | Noise-reduction slat structure based on jet-flow opening | |
CN110158446A (en) | Breathing unit flow control apparatus based on Loads of Long-span Bridges wind field three-dimensional disturbance along span | |
SE448828B (en) | NOZZLE | |
CN205533452U (en) | Blowing device | |
EP3176081A2 (en) | A simplified fluidic oscillator for controlling aerodynamics of an aircraft | |
WO2014140590A1 (en) | Cavity acoustic tones suppression | |
JP5540538B2 (en) | Fan filter unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151202 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160714 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160726 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160906 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170214 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6112302 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |