JP4939694B2 - Wall structure for heat insulation and heat transfer - Google Patents

Wall structure for heat insulation and heat transfer Download PDF

Info

Publication number
JP4939694B2
JP4939694B2 JP2001119354A JP2001119354A JP4939694B2 JP 4939694 B2 JP4939694 B2 JP 4939694B2 JP 2001119354 A JP2001119354 A JP 2001119354A JP 2001119354 A JP2001119354 A JP 2001119354A JP 4939694 B2 JP4939694 B2 JP 4939694B2
Authority
JP
Japan
Prior art keywords
plate
heat
opening
wall structure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001119354A
Other languages
Japanese (ja)
Other versions
JP2002309689A (en
Inventor
隆士 増岡
洋文 谷川
裕章 中村
満春 大西
慎司 右田
義充 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHOWA MANUFACTURING CO., LTD.
Fukuoka Prefectural Government
Fukuoka Industry Science and Technology Foundation
Allm Inc
Original Assignee
SHOWA MANUFACTURING CO., LTD.
Fukuoka Prefectural Government
Fukuoka Industry Science and Technology Foundation
Allm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHOWA MANUFACTURING CO., LTD., Fukuoka Prefectural Government, Fukuoka Industry Science and Technology Foundation, Allm Inc filed Critical SHOWA MANUFACTURING CO., LTD.
Priority to JP2001119354A priority Critical patent/JP4939694B2/en
Publication of JP2002309689A publication Critical patent/JP2002309689A/en
Application granted granted Critical
Publication of JP4939694B2 publication Critical patent/JP4939694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は,中空壁体内に高熱伝導性プレートと低熱伝導性格子体を配置して構成される断熱と伝熱を行なう壁構造体に関する。
【0002】
【従来の技術】
地球温暖化の原因の一つとされている二酸化炭素の発生量を削減するため,熱エネルギを利用する各種設備や装置は,熱の高効率利用が進められている。かかる設備や装置における高温部と低温部との境界に配設される断熱を行なう壁構造体の高性能化は,高温や低温状態の熱を高効率で利用する上で重要な技術の一つとされている。従来,高性能に断熱を行う断熱壁構造体は,セラミックファイバ,グラスファイバ,多孔体等の可能な限り低熱伝導率の固体を中空壁体内に充填して遮熱層を形成することが望ましいと考えられていた。
【0003】
一般に,熱が移動する形式としては,熱伝導,熱伝達及び熱放射の三基本形式があり,断熱壁構造体は,断熱材が熱を遮断しているのではなく,これらの三基本形式による熱の移動を行い難い材料に選定し,熱遮断の構造を工夫している。従来の断熱壁構造体は,例えば,熱伝導による熱移動を低減し,中空壁体内の対流空間を制限するために低熱伝導率物質を充填したものであり,中空壁体内に熱伝達に関与する対流発生を抑制するように,断熱壁として低熱伝導物質が利用されている。
【0004】
従来,密閉された気体透過性のない包囲体内に,形状保持材と低熱伝導率ガスを封入した断熱壁構造体が提案されている(例えば,特開平7−156313号公報参照)。該断熱壁構造体は,形状保持材と低熱伝導率ガスとの封入については,包囲体内に発泡性樹脂の原料を注入し,発泡硬化させた後に,包囲体内を大気圧以下に減圧し,次いで,低熱伝導率ガスを封入して包囲体を密閉することによって形成されている。
【0005】
また,特開平6−221750号公報に開示されている断熱パネルは,2枚の金属製表面板間に断熱材が介在されており,一方の金属製表面板の内面側に作動流体路と冷熱流体路が形成されている。金属製表面板は,作動流体路内に作動流体が封入されてヒートパイプ化され,作動流体路を金属製表面板全面がほぼ均一な温度分布となるパターンとなる作動流体封入部が形成され,また,冷熱用流体が通過する作動流体路は,作動流体封入部に隣接して設けられている。
【0006】
【発明が解決しようとする課題】
しかしながら,従来の断熱壁構造体は,高断熱を得るために,低熱伝導材の充填密度を変化させずに,断熱壁を厚くしているが,断熱壁を厚くすると,熱伝達に関与する対流が発生し易くなり,対流発生限界を超えると,熱伝達による熱移動が始まり,断熱度を低下させる現象が発生する。また,断熱壁については,高断熱を得るために低熱伝導材の充填密度を増加させると,挿入密度が増し,熱伝導による熱移動に関係する熱伝導率が大きくなり,断熱度を低下させる現象が発生する。断熱構造体は,上記のような低熱伝導材を中空壁体内に充填することが必ずしも十分な遮熱度を確保できるものではないことが分かってきた。断熱壁構造体について,中空壁体内の密閉空間に低熱伝導材を充填した時は,密閉空間それ自体において温度差が発生して内部自然対流が発生して熱移動が生じ,遮熱度を低下させる原因となる。
【0007】
そこで,断熱壁構造体として,ケース等の中空壁体内にグラスファイバ,セラミックファイバ等の遮熱繊維材料を充填すると共に,遮熱繊維材料内に有効熱伝導率の高いヒートパイプを単層又は多層に配設することが考えられる。このような断熱壁構造体は,熱流方向と直交する方向に延びる中空壁体内の密閉空間を等温にすることによって,中空壁体内の密閉空間における内部自然対流の発生を抑制し,それによって断熱性能を向上させることが分かった。
【0008】
しかしながら,上記の断熱壁構造体は,中空壁体内にグラスファイバ,セラミックファイバ等の遮熱繊維材料を充填すると共に,該遮熱繊維材料内に有効熱伝導率の高いヒートパイプを配設するもの,高価な遮熱繊維材料を用いる以上,断熱壁構造体の製造コストを上昇させると共に,中空壁体内の密閉空間にグラスファイバ,セラミックファイバ等の遮熱繊維材料を充填するということが,中空壁体内の成層における等温性を確保して内部熱対流を抑制するという技術的思想には貢献せず,場合によっては,内部自然対流を発生させて遮熱度を低下させる現象があることが分かった。
【0009】
そこで,断熱壁構造体について,ヒートパイプを中空壁体内の密閉空間に指向配置して熱流方向と直交する方向(例えば,水平方向,垂直方向)における成層での等温性を高め,中空壁体内の密閉空間での内部自然対流の発生を抑制して断熱性能を向上させることに着目し,遮熱繊維材料等の低熱伝導性固体を中空壁体内に充填することによる技術的思想とは全く異なり,密閉空間に低熱伝導性固体を配置することなく,高熱伝導性固体のみを中空壁体内の密閉空間に熱流方向に直交する方向に拡げて指向配置することによって成層での等温性を確保し,断熱効果を向上させることが有効であると考えた。
【0010】
また,断熱壁構造体を建造物等の密閉室の壁体に適用すると,図6及び図7に示すように,夏季日中において,太陽18が昇って室外2の外部温度が上昇する場合に,室内1は断熱壁体21によって遮熱され,室内1の温度は温度計16が示すように,徐々ではあるが上昇していくが,所定の温度範囲に維持され,過熱状態は発生しない。しかしながら,月19が出たりする夜間等の外気即ち室外2の外部温度が低下するが,室内1の温度は,断熱壁体21の遮熱作用が悪影響となり,日中に上昇した室内温度のままの高温状態が維持されることになり,実用上余り好ましくない状態が維持されることになる。そこで,建造物等の壁体では,日中においては室内が断熱壁体21によって室外から遮熱されるが,夜間になると,室外2の外気の温度低下に従って室内1が低下していくことが望ましい状態である。即ち,建造物等の壁体としては,夏季日中等の室外温度が高い場合には室内が室外から遮熱され,また,冬季や夜間になると,室外の温度が低い場合には,室内の熱が屋外等の室外に壁体を通じて放熱される状態になることが望まれる。更に,冬季等の室外温度が余りにも低く,電気部品等に悪影響がある場合には,壁体を遮熱状態にして室内温度を適正な温度に維持することが好ましい。
【0011】
ところで,近年急増している携帯電話無線基地局等の密閉室内には,電源設備,無線,制御装置等が設備されており,これらの設備は,ごみ,粉塵,高温を嫌う設備であり,これらの電気部品からも発熱するという現象があり,また,近年の携帯電話通信データ量が増大し,更なる温度上昇が発生する現状であり,そこで,従来の携帯電話無線基地局等の室内には高価な冷房設備を設けているのが現状である。
【0012】
上記のような携帯電話無線基地局,密閉倉庫等の建造物の壁体において,断熱壁体と伝熱壁体との両機能を実現できる壁体が適用できれば,室内の通風のための人手を必要とせず,エアコン等の高価な設備を不用にし,省エネルギーを実現できるが,従来の壁体では両機能を壁体に持たせるという技術的思想が実現されていないのが現状であり,上記のような壁体として如何にして実現させるかの課題がある。
【0013】
【課題を解決するための手段】
この発明の目的は,建造物,構造物,冷蔵冷凍庫,恒温庫,温蔵庫,物体収容ケース,シェル等の密閉室を形成する中空壁体に適用され,室外が室内より高温時又は過度に低い時には,室内を室外から遮熱するため断熱壁体として機能させ,また,夜間等の室外温度が低下した状態では室内から室外へ放熱させて室内を適正な温度に低下させる伝熱壁体として機能させる壁構造体であり,中空壁体内に熱流方向に実質的に直交する方向に指向配置された高熱伝導性プレートに垂直な多数のセル状空間を形成する低熱伝導性格子体を配置し,中空壁体内の自然対流の発生を抑制して遮熱度をアップし,又は中空壁体内を通風して伝熱促進し,省エネルギへ貢献すると共に低温度や高温度の極限環境において容易に適用できる製造コストが安価で軽量に構成された断熱と伝熱を行なう壁構造体を提供することである。
【0014】
この発明は,室内と室外を仕切る外側プレートと内側プレートから構成された中空壁体,該中空壁体内に配置され且つ熱流に直交する方向の全域に指向配置された等温面を形成する少なくとも1層の高熱伝導性プレート,前記中空壁体内に配置され且つ前記高熱伝導性プレートに垂直で厚さ方向に延びる多数のセル状空間を形成する縦プレートと横プレートから構成される低熱伝導性格子体,前記中空壁体の前記外側プレートの上部と下部とに形成された開口部,前記開口部を開閉するシャッタ,及び前記シャッタを開閉作動する開閉作動手段を有し,前記横プレートは,少なくとも前記中空壁体の前記内側プレートに隣接する前記セル状空間に配置されたもののみ又は全てが前記中空壁体,前記高熱伝導性プレート及び/又は前記縦プレートに対して一辺を支点として枢動可能に取り付けられ,前記横プレートを枢動させる作動手段が温度変動によって変形する形状記憶合金,前記室内と前記室外の温度差に応答して変形するバイメタル,前記温度差に応答して作動するリンク機構,前記開口部の開放によって前記中空壁体内に発生する自然対流又は高温部から低温部への内部自然対流,及び/又は前記開口部に設けられたファンの駆動によって発生する強制的な通風から構成されていることから成る断熱と伝熱を行なう壁構造体に関する。
【0015】
また,前記中空壁体を構成する前記外側プレートと前記内側プレートは,高熱伝導性材料で作製されている。
【0016】
前記シャッタを開閉作動する前記開閉作動手段は,温度変動によって変形する形状記憶合金,前記室内と前記室外の温度差に応答して変形するバイメタル,及び/又は前記温度差に応答して作動するリンク機構である。
【0017】
この壁構造体は,前記シャッタによる前記開口部の閉鎖時には,前記横プレートが前記高熱伝導性プレートに対して垂直方向に延びて前記縦プレートに沿う流れを阻止して前記中空壁体内が断熱状態になるものである。
【0018】
また,この壁構造体は,前記外側プレートと前記内側プレートの間が上下において連通しており,前記シャッタによる前記開口部の開放時には,前記横プレートが枢動して前記セル状空間が連通し,前記室外からの外気が前記中空壁体内に流入して前記縦プレートに沿って流れが発生して前記中空壁体内が伝熱状態になるものである。更に,この壁構造体は,前記シャッタによる前記開口部の開放時には,前記中空壁体内に発生する自然対流,高温部から低温部への内部自然対流,及び/又は前記開口部に設けられたファンの駆動によって強制的に外気を導入して強制通風を行ない,前記室内から前記室外へ放熱するものである。開口部近傍にファンを設けた場合には,ファンの駆動はシャッタによる開口部の開放作動と連動して作動されるように構成しておけばよい。
【0019】
この壁構造体は,建造物,構造物,冷蔵冷凍庫,恒温庫,温蔵庫,物体収容ケース,シェル等の密閉室の壁体に適用される。
【0020】
この壁構造体は,前記低熱伝導性格子体の前記セル状空間には,空気が存在するものである。場合によっては,前記セル状空間には,低熱伝導性多孔質セラミックス,低熱伝導性繊維セラミックス等の断熱材が充填されている。
【0021】
前記高熱伝導性プレートは,銅,銀,アルミニウム,それらの合金等の金属から成る繊維,不織布又はパンチング板材,マイクロヒートパイプ,又はAlN,SiC,Si3 4 等のセラミック繊維,不織布又は板材,或いはこれらの複合材から成る平らな層状に形成されている。
【0022】
この壁構造体は,上記のように構成されているので,室外が室内より高温の時又は室外が過度に低温の時には,室内を室外から遮熱するように断熱壁体として機能し,また,室外が室内より低温で室内温度が高過ぎる時には,室内から室外へ放熱するように伝熱壁体として機能させることができる。例えば,この壁構造体は,夏季日中等の室外が室内より高温になる時には,断熱壁体として作用して室外からの熱を遮断して室内を低温状態の適正な温度に維持し,室内に冷房装置等を設けている場合にはその消費電力を低減でき,また,夜間等の室外が室内より低温になり,室内が適正な温度より高い時には,伝熱壁体として機能し,室内から室外に放熱して,室内を適正な低温状態にすることができる。
【0023】
この壁構造体は,室外が高温の時に室内を室外から遮熱する場合には,中空壁体を構成する外側プレートの上下に設けた開口部を閉鎖し,それによって,高熱伝導性プレートによって熱流方向に直交する方向に等温成層を確保でき,セル状空間内の自然対流の発生を防止し,熱流方向に対して内部熱対流による熱の移動を遮断し,一層ごとの高熱伝導性プレートの一面が等温に近づき,断熱壁の内部温度分布が伝導状態になろうとし,中空壁体の内部自然対流が抑制されて低熱伝導性格子体によって遮熱作用を発揮する。また,高熱伝導性プレートを低熱伝導性格子体でサンドイッチ構造に構成しているので,縦プレートと横プレートとが構造材として機能し,断熱壁の強度をアップさせることができる。しかも,低熱伝導性格子体は,多数の横縦のプレートの組み合わせによってセル状空間が構成されているので,1つ1つのセル状空間内での自然対流が独立的に抑制され,全体として内部自然対流が抑制され,セル状空間に存在する気体の熱伝導率に近づき,高効率の断熱壁体を形成することができる。
【0024】
更に,この壁構造体は,室内を室外から断熱する時には,熱流方向に直交して指向配置された高熱伝導性プレートに接して配置された低熱伝導性格子体に温度の不均一が生じた場合に,高熱伝導性プレートが直ちにその高い熱伝導性によって低熱伝導性格子体の熱流方向に直交する水平方向における成層を等温化し,高熱伝導性プレートの存在によって低熱伝導性格子体のセル状空間に温度分布として安定した成層を形成し,低熱伝導性格子体の温度が均一化し,その結果,低熱伝導性格子体の内部熱対流が防止され,熱流方向の熱の流れが抑制され,遮熱性が向上する。また,低熱伝導性格子体を構成するプレートは,低熱伝導性の材料から構成されているので,たとえ何れかのセル状空間に内部然対流が発生したとしても,プレートによって遮断され,他のセル状空間への波及がなく,壁構造体全体として高度の遮熱性を確保することができる。
【0025】
また,この壁構造体は,夜間,冬季等において室外温度が室内温度よりも低下して室内の温度が高くて好ましくない状態では,室内から室外へ放熱することが好ましく,その場合には,中空壁体を構成する外側プレートの上部と下部に設けた開口部をそれぞれ開放し,それによって,室外の外気が下部の開口部から中空壁体内に流入し,その気流は室内の熱を受熱して上昇等で移動し,上部の開口部から放出され,中空壁体が伝熱壁体として機能し,室内温度が室外温度へと近付いて室内温度が低下し,室内が適正な温度になる。
【0026】
【発明の実施の形態】
以下,図面を参照して,この発明による断熱と伝熱を行なう壁構造体の実施例を説明する。図1はこの発明による断熱と伝熱を行なう壁構造体の一実施例を示し,断熱壁体として機能する構造を示す断面図,図2は図1の断熱と伝熱を行なう壁構造体において伝熱壁体として機能する構造を示す断面図,図3は図1の断熱と伝熱を行なう壁構造体における低熱伝導性格子体と高熱伝導性プレートとの関係構造を説明するために,外側プレートを排除して多数のセル状空間の形状を示す斜視図,図4は図1の断熱と伝熱を行なう壁構造体を建造物に適用した場合の断熱状態を示す説明図,及び図5は図4の壁構造体を建造物に適用した場合の伝熱状態を示す説明図である。
【0027】
この発明による壁構造体20は,密閉空間等の空間を形成する壁体,例えば,建造物,構造物,冷蔵冷凍庫,恒温庫,温蔵庫,物体収容ケース,シェル等を構成する密閉室の壁体に適用することができる。壁構造体20は,例えば,近年急増している携帯電話無線基地局等の制御室にはごみ,粉塵,高温を嫌う電源設備,無線装置,制御装置等が設備され,これらの電気部品からの発熱現象があるが,このような密閉室の壁体として適用し,断熱状態又は伝熱状態に対応する壁体として機能させるものである。
【0028】
壁構造体20は,主として,熱流方向Qに実質的に直交する方向の全域に指向配置された等温面を形成する少なくとも1層の高熱伝導性プレート7,及び高熱伝導性プレート7の熱流方向Qに実質的に直交する方向において両側から挟み込んだサンドイッチ構造に配置された低熱伝導性格子体15から構成されている。低熱伝導性格子体15は,高熱伝導性プレート7の面に対して垂直方向に延びる低熱伝導性の縦プレート8と横プレート9から構成され,プレート8,9によって多数のセル状空間6が形成されている。従って,高熱伝導性プレート7は,低熱伝導性格子体15のそれぞれのプレート8,9によって熱流方向Qに実質的に直交する方向に位置決めされると共に,支持固定されている。
【0029】
壁構造体20は,高熱伝導性プレート7に接する低熱伝導性格子体15のセル状空間6を形成する縦プレート8又は横プレート9間の長さL(図1では,L=L1 又はL2 )と,高熱伝導性プレート7に対して垂直に延びる方向の低熱伝導性格子体15のプレート8,9のプレート間の長さ即ち奥行きDとは,セル状空間6内に発生する自然対流を抑制して遮熱度を調整する適正なアスペクト比(L/D)に設定されている。例えば,セル状空間6が正方形に形成されている場合には,正方形の辺の長さ(L1 =L2 )とセル状空間6の奥行きDとの比,即ち,アスペクト比を,平均温度,温度差,セル状空間6内に充填された空気等の種類,セル状空間6のサイズ等の条件を考慮して適正に調節することによって,セル状空間6内の自然対流を抑制し,最適の遮熱度に調節することができる。
【0030】
壁構造体20は,特に,低熱伝導性格子体15と高熱伝導性プレート7とが配置され且つ室内1と室外2とを仕切る外側プレート5と内側プレート4から構成された中空壁体3を有し,横プレート9が一辺を支点14として枢動可能に取り付けられていることに特徴を有する。横プレート9は,図示では,高熱伝導性プレート7及び中空壁体3の内側プレート4に対して枢動可能に取り付けられているが,その構造に限られることなく,例えば,縦プレート8に対して枢動可能に取り付けることもでき,その場合には低熱伝導性格子体15として縦プレート8と横プレート9とを組立体として構成することができる。
【0031】
この壁構造体20では,横プレート9は,少なくとも中空壁体3の内側プレート4に隣接するセル状空間3に配置されたもののみ,又は全てが枢動可能に構成されている。横プレート9は,内側プレート4に隣接するセル状空間6に位置するもののみを枢動可能に構成すれば,伝熱壁体として十分な伝熱促進をさせることができる。内側プレート4に隣接するセル状空間6に位置する横プレート9のみを枢動させる時には,他のセル状空間6では縦プレート8と横プレート9を固定状態に構成でき,低熱伝導性格子体15の構造をシンプルに構成でき,製造コストを低減できる。
【0032】
また,壁構造体20では,中空壁体3を構成する外側プレート5と内側プレート4は,高熱伝導性プレート7を用いてもよく,又は高熱伝導性材料で作製してもよく,少なくとも内側プレート4は高熱伝導性材料で作製することが好ましい。更に,この壁構造体では,図示していないが,高熱伝導性プレート7,外側プレート5及び内側プレート4に等温性及び/又は伝導性を促進するため,フィン等を設けてもよいことは勿論である。
【0033】
壁構造体20は,外側プレート5の上部に形成された開口部10,下部に形成された開口部11,開口部10を開閉する外側プレート5の上部に設けられたシャッタ12,開口部11を開閉する外側プレート5の下部に設けられたシャッタ13,及びシャッタ12,13を開閉作動する開閉作動手段を有している。シャッタ12,13を開閉作動する開閉作動手段は,図示していないが,温度変動によって変形する形状記憶合金,室内1と室外2との温度差によって変形するバイメタル,及び/又は温度センサによる室内1と室外2との温度差の検出値に応答して作動するリンク機構で構成することができる。シャッタ12,13の開閉作動をリンク機構に構成した場合には,温度センサによる室内1と室外2との温度差が予め決められた所定の温度差以上に応答してシャッタ12,13を作動するように構成すればよい。
【0034】
シャッタ12,13による開口部10,11の閉鎖時には,横プレート9が高熱伝導性プレート7に対して垂直方向に延びて多数のセル状空間6がそれぞれ遮蔽され,縦プレート8に沿う自然対流が阻止されて断熱状態になる。
【0035】
また,横プレート9を枢動させる作動手段は,図示していないが,温度変動によって変形する形状記憶合金,室内1と室外2との温度差によって変形するバイメタル,温度センサによる室内1と室外2との温度差の検出値に応答して作動するリンク機構,開口部10,11の開放によって中空壁体3内に発生する自然対流又は高温部から低温部への内部自然対流,及び/又は開口部10又は11に設けられたファン22の駆動によって強制的に外気を導入して強制通風によって構成されている。開口部10又は11の近傍にファン22を設けた場合には,ファン22の駆動は,シャッタ12,13による開口部10,11の開放作動と連動して作動されるように構成しておけばよい。また,横プレート9を枢動作動をリンク機構に構成した場合には,シャッタ12,13による開口部10,11の開放作動と連動して作動されるように構成しておけばよい。
【0036】
壁構造体20は,上記の構成によって,シャッタ12,13による開口部10,11の開放時には,横プレート9が支点14を中心に枢動し,セル状空間6が連通して縦プレート8に沿って熱流に垂直な方向の流れ通路17が形成され,室外2からの外気が下部の開口部11から中空壁体3内に流入し,上部の開口10から室外2へ流出し,縦プレート8に沿って流れが発生して中空壁体3が伝熱壁体となって伝熱状態になる。
【0037】
低熱伝導性格子体15のセル状空間6には,空気が存在するものである。更に,セル状空間6には,低熱伝導性多孔質セラミックス,低熱伝導性繊維セラミックス等の断熱材充填してもよいものである。また,低熱伝導性格子体15のプレート8,9によって形成されるセル状空間6は,高熱伝導性プレート7に対向する面が四角形,ハニカム,蜂の巣状等の多角形に形成することができるが,縦プレート8と横プレート9とを考慮した場合には,伝熱状態にすることから四角形であることが好ましい。更に,壁構造体20における低熱伝導性格子体15は,通常,可能な限り薄く構成することが好ましく,熱が流れようとする熱流方向Qに直交する方向に配置され,内部自然対流による熱伝達のみならず熱伝導によって断熱性を損なわないように,縦プレート8と横プレート9とを低熱伝導性の材料で製作することが好ましく,また,輻射熱を阻止するため,例えば,縦プレート8と横プレート9の内外面を鏡面部材,アルミニウム箔,銅箔等を貼り付けて,輻射熱を阻止する構造に構成することもできる。
【0038】
更に,高熱伝導性プレート7は,銅,銀,アルミニウム,それらの合金等の金属から成る繊維,不織布又はパンチング板材,マイクロヒートパイプ,又はAlN,SiC,Si3 4 等のセラミック繊維,不織布又は板材,或いはこれらの複合材から成る平らな層状に形成されている。また,高熱伝導性プレート7は,上記の材料から選定された材料から形成された繊維やプレートが層状の形状に形成されたものである。従って,高熱伝導性プレート7は,層状面内の温度に差が生じると速やかに熱伝導が行われ,層状面内温度を速やかに均一化し,低熱伝導性格子体15のセル状空間6内を等温化し,内部自然熱対流の発生を防止することができる。
【0039】
【発明の効果】
この発明による断熱と伝熱を行なう壁構造体は,上記のように構成されているので,低熱伝導性格子体に形成されたセル状空間に基本的にはファイバ等の低熱伝導率固体を充填せずに,熱流方向に対して直交して高熱伝導性プレートのみを指向配置したので,中空壁体内の高熱伝導性プレートによって熱流方向と直交する方向の等温性を維持し,中空壁体内の低熱伝導性格子体のセル状空間に封入された気体に自然熱対流が発生するのが抑制され,断熱性能を向上させることができる。従って,この壁構造体は,自動車等の車両の冷蔵冷凍庫,恒温庫,温蔵庫等の壁体は勿論のこと,住宅,ビル等の建造物,構造物の壁体として適用して断熱性能を高め,省エネルギへ貢献すると共に,中空壁体内の電子機器,機械装置,気体や液体の流体,食品等を温度影響から保護し,各種の壁体に適用して極めて好ましいものである。また,この壁構造体は,室内が室外より高温状態であり,室内を高温状態に維持することが好ましくない場合には,中空壁体の外側プレートに設けたシャッタを作動して開口部を開放し,伝熱壁体にし,室内から室外へ放熱して室内の温度低下を行なうことができる。
【図面の簡単な説明】
【図1】 この発明による断熱と伝熱を行なう壁構造体の一実施例を示し,断熱壁体として機能する構造を示す断面図である。
【図2】 図1の断熱と伝熱を行なう壁構造体において伝熱壁体として機能する構造を示す断面図である。
【図3】 図1の断熱と伝熱を行なう壁構造体における低熱伝導性格子体と高熱伝導性プレートとの関係構造を示す斜視図である。
【図4】 図1の断熱と伝熱を行なう壁構造体を建造物に適用した場合の断熱状態を示す説明図である。
【図5】 図4の壁構造体を建造物に適用した場合の伝熱状態を示す説明図である。
【図6】 従来の壁構造体を建造物に適用した場合の断熱状態を示す説明図である。
【図7】 図6の壁構造体を建造物に適用した場合の伝熱状態を示す説明図である。
【符号の説明】
1 室内
2 室外
3 中空壁体
4 内側プレート
5 外側プレート
6 セル状空間
7 高熱伝導性プレート
8 縦プレート
9 横プレート
10,11 開口部
12,13 シャッタ
14 支点
15 低熱伝導性格子体
16 温度センサ
17 流れ通路
20 壁構造体
22 ファン
D 奥行き(横プレート間の長さ)
Q 熱流方向
L プレート間の長さ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wall structure that performs heat insulation and heat transfer, in which a high thermal conductivity plate and a low thermal conductivity grid are arranged in a hollow wall.
[0002]
[Prior art]
In order to reduce the amount of carbon dioxide generated, which is one of the causes of global warming, various facilities and devices that use thermal energy are being used with high efficiency. The improvement of the performance of the wall structure that insulates at the boundary between the high-temperature and low-temperature parts in such equipment and equipment is one of the important technologies for the high-efficiency use of high-temperature and low-temperature heat. Has been. Conventionally, it is desirable that a heat insulating wall structure that provides high performance heat insulation should be formed by filling a hollow wall with a solid having a low thermal conductivity such as ceramic fiber, glass fiber, and porous body. It was thought.
[0003]
In general, there are three basic types of heat transfer: heat conduction, heat transfer, and heat radiation. Insulating wall structures are not based on the heat insulation being cut off by these three basic types. We select materials that are difficult to transfer heat and devise a heat-blocking structure. Conventional insulation wall structures are, for example, heat conducting Reduces heat transfer due to , Hollow wall body To limit the convection space of The material is filled with a low thermal conductivity material, and the low thermal conductivity material is used as a heat insulating wall so as to suppress the occurrence of convection in the hollow wall.
[0004]
Conventionally, there has been proposed a heat insulating wall structure in which a shape-retaining material and a low thermal conductivity gas are enclosed in a hermetically sealed enclosure without gas permeability (see, for example, JP-A-7-156313). The heat insulation wall structure is filled with a shape-retaining material and a low thermal conductivity gas by injecting a foamable resin raw material into the enclosure, foaming and curing, and then depressurizing the enclosure to below atmospheric pressure, , It is formed by sealing the enclosure with low thermal conductivity gas sealed.
[0005]
In addition, in the heat insulating panel disclosed in Japanese Patent Laid-Open No. 6-221750, a heat insulating material is interposed between two metal surface plates, and a working fluid path and a cold heat are provided on the inner surface side of one metal surface plate. A fluid path is formed. The metal surface plate is filled with working fluid in the working fluid path and formed into a heat pipe, and the working fluid enclosing part is formed in the working fluid path so that the entire surface of the metal surface plate has a substantially uniform temperature distribution. The working fluid path through which the cooling fluid passes is provided adjacent to the working fluid enclosure.
[0006]
[Problems to be solved by the invention]
However, the conventional insulation wall structure has a low thermal conductivity material in order to obtain high insulation. Packing density Although the heat insulation wall is thickened without changing the convection, if the heat insulation wall is thickened, convection involved in heat transfer is likely to occur. Occurs. In addition, for thermal insulation walls, low thermal conductivity materials are used to obtain high thermal insulation. Packing density When the is increased, the insertion density increases, the thermal conductivity related to the heat transfer by heat conduction increases, and the phenomenon of lowering the thermal insulation occurs. It has been found that it is not always possible to ensure a sufficient degree of heat shielding in a heat insulating structure by filling the hollow wall with the low heat conductive material as described above. When a heat insulating wall structure is filled with a low thermal conductivity material in a sealed space in a hollow wall, a temperature difference occurs in the sealed space itself, and the internal Yet A flow is generated and heat transfer occurs, causing the degree of heat insulation to decrease.
[0007]
Therefore, as a heat insulating wall structure, a heat shielding fiber material such as a glass fiber or a ceramic fiber is filled in a hollow wall such as a case, and a heat pipe having a high effective thermal conductivity is provided in the heat shielding fiber material. It is conceivable to arrange them in Such a heat insulating wall structure is formed in the enclosed space in the hollow wall body by isothermalizing the enclosed space in the hollow wall body extending in the direction orthogonal to the heat flow direction. Internal nature It was found that the generation of convection was suppressed, thereby improving the heat insulation performance.
[0008]
However, the above heat insulating wall structure has a hollow wall filled with a heat shielding fiber material such as glass fiber or ceramic fiber, and a heat pipe having a high effective thermal conductivity is disposed in the heat shielding fiber material. of Because of the use of expensive heat shield fiber materials, the manufacturing cost of the heat insulating wall structure is increased, and the sealed space in the hollow wall body is filled with heat shield fiber materials such as glass fibers and ceramic fibers. It does not contribute to the technical idea of ensuring internal temperature stratification and suppressing internal heat convection. Nature It was found that there was a phenomenon that caused convection and reduced the degree of heat insulation.
[0009]
Therefore, with regard to the heat insulation wall structure, the heat pipe is oriented in the enclosed space in the hollow wall body to improve the isothermal property in the stratification in the direction perpendicular to the heat flow direction (for example, horizontal direction, vertical direction). Inside a sealed space Nature Focusing on improving the heat insulation performance by suppressing the generation of convection, it is completely different from the technical idea of filling the hollow wall with a low thermal conductive solid material such as heat shielding fiber material, and has low thermal conductivity in the enclosed space. Without placing solids, only high heat conductive solids can be placed in a sealed space in the hollow wall in a direction perpendicular to the direction of heat flow to ensure isothermal properties in stratification and improve heat insulation effect. I thought it was effective.
[0010]
Further, when the heat insulating wall structure is applied to a wall of a closed room such as a building, as shown in FIGS. 6 and 7, when the sun 18 rises and the outside temperature of the outdoor 2 rises during the summer day. The room 1 is insulated by the heat insulating wall 21, and the temperature of the room 1 gradually increases as indicated by the thermometer 16, but is maintained within a predetermined temperature range, and no overheating occurs. However, the outside temperature at night when the moon 19 appears, that is, the outside temperature of the outside 2 is lowered, but the temperature inside the room 1 is adversely affected by the heat shielding action of the heat insulating wall 21, and the room temperature increased during the day. Thus, a high temperature state is maintained, and a state that is practically undesirable is maintained. Therefore, in a wall such as a building, the room is shielded from the outside by the heat insulating wall 21 during the daytime. However, at night, it is desirable that the room 1 decreases as the temperature of the outdoor air outside the room 2 decreases. State. That is, for a wall such as a building, when the outdoor temperature is high during the daytime in summer, the room is shielded from the outdoor, and in winter or at night, the indoor heat is blocked when the outdoor temperature is low. Is desired to be in a state where heat is radiated through the wall outside the room such as outdoors. Furthermore, when the outdoor temperature is too low in winter or the like and there is an adverse effect on electrical components, it is preferable to keep the room temperature at an appropriate temperature by making the wall insulative.
[0011]
By the way, in the sealed rooms of mobile phone radio base stations and the like that have been rapidly increasing in recent years, power supply equipment, radio, control devices, etc. are installed. These equipment are those that do not like dust, dust, and high temperatures. There is also a phenomenon that heat is generated from other electrical components, and the amount of mobile phone communication data in recent years has increased, and the temperature has risen further. Therefore, in the room of conventional mobile phone radio base stations, etc. At present, expensive cooling facilities are provided.
[0012]
If a wall body that can achieve both functions of a heat insulating wall body and a heat transfer wall body can be applied to a wall of a building such as a mobile phone radio base station or a closed warehouse as described above, manpower for indoor ventilation can be reduced. It is not necessary, and can save energy by eliminating expensive equipment such as air conditioners. However, the conventional idea that the wall body has both functions has not been realized. There is a problem of how to realize such a wall.
[0013]
[Means for Solving the Problems]
The object of the present invention is applied to a hollow wall body that forms a sealed chamber such as a building, structure, refrigerated freezer, constant temperature storage, temperature storage, object storage case, shell, etc. When the temperature is low, it functions as a heat insulating wall to shield the room from the outside, and when the outdoor temperature is low, such as at night, the heat is transferred from the room to the outside to reduce the temperature to an appropriate temperature. A wall structure to be functioned, and a low thermal conductivity grid that forms a large number of cellular spaces perpendicular to a high thermal conductivity plate oriented in a direction substantially perpendicular to the heat flow direction in the hollow wall, Self in the hollow wall Yet Suppresses the generation of flow and increases the degree of heat insulation, or promotes heat transfer by passing air through the hollow wall, contributing to energy saving and low manufacturing costs that can be easily applied in extreme environments of low and high temperatures. It is providing the wall structure which performs the heat insulation and heat transfer comprised lightweight.
[0014]
The present invention relates to a hollow wall body composed of an outer plate and an inner plate for partitioning the interior and the exterior of the room, and at least one layer forming an isothermal surface disposed in the hollow wall body and oriented in the entire region perpendicular to the heat flow. High thermal conductivity plate ,in front A low thermal conductive lattice body comprising a vertical plate and a horizontal plate which are arranged in the hollow wall and which form a large number of cellular spaces perpendicular to the high thermal conductive plate and extending in the thickness direction. An opening formed in the upper and lower portions of the outer plate of the hollow wall body, a shutter for opening and closing the opening, and an opening / closing operation means for opening and closing the shutter, Said horizontal plate Only at least all of the hollow wall disposed in the cellular space adjacent to the inner plate with respect to the hollow wall, the high thermal conductivity plate and / or the vertical plate. Can be pivoted around one side , A shape memory alloy in which the operating means for pivoting the horizontal plate is deformed by temperature fluctuation, a bimetal that is deformed in response to a temperature difference between the room and the room, a link mechanism that operates in response to the temperature difference, and the opening It consists of natural convection generated in the hollow wall body by opening the part or internal natural convection from the high temperature part to the low temperature part, and / or forced ventilation generated by driving a fan provided in the opening. The present invention relates to a wall structure that performs heat insulation and heat transfer.
[0015]
Further, the outer plate and the inner plate constituting the hollow wall body are made of a high thermal conductivity material.
[0016]
The opening / closing operation means for opening / closing the shutter includes a shape memory alloy that deforms due to temperature fluctuation, a bimetal that deforms in response to a temperature difference between the room and the room, and / or a link that operates in response to the temperature difference. Mechanism.
[0017]
In the wall structure, when the opening is closed by the shutter, the horizontal plate extends in a direction perpendicular to the high thermal conductivity plate to prevent the flow along the vertical plate, and the hollow wall is insulated. It will be.
[0018]
In addition, this wall structure The outer plate and the inner plate communicate with each other vertically. When the opening is opened by the shutter, the horizontal plate is pivoted to communicate the cellular space, and outside air from the outside flows into the hollow wall to generate a flow along the vertical plate. Thus, the hollow wall body is in a heat transfer state. Further, the wall structure is generated in the hollow wall when the opening is opened by the shutter. Self Convection, from high temperature to low temperature internal Natural air convection and / or driving of a fan provided in the opening forcibly introduces outside air to perform forced ventilation and dissipates heat from the room to the outside. When a fan is provided in the vicinity of the opening, the fan may be configured to operate in conjunction with the opening opening operation by the shutter.
[0019]
This wall structure is applied to a wall of a closed room such as a building, a structure, a refrigerator / freezer, a constant temperature storage, a temperature storage, an object storage case, and a shell.
[0020]
In this wall structure, air exists in the cellular space of the low thermal conductivity lattice. In some cases, the cellular space is filled with a heat insulating material such as low thermal conductive porous ceramics or low thermal conductive fiber ceramics.
[0021]
The high thermal conductivity plate is made of metal, such as copper, silver, aluminum, or an alloy thereof, non-woven fabric or punching plate, micro heat pipe, or AlN, SiC, Si. Three N Four Or the like, or a flat layer made of a composite material of these.
[0022]
Since this wall structure is configured as described above, when the outdoor temperature is higher than the indoor temperature or when the outdoor temperature is excessively low, the wall structure functions as a heat insulating wall body so as to shield the indoor from the outdoor temperature. When the outdoor temperature is lower than the indoor temperature and the indoor temperature is too high, it can function as a heat transfer wall so that heat is radiated from the indoor to the outdoor. For example, this wall structure acts as a heat insulating wall when the outdoor temperature is higher than the indoor temperature during summer daytime, etc., and blocks the heat from the outdoor to maintain the indoor temperature at an appropriate low temperature. When a cooling device is installed, the power consumption can be reduced. When the outdoor temperature is lower than the room temperature, such as at night, and the room temperature is higher than the appropriate temperature, it functions as a heat transfer wall and The heat can be dissipated to bring the room to a proper low temperature.
[0023]
This wall structure closes the openings at the top and bottom of the outer plate that constitutes the hollow wall body when the room is shielded from the outside when the outdoor temperature is high. Isothermal stratification in the direction perpendicular to the direction, Yet The flow of heat is prevented, the heat transfer by the internal heat convection is blocked in the heat flow direction, one side of the high thermal conductivity plate of each layer approaches the isothermal condition, and the internal temperature distribution of the heat insulating wall tries to be in the conductive state. , The internal natural convection of the hollow wall body is suppressed, and the heat shielding action is exhibited by the low thermal conductivity grid. In addition, since the high thermal conductivity plate is formed in a sandwich structure with a low thermal conductivity grid, the vertical plate and the horizontal plate function as a structural material, and the strength of the heat insulating wall can be increased. In addition, since the low thermal conductivity grid is composed of a combination of a large number of horizontal and vertical plates, a cellular space is formed. Yet The flow is independently suppressed, the internal natural convection is suppressed as a whole, the thermal conductivity of the gas existing in the cellular space is approached, and a highly efficient heat insulating wall can be formed.
[0024]
In addition, this wall structure is used to insulate the interior of the room from the outside in the case where temperature non-uniformity occurs in the low thermal conductivity grid arranged in contact with the high thermal conductivity plate oriented perpendicular to the heat flow direction. In addition, the high thermal conductivity plate immediately isothermally stratifies the horizontal direction perpendicular to the heat flow direction of the low thermal conductivity grid by its high thermal conductivity, and the presence of the high thermal conductivity plate creates a cell space in the low thermal conductivity grid. A stable stratification is formed as a temperature distribution, and the temperature of the low thermal conductivity grid is made uniform. improves. In addition, the plates that make up the low thermal conductivity grid are made of low thermal conductivity materials, so even if they are in any cellular space. internal Self Yet Even if a flow is generated, it is blocked by the plate and does not spread to other cellular spaces, and the entire wall structure can ensure a high degree of heat shielding.
[0025]
In addition, this wall structure preferably dissipates heat from the indoor to the outdoor when the outdoor temperature is lower than the indoor temperature and the indoor temperature is high, which is not preferable at night or in winter. Openings at the top and bottom of the outer plate that make up the wall are opened, respectively, so that outdoor outside air flows into the hollow wall from the bottom opening, and the airflow receives the heat inside the room. It moves ascending and is released from the upper opening, and the hollow wall functions as a heat transfer wall. The room temperature approaches the outdoor temperature, the room temperature decreases, and the room becomes an appropriate temperature.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a wall structure for heat insulation and heat transfer according to the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of a wall structure that performs heat insulation and heat transfer according to the present invention, a cross-sectional view showing a structure that functions as a heat insulation wall, and FIG. 2 shows a wall structure that performs heat insulation and heat transfer in FIG. FIG. 3 is a cross-sectional view showing a structure that functions as a heat transfer wall body. FIG. 3 is an outer side view for explaining a relational structure between a low heat conductive lattice body and a high heat conductive plate in the wall structure performing heat insulation and heat transfer in FIG. FIG. 4 is a perspective view showing the shape of a large number of cellular spaces excluding plates, FIG. 4 is an explanatory view showing a heat insulation state when the wall structure for heat insulation and heat transfer shown in FIG. 1 is applied to a building, and FIG. These are explanatory drawings which show the heat-transfer state at the time of applying the wall structure of FIG. 4 to a building.
[0027]
The wall structure 20 according to the present invention is a wall structure that forms a space such as a sealed space, such as a building, a structure, a refrigerated refrigerator, a constant temperature storage, a warm storage, an object storage case, a shell, and the like. Can be applied to walls. The wall structure 20 is, for example, equipped with a power supply facility, a wireless device, a control device, etc., which are not suitable for dust, dust, and high temperatures, in a control room such as a mobile phone base station, which has been rapidly increasing in recent years. Although there is an exothermic phenomenon, it is applied as a wall of such a sealed chamber and functions as a wall corresponding to a heat insulation state or a heat transfer state.
[0028]
The wall structure 20 mainly includes at least one layer of the high thermal conductivity plate 7 that forms an isothermal surface oriented in the entire region in a direction substantially orthogonal to the heat flow direction Q, and the heat flow direction Q of the high thermal conductivity plate 7. Is formed of a low thermal conductive grid 15 arranged in a sandwich structure sandwiched from both sides in a direction substantially perpendicular to the horizontal axis. The low thermal conductive grid 15 is composed of a low thermal conductive vertical plate 8 and a horizontal plate 9 extending in a direction perpendicular to the surface of the high thermal conductive plate 7, and a plurality of cellular spaces 6 are formed by the plates 8, 9. Has been. Accordingly, the high thermal conductivity plate 7 is positioned and supported and fixed in a direction substantially perpendicular to the heat flow direction Q by the respective plates 8 and 9 of the low thermal conductivity grid 15.
[0029]
The wall structure 20 has a length L (L = L in FIG. 1) between the vertical plate 8 or the horizontal plate 9 that forms the cellular space 6 of the low thermal conductivity grid 15 in contact with the high thermal conductivity plate 7. 1 Or L 2 ) And the length between the plates 8 and 9 of the low thermal conductivity grid 15 in the direction extending perpendicularly to the high thermal conductivity plate 7, that is, the depth D is within the cellular space 6. Natural convection generated It is appropriate to adjust the heat shielding degree by suppressing Spec Ratio (L / D). For example, when the cellular space 6 is formed in a square, the length of the side of the square (L 1 = L 2 ) And the depth D of the cellular space 6, that is, the aspect ratio takes into account the conditions such as the average temperature, the temperature difference, the type of air filled in the cellular space 6, the size of the cellular space 6, etc. By adjusting it appropriately, the self- Yet The flow can be suppressed and adjusted to the optimum degree of heat insulation.
[0030]
The wall structure 20 has a hollow wall body 3 composed of an outer plate 5 and an inner plate 4 in which a low thermal conductivity grid 15 and a high thermal conductivity plate 7 are arranged, and the interior 1 and the exterior 2 are partitioned. The horizontal plate 9 is characterized in that it is pivotally mounted with one side as a fulcrum 14. In the drawing, the horizontal plate 9 is pivotally attached to the high thermal conductivity plate 7 and the inner plate 4 of the hollow wall 3. However, the horizontal plate 9 is not limited to the structure. In this case, the vertical plate 8 and the horizontal plate 9 can be configured as an assembly as the low thermal conductive grid 15.
[0031]
In this wall structure 20, the horizontal plate 9 is configured to be pivotable only at least or all of the horizontal plate 9 disposed in the cellular space 3 adjacent to the inner plate 4 of the hollow wall 3. If only the lateral plate 9 is configured to be pivotable only in the cellular space 6 adjacent to the inner plate 4, heat transfer can be sufficiently promoted as a heat transfer wall. When only the horizontal plate 9 located in the cellular space 6 adjacent to the inner plate 4 is pivoted, the vertical plate 8 and the horizontal plate 9 can be fixed in the other cellular space 6, and the low thermal conductive grid 15 The structure can be made simple and the manufacturing cost can be reduced.
[0032]
In the wall structure 20, the outer plate 5 and the inner plate 4 constituting the hollow wall body 3 may use the high thermal conductivity plate 7 or may be made of a high thermal conductivity material, and at least the inner plate. 4 is preferably made of a high thermal conductivity material. Further, in this wall structure, although not shown in the drawing, fins or the like may be provided in the high thermal conductivity plate 7, the outer plate 5 and the inner plate 4 in order to promote isothermal property and / or conductivity. It is.
[0033]
The wall structure 20 includes an opening 10 formed in the upper part of the outer plate 5, an opening 11 formed in the lower part, a shutter 12 provided in the upper part of the outer plate 5 that opens and closes the opening 10, and the opening 11. A shutter 13 provided at the lower part of the outer plate 5 that opens and closes, and an opening / closing operation means that opens and closes the shutters 12 and 13. The opening / closing operation means for opening / closing the shutters 12 and 13 is not shown, but is a shape memory alloy that deforms due to temperature fluctuations, a bimetal that deforms due to a temperature difference between the indoor 1 and the outdoor 2, and / or a room 1 by a temperature sensor. And a link mechanism that operates in response to a detected value of a temperature difference between the outdoor unit 2 and the outdoor unit 2. When the opening / closing operation of the shutters 12 and 13 is configured as a link mechanism, the shutters 12 and 13 are operated in response to the temperature difference between the indoor 1 and the outdoor 2 by the temperature sensor exceeding a predetermined temperature difference. What is necessary is just to comprise.
[0034]
When the openings 10 and 11 are closed by the shutters 12 and 13, the horizontal plate 9 extends in the vertical direction with respect to the high thermal conductivity plate 7 to shield the large number of cellular spaces 6, and natural convection along the vertical plate 8 occurs. Blocked and insulative.
[0035]
In addition, although not shown, the operating means for pivoting the horizontal plate 9 is a shape memory alloy that is deformed by temperature fluctuations, a bimetal that is deformed by a temperature difference between the room 1 and the outdoor 2, and the room 1 and the outdoor 2 by a temperature sensor. A link mechanism that operates in response to the detected value of the temperature difference between the two and the opening 10 and 11 is generated in the hollow wall 3 by opening the openings 10 and 11. Self Convection or from high temperature to low temperature internal It is configured by forced air flow by forcibly introducing outside air by natural convection and / or driving of a fan 22 provided in the opening 10 or 11. When the fan 22 is provided in the vicinity of the opening 10 or 11, the fan 22 may be driven in conjunction with the opening operation of the openings 10 and 11 by the shutters 12 and 13. Good. Further, when the horizontal plate 9 is configured to have a pivoting movement as a link mechanism, the horizontal plate 9 may be configured to be operated in conjunction with the opening operation of the openings 10 and 11 by the shutters 12 and 13.
[0036]
In the wall structure 20, when the openings 10 and 11 are opened by the shutters 12 and 13, the wall structure 20 pivots around the fulcrum 14 and the cellular space 6 communicates with the vertical plate 8 when the shutters 10 and 11 are opened. A flow passage 17 is formed along the direction perpendicular to the heat flow along the outside, and the outside air from the outdoor 2 flows into the hollow wall 3 from the lower opening 11 and flows out from the upper opening 10 to the outdoor 2. As a result, a flow is generated along and the hollow wall 3 becomes a heat transfer wall to be in a heat transfer state.
[0037]
Air exists in the cellular space 6 of the low thermal conductive lattice 15. Further, the cellular space 6 has a heat insulating material such as low thermal conductive porous ceramics and low thermal conductive fiber ceramics. The It may be filled. In addition, the cell-like space 6 formed by the plates 8 and 9 of the low thermal conductivity grid 15 can be formed in a polygonal shape such as a quadrilateral, a honeycomb, or a honeycomb, with the surface facing the high thermal conductivity plate 7. When the vertical plate 8 and the horizontal plate 9 are taken into consideration, a rectangular shape is preferable because the heat transfer state is achieved. Further, the low thermal conductivity grid 15 in the wall structure 20 is usually preferably as thin as possible, and is arranged in a direction perpendicular to the heat flow direction Q in which heat is to flow, and heat transfer by internal natural convection is performed. It is preferable that the vertical plate 8 and the horizontal plate 9 are made of a low heat conductive material so that the heat insulation is not impaired by heat conduction. In order to prevent radiant heat, For example, Of vertical plate 8 and horizontal plate 9 The inner and outer surfaces can be configured to have a structure that blocks radiant heat by attaching a mirror member, aluminum foil, copper foil or the like.
[0038]
Further, the high thermal conductivity plate 7 is made of a fiber made of a metal such as copper, silver, aluminum, or an alloy thereof, a nonwoven fabric or a punching plate, a micro heat pipe, or AlN, SiC, Si. Three N Four Or the like, or a flat layer made of a composite material of these. In addition, the high thermal conductivity plate 7 is formed by forming a fiber or a plate made of a material selected from the above materials into a layered shape. Therefore, the high thermal conductivity plate 7 conducts heat conduction quickly when a difference occurs in the temperature in the layered plane, quickly equalizes the temperature in the layered plane, and passes through the cellular space 6 of the low thermal conductivity grid 15. Isothermal, preventing internal natural heat convection.
[0039]
【Effect of the invention】
Since the wall structure for heat insulation and heat transfer according to the present invention is configured as described above, the cell-like space formed in the low thermal conductivity grid is basically filled with a low thermal conductivity solid such as a fiber. Therefore, only the high thermal conductivity plate is oriented in a direction perpendicular to the heat flow direction, so that the isothermal property in the direction perpendicular to the heat flow direction is maintained by the high thermal conductivity plate in the hollow wall body, and the low heat in the hollow wall body is maintained. Generation of natural heat convection in the gas enclosed in the cellular space of the conductive grid is suppressed, and the heat insulation performance can be improved. Therefore, this wall structure can be used as a wall for buildings such as houses and buildings, as well as walls such as refrigerated freezers, thermostats, and warm storages for vehicles such as automobiles. This contributes to energy saving and protects electronic devices, mechanical devices, gas and liquid fluids, foods, etc. in the hollow wall body from temperature effects and is extremely preferable when applied to various wall bodies. In addition, this wall structure opens the opening by operating a shutter provided on the outer plate of the hollow wall when the room is at a higher temperature than the outside and it is not desirable to maintain the room at a high temperature. However, the heat transfer wall body can be used to radiate heat from the room to the outside to reduce the temperature in the room.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a structure functioning as a heat insulation wall body, showing an embodiment of a wall structure body for heat insulation and heat transfer according to the present invention.
2 is a cross-sectional view showing a structure that functions as a heat transfer wall in the wall structure that performs heat insulation and heat transfer in FIG. 1; FIG.
FIG. 3 is a perspective view showing a relational structure between a low thermal conductivity grid and a high thermal conductivity plate in the wall structure performing heat insulation and heat transfer in FIG. 1;
4 is an explanatory view showing a heat insulation state when the wall structure performing heat insulation and heat transfer of FIG. 1 is applied to a building. FIG.
FIG. 5 is an explanatory view showing a heat transfer state when the wall structure of FIG. 4 is applied to a building.
FIG. 6 is an explanatory view showing a heat insulation state when a conventional wall structure is applied to a building.
7 is an explanatory diagram showing a heat transfer state when the wall structure of FIG. 6 is applied to a building.
[Explanation of symbols]
1 room
2 outdoor
3 Hollow wall
4 Inner plate
5 Outer plate
6 Cellular space
7 High thermal conductivity plate
8 Vertical plate
9 Horizontal plate
10,11 opening
12,13 Shutter
14 fulcrum
15 Low thermal conductivity grid
16 Temperature sensor
17 Flow passage
20 Wall structure
22 fans
D Depth (length between horizontal plates)
Q Heat flow direction
L Length between plates

Claims (9)

室内と室外を仕切る外側プレートと内側プレートから構成された中空壁体,該中空壁体内に配置され且つ熱流に直交する方向の全域に指向配置された等温面を形成する少なくとも1層の高熱伝導性プレート,前記中空壁体内に配置され且つ前記高熱伝導性プレートに垂直で厚さ方向に延びる多数のセル状空間を形成する縦プレートと横プレートから構成される低熱伝導性格子体,前記中空壁体の前記外側プレートの上部と下部とに形成された開口部,前記開口部を開閉するシャッタ,及び前記シャッタを開閉作動する開閉作動手段を有し,前記横プレートは,少なくとも前記中空壁体の前記内側プレートに隣接する前記セル状空間に配置されたもののみ又は全てが前記中空壁体,前記高熱伝導性プレート及び/又は前記縦プレートに対して一辺を支点として枢動可能に取り付けられ,前記横プレートを枢動させる作動手段が温度変動によって変形する形状記憶合金,前記室内と前記室外の温度差に応答して変形するバイメタル,前記温度差に応答して作動するリンク機構,前記開口部の開放によって前記中空壁体内に発生する自然対流又は高温部から低温部への内部自然対流,及び/又は前記開口部に設けられたファンの駆動によって発生する強制的な通風から構成されていることから成る断熱と伝熱を行なう壁構造体。A hollow wall composed of an outer plate and an inner plate for partitioning the inside and the outside of the room, and at least one layer of high thermal conductivity forming an isothermal surface disposed in the hollow wall and oriented in the entire region in the direction perpendicular to the heat flow plate, front Symbol hollow wall is placed in the body and the high thermal conductivity plate to the low thermal conductivity grid composed of vertical plates and horizontal plates that form a plurality of cellular space extending in the thickness direction perpendicular, the hollow wall An opening formed in an upper part and a lower part of the outer plate of the body, a shutter for opening and closing the opening, and an opening and closing operation means for opening and closing the shutter, wherein the lateral plate is at least of the hollow wall body flush against the all or only those arranged in cellular spaces the hollow wall, wherein the high thermal conductivity plate and / or the vertical plate adjacent to the inner plate Pivotally attached to a fulcrum, the lateral plate actuating means for pivoting the deformed shape memory alloy due to temperature variations, the bimetal to deform in response to the temperature difference between the between the indoor outdoor, responsive to the temperature difference Generated by the opening of the opening, natural convection generated in the hollow wall body or internal natural convection from a high temperature to a low temperature, and / or driving of a fan provided in the opening A wall structure that performs heat insulation and heat transfer, consisting of forced ventilation . 前記中空壁体を構成する前記外側プレートと前記内側プレートは,高熱伝導性材料で作製されていることから成る請求項1に記載の断熱と伝熱を行なう壁構造体。  2. The wall structure for heat insulation and heat transfer according to claim 1, wherein the outer plate and the inner plate constituting the hollow wall body are made of a high thermal conductivity material. 前記シャッタを開閉作動する前記開閉作動手段は,温度変動によって変形する形状記憶合金,前記室内と前記室外の温度差に応答して変形するバイメタル,及び/又は前記温度差に応答して作動するリンク機構であることから成る請求項に記載の断熱と伝熱を行なう壁構造体。The opening / closing operation means for opening / closing the shutter includes a shape memory alloy that deforms due to temperature fluctuation, a bimetal that deforms in response to a temperature difference between the room and the room, and / or a link that operates in response to the temperature difference. The wall structure for heat insulation and heat transfer according to claim 1 , which is a mechanism. 前記シャッタによる前記開口部の閉鎖時には,前記横プレートが前記高熱伝導性プレートに対して垂直方向に延びて前記縦プレートに沿う流れを阻止して前記中空壁体内が断熱状態になることから成る請求項に記載の断熱と伝熱を行なう壁構造体。When the opening is closed by the shutter, the horizontal plate extends in a direction perpendicular to the high thermal conductivity plate to prevent a flow along the vertical plate and the hollow wall body is insulative. Item 2. A wall structure that performs heat insulation and heat transfer according to item 1 . 前記外側プレートと前記内側プレートの間が上下において連通しており,前記シャッタによる前記開口部の開放時には,前記横プレートが枢動して前記セル状空間が連通し,前記室外からの外気が前記中空壁体内に流入して前記縦プレートに沿って流れが発生して前記中空壁体内が伝熱状態になることから成る請求項に記載の断熱と伝熱を行なう壁構造体。 The outer plate communicates with the inner plate in the vertical direction, and when the opening is opened by the shutter, the lateral plate pivots to communicate the cellular space, and the outside air from the outside 2. The wall structure for heat insulation and heat transfer according to claim 1 , wherein the wall structure flows into the hollow wall body and a flow is generated along the vertical plate so that the hollow wall body is in a heat transfer state. 前記シャッタによる前記開口部の開放時には,前記中空壁体内に発生する自然対流,高温部から低温部への内部自然対流,及び/又は前記開口部に設けられたファンの駆動によって強制的に外気を導入して強制通風を行ない,前記室内から前記室外へ放熱することから成る請求項に記載の断熱と伝熱を行なう壁構造体。Upon opening of the opening by the shutter, forced by the driving of the natural convection that occurs hollow wall body, a fan provided from the high-temperature portion inside the natural convection of the cold part, and / or to the opening The wall structure for heat insulation and heat transfer according to claim 5 , wherein forced air is introduced by introducing outside air and heat is radiated from the room to the outside of the room. 建造物,構造物,冷蔵冷凍庫,恒温庫,温蔵庫,物体収容ケース,シェル等の密閉室の壁体に適用されることから成る請求項1に記載の断熱と伝熱を行なう壁構造体。  The wall structure for heat insulation and heat transfer according to claim 1, wherein the wall structure is applied to a wall of a closed chamber such as a building, a structure, a refrigerator / freezer, a constant temperature storage, a temperature storage, an object storage case, and a shell. . 前記低熱伝導性格子体の前記セル状空間には,空気又は低熱伝導性多孔質セラミックス,低熱伝導性繊維セラミックス等の断熱材が充填されていることから成る請求項に記載の断熱と伝熱を行なう壁構造体。The heat insulation and heat transfer according to claim 1 , wherein the cellular space of the low thermal conductive lattice body is filled with air or a heat insulating material such as a low thermal conductive porous ceramic or a low thermal conductive fiber ceramic. Wall structure to perform. 前記高熱伝導性プレートは,銅,銀,アルミニウム,それらの合金等の金属から成る繊維,不織布又はパンチング板材,マイクロヒートパイプ,又はAlN,SiC,Si3 4 等のセラミック繊維,不織布又は板材,或いはこれらの複合材から成る平らな層状に形成されていることから成る請求項1に記載の断熱と伝熱を行なう壁構造体。The high thermal conductivity plate is made of a fiber made of a metal such as copper, silver, aluminum, or an alloy thereof, a non-woven fabric or a punching plate, a micro heat pipe, or a ceramic fiber such as AlN, SiC, Si 3 N 4 , a non-woven fabric or a plate, 2. The wall structure for performing heat insulation and heat transfer according to claim 1, wherein the wall structure is formed in a flat layer made of the composite material.
JP2001119354A 2001-04-18 2001-04-18 Wall structure for heat insulation and heat transfer Expired - Fee Related JP4939694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001119354A JP4939694B2 (en) 2001-04-18 2001-04-18 Wall structure for heat insulation and heat transfer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001119354A JP4939694B2 (en) 2001-04-18 2001-04-18 Wall structure for heat insulation and heat transfer

Publications (2)

Publication Number Publication Date
JP2002309689A JP2002309689A (en) 2002-10-23
JP4939694B2 true JP4939694B2 (en) 2012-05-30

Family

ID=18969586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001119354A Expired - Fee Related JP4939694B2 (en) 2001-04-18 2001-04-18 Wall structure for heat insulation and heat transfer

Country Status (1)

Country Link
JP (1) JP4939694B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456030C (en) * 2005-02-03 2009-01-28 北京中建建筑科学研究院有限公司 Cold and hot box type heat transfer coefficient detector
CN100458034C (en) * 2006-09-21 2009-02-04 上海交通大学 Thermal resistance variable building walling
SE537282C2 (en) * 2013-07-12 2015-03-24 Sintercast Ab A sampling device for thermal analysis
US20220251827A1 (en) * 2019-07-29 2022-08-11 The Regents Of The University Of Colorado, A Body Corporate Dynamic insulation system for switchable building envelope
KR102462181B1 (en) * 2021-12-09 2022-11-01 백성열 A house with a wall that can circulate air
CN116575606B (en) * 2023-07-13 2023-09-12 广东金信华建设工程有限公司 Green building wall structure and green building

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102612A (en) * 1980-12-19 1982-06-25 Fujitsu Ltd Manufacture of sealing structure
JPS58174512A (en) * 1982-04-06 1983-10-13 Sumitomo Metal Ind Ltd Method and apparatus for manufacting molten pig iron
JPS59175955U (en) * 1983-05-12 1984-11-24 ナショナル住宅産業株式会社 External wall structure
JPH07103966B2 (en) * 1987-11-18 1995-11-08 松下電器産業株式会社 Catalytic combustor
JP2779526B2 (en) * 1989-09-21 1998-07-23 株式会社日立製作所 Composite thin film magnetic head
JP3164132B2 (en) * 1993-04-23 2001-05-08 東日本ハウス株式会社 Heat insulation and ventilation method of wall by forming multi-layer space using porous aluminum foil material
JP3306818B2 (en) * 1995-12-11 2002-07-24 東日本ハウス株式会社 Multiple air layer insulation wall
JP3111993B2 (en) * 1998-07-14 2000-11-27 日本電気株式会社 Node device
JP2001040795A (en) * 1999-08-02 2001-02-13 Tomomichi Yasuzawa Venting heat insulating building material, roof-wall structure using it, nd work execution method of roof- wall structure

Also Published As

Publication number Publication date
JP2002309689A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP5331240B2 (en) Thermal insulation panel for building
CN107477770B (en) Air conditioner and control method thereof
KR102628305B1 (en) Control method of sliding window that can minimize dew formation
KR101991235B1 (en) Cover for out door machine of separate air-conditioner
JP4939694B2 (en) Wall structure for heat insulation and heat transfer
US20130081786A1 (en) Variable thermal insulation
JP2006125804A (en) Heat insulation casing and refrigerator
JP2000320033A (en) Thermal insulation system for building
JPH07283566A (en) Device for expanding operating temperature range of electronic apparatus
JP3080074B2 (en) Outdoor enclosure
JP2005180795A (en) Heat insulating panel with electronic cooling unit
KR102654300B1 (en) Method for control sliding window that can minimize condensation
JP2001132193A (en) Building material
JP3050499B2 (en) Heat storage structure
JP2009074732A (en) Refrigerator
KR100469557B1 (en) Self Energy Storage System
JP2001057485A (en) Outdoor-installed electronic apparatus
AU628369B2 (en) Passive heat transfer building panel
CN212164087U (en) Ice storage temperature control cabinet
JPS6260840B2 (en)
JP3663631B2 (en) Wall structure of radio equipment housing station
CN210663034U (en) Composite heat accumulating type electric heater
JP2014077580A (en) Cool box
CN115823673A (en) Radiation refrigeration and thermoelectric generation integrated structure
KR20040011020A (en) Cooling apparatus for electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees