WO2018181835A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2018181835A1
WO2018181835A1 PCT/JP2018/013497 JP2018013497W WO2018181835A1 WO 2018181835 A1 WO2018181835 A1 WO 2018181835A1 JP 2018013497 W JP2018013497 W JP 2018013497W WO 2018181835 A1 WO2018181835 A1 WO 2018181835A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerator
heat
plate
heat radiating
heat insulating
Prior art date
Application number
PCT/JP2018/013497
Other languages
French (fr)
Japanese (ja)
Inventor
良太 青木
研二 竹内
俊光 鶴賀
Original Assignee
三星電子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017243995A external-priority patent/JP2018169149A/en
Application filed by 三星電子株式会社 filed Critical 三星電子株式会社
Priority to KR1020197024983A priority Critical patent/KR102530182B1/en
Priority to US16/499,844 priority patent/US11486628B2/en
Publication of WO2018181835A1 publication Critical patent/WO2018181835A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls

Definitions

  • This disclosure relates to a refrigerator.
  • the refrigerator includes a box and a door for closing the opening.
  • a storage room for storing food or the like is configured inside the box.
  • the box may be divided into a plurality of storage rooms, for example, a refrigeration room and a freezing room, by a heat insulating partition plate.
  • Examples of the door include a hinged door or a drawer type door.
  • a heat radiating member for example, a refrigerant pipe for flowing a high-temperature refrigerant
  • a heat radiating member is provided inside the wall of the box around the opening or the inside of the heat insulating partition plate.
  • Patent Document 1 In order to fix the heat dissipating member, for example, it is known that a flexible member is disposed behind the heat dissipating member and the heat dissipating member is pressed against the front plate (Patent Document 1).
  • the technology of the present disclosure provides a refrigerator that can more stably prevent condensation.
  • the inventors of the present application focused on the positional relationship between the wall of the box or the front plate of the heat insulating partition plate and the heat radiating member as the reason why the effect of preventing dew condensation occurs.
  • a refrigerator box is formed by filling a foaming heat insulating material between an outer box and an inner box each made of a thin plate.
  • the heat dissipating member is disposed between the outer box and the inner box in the vicinity of the front plate around the opening.
  • the foaming amount or the like is likely to vary, and due to the influence, the installation position of the heat dissipation member is likely to vary.
  • a flexible member is used as in Patent Document 1, the force for pressing the heat radiating member is insufficient, and the position of the heat radiating member also varies. Due to such variations, the effect of preventing condensation by the heat radiating member becomes unstable. Focusing on this point, the inventors of the present application have conceived of stably preventing condensation by stabilizing the installation position of the heat dissipating member.
  • the first refrigerator includes at least one box-shaped storage room and a heat radiating member.
  • the storage chamber is configured as an opening surface that closes one of the frames made of wall members and the other can be closed by a door.
  • a wall member contains the hollow structure which consists of a some board
  • the heat radiating member is disposed in the wall member.
  • a pressing member that presses the heat dissipation member against the plate member is provided in the wall member.
  • the pressing member is a material that takes a state in which the heat dissipation member is pressed against the plate material under a predetermined condition.
  • the heat radiating member is pressed to a desired position in the wall member of the storage chamber by setting the pressing member to a predetermined condition by the foam heat insulating material.
  • FIG. 1 is a diagram schematically illustrating an exemplary refrigerator according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram schematically showing a cross section taken along line II-II in FIG.
  • FIG. 3 is a diagram illustrating a manufacturing process for obtaining the structure of FIG.
  • FIG. 4 is a diagram schematically showing a cross section taken along line IV-IV in FIG.
  • FIG. 5 is a diagram schematically showing another example of the cross section taken along line II-II in FIG.
  • FIG. 6 is a diagram schematically showing still another example of the cross section taken along the line II-II in FIG.
  • FIG. 7 shows the back side of the refrigerator of FIG. 1 and shows an example in which a heat dissipation member is provided on the back side.
  • FIG. 8 is a schematic diagram illustrating a cord heater as an example of a heat dissipation member.
  • FIG. 1 is a perspective view showing an exemplary refrigerator 10 of the present embodiment.
  • the refrigerator 10 includes a box 11 and a heat insulating partition plate 12 that partitions the box 11 into a plurality of storage chambers 14.
  • the storage chamber 14 is for closing one side (the back side in FIG. 1) of the two openings that can be formed into a square frame made of wall members with the other wall, and the other side (the front side in FIG. 1) to put food in and out. It is comprised in the box shape as an opening surface. Although illustration is omitted, the opening surface can be closed by a door.
  • the door may be a hinged door, a drawer door, or the like.
  • each storage chamber 14 is configured with a part of the box 11 and the heat insulating partition plate 12 as wall members.
  • the plurality of storage rooms may include, for example, a refrigeration room adjusted to a range of about +5 to ⁇ 3 ° C., a freezing room adjusted to a range of about ⁇ 10 to ⁇ 30 ° C., and the like.
  • a refrigerator provided with the single store room 14 may be sufficient, and the store room 14 will be comprised by using a part of box 11 as a wall member in that case.
  • the refrigeration cycle is composed of a compressor, a condenser, an evaporator, a capillary tube, a dryer, an accumulator, and the like, which are connected by piping to constitute a refrigeration cycle in which refrigerant circulates.
  • the refrigerator 10 includes a heat radiating member 13 around the opening surface of the storage chamber 14.
  • the heat radiating member 13 is embedded in the wall member and is located at the end of the wall member on the opening surface side.
  • a refrigerant pipe that radiates heat when a high-temperature refrigerant in a refrigeration cycle flows, or a cord heater that generates heat when energized can be used.
  • FIG. 2 is a cross-sectional view taken along the line II-II in the box 11 of the refrigerator 10, that is, the vicinity of the end of the outer wall on the opening surface side.
  • the box 11 includes an outer box 21 made of a metallic plate material, an inner box 22 made of a resinous plate material, and a foam heat insulating material 25 filled therebetween.
  • the plate material constituting the outer box 21 is bent and processed to form an end face material 21a on the opening surface side (lower side in FIG. 2), and a U-shaped receiving portion that opens inside the storage chamber 14 (left side in FIG. 2).
  • Part 21b is configured.
  • the inner box 22 includes a flange 22b that extends outward at the end on the opening surface side.
  • the flange portion 22b has a heat radiating member holding portion 22a that is inserted into the receiving portion 21b and opened to the opening surface side for holding the refrigerant pipe 23.
  • the refrigerant pipe 23 is a pipe made of a material such as copper or iron, for example, and functions as a heat radiating member when a high-temperature refrigerant in the refrigeration cycle flows therein.
  • the refrigerant pipe 23 is disposed in the heat radiating member holding portion 22a of the flange portion 22b, and is pressed against the end face material 21a by the pressing member 24. Thereby, the refrigerant
  • the box 11 is configured by foaming the foam heat insulating material 25 between the outer box 21 and the inner box 22 and foaming.
  • the foam heat insulating material 25 is a material that generates heat during foaming, and is, for example, a rigid urethane foam.
  • the temperature rises to about 60 to 120 ° C., for example, due to heat generation during foaming.
  • the pressing member 24 is made of a thermally expandable material that is expanded by receiving heat.
  • the thermally expansible material contains a material that foams at a predetermined temperature, and the predetermined temperature is a temperature reached by the heat generated when the foam heat insulating material 25 is foamed. Thereby, the pressing member 24 can be expanded using the heat at the time of foaming the foam heat insulating material 25.
  • FIG. 3 shows a stage before the foam heat insulating material 25 is filled and foamed.
  • the pressing member 24 a and the refrigerant pipe 23 before expansion are arranged in the heat radiating member holding portion 22 a, and the flange portion 22 b of the inner box 22 is inserted into the receiving portion 21 b of the outer box 21.
  • the pressing member 24a before expansion has a smaller volume than after expansion, and no force is generated to press the refrigerant pipe 23 against the end face material 21a. Therefore, the refrigerant pipe 23 is separated from the end face material 21a.
  • the refrigerator 10 of this embodiment it is not necessary to perform a separate process for thermally expanding the pressing member 24, and the refrigerator can be manufactured while suppressing an increase in the number of manufacturing steps and manufacturing costs.
  • the refrigerant pipe 23 can be surely pressed against the end face material 21a.
  • the box body 11 needs to be assembled while being crushed against the repulsive force of the pressing member 24. This leads to an increase in the difficulty of manufacturing the refrigerator and an increase in man-hours and costs.
  • it is the structure of this embodiment, it can assemble easily.
  • the heat-expandable material is, for example, a material having a structure in which a powdery material in which an inner space portion of a hollow particle made of a thermoplastic resin is filled with a foaming agent is mixed with a liquid or a gel. Moreover, the structure which disperse
  • Such a heat-expandable material is thermally expanded by foaming the powdery material at a predetermined temperature.
  • the predetermined temperature at which thermal expansion occurs can be set by selecting the hollow particles and the foaming agent, and can correspond to the temperature reached when foaming the foam heat insulating material 25 (about 60 to 120 ° C. in the above example). .
  • the outer diameter of the hollow particles constituting the powdery material is, for example, 5 to 200 ⁇ m before expansion. When this expands to 2 to 5 times the outer diameter by receiving heat, the volume of the thermally expandable material is 10 Increases to about 100 times.
  • thermoplastic resin constituting the hollow particles for example, PMMA (polymethyl methacrylate), PVDC (polyvinylidene chloride) and the like can be used.
  • a foaming agent you may mainly use an aliphatic hydrocarbon, for example.
  • an organogel that does not contain moisture may be used as the gel for mixing the powder material.
  • an organic solvent that does not contain moisture may be used as the liquid for mixing the powder material.
  • a solid material for dispersing the powdery material PVC, a rubber-based material, or the like may be used.
  • a material such as a resin having shape memory performance can be used instead of the powdery material containing the foaming agent described above. That is, a shape memory material storing a large volume state is prepared, and the volume is reduced and arranged in the heat radiating member holding portion 22a. After that, when the foamed heat insulating material 25 is deformed into a large stored volume state by the heat at the time of foaming, a force for pressing the refrigerant pipe 23 toward the end face material 21a acts.
  • the temperature at which the shape memory material is deformed into a memorized shape can also be selected depending on the type of material.
  • the foaming temperature of the foam heat insulating material 25 is 60 to 120 ° C.
  • a shape memory material that recovers the shape at such a temperature may be used.
  • 400-500% deformation is possible.
  • the expanded pressing member 24 should have a lower thermal conductivity than the surrounding members constituting the wall member, in particular, the plate material of the inner box 22 and the outer box 21. Thereby, the heat conduction through the pressing member 24 can be suppressed, and the heat insulation of the box 11 can be improved.
  • the pressing member 24a before expansion which was originally in a different shape as shown in FIG. 3, is changed to a pressing member 24 having a shape along the outer shape of the refrigerant pipe 23 along with the expansion. Yes. Accordingly, the pressing member 24 is in contact with the refrigerant pipe 23 as a surface (a line in the sectional view), which is desirable for the purpose of fixing the refrigerant pipe 23.
  • this is not essential.
  • the lower surface side of the pressing member 24a before expansion shown in FIG. 3 may be expanded while being substantially flat, and the pressing member and the heat radiating member may be in contact with each other by a line (a point in the sectional view). Also in this case, the function of pressing the heat radiating member against the end face material 21a is realized.
  • the refrigerant pipe 23 can be fixed by the pressing member 24 itself without using any other member for determining the position of the refrigerant pipe 23. it can.
  • FIG. 4 is a diagram showing a cross section taken along line IV-IV in the refrigerator 10, that is, a cross section in the vicinity of the end portion on the opening surface side of the heat insulating partition plate 12 that partitions the storage chambers 14 of the refrigerator 10.
  • the heat insulating partition plate 12 includes a plate material 31 and a plate material 32, and a foam heat insulating material 37 filled therebetween.
  • an end face member 35 is provided on the opening surface side (left side in FIG. 4), and a heat radiating member holding portion 36 is provided so as to connect the two plate members 31 and 32.
  • the end face material 35 has a cross-sectional shape having an insertion portion 35 a inserted between the plate material 31 and the plate material 32.
  • the pressing member 34 is disposed between the refrigerant pipe 33 and the pipe holding portion 36.
  • the pressing member 34 generates a force that presses the refrigerant pipe 33 against the end face material 35 side.
  • means for fixing the end face material 35 so that it does not fall off due to the force from the pressing member 34 is used.
  • claw which extended the insertion part 35a may be caught in the holding
  • the pressing member 34 is made of a thermally expandable material that has expanded by receiving heat. Further, such thermal expansion is caused by heat generated when the foam heat insulating material 37 is filled and foamed. That is, also in the heat insulating partition plate 12, the pressing member 24 before expansion is disposed between the pipe holding portion 36 and the refrigerant pipe 33, and this is expanded by heat at the time of foaming of the foam heat insulating material 37, It can be set as the structure shown in FIG. Again, it is not necessary to carry out a separate process for inflating the pressing member 34.
  • the pressing member 34 presses the refrigerant pipe 33 against the end face material 35 side, the position of the refrigerant pipe 33 is stabilized. Therefore, the effect of preventing dew condensation by the refrigerant pipe 33 is stabilized, and the necessity of flowing a high-temperature refrigerant to the refrigerant pipe 33 with a margin is reduced. That is, the temperature of the refrigerant flowing through the refrigerant pipe 33 can be lowered, the amount of heat leakage from the refrigerant pipe 33 into the storage chamber 14 can be reduced, and the efficiency of the refrigeration cycle can be improved.
  • the pressing member may expand under other conditions.
  • the pressing member may be expanded by applying a predetermined pressure, acceleration, or vibration, reaching a predetermined pH, or causing a predetermined chemical reaction. Also in this way, the refrigerant pipe 33 can be pressed against the end face material and disposed at a stable position.
  • a shape memory material storing a shape capable of pressing the refrigerant pipe 23 is prepared, and is deformed into a shape in which no force is applied to the refrigerant pipe 23, and is arranged in place of the pressing member 24a before expansion in FIG. To do.
  • a bellows-like or spring-like pressing member storing the extended state is prepared, and this is contracted and arranged. Thereafter, the foamed heat insulating material is deformed into a memorized shape by heat during foaming. If it is the said bellows-like or spring-like member, it will deform
  • FIG. 5 is a schematic diagram showing a cross section of the box 11 taken along the line II-II in FIG. 1 in the refrigerator of the present embodiment.
  • the box body 11 includes the outer box 21, the inner box 22, and the foam heat insulating material 25, as described in the first embodiment.
  • the end face material 21a and the receiving portion 21b are constituted by the plate material constituting the outer box 21, and the flange portion 22b and the heat radiation member holding portion 22a are constituted by the plate material constituting the inner box 22, This is the same as in the first embodiment.
  • coolant pipe 23 is arrange
  • a gas permeable film 26 configured to allow gas to permeate but not foam heat insulating material 25 so as to sandwich the refrigerant pipe 23 between the end face material 21a is disposed.
  • the gas permeable film 26 functions as a pressing member in this embodiment.
  • a through hole 22c is provided in the heat dissipation member holding portion 22a.
  • the foam heat insulating material 25 passes through the through hole 22c and enters the heat dissipation member holding portion 22a. Is also filled (indicated by arrow 27).
  • the gas permeable film 26 transmits gas but does not transmit the foam heat insulating material 25. Therefore, when the foam heat insulating material 25 is filled in the heat radiating member holding portion 22a and foamed, the gas permeable film 26 is moved by the pressure, and the refrigerant pipe 23 is pressed against the end face material 21a as a pressing member.
  • coolant pipe 23 is stably arrange
  • the refrigerant pipe 23 is shown at a position somewhat separated from the end face material 21a. This is the state before the foam heat insulating material 25 is filled and the refrigerant pipe 23 is pressed against the end face material 21a. It is because it shows.
  • FIG. 6 is a schematic diagram showing a cross section of the box 11 taken along the line II-II in FIG. 1 in the refrigerator of the present embodiment.
  • the box body 11 includes the outer box 21, the inner box 22, and the foam heat insulating material 25, as described in the first embodiment.
  • the end face material 21a and the receiving portion 21b are constituted by the plate material constituting the outer box 21, and the flange portion 22b is constituted by the plate material constituting the inner box 22, as in the first embodiment. It is the same.
  • the heat radiating member holding portion 22a in FIG. 1 does not have a function of holding the refrigerant pipe 23 in this embodiment, and is a fixing portion 22d for fixing the flange portion 22b to the receiving portion 21b.
  • the refrigerant pipe 23 is disposed along the end face material 21a and at a position close to the outer corner of the box 11. Further, a pressing member 24 is disposed so as to cover the refrigerant pipe 23, and the pressing member 24 is covered with a cover material 29 made of, for example, aluminum tape.
  • the cover material 29 fulfills a function of arranging the refrigerant pipe 23 and the pressing member 24 at predetermined positions in the manufacturing process of the refrigerator 10.
  • the refrigerant pipe 23 is fixed at a predetermined position by the pressing member 24 itself.
  • the refrigerant pipe 23 is pressed against the outer box 21 by the pressing member 24.
  • the pressing member 24 is made of a thermally expandable material that is expanded by receiving heat. Further, such thermal expansion is caused by heat generated when the foam heat insulating material 25 is filled and foamed. Again, it is not necessary to carry out a separate process for inflating the pressing member 24.
  • the heat radiating member 13 is arrange
  • the heat dissipating member 13 may be omitted from the heat insulating partition plate 12.
  • other dew condensation prevention means it is also conceivable to dispose the heat radiating member 13 only in a part around the opening surface.
  • FIG. 7 shows an example in which the heat radiating member 13 is arranged on the back side of the refrigerator 10. That is, the wall on the back side (opposite side to the door) of the storage chamber 14 is also composed of a wall member including a pair of plate materials and a foam heat insulating material filled between the pair of plate materials, and the heat dissipation member 13 is included in the wall member. Is arranged. Even in such a case, the heat radiating member 13 can be pressed against the outer box 21 by utilizing the expansion of the pressing member 24. Similarly, the heat radiating member 13 may be disposed on the side of the refrigerator 10.
  • the case where the refrigerant pipe that radiates heat by flowing the high-temperature refrigerant in the refrigeration cycle is used as an example of the heat radiating member.
  • a code heater that generates heat when energized can be used.
  • Fig. 8 schematically shows an example of a cord heater.
  • the cord heater 40 includes a core wire 41 made of a glass wire, a resin wire or the like, a heating wire 42 wound around the core wire 41, and a heat-resistant coating 43 that covers the core wire 41 and the heating wire 42.
  • the heat resistant coating 43 is made of, for example, vinyl or silicone. In FIG. 8, a part of the heat-resistant coating 43 is cut open to show the inside (core wire 41 and heating wire 42).
  • the cord heater is more flexible than the refrigerant pipe and has a high degree of freedom in shape, so it can be easily placed along the desired shape.
  • the refrigerant pipe is a pipe made of copper, iron or the like, and needs to be bent so that the pipe is not closed, connected by welding, or the like.
  • a cord heater is used instead of the refrigerant pipe, it is not necessary to arrange the refrigerant pipe around the front opening of the refrigerator for the purpose of preventing condensation. Thereby, a refrigerant
  • coolant pipe can be shortened and the structure of a refrigerating cycle can be simplified. It is also possible to configure the refrigeration cycle only in the refrigerator machine room, and to arrange only the electric wiring in the storage room, thereby reducing the number of welding points of the refrigerant pipe. As a result, the manufacturing cost of the refrigerator can be reduced.
  • the refrigerant pipe is a part constituting a part of the refrigeration cycle, it is difficult to finely adjust the temperature.
  • the temperature of the cord heater can be finely adjusted by adjusting the energization amount, and further, when the heat radiation for preventing condensation is not necessary, it is possible to prevent heat generation. As a result, it is possible to reduce waste heat entering the refrigerator.
  • the refrigerator of the present disclosure is useful as a more efficient refrigerator because it can stably suppress condensation while suppressing the amount of heat released.

Abstract

The refrigerator (10) is provided with: a box-shaped storage compartment (14); and a heat radiation member (23). The storage compartment (4) has a frame, one side of which is closed and the other side serves as an opened surface, the frame being composed of a wall member. The wall member includes a hollow structure composed of a plurality of plate members (21 and 22), and a foamed heat insulating material (25) filled in the hollow structure. The heat radiation member (23) is disposed in the wall member. In the wall member, there is a pressing member (24) for pressing the heat radiation member (23) against a plate member. The pressing member (24) is made of a material which presses the heat radiation member (23) under predetermined conditions.

Description

冷蔵庫refrigerator
 本開示は、冷蔵庫に関する。 This disclosure relates to a refrigerator.
 冷蔵庫は、箱体と、その開口部を塞ぐための扉とを備える。箱体の内部には食品等を貯蔵するための貯蔵室が構成されている。箱体は、断熱仕切板によって複数の貯蔵室、例えば冷蔵室と冷凍室に分けられていることもある。扉としては、ヒンジ開閉式の扉、又は、引き出し式の扉等がある。 The refrigerator includes a box and a door for closing the opening. A storage room for storing food or the like is configured inside the box. The box may be divided into a plurality of storage rooms, for example, a refrigeration room and a freezing room, by a heat insulating partition plate. Examples of the door include a hinged door or a drawer type door.
 扉によって塞がれる開口部付近において、冷蔵庫内の冷気による結露が生じやすい。その対策として、開口部周辺の箱体の壁又は断熱仕切板の内側に放熱部材(例えば高温冷媒を流す冷媒パイプ)を設けることが行われている。 In the vicinity of the opening that is blocked by the door, condensation due to cold air in the refrigerator tends to occur. As a countermeasure, a heat radiating member (for example, a refrigerant pipe for flowing a high-temperature refrigerant) is provided inside the wall of the box around the opening or the inside of the heat insulating partition plate.
 放熱部材を固定するためには、例えば、放熱部材の後ろ側に柔軟性部材を配置して、放熱部材を前面板に押し付けるようにすることが知られている(特許文献1)。 In order to fix the heat dissipating member, for example, it is known that a flexible member is disposed behind the heat dissipating member and the heat dissipating member is pressed against the front plate (Patent Document 1).
特開2015-34680号公報JP 2015-34680 A
 前記のように開口部周辺に放熱部材を配置した冷蔵庫において、結露防止の効果が安定せず、バラツキが生じやすい。この結果、安定して結露を防止するために、裕度をもって高温の冷媒を流す等のことが必要となり、貯蔵室内への熱漏洩量が増加する、消費電力が大きくなる等の問題を生じる。 As described above, in the refrigerator in which the heat dissipating member is arranged around the opening, the effect of preventing dew condensation is not stable, and variation tends to occur. As a result, in order to stably prevent dew condensation, it is necessary to allow a high-temperature refrigerant to flow with sufficient margin, resulting in an increase in the amount of heat leakage into the storage chamber and an increase in power consumption.
 以上に鑑み、本開示の技術は、より安定して結露を防止することのできる冷蔵庫を提供する。 In view of the above, the technology of the present disclosure provides a refrigerator that can more stably prevent condensation.
 前記のように結露防止の効果にバラツキが生じる理由として、本願発明者らは、箱体の壁又は断熱仕切板の前面板と、放熱部材との位置関係に着目した。 As described above, the inventors of the present application focused on the positional relationship between the wall of the box or the front plate of the heat insulating partition plate and the heat radiating member as the reason why the effect of preventing dew condensation occurs.
 冷蔵庫の箱体は、それぞれ薄い板からなる外箱と内箱との間に発泡性の断熱材を充填することで形成される。放熱部材は、開口部周辺の前面板の付近で外箱と内箱との間に配置される。ここで、発泡性の断熱材を充填する際の工程において発泡量等にバラツキが生じやすく、その影響を受けて、放熱部材の設置位置にバラツキが生じやすい。特許文献1のように柔軟性部材を用いたとしても、放熱部材を押し付ける力は不十分であり、放熱部材の位置にはやはりバラツキが生じる。このようなバラツキに起因して、放熱部材による結露防止の効果が不安定となる。この点に着目し、本願発明者らは、放熱部材の設置位置を安定させることにより、安定して結露を防止することを発想した。 A refrigerator box is formed by filling a foaming heat insulating material between an outer box and an inner box each made of a thin plate. The heat dissipating member is disposed between the outer box and the inner box in the vicinity of the front plate around the opening. Here, in the process of filling the foamable heat insulating material, the foaming amount or the like is likely to vary, and due to the influence, the installation position of the heat dissipation member is likely to vary. Even if a flexible member is used as in Patent Document 1, the force for pressing the heat radiating member is insufficient, and the position of the heat radiating member also varies. Due to such variations, the effect of preventing condensation by the heat radiating member becomes unstable. Focusing on this point, the inventors of the present application have conceived of stably preventing condensation by stabilizing the installation position of the heat dissipating member.
 本開示の第1の冷蔵庫は、少なくとも一つの箱状の貯蔵室と、放熱部材とを備える。貯蔵室は、壁部材からなる枠の一方を閉塞し且つ他方が扉により閉塞可能な開口面として構成されている。壁部材は、複数の板材からなる中空構造と、当該中空構造内に間に充填された発泡断熱材とを含む。放熱部材は、壁部材内に配置される。壁部材内において、放熱部材を板材に押し付ける押し付け部材が設けられる。押し付け部材は、所定の条件において放熱部材を板材に押し付ける状態を取る材料である。 The first refrigerator according to the present disclosure includes at least one box-shaped storage room and a heat radiating member. The storage chamber is configured as an opening surface that closes one of the frames made of wall members and the other can be closed by a door. A wall member contains the hollow structure which consists of a some board | plate material, and the foaming heat insulating material with which it filled in the said hollow structure. The heat radiating member is disposed in the wall member. In the wall member, a pressing member that presses the heat dissipation member against the plate member is provided. The pressing member is a material that takes a state in which the heat dissipation member is pressed against the plate material under a predetermined condition.
 本開示の冷蔵庫によると、発泡断熱材によって押し付け部材を所定条件とすることにより、貯蔵室の壁部材内において、放熱部材を望ましい位置に押し付けている。これにより、放熱部材の位置が安定するので、より安定して結露を防止することができる。 According to the refrigerator of the present disclosure, the heat radiating member is pressed to a desired position in the wall member of the storage chamber by setting the pressing member to a predetermined condition by the foam heat insulating material. Thereby, since the position of a heat radiating member is stabilized, dew condensation can be prevented more stably.
図1は、本開示の実施形態の例示的冷蔵庫を模式的に示す図である。FIG. 1 is a diagram schematically illustrating an exemplary refrigerator according to an embodiment of the present disclosure. 図2は、図1におけるII-II線による断面を模式的に示す図である。FIG. 2 is a diagram schematically showing a cross section taken along line II-II in FIG. 図3は、図2の構造を得るための製造工程を説明する図である。FIG. 3 is a diagram illustrating a manufacturing process for obtaining the structure of FIG. 図4は、図1におけるIV-IV線による断面を模式的に示す図である。FIG. 4 is a diagram schematically showing a cross section taken along line IV-IV in FIG. 図5は、図1におけるII-II線による断面について、他の例を模式的に示す図である。FIG. 5 is a diagram schematically showing another example of the cross section taken along line II-II in FIG. 図6は、図1におけるII-II線による断面について、更に他の例を模式的に示す図である。FIG. 6 is a diagram schematically showing still another example of the cross section taken along the line II-II in FIG. 図7は、図1の冷蔵庫の背面側を示し、放熱部材が背面側に設けられている例を示している。FIG. 7 shows the back side of the refrigerator of FIG. 1 and shows an example in which a heat dissipation member is provided on the back side. 図8は、放熱部材の一例としてコードヒーターを説明する模式図である。FIG. 8 is a schematic diagram illustrating a cord heater as an example of a heat dissipation member.
  (第1の実施形態)
 本開示の第1の実施形態の冷蔵庫について、図面を参照して説明する。図1は、本実施形態の例示的冷蔵庫10について示す斜視図である。
(First embodiment)
A refrigerator according to a first embodiment of the present disclosure will be described with reference to the drawings. FIG. 1 is a perspective view showing an exemplary refrigerator 10 of the present embodiment.
 冷蔵庫10は、箱体11と、箱体11内を複数の貯蔵室14に仕切る断熱仕切板12とを備える。貯蔵室14は、壁部材からなる方形状の枠にできる2つの開口の一方(図1では奥側)を他の壁によって閉塞し、他方(図1では手前側)を食品等を出し入れするための開口面として箱状に構成されている。図示は省略するが、開口面は、扉によって閉塞可能である。扉としては、ヒンジ開閉式の扉、引き出し式の扉等であっても良い。 The refrigerator 10 includes a box 11 and a heat insulating partition plate 12 that partitions the box 11 into a plurality of storage chambers 14. The storage chamber 14 is for closing one side (the back side in FIG. 1) of the two openings that can be formed into a square frame made of wall members with the other wall, and the other side (the front side in FIG. 1) to put food in and out. It is comprised in the box shape as an opening surface. Although illustration is omitted, the opening surface can be closed by a door. The door may be a hinged door, a drawer door, or the like.
 図1のように複数の貯蔵室14を備える冷蔵庫の場合、各貯蔵室14は、箱体11の一部及び断熱仕切板12を壁部材として構成される。複数の貯蔵室は、例えば、+5~-3℃程度の範囲に調整される冷蔵室、-10~-30℃程度の範囲に調整される冷凍室等を含んでいても良い。但し、単一の貯蔵室14を備える冷蔵庫であっても良く、その場合、貯蔵室14は箱体11の一部を壁部材として構成されることになる。 In the case of a refrigerator including a plurality of storage chambers 14 as shown in FIG. 1, each storage chamber 14 is configured with a part of the box 11 and the heat insulating partition plate 12 as wall members. The plurality of storage rooms may include, for example, a refrigeration room adjusted to a range of about +5 to −3 ° C., a freezing room adjusted to a range of about −10 to −30 ° C., and the like. However, a refrigerator provided with the single store room 14 may be sufficient, and the store room 14 will be comprised by using a part of box 11 as a wall member in that case.
 貯蔵室14を冷却するための手段としては、冷凍サイクルが用いられる。冷凍サイクルは、圧縮機、凝縮器、蒸発器、キャピラリーチューブ、ドライヤー、アキュムレーター等から構成され、これらが配管により結合されて、冷媒が循環する冷凍サイクルを構成している。 As a means for cooling the storage chamber 14, a refrigeration cycle is used. The refrigeration cycle is composed of a compressor, a condenser, an evaporator, a capillary tube, a dryer, an accumulator, and the like, which are connected by piping to constitute a refrigeration cycle in which refrigerant circulates.
 冷蔵庫10は、貯蔵室14の開口面周辺に、放熱部材13を備える。放熱部材13は、壁部材の内部に埋め込まれ、壁部材における開口面側の端部に位置している。放熱部材13としては、例えば、冷凍サイクルの高温冷媒が流れることによって放熱する冷媒パイプ、又は、通電することにより発熱するコードヒーター等を用いることができる。 The refrigerator 10 includes a heat radiating member 13 around the opening surface of the storage chamber 14. The heat radiating member 13 is embedded in the wall member and is located at the end of the wall member on the opening surface side. As the heat radiating member 13, for example, a refrigerant pipe that radiates heat when a high-temperature refrigerant in a refrigeration cycle flows, or a cord heater that generates heat when energized can be used.
 これにより、開口面の周辺における結露を防止することができる。つまり、貯蔵室14の開口面の周辺では、貯蔵室14内の低温により周囲の空気が冷却されて結露を生じるおそれがあるが、放熱部材13が放熱することにより貯蔵室14の開口面周辺が冷却されるのを抑制し、結露を防止する。 This makes it possible to prevent condensation around the opening surface. That is, in the vicinity of the opening surface of the storage chamber 14, the surrounding air may be cooled due to the low temperature in the storage chamber 14 and condensation may occur. Suppresses cooling and prevents condensation.
 次に、壁部材内における放熱部材13の設置方法について一例を説明する。図2は、冷蔵庫10の箱体11におけるII-II線による断面、つまり、外壁の開口面側の端部付近について示す断面図である。 Next, an example of the installation method of the heat dissipation member 13 in the wall member will be described. FIG. 2 is a cross-sectional view taken along the line II-II in the box 11 of the refrigerator 10, that is, the vicinity of the end of the outer wall on the opening surface side.
 箱体11は、金属性の板材からなる外箱21と、樹脂性の板材からなる内箱22と、その間に充填された発泡断熱材25とを含む。外箱21を構成する板材は折り曲げて加工され、開口面側(図2では下側)の端面材21aを構成すると共に、貯蔵室14の内側(図2では左側)に開くU字状の受部21bを構成する。また、内箱22は、開口面側の端部において外側に延びる鍔部22bを備える。鍔部22bは、受部21bに挿入され、冷媒パイプ23を保持するための開口面側に開いた放熱部材保持部22aを有する。 The box 11 includes an outer box 21 made of a metallic plate material, an inner box 22 made of a resinous plate material, and a foam heat insulating material 25 filled therebetween. The plate material constituting the outer box 21 is bent and processed to form an end face material 21a on the opening surface side (lower side in FIG. 2), and a U-shaped receiving portion that opens inside the storage chamber 14 (left side in FIG. 2). Part 21b is configured. The inner box 22 includes a flange 22b that extends outward at the end on the opening surface side. The flange portion 22b has a heat radiating member holding portion 22a that is inserted into the receiving portion 21b and opened to the opening surface side for holding the refrigerant pipe 23.
 冷媒パイプ23は、例えば銅、鉄等の材料からなる管であり、内部に冷凍サイクルの高温冷媒が流れることにより放熱部材として機能する。 The refrigerant pipe 23 is a pipe made of a material such as copper or iron, for example, and functions as a heat radiating member when a high-temperature refrigerant in the refrigeration cycle flows therein.
 冷媒パイプ23は、鍔部22bの放熱部材保持部22a内に配置され、且つ、押し付け部材24によって端面材21aに押し付けられている。これにより、冷媒パイプ23は端面材21aに押し付けられた位置に安定して配置される。従って、冷媒パイプ23による結露防止の効果が安定し、冷媒パイプ23に裕度をもって高温冷媒を流す必要が低下する。つまり、冷媒パイプ23に流す冷媒の温度を下げることができ、冷媒パイプ23から貯蔵室14内への熱漏洩量の低減、冷凍サイクルの効率向上を果たすことができる。 The refrigerant pipe 23 is disposed in the heat radiating member holding portion 22a of the flange portion 22b, and is pressed against the end face material 21a by the pressing member 24. Thereby, the refrigerant | coolant pipe 23 is stably arrange | positioned in the position pressed against the end surface material 21a. Therefore, the effect of preventing dew condensation by the refrigerant pipe 23 is stabilized, and the necessity of flowing a high-temperature refrigerant to the refrigerant pipe 23 with a margin is reduced. That is, the temperature of the refrigerant flowing through the refrigerant pipe 23 can be lowered, the amount of heat leakage from the refrigerant pipe 23 into the storage chamber 14 can be reduced, and the efficiency of the refrigeration cycle can be improved.
 ここで、箱体11は、発泡断熱材25が、外箱21と内箱22との間に充填されて発泡することにより構成されている。発泡断熱材25は、発泡の際に発熱する材料であって、例えば、硬質ウレタンフォーム等である。発泡時の発熱により、温度は例えば60~120℃程度まで上昇する。 Here, the box 11 is configured by foaming the foam heat insulating material 25 between the outer box 21 and the inner box 22 and foaming. The foam heat insulating material 25 is a material that generates heat during foaming, and is, for example, a rigid urethane foam. The temperature rises to about 60 to 120 ° C., for example, due to heat generation during foaming.
 また、押し付け部材24は、熱を受けることにより膨張した熱膨張性材料からなる。例えば、熱膨張性材料は所定温度において発泡する材料を含有し、且つ、所定温度は、発泡断熱材25が発泡する際の熱によって到達する温度である。これにより、発泡断熱材25を発泡させる際の熱を利用して、押し付け部材24を膨張させることができる。 Further, the pressing member 24 is made of a thermally expandable material that is expanded by receiving heat. For example, the thermally expansible material contains a material that foams at a predetermined temperature, and the predetermined temperature is a temperature reached by the heat generated when the foam heat insulating material 25 is foamed. Thereby, the pressing member 24 can be expanded using the heat at the time of foaming the foam heat insulating material 25.
 これに関し、図3には、発泡断熱材25を充填、発泡させる前の段階を示す。図3では、放熱部材保持部22aに膨張前の押し付け部材24a及び冷媒パイプ23が配置され、内箱22の鍔部22bが外箱21の受部21bに挿入されている。膨張前の押し付け部材24aは膨張後よりも体積が小さく、冷媒パイプ23を端面材21aに押し付ける力は生じていない。そのため冷媒パイプ23は端面材21aから離れている。 In this regard, FIG. 3 shows a stage before the foam heat insulating material 25 is filled and foamed. In FIG. 3, the pressing member 24 a and the refrigerant pipe 23 before expansion are arranged in the heat radiating member holding portion 22 a, and the flange portion 22 b of the inner box 22 is inserted into the receiving portion 21 b of the outer box 21. The pressing member 24a before expansion has a smaller volume than after expansion, and no force is generated to press the refrigerant pipe 23 against the end face material 21a. Therefore, the refrigerant pipe 23 is separated from the end face material 21a.
 この状態から、内箱22及び外箱21の間の隙間に発泡断熱材25を充填し且つ発泡させると、発泡断熱材25の発熱によって膨張前の押し付け部材24aが膨張する。この結果、押し付け部材24によって冷媒パイプ23が端面材21aに押し付けられた図2の状態となる。 From this state, when the foam heat insulating material 25 is filled in the gap between the inner box 22 and the outer box 21 and foamed, the heat generation of the foam heat insulating material 25 causes the pressing member 24a before expansion to expand. As a result, the refrigerant pipe 23 is pressed against the end face material 21a by the pressing member 24, as shown in FIG.
 このように、本実施形態の冷蔵庫10において、押し付け部材24を熱膨張させるために個別の工程を行う必要は無く、製造工程数及び製造コストの増加を抑制して冷蔵庫を製造できる。 Thus, in the refrigerator 10 of this embodiment, it is not necessary to perform a separate process for thermally expanding the pressing member 24, and the refrigerator can be manufactured while suppressing an increase in the number of manufacturing steps and manufacturing costs.
 尚、押し付け部材24として単純に反発性の強い材料を用いれば、冷媒パイプ23を端面材21aに確実に押し付けることは可能である。しかし、この場合には押し付け部材24の反発力に対抗して押し潰すようにしながら箱体11を組み立てる必要が生じる。これは冷蔵庫製造の難度上昇、工数及びコストの増加に繋がる。それに対し、本実施形態の構成であれば、容易に組み立てることができる。 In addition, if a material with a strong resilience is simply used as the pressing member 24, the refrigerant pipe 23 can be surely pressed against the end face material 21a. However, in this case, the box body 11 needs to be assembled while being crushed against the repulsive force of the pressing member 24. This leads to an increase in the difficulty of manufacturing the refrigerator and an increase in man-hours and costs. On the other hand, if it is the structure of this embodiment, it can assemble easily.
 ここで、熱膨張性材料は、例えば、熱可塑性樹脂からなる中空粒子の内空部分に発泡剤が充填された粉体状材料を、液体又はゲルに混合した構成の材料である。また、前記の粉体材料を固体材料に分散した構成でも良い。 Here, the heat-expandable material is, for example, a material having a structure in which a powdery material in which an inner space portion of a hollow particle made of a thermoplastic resin is filled with a foaming agent is mixed with a liquid or a gel. Moreover, the structure which disperse | distributed the said powder material to the solid material may be sufficient.
 このような熱膨張性材料は、所定の温度において粉体状材料が発泡することにより熱膨張する。熱膨張が起こる所定の温度は、中空粒子及び発泡剤の選択等により設定可能であり、発泡断熱材25の発泡時に到達する温度(前記の例では60~120℃程度)に対応させることができる。 Such a heat-expandable material is thermally expanded by foaming the powdery material at a predetermined temperature. The predetermined temperature at which thermal expansion occurs can be set by selecting the hollow particles and the foaming agent, and can correspond to the temperature reached when foaming the foam heat insulating material 25 (about 60 to 120 ° C. in the above example). .
 粉体状材料を構成する中空粒子の外径は、膨張前には例えば5~200μmであり、これが熱を受けて2~5倍の外径に膨張すると、熱膨張性材料の体積としては10~100倍程度に増加する。 The outer diameter of the hollow particles constituting the powdery material is, for example, 5 to 200 μm before expansion. When this expands to 2 to 5 times the outer diameter by receiving heat, the volume of the thermally expandable material is 10 Increases to about 100 times.
 中空粒子を構成する熱可塑性樹脂としては、例えばPMMA(polymethyl methacrylate)、PVDC(polyvinylidene chloride)等を用いることができる。また、発泡剤としては、例えば脂肪族炭化水素を主とするものであっても良い。 As the thermoplastic resin constituting the hollow particles, for example, PMMA (polymethyl methacrylate), PVDC (polyvinylidene chloride) and the like can be used. Moreover, as a foaming agent, you may mainly use an aliphatic hydrocarbon, for example.
 また、粉体状材料を混合するゲルとしては、水分を含まないオルガノゲルを用いても良い。同様に、粉体状材料を混合する液体としては、水分を含まない有機溶剤を用いても良い。更に、粉体状材料を分散させる固体材料としては、PVC、ゴム系の材料等を用いてもよい。 Also, as the gel for mixing the powder material, an organogel that does not contain moisture may be used. Similarly, an organic solvent that does not contain moisture may be used as the liquid for mixing the powder material. Furthermore, as a solid material for dispersing the powdery material, PVC, a rubber-based material, or the like may be used.
 また、押し付け部材24としては、以上に説明した発泡剤を内包する粉体状材料に代えて、形状記憶性能を有する樹脂等の材料を用いることもできる。つまり、体積の大きい状態を記憶した形状記憶材料を用意して、体積を小さくして放熱部材保持部22a内に配置しておく。その後、発泡断熱材25の発泡時の熱により、記憶している体積の大きい状態に変形すると、冷媒パイプ23を端面材21a側に押し付ける力が作用する。形状記憶材料が記憶した形状に変形する際の温度についても、材料の種類等により選ぶことができる。本実施形態の例では発泡断熱材25の発泡温度が60~120℃であるから、このような温度において形状を回復する形状記憶材料を用いれば良い。形状記憶材料の種類によっては、400~500%の変形が可能である。 Further, as the pressing member 24, a material such as a resin having shape memory performance can be used instead of the powdery material containing the foaming agent described above. That is, a shape memory material storing a large volume state is prepared, and the volume is reduced and arranged in the heat radiating member holding portion 22a. After that, when the foamed heat insulating material 25 is deformed into a large stored volume state by the heat at the time of foaming, a force for pressing the refrigerant pipe 23 toward the end face material 21a acts. The temperature at which the shape memory material is deformed into a memorized shape can also be selected depending on the type of material. In the example of the present embodiment, since the foaming temperature of the foam heat insulating material 25 is 60 to 120 ° C., a shape memory material that recovers the shape at such a temperature may be used. Depending on the type of shape memory material, 400-500% deformation is possible.
 尚、膨張後の押し付け部材24は、壁部材を構成する周囲の部材、特に、内箱22及び外箱21の板材よりも熱伝導性が低くなるようにするのが良い。これにより、押し付け部材24を通じた熱伝導を抑制し、箱体11の断熱性向上に貢献することができる。 The expanded pressing member 24 should have a lower thermal conductivity than the surrounding members constituting the wall member, in particular, the plate material of the inner box 22 and the outer box 21. Thereby, the heat conduction through the pressing member 24 can be suppressed, and the heat insulation of the box 11 can be improved.
 また、本実施形態の場合、図3のように当初は別の形状であった膨張前の押し付け部材24aが、膨張に伴って冷媒パイプ23の外形に沿った形状の押し付け部材24に変化している。従って、押し付け部材24は冷媒パイプ23に面(断面図では線)として接触しており、これは冷媒パイプ23を固定する目的からは望ましい。しかしながら、このことは必須ではない。例えば、図3に示す膨張前の押し付け部材24aの下面側が概ね平坦なまま膨張し、押し付け部材と放熱部材とが概ね線(断面図では点)にて接触しているのであってもよい。この場合にも、放熱部材を端面材21aに押し付ける機能は実現する。 Further, in the case of the present embodiment, the pressing member 24a before expansion, which was originally in a different shape as shown in FIG. 3, is changed to a pressing member 24 having a shape along the outer shape of the refrigerant pipe 23 along with the expansion. Yes. Accordingly, the pressing member 24 is in contact with the refrigerant pipe 23 as a surface (a line in the sectional view), which is desirable for the purpose of fixing the refrigerant pipe 23. However, this is not essential. For example, the lower surface side of the pressing member 24a before expansion shown in FIG. 3 may be expanded while being substantially flat, and the pressing member and the heat radiating member may be in contact with each other by a line (a point in the sectional view). Also in this case, the function of pressing the heat radiating member against the end face material 21a is realized.
 尚、特に押し付け部材24が冷媒パイプ23の外形に沿って変形する場合、他に冷媒パイプ23の位置を定めるための部材を用いなくても、押し付け部材24自体によって冷媒パイプ23を固定することができる。 In particular, when the pressing member 24 is deformed along the outer shape of the refrigerant pipe 23, the refrigerant pipe 23 can be fixed by the pressing member 24 itself without using any other member for determining the position of the refrigerant pipe 23. it can.
  ――断熱仕切板への適用――
 次に、壁部材内における放熱部材13の配置方法について、他の例を説明する。図4は、冷蔵庫10におけるIV-IV線による断面、つまり、冷蔵庫10の貯蔵室14同士の間を区切る断熱仕切板12について、開口面側の端部付近の断面を示す図である。
-Application to heat insulating partition plate-
Next, another example of the arrangement method of the heat dissipation member 13 in the wall member will be described. FIG. 4 is a diagram showing a cross section taken along line IV-IV in the refrigerator 10, that is, a cross section in the vicinity of the end portion on the opening surface side of the heat insulating partition plate 12 that partitions the storage chambers 14 of the refrigerator 10.
 断熱仕切板12は、板材31及び板材32と、これらの間に充填された発泡断熱材37とを含む。また、開口面側(図4では左側)には端面材35を備えると共に、2つの板材31及び板材32を繋ぐように放熱部材保持部36が設けられている。端面材35は、板材31と板材32の間に挿入される挿入部35aを有する断面形状である。断熱仕切板12内部の端面付近の上下それぞれに、端面材35の挿入部35aと、放熱部材保持部36と、板材31及び板材32の一方とによって、放熱部材としての冷媒パイプ33を収容する空間が構成される。当該空間において、冷媒パイプ33と、パイプの保持部36との間に押し付け部材34が配置される。押し付け部材34は、冷媒パイプ33を端面材35側に押し付ける力を発生させる。尚、図4には示されていないが、端面材35が押し付け部材34からの力によって脱落することのないように固定する手段が用いられている。例えば、挿入部35aを延長した爪が、保持部36に幾つかの箇所で引っかかるようになっていても良い。 The heat insulating partition plate 12 includes a plate material 31 and a plate material 32, and a foam heat insulating material 37 filled therebetween. In addition, an end face member 35 is provided on the opening surface side (left side in FIG. 4), and a heat radiating member holding portion 36 is provided so as to connect the two plate members 31 and 32. The end face material 35 has a cross-sectional shape having an insertion portion 35 a inserted between the plate material 31 and the plate material 32. Spaces for accommodating the refrigerant pipe 33 as a heat radiating member by the insertion portion 35a of the end face material 35, the heat radiating member holding portion 36, and one of the plate material 31 and the plate material 32 on the upper and lower sides in the vicinity of the end surface inside the heat insulating partition plate 12, respectively. Is configured. In the space, the pressing member 34 is disposed between the refrigerant pipe 33 and the pipe holding portion 36. The pressing member 34 generates a force that presses the refrigerant pipe 33 against the end face material 35 side. Although not shown in FIG. 4, means for fixing the end face material 35 so that it does not fall off due to the force from the pressing member 34 is used. For example, the nail | claw which extended the insertion part 35a may be caught in the holding | maintenance part 36 in several places.
 このような断熱仕切板12においても、押し付け部材34は、熱を受けることにより膨張した熱膨張性材料からなる。また、そのような熱膨張は、発泡断熱材37を充填し発泡させる際の熱により起こったものである。つまり、断熱仕切板12においても、膨張前の押し付け部材24をパイプの保持部36と冷媒パイプ33との間に配置しておき、これを発泡断熱材37の発泡時の熱により膨張させて、図4に示す構成とすることができる。押し付け部材34を膨張させるために個別の工程を行うことは、ここでも不要である。 Also in such a heat insulating partition plate 12, the pressing member 34 is made of a thermally expandable material that has expanded by receiving heat. Further, such thermal expansion is caused by heat generated when the foam heat insulating material 37 is filled and foamed. That is, also in the heat insulating partition plate 12, the pressing member 24 before expansion is disposed between the pipe holding portion 36 and the refrigerant pipe 33, and this is expanded by heat at the time of foaming of the foam heat insulating material 37, It can be set as the structure shown in FIG. Again, it is not necessary to carry out a separate process for inflating the pressing member 34.
 押し付け部材34が冷媒パイプ33を端面材35側に押し付けているので、冷媒パイプ33の位置が安定する。従って、冷媒パイプ33による結露防止の効果が安定し、冷媒パイプ33に裕度をもって高温冷媒を流す必要が低下する。つまり、冷媒パイプ33に流す冷媒の温度を下げることができ、冷媒パイプ33から貯蔵室14内への熱漏洩量の低減、冷凍サイクルの効率向上を果たすことができる。 Since the pressing member 34 presses the refrigerant pipe 33 against the end face material 35 side, the position of the refrigerant pipe 33 is stabilized. Therefore, the effect of preventing dew condensation by the refrigerant pipe 33 is stabilized, and the necessity of flowing a high-temperature refrigerant to the refrigerant pipe 33 with a margin is reduced. That is, the temperature of the refrigerant flowing through the refrigerant pipe 33 can be lowered, the amount of heat leakage from the refrigerant pipe 33 into the storage chamber 14 can be reduced, and the efficiency of the refrigeration cycle can be improved.
 尚、以上では、押し付け部材として、熱により膨張する熱膨張性材料を用いる場合を説明した。しかしながら、押し付け部材は、他の条件により膨張するものであっても良い。例えば、所定の圧力、加速度又は振動が印加されること、所定のpHとなること、もしくは、所定の化学反応を起こすことにより、押し付け部材が膨張するのであってもよい。このようにすることによっても、冷媒パイプ33を端面材に押し付けて安定した位置に配置することができる。 In the above description, the case where a thermally expandable material that expands by heat is used as the pressing member has been described. However, the pressing member may expand under other conditions. For example, the pressing member may be expanded by applying a predetermined pressure, acceleration, or vibration, reaching a predetermined pH, or causing a predetermined chemical reaction. Also in this way, the refrigerant pipe 33 can be pressed against the end face material and disposed at a stable position.
  (変形例)
 以上では、押し付け部材24として、熱膨張性材料を用いるものとした。また、熱膨張性材料として形状記憶材料を用いることも説明した。しかしながら、膨張することに代えて、変形することによって冷媒パイプ23を端面材21aに押し付けるのであっても良い。
(Modification)
In the above, a heat-expandable material is used as the pressing member 24. It has also been described that a shape memory material is used as the thermally expandable material. However, instead of expanding, the refrigerant pipe 23 may be pressed against the end face material 21a by deformation.
 この場合にも、形状記憶材料の利用が考えられる。つまり、冷媒パイプ23を押し付けることができる形状を記憶した形状記憶材料を用意し、これを冷媒パイプ23に力が加わらない形状に変形させて、図3の膨張前の押し付け部材24aに代えて配置する。例えば、延びた状態を記憶した蛇腹状又はバネ状の押し付け部材を用意し、これを縮めて配置する。その後、発泡断熱材の発泡時の熱によって記憶した形状に変形させる。前記の蛇腹状又はバネ状の部材であれば、延びた状態に変形する。これにより、冷媒パイプ23を押し付けることができる。 In this case as well, it is possible to use shape memory materials. That is, a shape memory material storing a shape capable of pressing the refrigerant pipe 23 is prepared, and is deformed into a shape in which no force is applied to the refrigerant pipe 23, and is arranged in place of the pressing member 24a before expansion in FIG. To do. For example, a bellows-like or spring-like pressing member storing the extended state is prepared, and this is contracted and arranged. Thereafter, the foamed heat insulating material is deformed into a memorized shape by heat during foaming. If it is the said bellows-like or spring-like member, it will deform | transform into the extended state. Thereby, the refrigerant pipe 23 can be pressed.
  (第2の実施形態)
 次に、本開示の第2の実施形態について説明する。本実施形態の冷蔵庫は、図1に示す第1の実施形態の冷蔵庫10と基本的な構成は同様であるから、以下には相違点を主に説明する。
(Second Embodiment)
Next, a second embodiment of the present disclosure will be described. Since the basic configuration of the refrigerator of the present embodiment is the same as that of the refrigerator 10 of the first embodiment shown in FIG. 1, differences will be mainly described below.
 図5は、本実施形態の冷蔵庫において、図1におけるII-II線による箱体11の断面を示す模式図である。本実施形態においても、第1の実施形態において説明したのと同様に、箱体11は、外箱21、内箱22及び発泡断熱材25を含む。また、外箱21を構成する板材により端面材21a及び受部21bが構成されていること、内箱22を構成する板材により鍔部22b、放熱部材保持部22aが構成されていることについても、第1の実施形態と同様である。更に、放熱部材保持部22aには、放熱部材として冷媒パイプ23が配置されている。 FIG. 5 is a schematic diagram showing a cross section of the box 11 taken along the line II-II in FIG. 1 in the refrigerator of the present embodiment. Also in the present embodiment, the box body 11 includes the outer box 21, the inner box 22, and the foam heat insulating material 25, as described in the first embodiment. Further, the end face material 21a and the receiving portion 21b are constituted by the plate material constituting the outer box 21, and the flange portion 22b and the heat radiation member holding portion 22a are constituted by the plate material constituting the inner box 22, This is the same as in the first embodiment. Furthermore, the refrigerant | coolant pipe 23 is arrange | positioned as a heat radiating member in the heat radiating member holding | maintenance part 22a.
 本実施形態の冷蔵庫では、端面材21aとの間に冷媒パイプ23を挟むように、気体は透過させるが発泡断熱材25は透過させないように構成された気体透過フィルム26が配置されている。気体透過フィルム26は、本実施形態において押し付け部材として機能する。更に、放熱部材保持部22aにおいて、貫通孔22cが設けられている。 In the refrigerator according to the present embodiment, a gas permeable film 26 configured to allow gas to permeate but not foam heat insulating material 25 so as to sandwich the refrigerant pipe 23 between the end face material 21a is disposed. The gas permeable film 26 functions as a pressing member in this embodiment. Furthermore, a through hole 22c is provided in the heat dissipation member holding portion 22a.
 貫通孔22cが設けられていることにより、外箱21と内箱22との間に発泡断熱材25を充填する際に、発泡断熱材25は貫通孔22cを通過して放熱部材保持部22a内にも充填される(矢印27によりこれを示す)。ここで、前記の通り、気体透過フィルム26は気体を透過させるが発泡断熱材25は透過させない。従って、放熱部材保持部22a内に発泡断熱材25が充填され且つ発泡すると、その圧力により気体透過フィルム26が移動し、押し付け部材として冷媒パイプ23を端面材21a側に押し付ける。 By providing the through hole 22c, when the foam heat insulating material 25 is filled between the outer box 21 and the inner box 22, the foam heat insulating material 25 passes through the through hole 22c and enters the heat dissipation member holding portion 22a. Is also filled (indicated by arrow 27). Here, as described above, the gas permeable film 26 transmits gas but does not transmit the foam heat insulating material 25. Therefore, when the foam heat insulating material 25 is filled in the heat radiating member holding portion 22a and foamed, the gas permeable film 26 is moved by the pressure, and the refrigerant pipe 23 is pressed against the end face material 21a as a pressing member.
 この際、空気などの気体は、矢印28のように気体透過フィルム26を透過し、放熱部材保持部22a内から逃げることができる。これにより、冷媒パイプ23は端面材21aに押し付けられた位置に安定して配置される。尚、図5において、冷媒パイプ23は端面材21aから幾分離れた位置に示されているが、これは発泡断熱材25が充填されて冷媒パイプ23が端面材21aに押し付けられる前の状態を示しているためである。 At this time, a gas such as air can pass through the gas permeable film 26 as indicated by an arrow 28 and escape from the heat radiating member holding portion 22a. Thereby, the refrigerant | coolant pipe 23 is stably arrange | positioned in the position pressed against the end surface material 21a. In FIG. 5, the refrigerant pipe 23 is shown at a position somewhat separated from the end face material 21a. This is the state before the foam heat insulating material 25 is filled and the refrigerant pipe 23 is pressed against the end face material 21a. It is because it shows.
  (第3の実施形態)
 次に、本開示の第3の実施形態について説明する。本実施形態の冷蔵庫は、図1に示す第1の実施形態の冷蔵庫10と基本的な構成は同様であるから、以下には相違点を主に説明する。
(Third embodiment)
Next, a third embodiment of the present disclosure will be described. Since the basic configuration of the refrigerator of the present embodiment is the same as that of the refrigerator 10 of the first embodiment shown in FIG. 1, differences will be mainly described below.
 図6は、本実施形態の冷蔵庫において、図1におけるII-II線による箱体11の断面を示す模式図である。本実施形態においても、第1の実施形態において説明したのと同様に、箱体11は、外箱21、内箱22及び発泡断熱材25を含む。また、外箱21を構成する板材により端面材21a及び受部21bが構成されていること、内箱22を構成する板材により鍔部22bが構成されていることについても、第1の実施形態と同様である。図1における放熱部材保持部22aについては、本実施形態では冷媒パイプ23を保持する機能を備えず、受部21bに鍔部22bを固定するための固定部22dとなっている。 FIG. 6 is a schematic diagram showing a cross section of the box 11 taken along the line II-II in FIG. 1 in the refrigerator of the present embodiment. Also in the present embodiment, the box body 11 includes the outer box 21, the inner box 22, and the foam heat insulating material 25, as described in the first embodiment. Also, the end face material 21a and the receiving portion 21b are constituted by the plate material constituting the outer box 21, and the flange portion 22b is constituted by the plate material constituting the inner box 22, as in the first embodiment. It is the same. The heat radiating member holding portion 22a in FIG. 1 does not have a function of holding the refrigerant pipe 23 in this embodiment, and is a fixing portion 22d for fixing the flange portion 22b to the receiving portion 21b.
 本実施形態では、冷媒パイプ23は、端面材21aに沿うと共に、箱体11の外側の角に近い位置に配置されている。また、冷媒パイプ23を覆うように押し付け部材24が配置され、且つ、押し付け部材24は例えばアルミテープであるカバー材29で覆われている。カバー材29は、冷蔵庫10の製造工程において、冷媒パイプ23及び押し付け部材24を所定の位置に配置する機能を果たす。 In the present embodiment, the refrigerant pipe 23 is disposed along the end face material 21a and at a position close to the outer corner of the box 11. Further, a pressing member 24 is disposed so as to cover the refrigerant pipe 23, and the pressing member 24 is covered with a cover material 29 made of, for example, aluminum tape. The cover material 29 fulfills a function of arranging the refrigerant pipe 23 and the pressing member 24 at predetermined positions in the manufacturing process of the refrigerator 10.
 本実施形態の冷蔵庫の場合、冷媒パイプ23は、押し付け部材24自体によって所定の位置に固定されている。 In the refrigerator of this embodiment, the refrigerant pipe 23 is fixed at a predetermined position by the pressing member 24 itself.
 本実施形態においても、冷媒パイプ23は押し付け部材24により外箱21に押し付けられている。押し付け部材24は、熱を受けることにより膨張した熱膨張性材料からなる。また、そのような熱膨張は、発泡断熱材25を充填し発泡させる際の熱により起こったものである。押し付け部材24を膨張させるために個別の工程を行うことは、ここでも不要である。 Also in this embodiment, the refrigerant pipe 23 is pressed against the outer box 21 by the pressing member 24. The pressing member 24 is made of a thermally expandable material that is expanded by receiving heat. Further, such thermal expansion is caused by heat generated when the foam heat insulating material 25 is filled and foamed. Again, it is not necessary to carry out a separate process for inflating the pressing member 24.
  (その他の構成例)
 尚、図1の冷蔵庫10では、断熱仕切板12及び箱体11の両方について放熱部材13を配置し、3つの貯蔵室14全ての開口面周辺全体に放熱部材13が配置された構成である。しかしながら、これは必須ではなく、例えば断熱仕切板12については放熱部材13の配置を省略しても良い。また、他の結露防止手段を併用する場合等において、開口面周辺の一部のみに放熱部材13を配置することも考えられる。
(Other configuration examples)
In addition, in the refrigerator 10 of FIG. 1, the heat radiating member 13 is arrange | positioned about both the heat insulation partition plate 12 and the box 11, and it is the structure by which the heat radiating member 13 is arrange | positioned to the whole periphery of the opening surface of all the three storage chambers 14. FIG. However, this is not essential. For example, the heat dissipating member 13 may be omitted from the heat insulating partition plate 12. Further, when other dew condensation prevention means are used in combination, it is also conceivable to dispose the heat radiating member 13 only in a part around the opening surface.
 更に、以上では、例えば図2のように放熱部材13を端面材21aに沿って配置する場合を説明した。しかし、放熱部材13は、他の位置に配置することも考えられる。例えば、図7には、放熱部材13を冷蔵庫10の背面側に配置する例を示している。つまり、貯蔵室14の奥側(扉とは反対側)の壁についても一対の板材と当該一対板材の間に充填された発泡断熱材を含む壁部材からなり、当該壁部材内に放熱部材13が配置されている。このような場合にも、押し付け部材24の膨張を利用して放熱部材13を外箱21に押し付けることができる。同様に、冷蔵庫10の側面側に放熱部材13を配置しても良い。 Furthermore, the case where the heat radiating member 13 is arranged along the end face material 21a as shown in FIG. 2 has been described above. However, the heat dissipating member 13 may be arranged at another position. For example, FIG. 7 shows an example in which the heat radiating member 13 is arranged on the back side of the refrigerator 10. That is, the wall on the back side (opposite side to the door) of the storage chamber 14 is also composed of a wall member including a pair of plate materials and a foam heat insulating material filled between the pair of plate materials, and the heat dissipation member 13 is included in the wall member. Is arranged. Even in such a case, the heat radiating member 13 can be pressed against the outer box 21 by utilizing the expansion of the pressing member 24. Similarly, the heat radiating member 13 may be disposed on the side of the refrigerator 10.
 また、以上では、放熱部材の一例として、冷凍サイクルの高温冷媒が流れることにより放熱する冷媒パイプを用いる場合を説明した。しかしながら、これには限定されない。例えば、通電することによりそれ自体が発熱するコードヒーターを用いることもできる。 In the above description, the case where the refrigerant pipe that radiates heat by flowing the high-temperature refrigerant in the refrigeration cycle is used as an example of the heat radiating member. However, it is not limited to this. For example, a code heater that generates heat when energized can be used.
 図8に、コードヒーターの一例を模式的に示す。コードヒーター40は、ガラス線、樹脂線等からなる芯線41と、当該芯線41に巻き付けられた発熱線42と、芯線41及び発熱線42を被覆する耐熱被覆43とを備える。耐熱被覆43は、例えばビニール、シリコーン等からなる。尚、図8では、耐熱被覆43を一部切り開いて内部(芯線41及び発熱線42)を示している。 Fig. 8 schematically shows an example of a cord heater. The cord heater 40 includes a core wire 41 made of a glass wire, a resin wire or the like, a heating wire 42 wound around the core wire 41, and a heat-resistant coating 43 that covers the core wire 41 and the heating wire 42. The heat resistant coating 43 is made of, for example, vinyl or silicone. In FIG. 8, a part of the heat-resistant coating 43 is cut open to show the inside (core wire 41 and heating wire 42).
 コードヒーターは冷媒パイプに比べて柔軟であり、形状の自由度が高いので、目的の形状に沿った配置が容易である。冷媒パイプは銅、鉄等からなる管であって、管が閉鎖されないように曲げる加工、溶接による接続等が必要であるが、コードヒーターであればそのようなことは不要である。 The cord heater is more flexible than the refrigerant pipe and has a high degree of freedom in shape, so it can be easily placed along the desired shape. The refrigerant pipe is a pipe made of copper, iron or the like, and needs to be bent so that the pipe is not closed, connected by welding, or the like.
 また、冷媒パイプに代えてコードヒーターを用いると、結露防止を目的として、冷蔵庫の前面開口部周囲に冷媒パイプを配置することは不要となる。これにより、冷媒パイプを短縮し、冷凍サイクルの構成を単純化することができる。冷蔵庫機械室のみにて冷凍サイクルを構成し、貯蔵室には電気配線だけを配置するようにして、冷媒パイプの溶接箇所を削減することも可能である。この結果、冷蔵庫の製造コストを低減できる。 If a cord heater is used instead of the refrigerant pipe, it is not necessary to arrange the refrigerant pipe around the front opening of the refrigerator for the purpose of preventing condensation. Thereby, a refrigerant | coolant pipe can be shortened and the structure of a refrigerating cycle can be simplified. It is also possible to configure the refrigeration cycle only in the refrigerator machine room, and to arrange only the electric wiring in the storage room, thereby reducing the number of welding points of the refrigerant pipe. As a result, the manufacturing cost of the refrigerator can be reduced.
 また、冷媒パイプは冷凍サイクルの一部を構成する部品であるから、温度の微調整は困難である。これに対し、コードヒーターは通電量を調整することにより温度の微調整が可能であり、更に、結露防止のための放熱が不要な場合には、発熱しないようにすることもできる。これにより、冷蔵庫内への無駄な侵入熱を削減することが可能である。 Also, since the refrigerant pipe is a part constituting a part of the refrigeration cycle, it is difficult to finely adjust the temperature. On the other hand, the temperature of the cord heater can be finely adjusted by adjusting the energization amount, and further, when the heat radiation for preventing condensation is not necessary, it is possible to prevent heat generation. As a result, it is possible to reduce waste heat entering the refrigerator.
 本開示の冷蔵庫は、放熱量を抑えながら安定して結露を抑制できるので、より高効率の冷蔵庫として有用である。 The refrigerator of the present disclosure is useful as a more efficient refrigerator because it can stably suppress condensation while suppressing the amount of heat released.
10   冷蔵庫
11   箱体
12   断熱仕切板
13   放熱部材
14   貯蔵室
21   外箱
21a  端面材
21b  受部
22   内箱
22a  放熱部材保持部
22b  鍔部
22c  貫通孔
22d  固定部
23   冷媒パイプ
24   押し付け部材
24a  膨張前の押し付け部材
25   発泡断熱材
26   気体透過フィルム
29   カバー部材
31   板材
32   板材
33   冷媒パイプ
34   押し付け部材
35   端面材
35a  挿入部
36   放熱部材保持部
37   発泡断熱材
40   コードヒーター
41   芯線
42   発熱線
43   耐熱被覆
DESCRIPTION OF SYMBOLS 10 Refrigerator 11 Box 12 Heat insulation partition plate 13 Heat radiating member 14 Storage chamber 21 Outer box 21a End surface material 21b End part 22 Inner box 22a Heat radiating member holding part 22b Gutter part 22c Through-hole 22d Fixing part 23 Refrigerant pipe 24 Pressing member 24a Before expansion Pressing member 25 Foam heat insulating material 26 Gas permeable film 29 Cover member 31 Plate material 32 Plate material 33 Refrigerant pipe 34 Pressing member 35 End face material 35a Inserting portion 36 Heat radiating member holding portion 37 Foam heat insulating material 40 Code heater 41 Core wire 42 Heating wire 43 Heat resistant coating

Claims (18)

  1.  少なくとも一つの箱状の貯蔵室と、
     放熱部材とを備え、
     前記貯蔵室は、壁部材からなる枠の一方が閉塞され且つ他方が扉により閉塞可能な開口面として構成されており、
     前記壁部材は、複数の板材からなる中空構造と、当該中空構造内に充填された発泡断熱材とを含み、
     前記放熱部材は、前記壁部材内に配置され、
     前記壁部材内において、前記放熱部材を前記板材に押し付ける押し付け部材が設けられ、
     前記押し付け部材は、所定の条件において前記放熱部材を押し付ける状態を取る材料であることを特徴とする、冷蔵庫。
    At least one box-shaped storage room;
    A heat dissipation member,
    The storage chamber is configured as an opening surface in which one of the frames made of wall members is closed and the other can be closed by a door,
    The wall member includes a hollow structure made of a plurality of plate members, and a foam heat insulating material filled in the hollow structure,
    The heat dissipating member is disposed in the wall member;
    In the wall member, a pressing member that presses the heat dissipation member against the plate member is provided,
    The refrigerator, wherein the pressing member is a material that takes a state of pressing the heat radiating member under a predetermined condition.
  2.  請求項1において、
     前記押し付け部材は、所定温度において膨張する熱膨張性材料であり、
     前記発泡断熱材は、発泡時に発熱する材料であり、
     前記所定温度は、前記発泡断熱材の発泡時の発熱により到達する温度であることを特徴とする、冷蔵庫。
    In claim 1,
    The pressing member is a thermally expandable material that expands at a predetermined temperature,
    The foam insulation is a material that generates heat during foaming,
    The refrigerator according to claim 1, wherein the predetermined temperature is a temperature reached by heat generation during foaming of the foam heat insulating material.
  3.  請求項1又は2において、
     前記壁部材を構成する前記複数の板材は、それぞれ、冷蔵庫の外形を成す外箱及び前記外箱の内側に配置されて前記貯蔵室を成す内箱を構成し、
     前記壁部材における前記開口面側の端面は端面材により構成され、
     前記押し付け部材は、前記板材及び前記端面材の少なくとも一方に前記放熱部材を押し付けることを特徴とする、冷蔵庫。
    In claim 1 or 2,
    The plurality of plate members constituting the wall member, respectively, constitute an outer box constituting the outer shape of the refrigerator and an inner box arranged inside the outer box to constitute the storage chamber,
    The end surface on the opening surface side of the wall member is composed of an end surface material,
    The said pressing member presses the said heat radiating member against at least one of the said board | plate material and the said end surface material, The refrigerator characterized by the above-mentioned.
  4.  請求項3において、
     前記外箱を構成する前記板材は、前記開口面側の端部において折り曲げられて前記端面材の少なくとも一部を構成すると共に、前記貯蔵室の内側に開くU字状の受部を構成し、
     前記放熱部材は、前記壁部材内に前記端面材に沿って配置され、
     前記内箱を構成する前記板材は、前記開口面側の端部において、前記貯蔵室の外側方向に延びて少なくとも一部が前記受部に挿入される鍔部を備え、
     前記鍔部は、前記放熱部材を保持し、且つ、前記端面材の側に開いた放熱部材保持部を備えることを特徴とする、冷蔵庫。
    In claim 3,
    The plate material constituting the outer box is bent at an end portion on the opening surface side to constitute at least a part of the end face material, and constitutes a U-shaped receiving portion that opens inside the storage chamber,
    The heat dissipation member is disposed along the end face material in the wall member,
    The plate member constituting the inner box includes a flange portion that extends in an outer side direction of the storage chamber and is inserted into the receiving portion at an end portion on the opening surface side,
    The refrigerator includes a heat dissipation member holding portion that holds the heat dissipation member and is open to the end face material.
  5.  請求項1~4のいずれか1つにおいて、
     複数の前記貯蔵室を備え、
     前記壁部材は、前記複数の貯蔵室同士の間を仕切る断熱仕切板を構成し、
     前記壁部材における前記開口面側の端面は端面材により構成され、
     前記押し付け部材は、前記板材及び前記端面材の少なくとも一方に前記放熱部材を押し付けることを特徴とする、冷蔵庫。
    In any one of claims 1 to 4,
    A plurality of the storage chambers;
    The wall member constitutes a heat insulating partition plate that partitions between the plurality of storage chambers,
    The end surface on the opening surface side of the wall member is composed of an end surface material,
    The said pressing member presses the said heat radiating member against at least one of the said board | plate material and the said end surface material, The refrigerator characterized by the above-mentioned.
  6.  請求項5において、
     前記断熱仕切板の前記端面材付近において、前記複数の板材を繋ぐように放熱部材保持部が設けられ、
     前記端面材は、前記断熱仕切板における前記複数の板材の間に挿入される挿入部を備え、
     前記放熱部材は、前記壁部材内に前記端面材に沿って配置され、
     前記挿入部と、前記放熱部材保持部と、前記複数の板材のうちの一つとにより、前記断熱仕切板の内部の前記端面材付近に、前記放熱部材を収容する空間が構成されていることを特徴とする、冷蔵庫。
    In claim 5,
    In the vicinity of the end face material of the heat insulating partition plate, a heat radiating member holding portion is provided so as to connect the plurality of plate materials,
    The end face material includes an insertion portion that is inserted between the plurality of plate materials in the heat insulating partition plate,
    The heat dissipation member is disposed along the end face material in the wall member,
    A space for accommodating the heat radiating member is formed in the vicinity of the end face material inside the heat insulating partition plate by the insertion portion, the heat radiating member holding portion, and one of the plurality of plate members. Features a refrigerator.
  7.  請求項1において、
     前記壁部材における前記開口面側の端面は端面材により構成され、
     前記壁部材内において、前記放熱部材及び前記押し付け部材を前記端面材に沿って保持する放熱部材保持部を更に備えることを特徴とする、冷蔵庫。
    In claim 1,
    The end surface on the opening surface side of the wall member is composed of an end surface material,
    The refrigerator further comprising a heat radiating member holding portion for holding the heat radiating member and the pressing member along the end face material in the wall member.
  8.  請求項1~7のいずれか1つにおいて、
     前記貯蔵室における前記扉と反対側を閉塞する奥側壁についても、前記複数の板材からなる中空構造と、当該中空構造内に充填された前記発泡断熱材とを含む前記壁部材からなり、
     前記奥側壁内に前記放熱部材が配置されていることを特徴とする冷蔵庫。
    In any one of claims 1 to 7,
    Regarding the back side wall that closes the opposite side of the door in the storage chamber, the wall structure includes the hollow structure made of the plurality of plate members, and the foam heat insulating material filled in the hollow structure,
    The said heat radiating member is arrange | positioned in the said back side wall, The refrigerator characterized by the above-mentioned.
  9.  請求項1~8のいずれか1つにおいて、
     前記押し付け部材は、熱可塑性樹脂からなる中空粒子であって、その中空部分に発泡剤が充填された粉体状材料を含むことを特徴とする、冷蔵庫。
    Any one of claims 1 to 8,
    The refrigerator, wherein the pressing member is a hollow particle made of a thermoplastic resin, and includes a powdery material in which a hollow part is filled with a foaming agent.
  10.  請求項9において、
     前記粉体状材料は、液体若しくはゲルに混合された状態、又は、固体材料に分散された状体であることを特徴とする、冷蔵庫。
    In claim 9,
    The refrigerator is characterized in that the powdery material is in a state of being mixed in a liquid or gel, or in a state of being dispersed in a solid material.
  11.  請求項1~10のいずれか1つにおいて、
     前記押し付け部材は、前記所定の条件において予め規定された形状に変形する形状記憶材料であることを特徴とする、冷蔵庫。
    In any one of claims 1 to 10,
    The refrigerator, wherein the pressing member is a shape memory material that is deformed into a predetermined shape under the predetermined condition.
  12.  請求項1~11のいずれか1つにおいて、
     膨張後の前記押し付け部材は、外箱、内箱及び端面材の少なくとも一つに比べて熱伝導率が低いことを特徴とする、冷蔵庫。
    In any one of claims 1 to 11,
    The said pressing member after expansion | swelling has low heat conductivity compared with at least one of an outer box, an inner box, and an end surface material, The refrigerator characterized by the above-mentioned.
  13.  請求項1において、
     前記所定の条件は、所定の圧力、加速度又は振動が印加されること、所定のpHとなること、もしくは、所定の化学反応を起こすことであることを特徴とする、冷蔵庫。
    In claim 1,
    The refrigerator is characterized in that the predetermined condition is that a predetermined pressure, acceleration or vibration is applied, a predetermined pH is reached, or a predetermined chemical reaction is caused.
  14.  請求項1において、
     前記押し付け部材は、前記発泡断熱材を透過させない材料からなり、
     前記放熱部材は、前記押し付け部材を介して前記発泡断熱材により前記板材に押し付けられていることを特徴とする、冷蔵庫。
    In claim 1,
    The pressing member is made of a material that does not permeate the foam heat insulating material,
    The refrigerator, wherein the heat radiating member is pressed against the plate material by the foam heat insulating material through the pressing member.
  15.  請求項14において、
     前記押し付け部材は、気体は透過させるが前記発泡断熱材は透過させない気体透過フィルムであり、
     前記気体透過フィルムと前記板材との間に前記放熱部材が位置し、
     前記放熱部材は、前記気体透過フィルムを介して前記発泡断熱材により前記板材に押し付けられていることを特徴とする、冷蔵庫。
    In claim 14,
    The pressing member is a gas permeable film that allows gas to permeate but does not allow the foam insulation to permeate.
    The heat radiating member is located between the gas permeable film and the plate material,
    The refrigerator, wherein the heat radiating member is pressed against the plate material by the foam heat insulating material through the gas permeable film.
  16.  請求項14又は15において、
     前記板材の一部からなるか、又は、個別の部材として設けられ、前記放熱部材を保持すると共に前記端面材側に開いた放熱部材保持部を更に備え、
     前記放熱部材保持部は、前記発泡断熱材の通路となる貫通孔を備えることを特徴とする、冷蔵庫。
    In claim 14 or 15,
    It comprises a part of the plate material, or is provided as a separate member, further comprising a heat dissipating member holding portion that holds the heat dissipating member and opens on the end face material side,
    The refrigerator according to claim 1, wherein the heat dissipating member holding portion includes a through hole serving as a passage for the foam heat insulating material.
  17.  請求項1~16のいずれか1つにおいて、
     前記放熱部材は、内部に冷凍サイクルの高温冷媒が流れる冷媒パイプであることを特徴とする、冷蔵庫。
    In any one of claims 1 to 16,
    The refrigerator, wherein the heat radiating member is a refrigerant pipe in which a high-temperature refrigerant of a refrigeration cycle flows.
  18.  請求項1~17のいずれか1つにおいて、
     前記放熱部材は、通電することにより発熱するコードヒーターであることを特徴とする、冷蔵庫。
    In any one of claims 1 to 17,
    The refrigerator is characterized in that the heat radiating member is a cord heater that generates heat when energized.
PCT/JP2018/013497 2017-03-30 2018-03-29 Refrigerator WO2018181835A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197024983A KR102530182B1 (en) 2017-03-30 2018-03-29 Refrigerator [REFRIGERAOR]
US16/499,844 US11486628B2 (en) 2017-03-30 2018-03-29 Refrigerator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017068119 2017-03-30
JP2017-068119 2017-03-30
JP2017243995A JP2018169149A (en) 2017-03-30 2017-12-20 refrigerator
JP2017-243995 2017-12-20

Publications (1)

Publication Number Publication Date
WO2018181835A1 true WO2018181835A1 (en) 2018-10-04

Family

ID=63678028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013497 WO2018181835A1 (en) 2017-03-30 2018-03-29 Refrigerator

Country Status (1)

Country Link
WO (1) WO2018181835A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109813035A (en) * 2018-12-29 2019-05-28 青岛海尔股份有限公司 Foam partition and the refrigerator with it

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101258U (en) * 1972-03-01 1973-11-28
JPS5598975U (en) * 1978-12-28 1980-07-09
JPS5912987U (en) * 1982-07-15 1984-01-26 三菱電機株式会社 Refrigerator insulation box
JPS5912990U (en) * 1982-07-15 1984-01-26 三菱電機株式会社 refrigerator box
JPS6154177U (en) * 1984-08-29 1986-04-11
JPS61235670A (en) * 1985-04-10 1986-10-20 松下冷機株式会社 Manufacture of heat-insulating box
JPS6365272A (en) * 1986-09-05 1988-03-23 松下冷機株式会社 Refrigerator
JPS63163758A (en) * 1986-12-26 1988-07-07 松下冷機株式会社 Refrigerator
JPH11201373A (en) * 1998-01-13 1999-07-30 Sanyo Electric Co Ltd Heat insulating structure and manufacturing device thereof
JP2004225946A (en) * 2003-01-20 2004-08-12 Sanyo Electric Co Ltd Cooling storage, and method of manufacturing partitioning part of cooling storage
JP2009068777A (en) * 2007-09-13 2009-04-02 Toshiba Corp Refrigerator
US20130037240A1 (en) * 2011-08-12 2013-02-14 Samsung Electronics Co., Ltd. Refrigerator

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101258U (en) * 1972-03-01 1973-11-28
JPS5598975U (en) * 1978-12-28 1980-07-09
JPS5912987U (en) * 1982-07-15 1984-01-26 三菱電機株式会社 Refrigerator insulation box
JPS5912990U (en) * 1982-07-15 1984-01-26 三菱電機株式会社 refrigerator box
JPS6154177U (en) * 1984-08-29 1986-04-11
JPS61235670A (en) * 1985-04-10 1986-10-20 松下冷機株式会社 Manufacture of heat-insulating box
JPS6365272A (en) * 1986-09-05 1988-03-23 松下冷機株式会社 Refrigerator
JPS63163758A (en) * 1986-12-26 1988-07-07 松下冷機株式会社 Refrigerator
JPH11201373A (en) * 1998-01-13 1999-07-30 Sanyo Electric Co Ltd Heat insulating structure and manufacturing device thereof
JP2004225946A (en) * 2003-01-20 2004-08-12 Sanyo Electric Co Ltd Cooling storage, and method of manufacturing partitioning part of cooling storage
JP2009068777A (en) * 2007-09-13 2009-04-02 Toshiba Corp Refrigerator
US20130037240A1 (en) * 2011-08-12 2013-02-14 Samsung Electronics Co., Ltd. Refrigerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109813035A (en) * 2018-12-29 2019-05-28 青岛海尔股份有限公司 Foam partition and the refrigerator with it

Similar Documents

Publication Publication Date Title
US10876786B2 (en) Vacuum adiabatic body, fabrication method for the vacuum adiabatic body, porous substance package, and refrigerator
JP2008531960A (en) Storage using thermoelectric elements
JP2012063038A (en) Refrigerator
JPWO2018047624A1 (en) Negative pressure release port and refrigeration system
WO2018181835A1 (en) Refrigerator
AU2019427660B2 (en) Refrigerator
JP2018169149A (en) refrigerator
JP3423172B2 (en) Electric refrigerator
JP2006125804A (en) Heat insulation casing and refrigerator
KR100611453B1 (en) Assembly for chiller assembly of a storage chamber
JP2005180795A (en) Heat insulating panel with electronic cooling unit
JPH08247632A (en) Refrigerator
KR20110007707A (en) Energy saving refrigerator with phase change materil
KR20200001006A (en) Heating module, cover member of the same and heating system including those same
JP4241626B2 (en) refrigerator
JP4939694B2 (en) Wall structure for heat insulation and heat transfer
JP2014194294A (en) Heat exchanger, air conditioner using heat exchanger, and heat exchanger manufacturing method
JP6446726B2 (en) refrigerator
EP2639532A2 (en) Inclined mounted fan structure
JP2008202915A (en) Refrigerator
JP2005180720A (en) Refrigerator
WO2005040702A1 (en) Refrigerator
JP2017071234A (en) Vehicle air conditioner
JP2019120437A (en) Heat insulation chamber
JP4070991B2 (en) Thermoelectric device, storage provided with the device, and method of assembling the storage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197024983

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18777467

Country of ref document: EP

Kind code of ref document: A1