JP2006162309A - Current detection device and motor control device - Google Patents

Current detection device and motor control device Download PDF

Info

Publication number
JP2006162309A
JP2006162309A JP2004350826A JP2004350826A JP2006162309A JP 2006162309 A JP2006162309 A JP 2006162309A JP 2004350826 A JP2004350826 A JP 2004350826A JP 2004350826 A JP2004350826 A JP 2004350826A JP 2006162309 A JP2006162309 A JP 2006162309A
Authority
JP
Japan
Prior art keywords
current
phase
detection
detection target
calculation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004350826A
Other languages
Japanese (ja)
Inventor
Masaru Kobayashi
勝 小林
Yuji Kuramoto
祐司 蔵本
Hiroshi Ito
寛 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004350826A priority Critical patent/JP2006162309A/en
Publication of JP2006162309A publication Critical patent/JP2006162309A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current detection device capable of reducing its size and weight, and that has high accuracy. <P>SOLUTION: Currents in a U-phase bus bar 2a to a W-phase bus bar 2c are detected by a U-phase current detector 4a to a W-phase current detector 4c inclusive, and dispersion of each characteristic or the like is compensated by a current compensation part 20, to thereby determine detector output currents isnsu to isnsw. Prescribed operation is performed, based on the detector output currents by a non-interferential filtering part 21, and the influence of currents in other phases in the detector output currents is removed, to thereby determine currents iu, iv, iw in each phase; and the output from a three-phase inverter 11 is controlled through a current control part 22 so as to acquire a current instruction value ir, and a motor 12 is controlled. Since the dispersion of detection characteristics of the U-phase current detector 4a to the W-phase current detector 4c inclusive are compensated and the current in each phase is determined by the non-interferential filtering part 21, the influence of the current of a phase other than the detecting object is reduced without using a magnetic core, and detection accuracy is improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電流検出装置及び電動機制御装置に関し、特に小形軽量化が可能で測定すべき電流以外の電流の影響による電流検出誤差を軽減できる電流検出装置及び電流検出の誤差を軽減して精度の高い制御が可能な電動機制御装置に関する。   The present invention relates to a current detection device and a motor control device, and in particular, a current detection device that can be reduced in size and weight and can reduce a current detection error due to the influence of a current other than a current to be measured. The present invention relates to an electric motor control device capable of high control.

従来の交流電動機の制御装置における電流検出器として、二つに分割されたU字状の鉄心と、この鉄心の分割部に挟持されるように挿入されたホール素子と、このホール素子を取り付ける制御基板と、これらを一体化するセンサ筐体とを備え、上記U字状の鉄心のうち面部に沿ってU字状の凹部を形成したものがある。そして、U字状の凹部にブスバーを挿入して組み付けることが容易であり、またブスバーを組み付けた後から電流センサを取り付けることができるものがある(例えば、特許文献1参照)。   As a current detector in a conventional AC motor control device, a U-shaped iron core divided into two parts, a Hall element inserted so as to be sandwiched between the divided parts of the iron core, and a control for attaching the Hall element Some of the U-shaped iron cores are provided with a substrate and a sensor housing that integrates them, and a U-shaped recess is formed along the surface. And it is easy to insert and assemble a bus bar in a U-shaped concave part, and there is a thing which can attach a current sensor after assemble | attaching a bus bar (for example, refer patent document 1).

特開2002−189039公報(段落番号0010、0012及び図1)JP 2002-189039 (paragraph numbers 0010 and 0012 and FIG. 1)

従来の電流センサは以上のように構成され、U字状の鉄心を有し、そのうち面部に沿って形成されたU字状の凹部にブスバーを挿入して組み付けるものである。従って、当該凹部にブスバーを挿入できるだけの大きさの鉄心が必要となる。このため、例えば三相インバータに組み込む場合、小形化、高密度実装化に際して問題となる。また、導体と鉄心とを組み合わせる構造は、三相インバータの組立て工程が複雑となり、組立て工数の増加につながり、コスト増加の要因となる。この発明は上記のような問題点を解決するためになされたものであり、小形軽量化を図ることができるとともに、測定すべき電流以外の電流の影響による電流検出誤差を小さくできる電流検出装置及び電流検出の誤差を軽減して精度の高い制御が可能な電動機制御装置を得ることを目的とする。   The conventional current sensor is configured as described above, has a U-shaped iron core, and is assembled by inserting a bus bar into a U-shaped recess formed along the surface portion. Therefore, an iron core that is large enough to insert the bus bar into the recess is required. For this reason, for example, when incorporated in a three-phase inverter, there is a problem in miniaturization and high-density mounting. Moreover, the structure combining the conductor and the iron core complicates the assembly process of the three-phase inverter, leading to an increase in the number of assembling steps, and causes an increase in cost. The present invention has been made to solve the above-described problems, and can be reduced in size and weight, and a current detection device that can reduce a current detection error due to the influence of a current other than the current to be measured, and It is an object of the present invention to obtain an electric motor control device capable of reducing current detection errors and performing highly accurate control.

この発明に係る電流検出装置は、
磁束検出素子を有する複数の電流検出器と、電流算出手段とを有するものであって、
電流検出器のうちの一は検出の対象とする検出対象電流が流れる検出対象導電体の近傍に配置され、電流検出器の他は検出の対象外である検出対象外電流が流れる検出対象外導電体の近傍に配置され、電流検出器のうちの一は検出対象電流及び検出対象外電流により発生し自己の磁束検出素子と鎖交する磁束に応じて検出対象電気信号を発し、電流検出器のうちの他は検出対象電流及び検出対象外電流により発生し自己の磁束検出素子と鎖交する磁束に応じて検出対象外電気信号を発し、
電流算出手段は、各電流検出器の電流対電気信号変換特性のばらつきを補償するために検出対象及び検出対象外電気信号を補償するとともに、この補償された検出対象及び検出対象外電気信号に基づき検出対象電流を求めるものである。
The current detection device according to the present invention includes:
A plurality of current detectors having a magnetic flux detection element, and a current calculation means,
One of the current detectors is disposed in the vicinity of the detection target conductor through which the detection target current to be detected flows, and other than the current detector, the non-detection conduction through which the non-detection current that is not the detection target flows. One of the current detectors is arranged near the body, and generates a detection target electric signal according to a magnetic flux generated by a detection target current and a non-detection target current and interlinked with its own magnetic flux detection element. The other of them generates a non-detection target electric signal according to the magnetic flux that is generated by the detection target current and the non-detection target current and interlinks with its own magnetic flux detection element,
The current calculation means compensates for the detection target and non-detection target electrical signals in order to compensate for variations in the current-to-electrical signal conversion characteristics of each current detector, and based on the compensated detection target and non-detection target electrical signals. The current to be detected is obtained.

そして、この発明に係る電動機制御装置は、
三相インバータ装置と、電流検出装置と、開閉制御装置とを有するものであって、
三相インバータ装置は、開閉素子を有し直流電力を交流電力に変換して電動機に供給するものであり、
電流検出装置は、請求項1ないし請求項4のいずれか1項に記載の電流検出装置であって三相インバータ装置の交流側の電流を検出するものであり、
開閉制御装置は、電流検出装置により検出された交流側の電流に基づき開閉素子を開閉制御することにより電動機を制御するものである。
And the electric motor control device concerning this invention is
It has a three-phase inverter device, a current detection device, and a switching control device,
The three-phase inverter device has an open / close element, converts DC power to AC power, and supplies it to the motor.
A current detection device is a current detection device according to any one of claims 1 to 4, and detects a current on an AC side of a three-phase inverter device,
The open / close control device controls the electric motor by performing open / close control of the open / close element based on the alternating current detected by the current detection device.

さらに、この発明に係る電動機制御装置は、
三相インバータ装置と、電流検出座標変換装置と、開閉制御装置とを有するものであって、
三相インバータ装置は、開閉素子を有し直流電力を交流電力に変換して三相の導電体を介して電動機に供給するものであり、
電流検出座標変換装置は、磁束検出素子を有する電流検出器と、電流算出座標変換手段とを有し、
各電流検出器は、検出対象相の導電体の近傍にそれぞれ配置され検出対象相の電流及び検出対象外の相の電流により発生し自己の磁束検出素子と鎖交する磁束に応じてそれぞれ電気信号を発し、
電流算出座標変換手段は、各電流検出器の電流対電気信号変換特性のばらつきを補償するために各電気信号にそれぞれ所定の補償係数を乗じる電流対電気信号変換補償演算を行い、この電流対電気信号変換補償演算が行われた各電気信号に基づいて所定の非干渉化演算を行うことにより各相の電流を求め、この各相の電流から電動機の磁束ベクトルに同期した回転直交座標上のd軸電流及びq軸電流を求める三相/二相座標演算を行うものであって、非干渉化演算と三相/二相座標演算とを一つにまとめて行うものであり、
開閉制御装置は、d軸電流及びq軸電流に基づき開閉素子を開閉制御することにより電動機を制御するものである。
Furthermore, the electric motor control device according to the present invention includes:
It has a three-phase inverter device, a current detection coordinate conversion device, and a switching control device,
The three-phase inverter device has an open / close element, converts DC power to AC power, and supplies it to the motor via a three-phase conductor.
The current detection coordinate conversion device includes a current detector having a magnetic flux detection element, and current calculation coordinate conversion means,
Each current detector is arranged in the vicinity of the conductor of the detection target phase, and generates an electric signal according to the magnetic flux generated by the current of the detection target phase and the current of the non-detection phase and interlinked with its own magnetic flux detection element. And
The current calculation coordinate conversion means performs a current-to-electric signal conversion compensation calculation by multiplying each electric signal by a predetermined compensation coefficient in order to compensate for variations in the current-to-electric signal conversion characteristics of each current detector. A current of each phase is obtained by performing a predetermined non-interference calculation based on each electric signal subjected to the signal conversion compensation calculation, and d on the rotation orthogonal coordinate synchronized with the magnetic flux vector of the motor from the current of each phase. A three-phase / two-phase coordinate calculation for obtaining an axial current and a q-axis current, and a non-interference calculation and a three-phase / two-phase coordinate calculation are performed together.
The opening / closing control device controls the electric motor by controlling opening / closing of the opening / closing element based on the d-axis current and the q-axis current.

この発明に係る電流検出装置によれば、
磁束検出素子を有する複数の電流検出器と、電流算出手段とを有するものであって、
電流検出器のうちの一は検出の対象とする検出対象電流が流れる検出対象導電体の近傍に配置され、電流検出器の他は検出の対象外である検出対象外電流が流れる検出対象外導電体の近傍に配置され、電流検出器のうちの一は検出対象電流及び検出対象外電流により発生し自己の磁束検出素子と鎖交する磁束に応じて検出対象電気信号を発し、電流検出器のうちの他は検出対象電流及び検出対象外電流により発生し自己の磁束検出素子と鎖交する磁束に応じて検出対象外電気信号を発し、
電流算出手段は、各電流検出器の電流対電気信号変換特性のばらつきを補償するために検出対象及び検出対象外電気信号を補償するとともに、この補償された検出対象及び検出対象外電気信号に基づき検出対象電流を求めるものであるので、
電流検出器ごとの電流対電圧変換特性のばらつきを補償でき、また電流検出器の電流検出結果である検出対象電気信号に混入している検出対象外の電流成分を除去して検出対象電流を求めるため、集磁用の磁気鉄心を設けなくても電流検出精度の低下を抑制して精度良く電流の検出を行うことができる。
According to the current detection device of the present invention,
A plurality of current detectors having a magnetic flux detection element, and a current calculation means,
One of the current detectors is disposed in the vicinity of the detection target conductor through which the detection target current to be detected flows, and other than the current detector, the non-detection conduction through which the non-detection current that is not the detection target flows. One of the current detectors is arranged near the body, and generates a detection target electric signal according to a magnetic flux generated by a detection target current and a non-detection target current and interlinked with its own magnetic flux detection element. The other of them generates a non-detection target electric signal according to the magnetic flux that is generated by the detection target current and the non-detection target current and interlinks with its own magnetic flux detection element,
The current calculation means compensates for the detection target and non-detection target electrical signals in order to compensate for variations in the current-to-electrical signal conversion characteristics of each current detector, and based on the compensated detection target and non-detection target electrical signals. Since the current to be detected is obtained,
Dispersion of current-to-voltage conversion characteristics for each current detector can be compensated, and the current component outside the detection target mixed in the detection target electrical signal that is the current detection result of the current detector is removed to obtain the detection target current. For this reason, it is possible to accurately detect the current without suppressing a decrease in the current detection accuracy without providing a magnetic core for collecting the magnetic current.

そして、この発明に係る電動機制御装置によれば、
三相インバータ装置と、電流検出装置と、開閉制御装置とを有するものであって、
三相インバータ装置は、開閉素子を有し直流電力を交流電力に変換して電動機に供給するものであり、
電流検出装置は、請求項1ないし請求項4のいずれか1項に記載の電流検出装置であって三相インバータ装置の交流側の電流を検出するものであり、
開閉制御装置は、電流検出装置により検出された交流側の電流に基づき開閉素子を開閉制御することにより電動機を制御するものであるので、
電流検出器ごとの電流対電圧変換特性のばらつきを補償でき、また電流検出器の電流検出結果である検出対象電気信号に混入している検出対象外の電流成分を除去して検出対象電流を求めるため、集磁用の磁気鉄心を設けなくても電流検出精度の低下を抑制して精度良く電流の検出を行うことができ、この検出した電流を用いて精度良く電動機を制御することができる。
And according to the motor control device according to the present invention,
It has a three-phase inverter device, a current detection device, and a switching control device,
The three-phase inverter device has an open / close element, converts DC power to AC power, and supplies it to the motor.
A current detection device is a current detection device according to any one of claims 1 to 4, and detects a current on an AC side of a three-phase inverter device,
Since the open / close control device controls the electric motor by controlling the open / close element based on the alternating current detected by the current detection device,
Dispersion of current-to-voltage conversion characteristics for each current detector can be compensated, and the current component outside the detection target mixed in the detection target electrical signal that is the current detection result of the current detector is removed to obtain the detection target current. Therefore, even if a magnetic core for collecting magnets is not provided, it is possible to accurately detect a current while suppressing a decrease in current detection accuracy, and it is possible to accurately control an electric motor using the detected current.

さらに、この発明に係る電動機制御装置によれば、
三相インバータ装置と、電流検出座標変換装置と、開閉制御装置とを有するものであって、
三相インバータ装置は、開閉素子を有し直流電力を交流電力に変換して三相の導電体を介して電動機に供給するものであり、
電流検出座標変換装置は、磁束検出素子を有する電流検出器と、電流算出座標変換手段とを有し、
各電流検出器は、検出対象相の導電体の近傍にそれぞれ配置され検出対象相の電流及び検出対象外の相の電流により発生し自己の磁束検出素子と鎖交する磁束に応じてそれぞれ電気信号を発し、
電流算出座標変換手段は、各電流検出器の電流対電気信号変換特性のばらつきを補償するために各電気信号にそれぞれ所定の補償係数を乗じる電流対電気信号変換補償演算を行い、この電流対電気信号変換補償演算が行われた各電気信号に基づいて所定の非干渉化演算を行うことにより各相の電流を求め、この各相の電流から電動機の磁束ベクトルに同期した回転直交座標上のd軸電流及びq軸電流を求める三相/二相座標演算を行うものであって、非干渉化演算と三相/二相座標演算とを一つにまとめて行うものであり、
開閉制御装置は、d軸電流及びq軸電流に基づき開閉素子を開閉制御することにより電動機を制御するものであるので、
電流検出器ごとの電流対電圧変換特性のばらつきを補償でき、また電流検出器の電流検出結果である検出対象電気信号に混入している検出対象外の電流成分を除去して検出対象電流を求めるため、集磁用の磁気鉄心を設けなくても電流検出精度の低下を抑制して精度良く電流の検出を行うことができ、この検出した電流を用いて精度良く電動機を制御することができる。また、非干渉化演算と三相/二相座標演算とを一つにまとめて行うので、演算回数を削減でき、演算の高速化により、制御精度を向上させることができる。
Furthermore, according to the motor control device of the present invention,
It has a three-phase inverter device, a current detection coordinate conversion device, and a switching control device,
The three-phase inverter device has an open / close element, converts DC power to AC power, and supplies it to the motor via a three-phase conductor.
The current detection coordinate conversion device includes a current detector having a magnetic flux detection element, and current calculation coordinate conversion means,
Each current detector is arranged in the vicinity of the conductor of the detection target phase, and generates an electric signal according to the magnetic flux generated by the current of the detection target phase and the current of the non-detection phase and interlinked with its own magnetic flux detection element. And
The current calculation coordinate conversion means performs a current-to-electric signal conversion compensation calculation by multiplying each electric signal by a predetermined compensation coefficient in order to compensate for variations in the current-to-electric signal conversion characteristics of each current detector. A current of each phase is obtained by performing a predetermined non-interference calculation based on each electric signal subjected to the signal conversion compensation calculation, and d on the rotation orthogonal coordinate synchronized with the magnetic flux vector of the motor from the current of each phase. A three-phase / two-phase coordinate calculation for obtaining an axial current and a q-axis current, and a non-interference calculation and a three-phase / two-phase coordinate calculation are performed together.
Since the open / close control device controls the electric motor by controlling the open / close element based on the d-axis current and the q-axis current,
Dispersion of current-to-voltage conversion characteristics for each current detector can be compensated, and the current component outside the detection target mixed in the detection target electrical signal that is the current detection result of the current detector is removed to obtain the detection target current. Therefore, even if a magnetic core for collecting magnets is not provided, it is possible to accurately detect a current while suppressing a decrease in current detection accuracy, and it is possible to accurately control an electric motor using the detected current. In addition, since the non-interference calculation and the three-phase / two-phase coordinate calculation are performed together, the number of calculations can be reduced, and the control accuracy can be improved by increasing the calculation speed.

実施の形態1.
図1〜図4は、この発明を実施するための実施の形態1を示すものであり、図1は電流検出装置を用いた電動機制御装置の構成を示す構成図、図2はU,V,W各相ブスバーと各相の電流検出器の配置関係を示す斜視図、図3は同じくU,V,W各相ブスバーと各相の電流検出器の配置関係を示す側面図、図4はU相電流、V相電流、W相電流によって発生する磁束のうち、U相電流検出器の電流検出素子に鎖交するものを示す模式図である。図1において、電動機制御装置10は制御演算装置1と三相インバータ11とを有する。直流電源9から直流電力が供給され、三相インバータ11において可変電圧可変周波数の三相交流に変換されて、三相配線であるU相ケーブル3a、V相ケーブル3b、W相ケーブル3cを介して電動機12に供給される。
Embodiment 1 FIG.
1 to 4 show a first embodiment for carrying out the present invention. FIG. 1 is a configuration diagram showing a configuration of an electric motor control device using a current detection device, and FIG. FIG. 3 is a side view showing the positional relationship between the U-phase bus bar and each phase current detector, and FIG. It is a schematic diagram which shows what is linked to the current detection element of a U-phase current detector among the magnetic fluxes generated by the phase current, V-phase current, and W-phase current. In FIG. 1, the motor control device 10 includes a control arithmetic device 1 and a three-phase inverter 11. DC power is supplied from the DC power source 9 and is converted into three-phase AC of variable voltage and variable frequency in the three-phase inverter 11, via the U-phase cable 3 a, V-phase cable 3 b, and W-phase cable 3 c that are three-phase wiring. The electric motor 12 is supplied.

三相インバータ11は、U相アーム15a、V相アーム15b、W相アーム15cと、U相ブスバー2a、V相ブスバー2b、W相ブスバー2cと、各U相ブスバー2a、V相ブスバー2b、W相ブスバー2cの電流を検出するU相電流検出器4a、V相電流検出器4b、W相電流検出器4cを有する。制御演算装置1は、電流補償部20、非干渉化フィルタリング部21、電流制御部22、PWM信号生成部23を有する。電動機12の図示しない回転子には回転検出器13が連結され、回転検出器13の出力側が、電流制御部22に接続されている。また、U相電流検出器4a、V相電流検出器4b、W相電流検出器4cの出力側が、電流補償部20に接続されている。そして、PWM信号生成部23から出力されるスイッチング信号が、三相インバータ11に出力される。なお、電流補償部20と非干渉化フィルタリング部21とが、この発明における電流算出手段である。   Three-phase inverter 11 includes U-phase arm 15a, V-phase arm 15b, W-phase arm 15c, U-phase bus bar 2a, V-phase bus bar 2b, W-phase bus bar 2c, U-phase bus bar 2a, V-phase bus bar 2b, W It has a U-phase current detector 4a, a V-phase current detector 4b, and a W-phase current detector 4c for detecting the current of the phase bus bar 2c. The control arithmetic device 1 includes a current compensation unit 20, a non-interacting filtering unit 21, a current control unit 22, and a PWM signal generation unit 23. A rotation detector 13 is connected to a rotor (not shown) of the electric motor 12, and an output side of the rotation detector 13 is connected to the current control unit 22. The output sides of the U-phase current detector 4a, the V-phase current detector 4b, and the W-phase current detector 4c are connected to the current compensator 20. Then, the switching signal output from the PWM signal generation unit 23 is output to the three-phase inverter 11. The current compensation unit 20 and the non-interacting filtering unit 21 are current calculation means in the present invention.

次に、図2及び図3により、U相電流検出器4a〜W相電流検出器4c周りの取付詳細について説明する。図2において、三相インバータ11の電子基板11a(図1では図示を省略している)に三相インバータ11の電流経路である断面矩形の板状のU相ブスバー2a、V相ブスバー2b、W相ブスバー2cが設けられ、それぞれ可撓性を有するU相ケーブル3a、V相ケーブル3b、W相ケーブル3cを介して電動機12(図1参照)に接続されている。U相電流検出器4a、V相電流検出器4b、W相電流検出器4cはそれぞれ磁束を検出する電流検出素子5a、電流検出素子5b、電流検出素子5cを有し、電子基板11aに次に説明するような形で装着されている。   Next, with reference to FIG. 2 and FIG. 3, the details of mounting around the U-phase current detector 4a to the W-phase current detector 4c will be described. In FIG. 2, a rectangular U-shaped bus bar 2 a, V-phase bus bar 2 b, W, which is a current path of the three-phase inverter 11, is formed on an electronic board 11 a (not shown in FIG. 1) of the three-phase inverter 11. A phase bus bar 2c is provided, and is connected to the motor 12 (see FIG. 1) via a flexible U-phase cable 3a, V-phase cable 3b, and W-phase cable 3c. The U-phase current detector 4a, the V-phase current detector 4b, and the W-phase current detector 4c each have a current detection element 5a, a current detection element 5b, and a current detection element 5c that detect magnetic flux. It is mounted in the form described.

U相電流検出器4aは検出対象相をU相としU相ブスバー2aに流れる電流を検出するように、U相電流が流れることで発生する磁束を電流検出素子5aで検知するためU相の電流方向と電流検出素子5aの感受面が平行で、かつ、U相ブスバー2aの近傍に位置させて電子基板11aに実装されている(図3参照)。同様にV相電流検出器4bは検出対象相をV相として、W相電流検出器4cは検出対象相をW相として、それぞれU相電流検出器4aとU相ブスバー2aとの位置関係と同様に適切に位置するように電子基板11aに実装されている。ここで、U相電流検出器4a〜W相電流検出器4cは、磁気鉄心を有していないため小形軽量であり、取り付けが容易で、装置の小形化、高密度実装化、組立て工数の低減、コストの低減に有効である。   The U-phase current detector 4a uses the current detection element 5a to detect the magnetic flux generated by the flow of the U-phase current so that the U-phase current detector 4a detects the current flowing through the U-phase bus bar 2a. The direction and the sensing surface of the current detection element 5a are parallel to each other, and are mounted on the electronic substrate 11a so as to be positioned in the vicinity of the U-phase bus bar 2a (see FIG. 3). Similarly, the V-phase current detector 4b has the phase to be detected as V-phase, and the W-phase current detector 4c has the phase to be detected as W-phase, which is similar to the positional relationship between the U-phase current detector 4a and the U-phase bus bar 2a. It is mounted on the electronic board 11a so as to be appropriately positioned. Here, since the U-phase current detector 4a to the W-phase current detector 4c do not have a magnetic iron core, they are small and lightweight, easy to install, downsizing of the apparatus, high density mounting, and reduction in assembly man-hours. , Effective in reducing costs.

次に、動作について説明する。詳細説明に先立ち、作用効果等の概略を説明する。
まず、図1、図3及び図4を参照しながら説明する。U相電流検出器4a、V相電流検出器4b、W相電流検出器4cは磁束を検出する電流検出素子5a、電流検出素子5b、電流検出素子5cがU相ブスバー2a、V相ブスバー2b、W相ブスバー2cに対して図3に示すような位置関係に配設されている。なお、図3は図2における矢印A方向からU相電流検出器4a、V相電流検出器4b、W相電流検出器4cを見た側面図である。図3において、ΔxuはU相ブスバー2aの断面の左端から電流検出素子5aの断面の図3における左右方向の中心までの距離を表している。また、ΔyuはU相ブスバー2aの断面の上下方向の中心から電流検出素子5aの断面の上下方向の中心までの距離を表している。
Next, the operation will be described. Prior to detailed description, an outline of the effects and the like will be described.
First, a description will be given with reference to FIGS. 1, 3 and 4. The U-phase current detector 4a, the V-phase current detector 4b, and the W-phase current detector 4c are the current detection element 5a, the current detection element 5b, and the current detection element 5c that detect the magnetic flux, and the U-phase bus bar 2a, the V-phase bus bar 2b, The W-phase bus bar 2c is disposed in a positional relationship as shown in FIG. 3 is a side view of the U-phase current detector 4a, the V-phase current detector 4b, and the W-phase current detector 4c as viewed from the direction of arrow A in FIG. In FIG. 3, Δxu represents the distance from the left end of the cross section of the U-phase bus bar 2a to the center in the horizontal direction in FIG. 3 of the cross section of the current detection element 5a. Δyu represents the distance from the vertical center of the cross section of the U-phase bus bar 2a to the vertical center of the cross section of the current detection element 5a.

同様に、ΔxvはV相ブスバー2bの断面の左端から電流検出素子5bの断面の左右方向の中心までの距離を表している。また、ΔyvはV相ブスバー2bの断面の上下方向の中心から電流検出素子5bの断面の上下方向の中心までの距離を表している。ΔxwはW相ブスバー2cの断面の左端から電流検出素子5cの断面の左右方向の中心までの距離を表している。また、ΔywはW相ブスバー2cの断面の上下方向の中心から電流検出素子5cの断面の上下方向の中心までの距離を表している。   Similarly, Δxv represents the distance from the left end of the cross section of the V-phase bus bar 2b to the center in the left-right direction of the cross section of the current detection element 5b. Δyv represents the distance from the vertical center of the cross section of the V-phase bus bar 2b to the vertical center of the cross section of the current detection element 5b. Δxw represents the distance from the left end of the cross section of the W-phase bus bar 2c to the center in the left-right direction of the cross section of the current detection element 5c. Δyw represents the distance from the center in the vertical direction of the cross section of the W-phase bus bar 2c to the center in the vertical direction of the cross section of the current detection element 5c.

図3において、U相ブスバー2aに流れる電流によりU相電流検出器4aすなわち電流検出素子5aには磁束Φuが鎖交する。この磁束Φuの鎖交数は、電流検出素子5aのU相ブスバー2aに対する距離Δxu,Δyuに依存して変化し、磁束密度が変化する。このためU相電流検出器4aの検出電流対出力電圧の変換比は、距離Δxu,Δyuに応じて変動することとなる。V相に関し距離Δxv,Δyv、W相に関し距離Δxw,Δywについても同様のことが言える。従って、製品ごとのこれらの距離の変動を補償する必要がある。
また、検出対象電流である各相の電流を検出すべく配設された電流検出素子5a、電流検出素子5b、電流検出素子5cには、検出対象相以外の相を流れる電流による磁束が鎖交する。この磁束は電流検出素子5a、電流検出素子5b、電流検出素子5cによる検出対象相の電流に対して外乱となり、その出力に影響を与え、検出誤差を与える。
In FIG. 3, the magnetic flux Φu is linked to the U-phase current detector 4a, that is, the current detection element 5a by the current flowing through the U-phase bus bar 2a. The number of linkages of the magnetic flux Φu changes depending on the distances Δxu and Δyu with respect to the U-phase bus bar 2a of the current detection element 5a, and the magnetic flux density changes. For this reason, the conversion ratio of the detected current to the output voltage of the U-phase current detector 4a varies according to the distances Δxu and Δyu. The same applies to the distances Δxv and Δyv for the V phase and the distances Δxw and Δyw for the W phase. It is therefore necessary to compensate for these distance variations from product to product.
In addition, the current detection element 5a, the current detection element 5b, and the current detection element 5c that are arranged to detect the current of each phase that is the detection target current are interlinked with magnetic flux generated by the current flowing in the phase other than the detection target phase. To do. This magnetic flux becomes a disturbance to the current of the phase to be detected by the current detection element 5a, the current detection element 5b, and the current detection element 5c, affects its output, and gives a detection error.

次に、図4はU相電流、V相電流、W相電流によって発生する磁束のうち、U相電流検出器4aの電流検出素子5aに鎖交するものを示す模式図であるが、例えば電流検出素子5aには検出対象相であるU相電流により発生する磁束Φuの他に、非検出対象相であるV相電流により発生する磁束Φv、W相電流により発生する磁束Φwも鎖交する。このため、電流検出素子5aは非検出対象相に流れる電流による磁束Φv,Φwも検出することとなってしまう。特に、この発明においては、U相電流検出器4a、V相電流検出器4b、W相電流検出器4cの外側には磁気鉄心が配設されていないので、非検出対象相に流れる電流による磁束の影響を受ける度合いが大きい。この発明においては、上記のような電流検出素子5a、電流検出素子5b、電流検出素子5c固有の鎖交磁束対出力特性のばらつきや、電流検出素子5a、電流検出素子5b、電流検出素子5cとU相ブスバー2a、V相ブスバー2b、W相ブスバー2cとの距離のばらつき、非検出対象相の電流による磁束の影響を補償して、精度の高い電流の検出が可能となるものである。   Next, FIG. 4 is a schematic diagram showing a magnetic flux generated by the U-phase current, the V-phase current, and the W-phase current interlinked with the current detection element 5a of the U-phase current detector 4a. In addition to the magnetic flux Φu generated by the U-phase current that is the detection target phase, the detection element 5a also links the magnetic flux Φv generated by the V-phase current that is the non-detection target phase and the magnetic flux Φw generated by the W-phase current. For this reason, the current detection element 5a also detects the magnetic fluxes Φv and Φw due to the current flowing in the non-detection target phase. In particular, in the present invention, since no magnetic iron core is disposed outside the U-phase current detector 4a, V-phase current detector 4b, and W-phase current detector 4c, the magnetic flux caused by the current flowing in the non-detection target phase. The degree of influence is large. In the present invention, the variation in the output flux characteristic inherent in the current detection element 5a, the current detection element 5b, and the current detection element 5c as described above, the current detection element 5a, the current detection element 5b, and the current detection element 5c It is possible to detect current with high accuracy by compensating for variations in distance from the U-phase bus bar 2a, V-phase bus bar 2b, and W-phase bus bar 2c and the influence of magnetic flux due to the current of the non-detection target phase.

図1に戻って、演算のための入力情報としてU相電流検出器4aにより検出対象相をU相とした信号hsiguが、V相電流検出器4bにより検出対象相をV相とした信号hsigvが、W相電流検出器4cにより検出対象相をW相とした信号hsigwがそれぞれ検出した電流を電圧に変換した電圧信号として出力され、電流補償部20に伝達される。また、回転検出器13により電動機12の回転子の回転角度信号Nmsigが電流制御部22に出力される。   Returning to FIG. 1, as input information for calculation, a signal hsigu whose detection target phase is the U phase by the U phase current detector 4a is a signal hsigv whose detection target phase is the V phase by the V phase current detector 4b. The signal hsigw whose detection target phase is the W phase by the W phase current detector 4c is output as a voltage signal obtained by converting the detected current into a voltage, and is transmitted to the current compensator 20. In addition, the rotation detector 13 outputs a rotation angle signal Nmsig of the rotor of the electric motor 12 to the current control unit 22.

電流補償部20では、電圧信号hsigu,hsigv,hsigwに対して電流検出器4a〜4cごとの電流対電圧変換特性のばらつきに基づきこれを補償する演算を行い、U,V,W相共通にスケーリングされたU相検出器出力電流isnsu,V相検出器出力電流isnsv,W相検出器出力電流isnswを算出する。   The current compensator 20 performs an operation for compensating the voltage signals hsigu, hsigv, and hsigw based on variations in current-to-voltage conversion characteristics for each of the current detectors 4a to 4c, and scales them in common to the U, V, and W phases. The U-phase detector output current issu, the V-phase detector output current isnsv, and the W-phase detector output current issw are calculated.

ここで、U相電流検出器4aが出力する電流信号hsiguはU相電流検出器4aを構成する磁束検出素子5aであるホール素子固有の磁束対電圧変換特性、及びU相ブスバー2aとU相電流検出器4aの相対位置(図3のΔxu,Δyuを参照)による磁束鎖交特性によって定まる当該電流検出器ごとの電流対電気信号変換特性としての電流対電圧変換特性に基づいてU相検出器出力電流isnsuに変換される。この変換は次式のように表される。   Here, the current signal hsigu output from the U-phase current detector 4a is a magnetic flux-to-voltage conversion characteristic unique to the Hall element, which is the magnetic flux detection element 5a constituting the U-phase current detector 4a, and the U-phase bus bar 2a and the U-phase current. The output of the U-phase detector based on the current-to-voltage conversion characteristic as the current-to-electric signal conversion characteristic for each current detector determined by the magnetic flux linkage characteristic depending on the relative position of the detector 4a (see Δxu and Δyu in FIG. 3) It is converted into a current issu. This conversion is expressed as follows:

isnsu=gu・hsigu (1a)
但し、guはU相電流検出器4aの電流対電圧変換特性を示す変換係数であり、この変換係数guはV相、W相に電流が流れておらずU相のみに電流が流れている場合の所定の通電電流に対するその時のU相電流検出器4aの出力電圧を測定することで求めることができる。
issu = gu · hsigu (1a)
However, gu is a conversion coefficient indicating the current-to-voltage conversion characteristic of the U-phase current detector 4a, and this conversion coefficient gu is a case where no current flows in the V-phase and W-phase and only current flows in the U-phase. Can be obtained by measuring the output voltage of the U-phase current detector 4a at that time with respect to a predetermined energization current.

V相及びW相検出器出力電流についても同様に各固有の電流対電圧変換特性に基づいて次式の形で変換される。
isnsv=gv・hsigv (1b)
isnsw=gw・hsigw (1c)
Similarly, the V-phase and W-phase detector output currents are also converted in the form of the following equation based on the respective current-to-voltage conversion characteristics.
isnsv = gv · hsigv (1b)
issw = gw · hsigw (1c)

U相の変換係数guと同様にしてV相の変換係数gvはU相、W相に電流が流れておらずV相のみに電流が流れている場合の所定の通電電流に対するその時のV相電流検出器4bの出力電圧を測定することで求めることができる。W相の変換係数gwはU相、V相に電流が流れておらずW相のみに電流が流れている場合の所定の通電電流に対するその時のW相電流検出器4cの出力電圧を測定することで求めることができる。   Similarly to the U-phase conversion coefficient gu, the V-phase conversion coefficient gv is the V-phase current at that time with respect to a predetermined energization current when no current flows in the U-phase and W-phase but only in the V-phase. It can be obtained by measuring the output voltage of the detector 4b. The W-phase conversion coefficient gw is to measure the output voltage of the W-phase current detector 4c at that time with respect to a predetermined energizing current when no current flows in the U-phase and V-phase but only in the W-phase. Can be obtained.

続いて、非干渉化フィルタリング部21ではU相検出器出力電流isnsu,V相検出器出力電流isnsv,W相検出器出力電流isnswから、それぞれに含まれる非検出対象相の電流成分を除去し、非干渉化する演算を行いU相電流iu,V相電流iv,W相電流iwを算出する。   Subsequently, the non-interacting filtering unit 21 removes the current component of the non-detection target phase included in each of the U-phase detector output current issu, the V-phase detector output current isnsv, and the W-phase detector output current issw, The operation for decoupling is performed to calculate the U-phase current iu, the V-phase current iv, and the W-phase current iw.

ここで、U相検出器出力電流isnsuから非検出対象相の電流成分を除去することは、電流検出時点における検出結果のU相電流占有度、V相電流占有度、W相電流占有度を求め、isnsuに全体に対するU相電流の占有係数を乗ずることで行える。同様にしてV相検出器出力電流isnsvから非検出対象相の電流成分を除去することは電流検出時点における検出結果のU,V,W各相の電流占有度を求め、isnsvに全体に対するV相電流の占有係数を乗ずることで行える。また、W相検出器出力電流isnswから非検出対象相の電流成分を除去することは電流検出時点における検出結果のU,V,W各相の電流占有度を求め、isnswに全体に対するW相電流の占有係数を乗ずることで行える。   Here, removing the current component of the non-detection target phase from the U-phase detector output current issu determines the U-phase current occupancy, the V-phase current occupancy, and the W-phase current occupancy of the detection result at the time of current detection. , Issu can be multiplied by the occupancy factor of the U-phase current for the whole. Similarly, the removal of the current component of the non-detection target phase from the V-phase detector output current isnsv determines the current occupancy of each of the U, V, and W phases of the detection result at the time of current detection. This can be done by multiplying the current occupation factor. Further, removing the current component of the non-detection target phase from the W-phase detector output current issw determines the current occupancy of each of the U, V, and W phases of the detection result at the time of current detection, This can be done by multiplying by the occupation factor.

上記を数式を用いて説明する。まず、検出対象相であるU相と非検出対象相であるV,W相の電流によってU相電流検出器4aが検出する電流情報hicuは次式のように表すことができる。
hicu=1・iu+quv・iv+quw・iw (2a)
ここでquv,quwは、それぞれV相電流、W相電流がU相電流情報に影響を及ぼす場合に、その度合をU相電流がU相電流情報hicuに反映される係数で正規化して表した係数である。
The above will be described using mathematical expressions. First, the current information hicu detected by the U-phase current detector 4a based on the currents of the U phase that is the detection target phase and the V and W phases that are the non-detection target phases can be expressed as the following equation.
hicu = 1 · iu + quv · iv + quw · iw (2a)
Here, quv and quw are expressed by normalizing the degree when the V-phase current and the W-phase current affect the U-phase current information with a coefficient that reflects the U-phase current in the U-phase current information hicu, respectively. It is a coefficient.

V相、W相についても同様に次式のように表すことができる。
hicv=qvu・iu+1・iv+qvw・iw (2b)
hicw=qwu・iu+qwv・iv+1・iw (2c)
The V phase and the W phase can be similarly expressed by the following equations.
hicv = qvu · iu + 1 · iv + qvw · iw (2b)
hicw = qwu · iu + qwv · iv + 1 · iw (2c)

ここで、quv,quwは、それぞれU相電流、W相電流がV相電流情報hicvに影響を及ぼす場合に、その度合をV相電流がV相電流情報に反映される係数で正規化して表した係数である。qwu,qwvは、それぞれU相電流、V相電流がW相電流情報に影響を及ぼす場合に、その度合をW相電流がW相電流情報hicwに反映される係数で正規化して表した係数である。   Here, quv and quw are obtained by normalizing the degree when the U-phase current and the W-phase current affect the V-phase current information hicv by a coefficient that reflects the V-phase current in the V-phase current information. Coefficient. qwu and qwv are coefficients obtained by normalizing the degree when the U-phase current and the V-phase current affect the W-phase current information with the coefficient reflected by the W-phase current information hicw, respectively. is there.

係数qvu,qwuは、V相及びW相に電流が流れておらずU相のみに電流が流れている場合の所定の通電電流に対するその時のV相電流検出器4b、W相電流検出器4cの出力を測定し、それぞれ、V相のみに電流が流れている場合の所定の通電電流に対するその時のV相電流検出器4bの出力、W相のみに電流が流れている場合の所定の通電電流に対するその時のW相電流検出器4cの出力で正規化することで求められる。係数quv,qwv,quw、qvwも同様にして求められる。   The coefficients qvu and qwu are the values of the V-phase current detector 4b and the W-phase current detector 4c at that time with respect to a predetermined energization current when no current flows in the V-phase and W-phase but only in the U-phase. The output is measured, and the output of the V-phase current detector 4b at that time with respect to a predetermined energization current when current flows only in the V phase, and with respect to the predetermined energization current when current flows only in the W phase, respectively. It is obtained by normalizing with the output of the W-phase current detector 4c at that time. The coefficients quv, qwv, qw, and qvw are obtained in the same manner.

式(2a),(2b),(2c)を合わせて行列式で表現すると次式となる。   When the expressions (2a), (2b), and (2c) are combined and expressed as a determinant, the following expression is obtained.

Figure 2006162309
Figure 2006162309

上式より、電流情報hicu,hicv,hicwからそれぞれ非検出対象相の電流成分を除去し、検出対象相の電流成分を取り出すことは、係数行列Qの逆行列を[hicu,hicv,hicw]に乗ずることで行える。これは次式のように表現できる。   From the above equation, removing the current component of the non-detection target phase from the current information hicu, hicv, hicw and taking out the current component of the detection target phase results in the inverse matrix of the coefficient matrix Q being [hicu, hicv, hicw] You can do it by riding. This can be expressed as:

Figure 2006162309
Figure 2006162309

式(4)の各行の演算式は、電流検出時点における検出結果の各相の電流占有度に基づき全体に対する検出対象相電流の占有係数を乗じて検出対象相の電流成分を取り出していることに該当する。   The arithmetic expression of each row of Equation (4) is that the current component of the detection target phase is extracted by multiplying the occupancy coefficient of the detection target phase current with respect to the whole based on the current occupancy of each phase of the detection result at the time of current detection. Applicable.

以上より、非干渉化フィルタリング部21は各相の検出器出力電流isnsu,isnsv,isnswに次式のように所定の係数を乗じて、それぞれに含まれる非検出対象相の電流成分を除去してU相電流iu、V相電流iv,W相電流iwを算出する。   From the above, the non-interacting filtering unit 21 multiplies the detector output currents issu, isnsv, and issw for each phase by a predetermined coefficient as shown in the following equation, and removes the current components of the non-detection target phases included in each phase. U phase current iu, V phase current iv, and W phase current iw are calculated.

Figure 2006162309
Figure 2006162309

続いて、電流制御部22では、電流指令ir、U相電流iu、V相電流iv,W相電流iw、及び回転検出器13の出力する回転角度信号Nmsigを入力し、公知の電流フイードバック制御演算を行って、三相の電圧指令Vur,Vvr,Vwrを算出する。   Subsequently, the current control unit 22 receives the current command ir, the U-phase current iu, the V-phase current iv, the W-phase current iw, and the rotation angle signal Nmsig output from the rotation detector 13, and performs a known current feedback control calculation. To calculate three-phase voltage commands Vur, Vvr, and Vwr.

次に、PWM信号生成部23は三相インバータ11の直流側電圧Vdcに基づいて三相の電庄指令Vur,Vvr,Vwrをパルス幅変調し、スイッチング信号を生成してU相アーム15a、V相アーム15b、W相アーム15cに出力する。直流側電圧Vdcは変換する際のパルス幅(変調度)の基準とするものである。U相アーム15a、V相アーム15b、W相アーム15c内のスイッチング素子は上記スイッチング信号に応じてon、off動作を行い、電動機12に印加する電圧が調整される。   Next, the PWM signal generation unit 23 performs pulse width modulation on the three-phase electrical commands Vur, Vvr, and Vwr based on the DC side voltage Vdc of the three-phase inverter 11, generates a switching signal, and generates U-phase arms 15a, V It outputs to the phase arm 15b and the W-phase arm 15c. The DC side voltage Vdc is used as a reference for the pulse width (degree of modulation) at the time of conversion. The switching elements in the U-phase arm 15a, the V-phase arm 15b, and the W-phase arm 15c perform on and off operations according to the switching signal, and the voltage applied to the electric motor 12 is adjusted.

これらの手順にて、電動機12に流れる電流を算出し、これが所望の電流指令irに従うべくスイッチング信号を生成し、U相アーム15a、V相アーム15b、W相アーム15cをスイッチング制御することで電動機12の制御を行うよう動作する。   In accordance with these procedures, the current flowing through the motor 12 is calculated, and this generates a switching signal in accordance with a desired current command ir, and the U-phase arm 15a, the V-phase arm 15b, and the W-phase arm 15c are controlled by switching. 12 to perform the control.

以上のように、この実施の形態によれば電流検出器ごとの電流対電圧変換特性のばらつき、すなわち磁束検出素子の鎖交磁束対出力特性のばらつき及び磁束検出素子とブスバーとの距離のばらつきによる検出電流対出力信号電圧のばらつきを補償する。また、電流検出器の電流検出結果である電圧信号hsigu〜hsigwに混入している非検出対象相の電流成分を除去する。このため、集磁用の磁気鉄心を有さず調整要素での校正を行わない電流検出器であっても、電流検出精度の低下を抑制して精度良く制御を行うことができる。   As described above, according to this embodiment, the current-to-voltage conversion characteristic varies among the current detectors, that is, due to the variation in the flux-linkage flux-to-output characteristics and the variation in the distance between the magnetic flux detection element and the bus bar. Compensates for variations in detected current versus output signal voltage. Further, the current component of the non-detection target phase mixed in the voltage signals hsigu to hsigw, which is the current detection result of the current detector, is removed. For this reason, even if it is a current detector which does not have a magnetic iron core for magnetism collection and does not calibrate with an adjustment element, it can control with sufficient accuracy, suppressing the fall of current detection accuracy.

実施の形態2.
図5は、この発明を実施するための実施の形態2における電流検出装置を用いた電動機制御装置の構成を示す構成図である。図5において、電動機制御装置110は制御演算装置101を備え、制御演算装置101において図1の電流算出手段としての電流補償部20と非干渉化フィルタリング部21に代わり電流補償非干渉化フィルタリング部24を備えたことを除いて、図1に示した実施の形態1と同様のものであるので、相当するものに同じ符号を付して説明を省略する。
Embodiment 2. FIG.
FIG. 5 is a configuration diagram showing a configuration of an electric motor control device using the current detection device according to the second embodiment for carrying out the present invention. In FIG. 5, the motor control device 110 includes a control arithmetic device 101. In the control arithmetic device 101, the current compensation non-interacting filtering unit 24 replaces the current compensation unit 20 and the non-interacting filtering unit 21 as the current calculation unit of FIG. 1. 1 is the same as that of the first embodiment shown in FIG. 1, the same reference numerals are assigned to the corresponding components, and description thereof is omitted.

電流補償非干渉化フィルタリング部24では電流検出器ごとの電流対電圧変換特性のばらつきを補償する電流対電気信号変換補償演算と、この電流対電気信号変換補償演算後の検出器出力電流から非検出対象相の電流成分を除去する非干渉化演算とを一つにまとめて行う。ばらつきを補償する電流対電気信号変換補償演算は、上述した式(1a),(1b),(1c)に示される演算であり、電流信号hsigu、hsigv,hsigwから電流検出器信号isnsu,isnsv,isnswを算出する。非干渉化演算は式(5)に示される演算であり、上記isnsu,isnsv,isnswからU相電流iu,V相電流iv、W相電流iwを算出する。式(1a),(1b),(1c)における係数gu,gv,gwの値は、U相電流検出器4a、V相電流検出器4b、W相電流検出器4cをU相ブスバー2a、V相ブスバー2b、W相ブスバー2cに取り付けた状態での各電流検出器ごとの電流対電圧変換特性に基づいて定まるものであり、式(5)における係数cuu〜cwwは三相インバータ11へ取り付けた状態での各電流検出器の検出対象相電流及び非検出対象相電流の情報の反映度合に基づいて値が定まるものである。   The current compensation non-interference filtering unit 24 performs a current-to-electric signal conversion compensation calculation for compensating for variations in current-to-voltage conversion characteristics for each current detector, and non-detection from the detector output current after the current-to-electric signal conversion compensation calculation. The non-interference calculation for removing the current component of the target phase is performed together. The current-to-electrical signal conversion compensation operation for compensating the variation is the operation shown in the above-described equations (1a), (1b), and (1c), and the current detector signals issu, isnsv, hsigw from the current signals hsigu, hsigv, hsigw. isnsw is calculated. The non-interacting operation is an operation represented by Equation (5), and calculates the U-phase current iu, the V-phase current iv, and the W-phase current iw from the above issu, isnsv, and issw. The values of the coefficients gu, gv, and gw in the equations (1a), (1b), and (1c) are the same as those for the U-phase bus detector 2a, V-phase current detector 4a, V-phase current detector 4b, and W-phase current detector 4c. It is determined based on the current-to-voltage conversion characteristics for each current detector in the state of being attached to the phase bus bar 2b and the W phase bus bar 2c, and the coefficients cu to cww in the equation (5) are attached to the three-phase inverter 11. The value is determined based on the reflection degree of the information of the detection target phase current and the non-detection target phase current of each current detector in the state.

いずれも電流検出器4a〜4cを三相インバータ11へ取り付けた状態で定まる特性に基づく係数であることから、各演算をまとめて計算式で表現すると次式のようになる。   Since these are coefficients based on characteristics determined when the current detectors 4a to 4c are attached to the three-phase inverter 11, the following expressions are obtained by expressing the respective calculations together by a calculation formula.

Figure 2006162309
Figure 2006162309

但し、kuu〜kwwはcuu〜cwwとgu〜gwとの乗算を行った後の係数を表す。上記のように、電流検出器の出力信号から各相の電流値を算出するのに必要な演算量は、前述の実施の形態1では、電流補償部20で乗算3回、非干渉化フィルタリング部21で乗算9回、加算6回であったが、この実施の形態では電流補償非干渉化フィルタリング部24で乗算9回、加算6回の演算で済む。何れの係数も三相インバータとして組み立てた状態での各電流検出器ごとの特性に基づき定まるものであり、三相のうち、各一相のみに電流を流した場合の各電流検出器の出力を測定することで求めることができる。   However, kuu to kww represent coefficients after multiplication of cuu to cww and gu to gw. As described above, the amount of calculation required to calculate the current value of each phase from the output signal of the current detector is three times multiplication by the current compensation unit 20 in the above-described first embodiment, and the non-interacting filtering unit. In FIG. 21, the multiplication is 9 times and the addition is 6 times. However, in this embodiment, the current compensation deinterference filtering unit 24 needs only 9 multiplications and 6 additions. Each coefficient is determined based on the characteristics of each current detector in the state assembled as a three-phase inverter, and the output of each current detector when the current is supplied to only one phase of the three phases. It can be obtained by measuring.

以上のことから、本実施の形態によれば電流検出器ごとの電流対電圧変換特性のばらつきを補償し、また、電流検出結果に混入している非検出対象相の電流成分を除去する演算の回数を低減できる。このため、このような集磁用の磁気鉄心を有さず調整要素での校正を行わない電流検出器を用いても電流検出精度の低下を抑制して精度良く電流の検出でき、またこの検出した電流に基づいて精度良く三相インバータ11の制御を行うことができる。さらに、上記演算のために必要なリソースを少なく抑えることが可能である。このため、制御演算が電子回路によって実現される場合には必要な部品点数を削減することで低コスト化、故障発生率の低下などの効果が得られる。また、制御演算がマイクロコンピュータ内等のソフトウェア演算で行われる場合には、演算化を簡略化することによりディジタル制御を行う際の単位離散周期あたりの所要演算時間を短縮することができる。ひいては、単位離散周期そのものが短縮可能となるため、電流フイードバック制御の応答速度向上等の効果が見込める。   From the above, according to the present embodiment, it is possible to compensate for variations in the current-to-voltage conversion characteristics for each current detector, and to calculate the current component of the non-detection target phase mixed in the current detection result. The number of times can be reduced. For this reason, even when using a current detector that does not have a magnetic iron core for collecting magnets and does not calibrate with an adjustment element, it is possible to detect the current with high accuracy while suppressing a decrease in current detection accuracy. The three-phase inverter 11 can be accurately controlled based on the current. Furthermore, it is possible to reduce the resources required for the calculation. For this reason, when the control calculation is realized by an electronic circuit, effects such as a reduction in cost and a reduction in failure rate can be obtained by reducing the number of necessary parts. When the control calculation is performed by software calculation in a microcomputer or the like, the required calculation time per unit discrete period when performing digital control can be shortened by simplifying calculation. As a result, since the unit discrete period itself can be shortened, effects such as an improved response speed of current feedback control can be expected.

実施の形態3.
図6は、この発明を実施するための実施の形態3における電動機制御装置の構成を示す構成図である。図6において、電動機制御装置210は、三相インバータ11と制御演算装置201を有する。制御演算装置201は、電流補償部20、電流制御部222、PWM信号生成部23を有する。電流制御部222は、回転位相算出部30、非干渉化三相/二相座標変換部31、第一の減算器32、第二の減算器33、d軸電流制御部34、q軸電流制御部35、二相/三相座標変換部36を有する。電流制御部222は、回転直交座標上でフイードバック制御を行う公知のベクトル制御法により制御するものである。その他の構成については、図1に示した実施の形態1と同様のものであるので、相当するものに同じ符号を付して説明を省略する。なお、電流補償部20と非干渉化三相/二相座標変換部31がこの発明における電流算出座標変換手段である。
Embodiment 3 FIG.
FIG. 6 is a block diagram showing the configuration of the motor control device according to Embodiment 3 for carrying out the present invention. In FIG. 6, the motor control device 210 includes a three-phase inverter 11 and a control arithmetic device 201. The control arithmetic device 201 includes a current compensation unit 20, a current control unit 222, and a PWM signal generation unit 23. The current control unit 222 includes a rotation phase calculation unit 30, a non-interacting three-phase / two-phase coordinate conversion unit 31, a first subtractor 32, a second subtractor 33, a d-axis current control unit 34, and a q-axis current control. A unit 35 and a two-phase / three-phase coordinate conversion unit 36. The current control unit 222 is controlled by a known vector control method that performs feedback control on the rotation orthogonal coordinates. Since other configurations are the same as those of the first embodiment shown in FIG. 1, the same reference numerals are given to the corresponding components and the description thereof is omitted. The current compensation unit 20 and the non-interacting three-phase / two-phase coordinate conversion unit 31 are current calculation coordinate conversion means in the present invention.

上記ベクトル制御法においては、三相平衡条件を用いて三相を互いに直交し、かつ、電動機12の磁束に同期して回転する回転直交座標上に変換して制御を行う。ここで、U相を磁束基準軸として電動機12の磁束ベクトルと一致する軸をd軸、これと直交する軸をq軸と称する。   In the above-described vector control method, control is performed by converting three phases into orthogonal coordinates that rotate in synchronization with the magnetic flux of the motor 12 using the three-phase equilibrium condition. Here, an axis that coincides with the magnetic flux vector of the electric motor 12 with the U phase as a magnetic flux reference axis is referred to as a d-axis, and an axis orthogonal thereto is referred to as a q-axis.

まず、回転位相算出部30には回転検出器13から電動機12の回転子の回転角度信号Nmsigが入力され、電動機12の磁束ベクトルの方向、磁束基準(U相)となす角度θが算出され、非干渉化三相/二相座標変換部31と二相/三相座標変換部36へ出力される。   First, the rotation phase calculation unit 30 receives the rotation angle signal Nmsig of the rotor of the electric motor 12 from the rotation detector 13, and calculates the direction of the magnetic flux vector of the electric motor 12 and the angle θ formed with the magnetic flux reference (U phase). The non-interfering three-phase / two-phase coordinate conversion unit 31 and the two-phase / three-phase coordinate conversion unit 36 are output.

非干渉化三相/二相座標変換部31は角度θ及び電流補償部20からの三相の検出器出力電流isnsu,isnsv,isnswが入力され、それぞれに含まれる非検出対象相の電流成分を除去するとともに座標変換によりd軸電流id、q軸電流iqを算出する。三相の検出器出力電流isnsu,isnsv,isnswに含まれる非検出対象相の電流成分の徐去は式(5)に基づいて行われるものである。また、三相/二相座標変換は三相の電流iu,iv,iwの三つの全てを用いて行う場合、次式のようになる。   The non-interacting three-phase / two-phase coordinate conversion unit 31 receives the angle θ and the three-phase detector output currents issu, isnsv, and issw from the current compensation unit 20, and the current components of the non-detection target phases included in each of them. In addition, the d-axis current id and the q-axis current iq are calculated by coordinate conversion. The gradual removal of the current component of the non-detection target phase included in the three-phase detector output currents issu, isnsv, issw is performed based on the equation (5). Further, when the three-phase / two-phase coordinate conversion is performed using all three of the three-phase currents iu, iv, and iw, the following expression is obtained.

Figure 2006162309
Figure 2006162309

ここで、各演算をまとめて式表現すると次式のようになる。   Here, when each operation is expressed as a formula, the following formula is obtained.

Figure 2006162309
Figure 2006162309

但し、fuvw_du(θ),fuvw_dv(θ),fuvw_dw(θ),fuvw_qu(θ),fuvw_qv(θ),fuvw_qw(θ)は、それぞれ電流id及びiq算出の際に三相の検出器出力電流isnsu,isnsv,isnswに掛かる係数を角度θの関数として表したものである。これら関数うちの係数cuu〜cwwの値は、三相インバータ11として組み立てた状態の各電流検出器の特性に基づき定まるものであり、三相のうち、各一相のみに電流を流した場合の各電流検出器の出力を測定することで求めることができる。   However, fuvw_du (θ), fuvw_dv (θ), fuvw_dw (θ), fuvw_qu (θ), fuvw_qv (θ), and fuvw_qw (θ) are the three-phase detector output current issu when calculating the current id and iq, respectively. , Isnsv, issw as a function of the angle θ. Of these functions, the values of the coefficients cu to cww are determined based on the characteristics of the current detectors assembled as the three-phase inverter 11, and the current flows in only one of the three phases. It can be obtained by measuring the output of each current detector.

いま、制御演算がマイクロコンピュータ内のソフトウェア演算で行われる場合を想定し、三角関数に関わる演算を所要の分解能を持つデータでもって展開されたテーブルを参照することによって行うことを考える。この時、検出器出力電流isnsu,isnsv,isnswからd軸電流id、q軸電流iqを算出するために必要な演算量は、式(8a)、(8b)より、乗算6回、加算4回、テーブル参照6回である。一方、非干渉化演算と三相/二相座標変換を個別に行う場合には、式(5)の非干渉化演算にて乗算9回、加算6回、式(7a),(7b)の三相/二相座標変換にて、乗算6回、加算4回(演算量を見積もる便宜上、減算を加算とカウントする)、テーブル参照6回であり、このように個別に行う場合に比し省演算化が図られる。なお、fuvw_qu(θ)とfuvw_du(θ)、fuvw_qv(θ)とfuvw_dv(θ)、fuvw_qw(θ)とfuvw_dw(θ)は、位相が90度異なる演算であることから、同一のデータを展開したテーブルであって、参照時に角度θへ位相90度相当のオフセットを含ませるものであっても良い。   Now, assuming that the control operation is performed by software operation in the microcomputer, it is assumed that the operation related to the trigonometric function is performed by referring to a table developed with data having a required resolution. At this time, the amount of calculation required to calculate the d-axis current id and the q-axis current iq from the detector output currents issu, isnsv and issw is 6 multiplications and 4 additions from the equations (8a) and (8b). Table reference is 6 times. On the other hand, when the non-interference calculation and the three-phase / two-phase coordinate conversion are performed separately, the multiplication of nine times, the addition of six times, and the expressions (7a) and (7b) of the expression (5) In three-phase / two-phase coordinate conversion, 6 multiplications, 4 additions (subtraction is counted as addition for convenience of estimating the amount of calculation), and 6 table references are saved. Operationalization is achieved. In addition, fuvw_qu (θ) and fuvw_du (θ), fuvw_qv (θ) and fuvw_dv (θ), and fuvw_qw (θ) and fuvw_dw (θ) are operations different in phase by 90 degrees, so the same data was developed. It may be a table that includes an offset corresponding to a phase of 90 degrees to the angle θ at the time of reference.

上記のようにして、非干渉化三相/二相座標変換部31にてd軸電流id、q軸電流iqを算出し、第一の減算器32及び第二の減算器33へ出力する。続いて第一の減算器32によりd軸電流指令idrとd軸電流idの偏差が検出されd軸電流制御部34に出力される。また、第二の減算器33によりq軸電流指令iqrとq軸電流iqの偏差が検出されq軸電流制御器35に入力される。d軸電流制御器34、q軸電流制御器35では、それぞれ、比例積分(PI)演算等によって各電流と電流指令値が一致すべく演算を行いd軸電圧指令Vdrとq軸電圧指令Vqrを算出する。   As described above, the non-interacting three-phase / two-phase coordinate conversion unit 31 calculates the d-axis current id and the q-axis current iq and outputs them to the first subtractor 32 and the second subtractor 33. Subsequently, a deviation between the d-axis current command idr and the d-axis current id is detected by the first subtractor 32 and output to the d-axis current control unit 34. Further, a deviation between the q-axis current command iqr and the q-axis current iq is detected by the second subtracter 33 and input to the q-axis current controller 35. Each of the d-axis current controller 34 and the q-axis current controller 35 performs a calculation so that each current and the current command value coincide by proportional integral (PI) calculation or the like, and obtains the d-axis voltage command Vdr and the q-axis voltage command Vqr. calculate.

続いて二相/三相座標変換部36は、角度θ、及びd軸電圧指令Vdrとq軸電圧指令Vqrを入力して座標変換を行い、三相の電圧指令Vur,Vvr,Vwrを算出し、PWM信号生成部23へ出力する。三相インバータ11の動作は、図1に示した実施の形態1にしめしたものと同様である。
なお、図6において、指令値idr,iqrは、指令速度(回転数)に基づいて与えられたり、指令トルクに基づいて与えられたりする。例えば電動機の回転速度制御を行う場合は、実回転速度と回転速度目標値との偏差に応じて積分制御やPI制御を行い出力トルク指令を算出し、この出力トルク指令と実出力トルクが一致するように電流を制御することにより電動機の回転速度を制御する。
Subsequently, the two-phase / three-phase coordinate conversion unit 36 inputs the angle θ, the d-axis voltage command Vdr and the q-axis voltage command Vqr, performs coordinate conversion, and calculates the three-phase voltage commands Vur, Vvr, and Vwr. And output to the PWM signal generator 23. The operation of the three-phase inverter 11 is the same as that shown in the first embodiment shown in FIG.
In FIG. 6, the command values idr and iqr are given based on the command speed (rotation speed) or given based on the command torque. For example, when the rotational speed control of the motor is performed, the output torque command is calculated by performing integral control or PI control according to the deviation between the actual rotational speed and the rotational speed target value, and the output torque command and the actual output torque match. Thus, the rotational speed of the electric motor is controlled by controlling the current.

なお、上記二相/三相座標変換部36において、三相平衡条件から三相の電流iu,iv,iwのうち、二相分のみを用いて演算を行う場合がある。例えば、U,V相の二相分の電流iu,ivを用いる場合、座標変換式は次式のようになる。   In the two-phase / three-phase coordinate conversion unit 36, calculation may be performed using only two phases of the three-phase currents iu, iv, iw from the three-phase equilibrium condition. For example, when currents iu and iv for two phases of U and V are used, the coordinate conversion formula is as follows.

Figure 2006162309
Figure 2006162309

このため、式(5)の演算と上式の演算をまとめて式表現すると次式のようになる。   For this reason, when the expression (5) and the above expression are collectively expressed, the following expression is obtained.

Figure 2006162309
Figure 2006162309

但し、fuv_du(θ),fuv_dv(θ),fuv_dw(θ),fuv_qu(θ),fuv_qv(θ),fuv_qw(θ)は、それぞれid、iq算出の際に三相の各検出器電流isnsu,isnsv,isnswに掛かる係数を角度θの関数として表したものである。この場合も、三相/二相座標変換に三相U,V,W相の全相の電流を用いて行う場合と同様にfuv_du(θ),fuv_dv(θ),fuv_dw(θ),fuv_qu(θ),fuv_qv(θ),fuv_qw(θ)を所要の分解能を持つデータでもって展開し、テーブルの参照を行う方式を用いて省演算化を図ることができる。三相/二相座標変換にV及びW相、あるいはW及びU相の各二相分を用いる場合も同様な方式を適用できる。   However, fuv_du (θ), fuv_dv (θ), fuv_dw (θ), fuv_qu (θ), fuv_qv (θ), and fuv_qw (θ) are respectively the three-phase detector current issu, The coefficient applied to isnsv and issw is expressed as a function of the angle θ. Also in this case, fuv_du (θ), fuv_dv (θ), fuv_dw (θ), and fuv_qu () are used in the same manner as when three-phase U, V, and W phase currents are used for three-phase / two-phase coordinate conversion. θ), fuv_qv (θ), fuv_qw (θ) can be developed with data having a required resolution, and calculation can be saved by using a table reference method. The same method can be applied to the case where two phases of the V and W phases or the W and U phases are used for the three-phase / two-phase coordinate transformation.

この実施の形態によれば電流検出器ごとの電流対電圧変換特性のばらつきを補償し、また電流検出結果に混入している非検出対象相の電流成分を除去する。このため、集磁用の磁気鉄心を有さず調整要素での校正を行わない電流検出器であっても、電流検出精度の低下を防止し、精度良くベクトル制御法による制御を行うことができる。また、電流検出結果の非干渉化のための非干渉化演算とベクトル制御法における三相/二相座標変換演算とを一つにまとめて省演算化を図るため、制御演算がマイクロコンピュータ内のソフトウェア演算で行う場合を想定すれば、デジタル制御を行う際の単位離散周期あたりの所要演算時間を短縮することができる。ひいては、単位離散周期そのものが短縮可能となるため、電流フイードバック制御の応答速度向上等の効果が見込める。   According to this embodiment, the variation of the current-to-voltage conversion characteristic for each current detector is compensated, and the current component of the non-detection target phase mixed in the current detection result is removed. For this reason, even a current detector that does not have a magnetic core for collecting magnetism and that does not perform calibration with an adjustment element can prevent a decrease in current detection accuracy and can perform control by a vector control method with high accuracy. . In addition, the non-interfering operation for decoupling the current detection result and the three-phase / two-phase coordinate conversion operation in the vector control method are combined into one to save computations. If it is assumed that the calculation is performed by software calculation, the required calculation time per unit discrete period when performing digital control can be shortened. As a result, since the unit discrete period itself can be shortened, effects such as an improved response speed of current feedback control can be expected.

実施の形態4.
図7は、この発明を実施するための実施の形態4における電動機制御装置の構成を示す構成図である。図7おいて、電動機制御装置310は、三相インバータ11と制御演算装置301を有する。制御演算装置301は、電流制御部322及びPWM信号生成部23を有する。電流制御部322は、回転位相算出部30、電流補償・非干渉化・三相/二相変換部331、第一の減算器32、第二の減算器33、d軸電流制御部34、q軸電流制御部35、二相/三相座標変換部36を有する。その他の構成については、図1に示した実施の形態1と同様のものであるので、相当するものに同じ符号を付して説明を省略する。なお、電流補償・非干渉化・三相/二相変換部331がこの発明における電流算出座標変換手段である。この実施の形態においては、図6における電流補償部20及び非干渉化三相/二相座標変換部31の機能を一体化した電流補償・非干渉化・三相/二相変換部331を設けたものである。
Embodiment 4 FIG.
FIG. 7 is a configuration diagram showing the configuration of the motor control device according to Embodiment 4 for carrying out the present invention. In FIG. 7, the motor control device 310 includes a three-phase inverter 11 and a control arithmetic device 301. The control arithmetic device 301 includes a current control unit 322 and a PWM signal generation unit 23. The current control unit 322 includes a rotation phase calculation unit 30, a current compensation / decoupling / three-phase / two-phase conversion unit 331, a first subtractor 32, a second subtractor 33, a d-axis current control unit 34, q An axial current control unit 35 and a two-phase / three-phase coordinate conversion unit 36 are included. Since other configurations are the same as those of the first embodiment shown in FIG. 1, the same reference numerals are given to the corresponding components and the description thereof is omitted. The current compensation / non-interference / three-phase / two-phase conversion unit 331 is the current calculation coordinate conversion means in the present invention. In this embodiment, a current compensation / non-interference / three-phase / two-phase conversion unit 331 in which the functions of the current compensation unit 20 and the non-interference three-phase / two-phase coordinate conversion unit 31 in FIG. 6 are integrated is provided. It is a thing.

この実施の形態によれば、電流補償・非干渉化・三相/二相変換部331が上記電流対電気信号変換補償演算と上記非干渉化演算と上記三相/二相座標変換とを一つにまとめて行うので、さらに演算回数を削減でき、デジタル制御を行う際の単位離散周期あたりの所要演算時間を短縮することができる。ひいては、単位離散周期そのものが短縮可能となるため、電流フイードバック制御の応答速度向上等の効果が見込める。   According to this embodiment, the current compensation / decoupling / three-phase / two-phase conversion unit 331 performs the current-to-electric signal conversion compensation calculation, the non-interference calculation, and the three-phase / two-phase coordinate conversion. Thus, the number of calculations can be further reduced, and the required calculation time per unit discrete period when performing digital control can be shortened. As a result, since the unit discrete period itself can be shortened, effects such as an improved response speed of current feedback control can be expected.

以上述べたように、この発明によれば、電動機制御装置における三相インバータの交流側の電流を検出するにあたり集磁用の磁気鉄心を有さず調整要素での校正を行わない電流検出器を用いたとしても、電流検出器ごとの電流対電圧変換特性のばらつきを補償し、また、電流検出結果に混入している非検出対象相の電流成分を除去するため、電流検出精度の低下を低減して精度良く制御を行うことができる。また、電流検出器ごとの電流対電圧変換特性の個体特性のばらつきを補償する電流対電気信号変換補償演算、電流検出結果に混入している非検出対象相の電流成分を除去する非干渉化演算、三相/二相座標変換などを一つにまとめて省演算化して行うため、演算に必要なリソースを少なく抑えることが可能である。このため、制御演算が電子回路によって実現される場合には必要な部品点数を削減することで、低コスト化、故障発生率の低下などの効果が得られる。また、制御演算がマイクロコンピュータによるソフトウェア処理にて行われる場合には、デジタル制御を行う際の単位離散周期あたりの所要演算時間を短縮することができる。ひいては単位離散周期そのものが短縮可能となるため、電流フイードバック制御の応答速度向上等の効果を奏する。   As described above, according to the present invention, there is provided a current detector that does not have a magnetic core for collecting magnets and does not perform calibration with an adjustment element when detecting the current on the AC side of the three-phase inverter in the motor control device. Even if it is used, the variation in current-to-voltage conversion characteristics for each current detector is compensated, and the current component of the non-detection target phase that is mixed in the current detection result is removed, reducing the decrease in current detection accuracy. Thus, control can be performed with high accuracy. Also, current-to-electrical signal conversion compensation calculation that compensates for variations in individual characteristics of current-to-voltage conversion characteristics for each current detector, and non-interference calculation that removes current components of non-detection target phases that are mixed in the current detection results In addition, since three-phase / two-phase coordinate transformations are performed in a unified manner and saved, it is possible to reduce resources required for the calculation. For this reason, when the control calculation is realized by an electronic circuit, by reducing the number of necessary parts, it is possible to obtain effects such as cost reduction and a failure rate reduction. Further, when the control calculation is performed by software processing using a microcomputer, the required calculation time per unit discrete period when performing digital control can be shortened. As a result, since the unit discrete period itself can be shortened, there is an effect of improving the response speed of the current feedback control.

以上のように、この発明の電流検出装置によれば、
磁束検出素子を有する複数の電流検出器と、電流算出手段とを有するものであって、
電流検出器のうちの一は検出の対象とする検出対象電流が流れる検出対象導電体の近傍に配置され、電流検出器の他は検出の対象外である検出対象外電流が流れる検出対象外導電体の近傍に配置され、電流検出器のうちの一は検出対象電流及び検出対象外電流により発生し自己の磁束検出素子と鎖交する磁束に応じて検出対象電気信号を発し、電流検出器のうちの他は検出対象電流及び検出対象外電流により発生し自己の磁束検出素子と鎖交する磁束に応じて検出対象外電気信号を発し、
電流算出手段は、各電流検出器の電流対電気信号変換特性のばらつきを補償するために検出対象及び検出対象外電気信号を補償するとともに、この補償された検出対象及び検出対象外電気信号に基づき検出対象電流を求めるものであるので、
電流検出器ごとの電流対電圧変換特性のばらつきを補償でき、また電流検出器の電流検出結果である検出対象電気信号に混入している検出対象外の電流成分を除去して検出対象電流を求めるため、集磁用の磁気鉄心を設けなくても電流検出精度の低下を抑制して精度良く電流の検出を行うことができる。
As described above, according to the current detection device of the present invention,
A plurality of current detectors having a magnetic flux detection element, and a current calculation means,
One of the current detectors is disposed in the vicinity of the detection target conductor through which the detection target current to be detected flows, and other than the current detector, the non-detection conduction through which the non-detection current that is not the detection target flows. One of the current detectors is arranged near the body, and generates a detection target electric signal according to a magnetic flux generated by a detection target current and a non-detection target current and interlinked with its own magnetic flux detection element. The other of them generates a non-detection target electric signal according to the magnetic flux that is generated by the detection target current and the non-detection target current and interlinks with its own magnetic flux detection element,
The current calculation means compensates for the detection target and non-detection target electrical signals in order to compensate for variations in the current-to-electrical signal conversion characteristics of each current detector, and based on the compensated detection target and non-detection target electrical signals. Since the current to be detected is obtained,
Dispersion of current-to-voltage conversion characteristics for each current detector can be compensated, and the current component outside the detection target mixed in the detection target electrical signal that is the current detection result of the current detector is removed to obtain the detection target current. For this reason, it is possible to accurately detect the current without suppressing a decrease in the current detection accuracy without providing a magnetic core for collecting the magnetic current.

そして、電流算出手段は、検出対象及び検出対象外電気信号にそれぞれ所定の補償係数を乗じる電流対電気信号変換補償演算を行うことにより各電流検出器の電流対電気信号変換特性のばらつきを補償するものであることを特徴とするので、電流対電気信号変換補償演算を行うことにより各電流検出器の電流対電気信号変換特性のばらつきを補償することができる。   The current calculation means compensates for variations in the current-to-electric signal conversion characteristics of each current detector by performing a current-to-electric signal conversion compensation calculation by multiplying the detection target and non-detection target electric signals by a predetermined compensation coefficient. Therefore, it is possible to compensate for variations in the current-to-electrical signal conversion characteristics of each current detector by performing a current-to-electrical signal conversion compensation calculation.

さらに、電流算出手段は、検出対象及び検出対象外電気信号にそれぞれ所定の補償係数を乗じる電流対電気信号変換補償演算を行うことにより各電流検出器の電流対電気信号変換特性のばらつきを補償するものであり、
電流算出手段は、電流対電気信号変換補償演算が行われた検出対象及び検出対象外電気信号に基づいて所定の非干渉化演算を行うことにより検出対象電流を求めるものであることを特徴とするので、
各電流検出器の電流対電気信号変換特性のばらつきを補償することができるとともに、非干渉化演算を行うことにより検出対象電気信号に含まれている検出対象外の電流成分を除去して検出対象電流を求めるため、集磁用の磁気鉄心を設けなくても電流検出精度の低下を抑制して精度良く電流の検出を行うことができる。
Furthermore, the current calculation means compensates for variations in the current-to-electrical signal conversion characteristics of each current detector by performing a current-to-electrical signal conversion compensation calculation by multiplying the detection target and non-detection target electrical signals by a predetermined compensation coefficient. Is,
The current calculation means obtains the detection target current by performing a predetermined non-interference calculation based on the detection target subjected to the current-to-electrical signal conversion compensation calculation and the non-detection target electric signal. So
It is possible to compensate for variations in current-to-electrical signal conversion characteristics of each current detector, and to perform non-interference calculation to remove current components outside the detection target included in the detection target electric signal and to detect Since the current is obtained, it is possible to accurately detect the current without suppressing a decrease in the current detection accuracy without providing a magnetic core for collecting the magnetic current.

また、電流算出手段は、電流対電気信号変換補償演算と非干渉化演算とをまとめて行うものであることを特徴とするので、
演算回数を削減でき、演算の高速化を図ることができる。
Further, the current calculation means is characterized in that the current-to-electrical signal conversion compensation calculation and the non-interference calculation are performed together,
The number of operations can be reduced, and the operation speed can be increased.

そして、この発明の電動機制御装置によれば、
三相インバータ装置と、電流検出装置と、開閉制御装置とを有するものであって、
三相インバータ装置は、開閉素子を有し直流電力を交流電力に変換して電動機に供給するものであり、
電流検出装置は、請求項1ないし請求項4のいずれか1項に記載の電流検出装置であって三相インバータ装置の交流側の電流を検出するものであり、
開閉制御装置は、電流検出装置により検出された交流側の電流に基づき開閉素子を開閉制御することにより電動機を制御するものであるので、
電流検出器ごとの電流対電圧変換特性のばらつきを補償でき、また電流検出器の電流検出結果である検出対象電気信号に混入している検出対象外の電流成分を除去して検出対象電流を求めるため、集磁用の磁気鉄心を設けなくても電流検出精度の低下を抑制して精度良く電流の検出を行うことができ、この検出した電流を用いて精度良く電動機を制御することができる。
And according to the motor control device of the present invention,
It has a three-phase inverter device, a current detection device, and a switching control device,
The three-phase inverter device has an open / close element, converts DC power to AC power, and supplies it to the motor.
A current detection device is a current detection device according to any one of claims 1 to 4, and detects a current on an AC side of a three-phase inverter device,
Since the open / close control device controls the electric motor by controlling the open / close element based on the alternating current detected by the current detection device,
Dispersion of current-to-voltage conversion characteristics for each current detector can be compensated, and the current component outside the detection target mixed in the detection target electrical signal that is the current detection result of the current detector is removed to obtain the detection target current. Therefore, even if a magnetic core for collecting magnets is not provided, it is possible to accurately detect a current while suppressing a decrease in current detection accuracy, and it is possible to accurately control an electric motor using the detected current.

さらに、この発明の電動機制御装置によれば、
三相インバータ装置と、電流検出座標変換装置と、開閉制御装置とを有するものであって、
三相インバータ装置は、開閉素子を有し直流電力を交流電力に変換して三相の導電体を介して電動機に供給するものであり、
電流検出座標変換装置は、磁束検出素子を有する電流検出器と、電流算出座標変換手段とを有し、
各電流検出器は、検出対象相の導電体の近傍にそれぞれ配置され検出対象相の電流及び検出対象外の相の電流により発生し自己の磁束検出素子と鎖交する磁束に応じてそれぞれ電気信号を発し、
電流算出座標変換手段は、各電流検出器の電流対電気信号変換特性のばらつきを補償するために各電気信号にそれぞれ所定の補償係数を乗じる電流対電気信号変換補償演算を行い、この電流対電気信号変換補償演算が行われた各電気信号に基づいて所定の非干渉化演算を行うことにより各相の電流を求め、この各相の電流から電動機の磁束ベクトルに同期した回転直交座標上のd軸電流及びq軸電流を求める三相/二相座標演算を行うものであって、非干渉化演算と三相/二相座標演算とを一つにまとめて行うものであり、
開閉制御装置は、d軸電流及びq軸電流に基づき開閉素子を開閉制御することにより電動機を制御するものであるので、
電流検出器ごとの電流対電圧信号変換特性のばらつきを補償でき、また電流検出器の電流検出結果である検出対象電気信号に混入している検出対象外の電流成分を除去して検出対象電流を求めるため、集磁用の磁気鉄心を設けなくても電流検出精度の低下を抑制して精度良く電流の検出を行うことができ、この検出した電流を用いて精度良く電動機を制御することができる。また、非干渉化演算と三相/二相座標演算とを一つにまとめて行うので、演算回数を削減でき、演算の高速化により、制御精度を向上させることができる。
Furthermore, according to the motor control device of the present invention,
It has a three-phase inverter device, a current detection coordinate conversion device, and a switching control device,
The three-phase inverter device has an open / close element, converts DC power to AC power, and supplies it to the motor via a three-phase conductor.
The current detection coordinate conversion device includes a current detector having a magnetic flux detection element, and current calculation coordinate conversion means,
Each current detector is arranged in the vicinity of the conductor of the detection target phase, and generates an electric signal according to the magnetic flux generated by the current of the detection target phase and the current of the non-detection phase and interlinked with its own magnetic flux detection element. And
The current calculation coordinate conversion means performs a current-to-electric signal conversion compensation calculation by multiplying each electric signal by a predetermined compensation coefficient in order to compensate for variations in the current-to-electric signal conversion characteristics of each current detector. A current of each phase is obtained by performing a predetermined non-interference calculation based on each electric signal subjected to the signal conversion compensation calculation, and d on the rotation orthogonal coordinate synchronized with the magnetic flux vector of the motor from the current of each phase. A three-phase / two-phase coordinate calculation for obtaining an axial current and a q-axis current, and a non-interference calculation and a three-phase / two-phase coordinate calculation are performed together.
Since the open / close control device controls the electric motor by controlling the open / close element based on the d-axis current and the q-axis current,
It is possible to compensate for variations in current-to-voltage signal conversion characteristics for each current detector, and to remove the current component outside the detection target mixed in the detection target electrical signal that is the current detection result of the current detector, and to detect the detection target current. Therefore, even if a magnetic core for collecting magnetism is not provided, it is possible to accurately detect a current while suppressing a decrease in current detection accuracy, and it is possible to accurately control an electric motor using the detected current. . In addition, since the non-interference calculation and the three-phase / two-phase coordinate calculation are performed together, the number of calculations can be reduced, and the control accuracy can be improved by increasing the calculation speed.

また、電流算出座標変換手段は、電流対電気信号変換補償演算と非干渉化演算と三相/二相座標変換とを一つにまとめて行うものであることを特徴とするので、さらに演算回数を減少させることができる。   Further, the current calculation coordinate conversion means is characterized in that the current-to-electrical signal conversion compensation calculation, the non-interference calculation, and the three-phase / two-phase coordinate conversion are performed together, so that the number of calculations is further increased. Can be reduced.

この発明の実施の形態1である電流検出装置を用いた電動機制御装置の構成を示す構成図である。It is a block diagram which shows the structure of the electric motor control apparatus using the electric current detection apparatus which is Embodiment 1 of this invention. U,V,W各相ブスバーと各相の電流検出器の配置関係を示す斜視図である。It is a perspective view which shows the arrangement | positioning relationship between each phase bus bar of U, V, and W and the current detector of each phase. 同じくU,V,W各相ブスバーと各相の電流検出器の配置関係を示す側面図である。It is a side view which similarly shows the arrangement | positioning relationship between each phase bus bar and the current detector of each phase. U相電流、V相電流、W相電流によって発生する磁束のうち、U相電流検出器の電流検出素子に鎖交するものを示す模式図である。It is a schematic diagram which shows what is linked to the current detection element of a U-phase current detector among magnetic fluxes generated by a U-phase current, a V-phase current, and a W-phase current. この発明の実施の形態2である電流検出装置を用いた電動機制御装置の構成を示す構成図である。It is a block diagram which shows the structure of the electric motor control apparatus using the electric current detection apparatus which is Embodiment 2 of this invention. この発明の実施の形態3である電動機制御装置の構成を示す構成図である。It is a block diagram which shows the structure of the electric motor control apparatus which is Embodiment 3 of this invention. この発明の実施の形態4である電動機制御装置の構成を示す構成図である。It is a block diagram which shows the structure of the electric motor control apparatus which is Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 制御演算装置、2a U相ブスバー、2b V相ブスバー、2c W相ブスバー、
3a U相配線、3b V相配線、3c W相配線、4a U相電流検出器、
4b V相電流検出器、4c W相電流検出器、
10,101,201 電動機制御装置、11 三相インバータ、12 電動機、
13 回転検出器、15a U相アーム電力変換半導体、
15b V相アーム電力変換半導体、15c W相アーム電力変換半導体、
20 電流検出部、21 非干渉化フィルタリング部、22,222 電流制御部、
23 PWM信号生成部、30 回転位相算出部、
31 非干渉化三相/二相座標変換部、32 第一の演算器、33 第二の演算器、
34 d軸電流制御器、35 q軸電流制御器、36 二相/三相座標変換部、
331 電流補償・非干渉化・三相/二相変換部。
1 control arithmetic device, 2a U-phase bus bar, 2b V-phase bus bar, 2c W-phase bus bar,
3a U phase wiring, 3b V phase wiring, 3c W phase wiring, 4a U phase current detector,
4b V-phase current detector, 4c W-phase current detector,
10, 101, 201 Electric motor control device, 11 Three-phase inverter, 12 Electric motor,
13 Rotation detector, 15a U-phase arm power conversion semiconductor,
15b V-phase arm power conversion semiconductor, 15c W-phase arm power conversion semiconductor,
20 current detection unit, 21 decoupling filtering unit, 22, 222 current control unit,
23 PWM signal generator, 30 rotational phase calculator,
31 non-interacting three-phase / two-phase coordinate conversion unit, 32 first computing unit, 33 second computing unit,
34 d-axis current controller, 35 q-axis current controller, 36 two-phase / three-phase coordinate converter,
331 Current compensation / non-interference / three-phase / two-phase converter.

Claims (7)

磁束検出素子を有する複数の電流検出器と、電流算出手段とを有するものであって、
上記電流検出器のうちの一は検出の対象とする検出対象電流が流れる検出対象導電体の近傍に配置され、上記電流検出器の他は検出の対象外である検出対象外電流が流れる検出対象外導電体の近傍に配置され、上記電流検出器のうちの一は上記検出対象電流及び上記検出対象外電流により発生し自己の上記磁束検出素子と鎖交する磁束に応じて検出対象電気信号を発し、上記電流検出器のうちの他は上記検出対象電流及び上記検出対象外電流により発生し自己の上記磁束検出素子と鎖交する磁束に応じて検出対象外電気信号を発し、
上記電流算出手段は、上記各電流検出器の電流対電気信号変換特性のばらつきを補償するために上記検出対象及び検出対象外電気信号を補償するとともに、この補償された検出対象及び検出対象外電気信号に基づき上記検出対象電流を求めるものである
電流検出装置。
A plurality of current detectors having a magnetic flux detection element, and a current calculation means,
One of the current detectors is arranged in the vicinity of a detection target conductor through which a detection target current to be detected flows, and other than the current detector, a detection target through which a non-detection target current flows. One of the current detectors is arranged in the vicinity of an outer conductor, and one of the current detectors generates an electric signal to be detected according to the magnetic flux generated by the electric current to be detected and the electric current not to be detected and interlinked with the magnetic flux detecting element. Emits a non-detection target electric signal in accordance with a magnetic flux generated by the detection target current and the non-detection target current and interlinked with its own magnetic flux detection element,
The current calculation means compensates the detection target and non-detection target electrical signals in order to compensate for variations in current-to-electric signal conversion characteristics of the current detectors, and compensates the detection target and non-detection target electrical signals. A current detection device for obtaining the detection target current based on a signal.
上記電流算出手段は、上記検出対象及び検出対象外電気信号にそれぞれ所定の補償係数を乗じる電流対電気信号変換補償演算を行うことにより上記各電流検出器の電流対電気信号変換特性のばらつきを補償するものであることを特徴とする請求項1に記載の電流検出装置。 The current calculation means compensates for variations in the current-to-electrical signal conversion characteristics of each current detector by performing a current-to-electrical signal conversion compensation calculation by multiplying the detection target and non-detection target electrical signals by a predetermined compensation coefficient. The current detection device according to claim 1, wherein: 上記電流算出手段は、上記検出対象及び検出対象外電気信号にそれぞれ所定の補償係数を乗じる電流対電気信号変換補償演算を行うことにより上記各電流検出器の電流対電気信号変換特性のばらつきを補償するものであり、
上記電流算出手段は、上記電流対電気信号変換補償演算が行われた検出対象及び検出対象外電気信号に基づいて所定の非干渉化演算を行うことにより上記検出対象電流を求めるものであることを特徴とする請求項1に記載の電流検出装置。
The current calculation means compensates for variations in the current-to-electrical signal conversion characteristics of each current detector by performing a current-to-electrical signal conversion compensation calculation by multiplying the detection target and non-detection target electrical signals by a predetermined compensation coefficient. Is what
The current calculation means obtains the detection target current by performing a predetermined non-interference calculation based on the detection target and the non-detection target electric signal on which the current-to-electric signal conversion compensation calculation is performed. The current detection device according to claim 1, characterized in that:
上記電流算出手段は、上記電流対電気信号変換補償演算と上記非干渉化演算とをまとめて行うものであることを特徴とする請求項3に記載の電流検出装置。 4. The current detection device according to claim 3, wherein the current calculation means collectively performs the current-to-electrical signal conversion compensation calculation and the non-interference calculation. 三相インバータ装置と、電流検出装置と、開閉制御装置とを有するものであって、
上記三相インバータ装置は、開閉素子を有し直流電力を交流電力に変換して電動機に供給するものであり、
上記電流検出装置は、請求項1ないし請求項4のいずれか1項に記載の電流検出装置であって上記三相インバータ装置の交流側の電流を検出するものであり、
上記開閉制御装置は、上記電流検出装置により検出された上記交流側の電流に基づき上記開閉素子を開閉制御することにより上記電動機を制御するものである
電動機制御装置。
It has a three-phase inverter device, a current detection device, and a switching control device,
The three-phase inverter device has an open / close element, converts DC power to AC power, and supplies the motor to the motor.
The current detection device is a current detection device according to any one of claims 1 to 4, wherein the current detection device detects a current on an AC side of the three-phase inverter device,
The open / close control device controls the electric motor by performing open / close control of the open / close element based on the current on the AC side detected by the current detection device.
三相インバータ装置と、電流検出座標変換装置と、開閉制御装置とを有するものであって、
上記三相インバータ装置は、開閉素子を有し直流電力を交流電力に変換して三相の導電体を介して電動機に供給するものであり、
上記電流検出座標変換装置は、磁束検出素子を有する電流検出器と、電流算出座標変換手段とを有し、
上記各電流検出器は、検出対象相の上記導電体の近傍にそれぞれ配置され上記検出対象相の電流及び上記検出対象外の相の電流により発生し自己の上記磁束検出素子と鎖交する磁束に応じてそれぞれ電気信号を発し、
上記電流算出座標変換手段は、上記各電流検出器の電流対電気信号変換特性のばらつきを補償するために上記各電気信号にそれぞれ所定の補償係数を乗じる電流対電気信号変換補償演算を行い、この電流対電気信号変換補償演算が行われた各電気信号に基づいて所定の非干渉化演算を行うことにより上記各相の電流を求め、この各相の電流から上記電動機の磁束ベクトルに同期した回転直交座標上のd軸電流及びq軸電流を求める三相/二相座標演算を行うものであって、上記非干渉化演算と上記三相/二相座標演算とを一つにまとめて行うものであり、
上記開閉制御装置は、上記d軸電流及びq軸電流に基づき上記開閉素子を開閉制御することにより上記電動機を制御するものである
電動機制御装置。
It has a three-phase inverter device, a current detection coordinate conversion device, and a switching control device,
The three-phase inverter device has an open / close element, converts DC power to AC power, and supplies the electric power to the motor via a three-phase conductor.
The current detection coordinate conversion device includes a current detector having a magnetic flux detection element, and current calculation coordinate conversion means,
Each of the current detectors is arranged in the vicinity of the conductor of the detection target phase, and is generated by the current of the detection target phase and the current of the non-detection phase, and the magnetic flux interlinking with the magnetic flux detection element of its own. In response, each sends an electrical signal,
The current calculation coordinate conversion means performs a current-to-electric signal conversion compensation calculation by multiplying each electric signal by a predetermined compensation coefficient in order to compensate for variations in current-to-electric signal conversion characteristics of each current detector. The current of each phase is obtained by performing a predetermined non-interference calculation based on each electric signal subjected to the current-to-electric signal conversion compensation calculation, and the rotation synchronized with the magnetic flux vector of the motor from the current of each phase A three-phase / two-phase coordinate calculation for obtaining the d-axis current and the q-axis current on the Cartesian coordinates, wherein the non-interference calculation and the three-phase / two-phase coordinate calculation are performed together. And
The opening / closing control device controls the electric motor by controlling opening / closing of the opening / closing element based on the d-axis current and the q-axis current.
上記電流算出座標変換手段は、上記電流対電気信号変換補償演算と上記非干渉化演算と上記三相/二相座標変換とを一つにまとめて行うものであることを特徴とする請求項6に記載の電流検出装置。
7. The current calculation coordinate conversion means performs the current-to-electrical signal conversion compensation calculation, the non-interference calculation, and the three-phase / two-phase coordinate conversion together as one. The current detection device described in 1.
JP2004350826A 2004-12-03 2004-12-03 Current detection device and motor control device Pending JP2006162309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350826A JP2006162309A (en) 2004-12-03 2004-12-03 Current detection device and motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350826A JP2006162309A (en) 2004-12-03 2004-12-03 Current detection device and motor control device

Publications (1)

Publication Number Publication Date
JP2006162309A true JP2006162309A (en) 2006-06-22

Family

ID=36664504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350826A Pending JP2006162309A (en) 2004-12-03 2004-12-03 Current detection device and motor control device

Country Status (1)

Country Link
JP (1) JP2006162309A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058035A (en) * 2006-08-29 2008-03-13 Toyota Industries Corp Current measuring apparatus and current measuring method
JP2010060506A (en) * 2008-09-05 2010-03-18 Asahi Kasei Electronics Co Ltd Current sensor and current value calculating method
WO2012124417A1 (en) * 2011-03-11 2012-09-20 アイシン・エィ・ダブリュ株式会社 Current detection device
WO2013058282A1 (en) * 2011-10-17 2013-04-25 アイシン・エィ・ダブリュ株式会社 Current detection device
CN103507657A (en) * 2012-06-21 2014-01-15 广东高标电子科技有限公司 Electric vehicle and bus control system thereof
WO2018150802A1 (en) * 2017-02-17 2018-08-23 アルプス電気株式会社 Current sensor
JP6991298B1 (en) 2020-10-21 2022-01-12 三菱電機株式会社 Current detector
JP6991297B1 (en) 2020-10-21 2022-01-12 三菱電機株式会社 Current detector and AC rotary machine control device
JP7477270B2 (en) 2019-07-31 2024-05-01 アズビル株式会社 Diagnostic device and electric actuator

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008058035A (en) * 2006-08-29 2008-03-13 Toyota Industries Corp Current measuring apparatus and current measuring method
JP2010060506A (en) * 2008-09-05 2010-03-18 Asahi Kasei Electronics Co Ltd Current sensor and current value calculating method
WO2012124417A1 (en) * 2011-03-11 2012-09-20 アイシン・エィ・ダブリュ株式会社 Current detection device
US9389249B2 (en) 2011-10-17 2016-07-12 Aisin Aw Co., Ltd. Current detector
WO2013058282A1 (en) * 2011-10-17 2013-04-25 アイシン・エィ・ダブリュ株式会社 Current detection device
CN103765229A (en) * 2011-10-17 2014-04-30 爱信艾达株式会社 Current detection device
JPWO2013058282A1 (en) * 2011-10-17 2015-04-02 アイシン・エィ・ダブリュ株式会社 Current detector
CN103765229B (en) * 2011-10-17 2015-12-02 爱信艾达株式会社 Current sensing means
CN103507657A (en) * 2012-06-21 2014-01-15 广东高标电子科技有限公司 Electric vehicle and bus control system thereof
WO2018150802A1 (en) * 2017-02-17 2018-08-23 アルプス電気株式会社 Current sensor
JPWO2018150802A1 (en) * 2017-02-17 2019-07-04 アルプスアルパイン株式会社 Current sensor
CN110226094A (en) * 2017-02-17 2019-09-10 阿尔卑斯阿尔派株式会社 Current sensor
CN110226094B (en) * 2017-02-17 2021-04-20 阿尔卑斯阿尔派株式会社 Current sensor
JP7477270B2 (en) 2019-07-31 2024-05-01 アズビル株式会社 Diagnostic device and electric actuator
JP6991298B1 (en) 2020-10-21 2022-01-12 三菱電機株式会社 Current detector
JP6991297B1 (en) 2020-10-21 2022-01-12 三菱電機株式会社 Current detector and AC rotary machine control device
JP2022067712A (en) * 2020-10-21 2022-05-09 三菱電機株式会社 Current detection device and ac rotating machine control device
JP2022067713A (en) * 2020-10-21 2022-05-09 三菱電機株式会社 Current detection device

Similar Documents

Publication Publication Date Title
US6690137B2 (en) Sensorless control system for synchronous motor
JP3707535B2 (en) Method and apparatus for correcting estimated speed value of induction motor
JP5929863B2 (en) Control device
JP4517793B2 (en) Permanent magnet synchronous motor control device and module
US20160156297A1 (en) Motor drive system, motor control apparatus and motor control method
KR20020014506A (en) Vector control system of induction motor
JPWO2005035333A1 (en) Electric power steering device
KR20070046862A (en) Vector controller of induction motor
EP2830211B1 (en) Control device for three-phase ac induction motor and control method for three-phase ac induction motor
KR100676255B1 (en) Apparatus for controlling speed in vector controlled an ac motor
JP2011061910A (en) Motor driver and method for removing torque ripples
JP2006304478A (en) Motor drive controller and electric power steering apparatus therewith
JP2006162309A (en) Current detection device and motor control device
JP2010057223A (en) Controller and motor controller
US7208903B2 (en) Control device for alternating-current motor
JP2009278760A (en) Motor control device and motor control method
JP5309838B2 (en) AC motor control device and control method thereof
JP3684661B2 (en) AC motor control device
JP2007303988A (en) Current detection device
JP6664288B2 (en) Motor control device
CN116266744A (en) Rotary machine control device
JP2020010566A (en) Motor controller
US20040178763A1 (en) Stepping motor driver
KR100549253B1 (en) Control apparatus of a.c.motor
JP4708444B2 (en) AC motor control device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021