JP2006161703A - Terminal cover for compressor - Google Patents

Terminal cover for compressor Download PDF

Info

Publication number
JP2006161703A
JP2006161703A JP2004355149A JP2004355149A JP2006161703A JP 2006161703 A JP2006161703 A JP 2006161703A JP 2004355149 A JP2004355149 A JP 2004355149A JP 2004355149 A JP2004355149 A JP 2004355149A JP 2006161703 A JP2006161703 A JP 2006161703A
Authority
JP
Japan
Prior art keywords
compressor
terminal cover
terminal
resin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004355149A
Other languages
Japanese (ja)
Inventor
Tomio Maruyama
富美夫 丸山
Hidetoshi Nishihara
秀俊 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004355149A priority Critical patent/JP2006161703A/en
Publication of JP2006161703A publication Critical patent/JP2006161703A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/077Compressor control units, e.g. terminal boxes, mounted on the compressor casing wall containing for example starter, protection switches or connector contacts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low noise and reliable terminal cover in relation to a compressor. <P>SOLUTION: A terminal 103 attached to a hermetic vessel 101, and the terminal cover 115 covering electric parts connected to the terminal 103 and at least a part of which is formed out of resin foamed material are provided. Acoustic energy is absorbed by friction of gas in foams formed in the resin foamed material and resin material around the foam to attenuate noise from a flat surface part 102 of the hermetic vessel 101. And operation of a thermal sensitive type protection device 112 is ensured by thermal insulation effect. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷蔵庫等の冷凍冷蔵装置等に使用される圧縮機のターミナルカバーの改良に関するものである。   The present invention relates to an improvement of a terminal cover of a compressor used in a refrigerator / freezer such as a refrigerator.

近年、冷凍冷蔵装置等に使用される電動圧縮機は運転による騒音が低いことに加えて、信頼性が高いことが強く要求されている。   In recent years, electric compressors used in refrigeration systems and the like are strongly required to have high reliability in addition to low noise during operation.

モータを内蔵した従来の電動圧縮機のターミナルカバーとしては、圧縮機本体を構成する密閉容器にターミナル部を覆い、難燃性および絶縁性を有する無垢の樹脂、例えば変性PPEで形成され、熱感応型の保護装置の感熱面を密閉容器に保持するものがある。(例えば、特許文献1参照)。   As a terminal cover of a conventional electric compressor with a built-in motor, the terminal portion is covered with a sealed container constituting the compressor body, and is formed of a solid resin having flame retardancy and insulation, for example, modified PPE, and is thermally sensitive. There is one that holds the heat-sensitive surface of the protection device of the mold in a sealed container. (For example, refer to Patent Document 1).

以下、図面を参照しながら上述した従来の圧縮機に用いるターミナルカバーについて、以下説明する。   Hereinafter, a terminal cover used in the above-described conventional compressor will be described with reference to the drawings.

図5は従来の圧縮機のターミナルカバーの分解斜視図である。   FIG. 5 is an exploded perspective view of a terminal cover of a conventional compressor.

図5においてモータ(図示せず)及び圧縮要素(図示せず)を収容した密閉容器1の平面部2の側面には密閉容器内外を連絡する複数の端子を備えたターミナル3が取り付けられ、また前面および下面側が開放されたターミナルボックス4が取り付けられている。   In FIG. 5, a terminal 3 having a plurality of terminals for connecting the inside and outside of the sealed container is attached to the side surface of the flat portion 2 of the sealed container 1 containing a motor (not shown) and a compression element (not shown). A terminal box 4 whose front and lower surfaces are open is attached.

ターミナルボックス4の内部にはターミナル3と挿入結合するクラスタ端子(図示せず)が組み入れられたクラスタハウジング11と、熱感応型の保護装置15の感熱面(図示せず)を平面部2に一定間隔で収納保持する保持部16が配置され、無垢の樹脂で形成されたターミナルカバー18で覆われている。   Inside the terminal box 4, a cluster housing 11 in which a cluster terminal (not shown) inserted and coupled to the terminal 3 is incorporated, and a heat sensitive surface (not shown) of the heat sensitive protection device 15 is fixed to the flat portion 2. Holding portions 16 that are stored and held at intervals are arranged, and are covered with a terminal cover 18 formed of a solid resin.

ターミナルカバー18はカバー押さえばね20の両端がターミナルボックス4の係合孔22と係合し合うことでターミナルボックス4に固定支持されるようになっている。   The terminal cover 18 is fixedly supported by the terminal box 4 by engaging both ends of the cover holding spring 20 with the engagement holes 22 of the terminal box 4.

また、圧縮機のモータに何らかの異常が生じて圧縮機が異常な高温になったり大電流が流れると、その温度上昇に伴い熱感応型の保護装置15の感応面温度が上昇し、熱感応型の保護装置15が動作することで圧縮機を保護する。
特開2002−373734号公報
Further, when some abnormality occurs in the motor of the compressor and the compressor becomes an abnormally high temperature or a large current flows, the sensitive surface temperature of the heat-sensitive protection device 15 increases with the temperature rise, and the heat-sensitive type. The protective device 15 is activated to protect the compressor.
JP 2002-373734 A

しかしながら、上記従来の構成では、圧縮機本体を構成する密閉容器1にターミナル3を取り付けるための平面部2が設けられており、この平面で構成される平面部2は剛性が弱いため、圧縮機本体の運転に伴い振動し、騒音が発生するが、ターミナルカバー18が無垢の樹脂で形成されているため遮音性が低く、平面部2から発生する騒音を充分に低減することができなかった。   However, in the above-described conventional configuration, the flat portion 2 for attaching the terminal 3 to the sealed container 1 constituting the compressor body is provided, and the flat portion 2 constituted by this plane is weak in rigidity. Although vibration occurs and noise is generated with the operation of the main body, since the terminal cover 18 is made of a solid resin, the sound insulation is low, and the noise generated from the flat portion 2 cannot be sufficiently reduced.

また、電装品に熱感応型の保護装置15を取り付けているが、密閉容器の温度が上昇した場合でもターミナルカバー18から放熱してしまい、ターミナルカバー18内の温度上昇が密閉容器1の温度上昇に比べて遅れを生じてしまうことで、熱感応型の保護装置15の動作が遅くなり圧縮機本体を十分に保護できないことがあるという課題を有していた。   Further, although the heat-sensitive protective device 15 is attached to the electrical component, even when the temperature of the sealed container rises, heat is radiated from the terminal cover 18, and the temperature rise in the terminal cover 18 increases the temperature of the sealed container 1. As a result, the operation of the heat-sensitive protection device 15 is delayed, and the compressor main body may not be sufficiently protected.

本発明は、上記従来の課題を解決するもので、騒音が低く、信頼性の高い圧縮機のターミナルカバーを提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a compressor terminal cover with low noise and high reliability.

上記従来の課題を解決するために、本発明の圧縮機のターミナルカバーは、圧縮機本体を構成する密閉容器に取り付けられたターミナルと、ターミナルに接続された電装部品を覆うとともに、少なくともその一部を樹脂発泡材料にて形成したもので、樹脂発泡材料内に形成される気泡内のガスと気泡周囲の樹脂材料との摩擦により音響エネルギーが吸収され音響透過損失が高まるという作用を有する。   In order to solve the above-described conventional problems, a terminal cover of a compressor according to the present invention covers a terminal attached to a hermetic container constituting a compressor body, and electrical components connected to the terminal, and at least a part thereof. Is formed of a resin foam material, and has the effect that acoustic energy is absorbed by the friction between the gas in the bubbles formed in the resin foam material and the resin material around the bubbles and the sound transmission loss is increased.

本発明の圧縮機は、圧縮機本体を構成する密閉容器の平面部からの騒音を減衰させることができる。   The compressor of this invention can attenuate the noise from the plane part of the airtight container which comprises a compressor main body.

請求項1に記載の発明は、圧縮機本体を構成する密閉容器に取り付けられたターミナルと、前記ターミナルに接続された電装部品を覆うとともに、少なくともその一部を樹脂発泡材料にて形成したもので、樹脂発泡材料内に形成される気泡内のガスと気泡周囲の樹脂材料との摩擦により音響エネルギーが吸収され音響透過損失が高まるため、圧縮機本体を構成する密閉容器の平面部からの騒音を低減することができ、騒音の低い圧縮機のターミナルカバーを提供することができる。   The invention according to claim 1 covers a terminal attached to a sealed container constituting the compressor body and an electrical component connected to the terminal, and at least a part thereof is formed of a resin foam material. The acoustic energy is absorbed by the friction between the gas in the bubbles formed in the resin foam material and the resin material around the bubbles and the sound transmission loss is increased, so that the noise from the flat part of the sealed container constituting the compressor body is reduced. It is possible to provide a terminal cover for a compressor that can be reduced and has low noise.

請求項2に記載の発明は、請求項1に記載の発明において、電装部品には熱感応型の保護装置を含むもので、樹脂発泡材料内に形成される気泡の断熱効果で無垢の樹脂と比較し断熱性能が高まり、ターミナルカバーからの放熱を低減できるため、圧縮機本体の温度上昇にターミナルカバー内の温度上昇が早く追従するため、高い精度の温度保護が可能となり、更に信頼性の高い圧縮機のターミナルカバーを提供することができる。   According to a second aspect of the present invention, in the first aspect of the invention, the electrical component includes a heat-sensitive protective device. Compared to the higher heat insulation performance and reduced heat dissipation from the terminal cover, the temperature rise in the terminal cover quickly follows the temperature rise in the compressor body, enabling high-accuracy temperature protection and higher reliability. Compressor terminal cover can be provided.

請求項3に記載の発明は、請求項1または2に記載の発明に、樹脂発泡材料の気泡径を50μm以下としたもので、樹脂発泡材料内に形成される気泡径を小さくすることで気泡数が増え更に音響透過損失及び断熱効果が高まるため、更に騒音が低く、信頼性の高い圧縮機のターミナルカバーを提供することができる。   The invention according to claim 3 is the invention according to claim 1 or 2, wherein the bubble diameter of the resin foam material is 50 μm or less, and the bubble diameter is reduced by reducing the bubble diameter formed in the resin foam material. Since the number increases and the sound transmission loss and the heat insulation effect increase, it is possible to provide a highly reliable compressor terminal cover with lower noise.

請求項4に記載の発明は、請求項1から3に記載の何れか一項に記載の発明に、発泡樹脂材料の発泡倍率を1.2倍以上としたもので、更に音響透過損失及び断熱効果が高まるため、請求項1から3に記載の効果に加えて、更に更に騒音が低く、信頼性の高い圧縮機のターミナルカバーを提供することができる。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the foaming resin material has a foaming ratio of 1.2 times or more, and further has acoustic transmission loss and heat insulation. Since the effect is enhanced, in addition to the effect described in claims 1 to 3, it is possible to provide a compressor terminal cover with further low noise and high reliability.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における圧縮機のターミナルカバーの分解斜視図、図2は同実施の形態における圧縮機のターミナルカバーの断面図、図3は同実施の形態における圧縮機のターミナルカバーの拡大断面図、図4は、同実施の形態における超臨界発泡成形機の概略構成図である。
(Embodiment 1)
1 is an exploded perspective view of a terminal cover of a compressor according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view of the terminal cover of the compressor according to the same embodiment, and FIG. 3 is a view of the compressor according to the same embodiment. FIG. 4 is an enlarged cross-sectional view of the terminal cover, and FIG. 4 is a schematic configuration diagram of the supercritical foam molding machine in the same embodiment.

図1から図4において、モータ(図示せず)及び圧縮要素(図示せず)を収容した密閉容器101の平面部102の側面には密閉容器内外を連絡する複数の端子を備えたターミナル103が取り付けられ、ターミナル103には配線(図示せず)された電装部品として、リレー106と熱感応型の保護装置112が取り付けられている。   1 to 4, a terminal 103 having a plurality of terminals communicating between the inside and outside of the sealed container is provided on the side surface of the flat portion 102 of the sealed container 101 containing a motor (not shown) and a compression element (not shown). A relay 106 and a heat-sensitive protection device 112 are attached to the terminal 103 as electrical components wired (not shown).

ターミナルカバー115は内部に設けた一対の突起117がターミナルボックス107の係合孔120と係合し合うことでターミナルボックス107に係止固定される。   The terminal cover 115 is locked and fixed to the terminal box 107 by engaging a pair of protrusions 117 provided inside with the engagement hole 120 of the terminal box 107.

ターミナルカバー115は超臨界発泡成形(詳細は後述する)により成形されており、全ての壁面に気泡径1〜50μmの微細な気泡250が内在している。   The terminal cover 115 is formed by supercritical foam molding (details will be described later), and fine bubbles 250 having a bubble diameter of 1 to 50 μm are present on all wall surfaces.

ここで、超臨界発泡成形プロセスにより形成される気泡250は10〜1015cells/cm程度の高密度で形成されるため、無垢材と比較し20%程度以上断熱性能を高めることができる。 Here, since the air bubbles 250 formed by the supercritical foam molding process are formed with a high density of about 10 9 to 10 15 cells / cm 3, the heat insulation performance can be improved by about 20% or more compared to the solid material. .

なお、本実施の形態のターミナルカバー115を成形するために用いる超臨界発泡成形機259は、図4に示すように、原料挿入部260と、超臨界ガス発生部264と、溶解射出部261と、金型部262と、金型部の駆動や冷却温度などを制御する制御部263とから構成されており、環境負荷物質であるアゾ化合物やフロンなどの発泡剤を用いずに二酸化炭素や窒素などの不活性ガスを用いるため環境にやさしい成形ができる。   In addition, as shown in FIG. 4, the supercritical foam molding machine 259 used for molding the terminal cover 115 of the present embodiment includes a raw material insertion unit 260, a supercritical gas generation unit 264, a dissolution injection unit 261, , A mold part 262 and a control part 263 for controlling the drive and cooling temperature of the mold part, and without using a foaming agent such as an azo compound or chlorofluorocarbon, which is an environmentally hazardous substance. Because it uses an inert gas, etc., it can be molded easily into the environment.

次に、超臨界発泡成形機259を用いた発泡樹脂の成形プロセスについて説明する。   Next, a foaming resin molding process using the supercritical foam molding machine 259 will be described.

まず、ポリブチレンテレフタレートの原料ペレットを原料挿入部260に投入する。投入した原料ペレットは、溶融射出部261にて約250℃以上の温度で溶融される。一方、超臨界ガス発生部264にて超臨界状態となった物理発泡剤の二酸化炭素または窒素は、溶解射出部261に注入され高圧の液として樹脂原料と混合される。   First, raw material pellets of polybutylene terephthalate are charged into the raw material insertion portion 260. The charged raw material pellets are melted at a temperature of about 250 ° C. or more in the melt injection unit 261. On the other hand, the carbon dioxide or nitrogen of the physical foaming agent that has become supercritical in the supercritical gas generation unit 264 is injected into the dissolution injection unit 261 and mixed with the resin raw material as a high-pressure liquid.

その後、溶融射出部261に内蔵されたスクリューにより溶融した原料と共に超臨界状態の発泡剤が金型部262に射出される。そして、金型部262への注入時に起こる急激な体積変化や温度変化により超臨界状態の発泡剤がガス化することにより気泡250が形成される。   Thereafter, a supercritical foaming agent is injected into the mold part 262 together with the raw material melted by the screw built in the melt injection part 261. Then, bubbles 250 are formed by gasifying the supercritical foaming agent due to a rapid volume change or temperature change that occurs during injection into the mold part 262.

この時、制御部263において原料や発泡剤の射出量や射出温度および金型部262の温度などを調節して成形時の温度と圧力をコントロールすることにより、発泡樹脂の気泡密度や気泡径を調整することができる。   At this time, the control unit 263 controls the temperature and pressure at the time of molding by adjusting the injection amount and injection temperature of the raw material and the foaming agent and the temperature of the mold part 262, thereby controlling the cell density and cell diameter of the foamed resin. Can be adjusted.

更に、この成形時に、気泡の成形圧力により樹脂内部から金型に向かって圧力がかかるため、金型近傍の樹脂原料は金型に向かって押し付けられ気泡250が形成されないスキン層ができることとなる。   Further, during this molding, pressure is applied from the inside of the resin toward the mold due to the molding pressure of the bubbles, so that the resin raw material in the vicinity of the mold is pressed toward the mold to form a skin layer in which the bubbles 250 are not formed.

以上のように構成された圧縮機のターミナルカバーについて、以下その動作を説明する。   The operation of the terminal cover of the compressor configured as described above will be described below.

圧縮機の運転により、剛性が比較的弱い圧縮機本体を構成する密閉容器101の平面部102から騒音が放射される。この際、ターミナルカバー115の樹脂発泡材料自身が上記騒音のエネルギーによって振動することによる材料の振動損失と、気泡250内のガスと気泡250周囲の材料との摩擦によって上記振動エネルギーを吸収することによる音響透過損失の向上との相乗効果により、密閉容器101の平面部102から放射される騒音は減衰される。   Due to the operation of the compressor, noise is radiated from the flat surface portion 102 of the hermetic container 101 constituting the compressor body having relatively low rigidity. At this time, the resin foam material of the terminal cover 115 itself absorbs the vibration energy due to the vibration loss of the material caused by the vibration of the noise energy and the friction between the gas in the bubble 250 and the material around the bubble 250. The noise radiated from the flat portion 102 of the sealed container 101 is attenuated by a synergistic effect with the improvement of the sound transmission loss.

本実施の形態では、溶融状態の樹脂材料に溶け込んだ超臨界状態の二酸化炭素や窒素が温度と圧力の変化に応じてガス化することにより1〜50μmの径からなる極めて微細な気泡250を形成することができ、さらに、発泡倍率を1.2倍以上にすることができるためターミナルカバー115の基本設計寸法を変更することなく全ての側壁において微細な気泡250が形成される。   In the present embodiment, supercritical carbon dioxide or nitrogen dissolved in a molten resin material is gasified according to changes in temperature and pressure to form extremely fine bubbles 250 having a diameter of 1 to 50 μm. Furthermore, since the expansion ratio can be increased to 1.2 times or more, fine bubbles 250 are formed on all the side walls without changing the basic design dimensions of the terminal cover 115.

この結果、気泡250内のガスと気泡250周囲の材料との摩擦によって上記振動エネルギーを吸収することによる音響透過損失がさらに向上し、密閉容器101の平面部102から放射される、特に可聴域の高周波成分の透過音が大きく減衰される。   As a result, the sound transmission loss due to the absorption of the vibration energy by the friction between the gas in the bubble 250 and the material around the bubble 250 is further improved, and is radiated from the flat portion 102 of the sealed container 101, particularly in the audible range. The transmitted sound of high frequency components is greatly attenuated.

一方、ターミナルカバー115の全ての側壁において微細な気泡250が形成されるため、ターミナルカバー115からの放熱が低減され、ターミナルカバー115内部の温度が圧縮機本体を構成する密閉容器101の温度上昇に追従しやすくなる。その結果、圧縮機本体に何らかの異常が生じて高温になると、平面部102の温度上昇に伴いターミナルカバー115内部の温度が速やかに上昇するため、熱感応型の保護装置112の感応面温度も速やかに上昇し、熱感応型の保護装置112が迅速に動作するため、より確実に圧縮機を保護することができ、高い信頼性を得ることができる。   On the other hand, since fine bubbles 250 are formed on all the side walls of the terminal cover 115, heat radiation from the terminal cover 115 is reduced, and the temperature inside the terminal cover 115 increases the temperature of the sealed container 101 constituting the compressor body. It becomes easy to follow. As a result, if some abnormality occurs in the compressor body and the temperature rises, the temperature inside the terminal cover 115 rises rapidly as the temperature of the flat portion 102 rises, so the sensitive surface temperature of the heat-sensitive protective device 112 also rises quickly. Since the heat-sensitive protection device 112 operates quickly, the compressor can be protected more reliably and high reliability can be obtained.

また、ターミナルカバー115の表面には気泡250が形成されないスキン層ができているので、内部に設けた一対の突起117がターミナルボックス107の係合孔120と係合すう際にこすれても、耐久性は無垢のものと変わらない。   In addition, since a skin layer in which bubbles 250 are not formed is formed on the surface of the terminal cover 115, even if the pair of protrusions 117 provided inside rub against the engagement hole 120 of the terminal box 107, it is durable. Sex is the same as innocent.

更に、本実施の形態の超臨界発泡成形技術を用いることにより微細な独立気泡250をターミナルカバー115の全ての壁面に形成することができるため、材料の機械的強度が殆ど低下せず、発泡倍率を1.2倍以上とすることで原料の使用量を20%以上削減することができるため、コストを下げることができる。   Furthermore, since the fine closed cells 250 can be formed on all the wall surfaces of the terminal cover 115 by using the supercritical foam molding technique of the present embodiment, the mechanical strength of the material is hardly lowered, and the expansion ratio Since the amount of raw material used can be reduced by 20% or more by setting the ratio to 1.2 times or more, the cost can be reduced.

以上のように、本発明にかかるターミナルカバーは、騒音を低減できると共に、圧縮機の信頼性を高めることが可能となるので、エアーコンディショナー、自動販売機等の冷凍冷蔵装置にも適用できる。   As described above, since the terminal cover according to the present invention can reduce noise and increase the reliability of the compressor, it can also be applied to a refrigerator-freezer such as an air conditioner or a vending machine.

本発明の実施の形態1における圧縮機のターミナルカバーの分解斜視図The disassembled perspective view of the terminal cover of the compressor in Embodiment 1 of this invention 同実施の形態における圧縮機のターミナルカバーの断面図Sectional drawing of the terminal cover of the compressor in the same embodiment 同実施の形態における圧縮機のターミナルカバーの拡大断面図The expanded sectional view of the terminal cover of the compressor in the embodiment 同実施の形態における発泡成形機の概略構成図Schematic configuration diagram of a foam molding machine in the same embodiment 従来の圧縮機のターミナルカバーの分解斜視図An exploded perspective view of a terminal cover of a conventional compressor

符号の説明Explanation of symbols

101 密閉容器
103 ターミナル
112 熱感応型の保護装置
115 ターミナルカバー
101 Airtight container 103 Terminal 112 Heat-sensitive protective device 115 Terminal cover

Claims (4)

圧縮機本体を構成する密閉容器に取り付けられたターミナルと、前記ターミナルに接続された電装部品を覆うとともに、少なくともその一部を樹脂発泡材料にて形成した圧縮機のターミナルカバー。 The terminal cover of the compressor which covered the terminal attached to the airtight container which comprises a compressor main body, and the electrical component connected to the said terminal, and at least one part was formed with the resin foam material. 電装部品には熱感応型の保護装置を含む請求項1に記載の圧縮機のターミナルカバー。 The terminal cover of the compressor according to claim 1, wherein the electrical component includes a heat-sensitive protection device. 樹脂発泡材料の気泡径を50μm以下とした請求項1または2に記載の圧縮機のターミナルカバー。 The terminal cover of the compressor according to claim 1 or 2, wherein a bubble diameter of the resin foam material is 50 µm or less. 樹脂発泡材料の発泡倍率を1.2倍以上とした請求項1から3のいずれか一項に記載の圧縮機のターミナルカバー。 The terminal cover of the compressor as described in any one of Claim 1 to 3 which made the foaming ratio of the resin foam material 1.2 times or more.
JP2004355149A 2004-12-08 2004-12-08 Terminal cover for compressor Pending JP2006161703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004355149A JP2006161703A (en) 2004-12-08 2004-12-08 Terminal cover for compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004355149A JP2006161703A (en) 2004-12-08 2004-12-08 Terminal cover for compressor

Publications (1)

Publication Number Publication Date
JP2006161703A true JP2006161703A (en) 2006-06-22

Family

ID=36663992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004355149A Pending JP2006161703A (en) 2004-12-08 2004-12-08 Terminal cover for compressor

Country Status (1)

Country Link
JP (1) JP2006161703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11761676B2 (en) 2018-01-30 2023-09-19 Mitsubishi Electric Corporation Outdoor unit of air-conditioning apparatus
WO2023214663A1 (en) * 2022-05-02 2023-11-09 삼성전자주식회사 Compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11761676B2 (en) 2018-01-30 2023-09-19 Mitsubishi Electric Corporation Outdoor unit of air-conditioning apparatus
WO2023214663A1 (en) * 2022-05-02 2023-11-09 삼성전자주식회사 Compressor

Similar Documents

Publication Publication Date Title
EP2865973B1 (en) Heat-insulating wall, heat-insulating box and method for producing the same
JP5822798B2 (en) Insulated box and refrigerator provided with the insulated box
RU2011101435A (en) HEAT-INSULATING MATERIAL, HEAT-INSULATING HOUSING, HEAT-INSULATING DOOR AND LOW-TEMPERATURE HOME REFRIGERATOR
US20070059189A1 (en) Hermetic compressor and manufacturing method of suction muffler
JP2006161703A (en) Terminal cover for compressor
JP2008128516A (en) Refrigerator
KR20230071741A (en) Electronic device comprising a battery and a protection module
JP2006220386A (en) Refrigerator
JP2007071435A (en) Heat insulating door and storage
EP4040931A1 (en) Heating element accommodation case and structure
JP2012151296A (en) Component mounted with electronic component
JP2005146971A (en) Enclosed-type compressor
WO2018181835A1 (en) Refrigerator
JP2011163639A (en) Heat insulating door, method of manufacturing heat insulating door, and refrige-freezer
JP2017015319A (en) Heat insulation box
JP2018169149A (en) refrigerator
KR20070043073A (en) Refrigerator
CN109387010A (en) Refrigerator
JP2013021147A (en) Electrical box
JP2020128836A (en) Heat insulating door and refrigerator comprising the same
JP2019056500A (en) refrigerator
JPH0240482A (en) Heat insulating box body
JP3432115B2 (en) Thermal insulation box structure and manufacturing method
JP2011196609A (en) Heat insulating material and refrigerator
JP2018031571A (en) refrigerator