JP2006160984A - Squalium compound and optical recording medium containing squalium compound - Google Patents
Squalium compound and optical recording medium containing squalium compound Download PDFInfo
- Publication number
- JP2006160984A JP2006160984A JP2004358020A JP2004358020A JP2006160984A JP 2006160984 A JP2006160984 A JP 2006160984A JP 2004358020 A JP2004358020 A JP 2004358020A JP 2004358020 A JP2004358020 A JP 2004358020A JP 2006160984 A JP2006160984 A JP 2006160984A
- Authority
- JP
- Japan
- Prior art keywords
- substituted
- group
- unsubstituted
- optical recording
- recording medium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Thermal Transfer Or Thermal Recording In General (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Abstract
Description
本発明は、新規なスクワリリウム化合物、及び該スクワリリウムを含有する光学記録媒体に関する。 The present invention relates to a novel squarylium compound and an optical recording medium containing the squarylium.
従来から光学記録媒体として、光磁気記録媒体、相変化記録媒体、カルコゲン酸化物光学記録媒体、有機色素系光学記録媒体などが提案されているが、これらの中でも有機色素系光学記録媒体が、コスト的に安価で且つ製造プロセスも容易であるという点で優れている。
現在の光学記録媒体の主流であるCD−R(CD−Recordable)は記録容量は0.65GB程度で、情報量の飛躍的増加に伴って、より高密度で大容量の光学記録媒体への要求が高まっている。
Conventionally, as an optical recording medium, a magneto-optical recording medium, a phase change recording medium, a chalcogen oxide optical recording medium, an organic dye-based optical recording medium, and the like have been proposed. It is excellent in that it is inexpensive and the manufacturing process is easy.
CD-R (CD-Recordable), which is the mainstream of current optical recording media, has a recording capacity of about 0.65 GB, and the demand for higher-density and large-capacity optical recording media as the amount of information increases dramatically. Is growing.
こうした光学記録媒体では、短波長のレーザー光を情報の記録・再生に用いることによって、記録・再生時のレーザー光のビームスポットを小さくすることができ、高密度な光記録が可能になるので、近年では、より短波長の発振波長を有する半導体レーザーの開発が進められている。
現在のCD−Rに使用されているレーザー光の波長(780nm)よりも短い発振波長(680nm、650nm、635nmなど)の赤色半導体レーザーが実用化され、これを用いて高密度の大容量記録を実現したデジタルヴァーサタイルディスク(DVD)、更に同規格の追記可能な光学記録媒体であるDVD−Rなどが、すでに実用化されている。
In such an optical recording medium, by using a laser beam with a short wavelength for recording / reproducing information, the beam spot of the laser beam during recording / reproducing can be reduced, and high-density optical recording becomes possible. In recent years, development of semiconductor lasers having shorter oscillation wavelengths has been promoted.
A red semiconductor laser with an oscillation wavelength (680 nm, 650 nm, 635 nm, etc.) shorter than the wavelength of the laser beam (780 nm) used in the current CD-R has been put into practical use, and this enables high-density, large-capacity recording. The realized digital versatile disc (DVD) and the DVD-R, which is a recordable optical recording medium of the same standard, have already been put into practical use.
これらの各種デバイスにおける前記高密度化を一層進展させるために、より短い発振波長(青色半導体の発振波長は350nm〜530nm)を有するレーザーである青色半導体レーザーの開発も急速に進んでいる。更に次世代光学記録媒体で用いる波長は405nmであり、この波長付近例えば405±50nmに吸収ピークを有し光学記録媒体の記録層で使用可能な有機化合物を利用することで一層の高密度記録・再生が可能になると期待されている。
前記有機化合物としてスクワリリウム化合物が提案されている(特開2004−264805号公報、特開2004−258514号公報)。これらのスクワリリウム化合物は4員環の2位及び4位がヒドロキシ化された2,4−ジヒドロキシタイプで、1位及び3位が芳香族環で置換されている。
In order to further advance the above densification in these various devices, development of a blue semiconductor laser, which is a laser having a shorter oscillation wavelength (the oscillation wavelength of a blue semiconductor is 350 nm to 530 nm), is also progressing rapidly. Furthermore, the wavelength used in next-generation optical recording media is 405 nm, and by using an organic compound that has an absorption peak near this wavelength, for example, 405 ± 50 nm, and can be used in the recording layer of the optical recording medium, higher density recording / recording can be achieved. Expected to be reproducible.
As the organic compound, squarylium compounds have been proposed (Japanese Patent Application Laid-Open Nos. 2004-264805 and 2004-258514). These squarylium compounds are 2,4-dihydroxy types in which the 2- and 4-positions of the 4-membered ring are hydroxylated, and the 1- and 3-positions are substituted with aromatic rings.
一方、光学記録媒体における情報の記録時には、前記記録層に対して高エネルギーのレーザー光を照射して記録層中の前記有機化合物(色素)を分解・発熱させ、記録層や基板に物理変化や化学変化を生じさせることにより、記録情報に対応するピットを形成する。又情報の再生時には、前記記録層に低エネルギーのレーザー光を照射し、ピットが形成された部分とそれ以外の部分でレーザー光の反射率が異なることを検出してピットに対応する情報を再生する。
このような情報の記録及び再生を良好に行うためには、記録層中の有機化合物のモル吸光係数が高いことが望ましい。つまり、モル吸光係数がひくすぎると十分な感度のピット形成が困難となる。
On the other hand, when information is recorded on an optical recording medium, the recording layer is irradiated with high-energy laser light to decompose and generate heat in the organic compound (dye) in the recording layer, and physical changes or By causing a chemical change, pits corresponding to the recorded information are formed. When reproducing information, the recording layer is irradiated with low-energy laser light, and the information corresponding to the pit is reproduced by detecting that the reflectance of the laser light is different between the part where the pit is formed and the other part. To do.
In order to satisfactorily record and reproduce such information, it is desirable that the organic compound in the recording layer has a high molar extinction coefficient. That is, if the molar extinction coefficient is too low, it becomes difficult to form pits with sufficient sensitivity.
前記した2,4−ジヒドロキシタイプのスクワリリウム化合物は主たる吸収ピークが530〜600nmにあり、次世代の青色半導体レーザー用光学記録媒体として不適切である。更にこれらの化合物は4員環の2位及び4位にそれぞれ複雑な芳香族環を有するため、合成に手間が掛かり合成コストも高くなりがちである。
本発明は、新規なスクワリリウム化合物、及び次世代の青色半導体レーザーによる情報の記録及び再生用として適切な吸収ピークや高いモル吸光係数を有する有機化合物である前記スクワリリウムを含有する光学記録媒体を提供することを目的とする。
The aforementioned 2,4-dihydroxy type squarylium compound has a main absorption peak at 530 to 600 nm, and is unsuitable as an optical recording medium for the next generation blue semiconductor laser. Furthermore, since these compounds have complex aromatic rings at the 2-position and 4-position of the 4-membered ring, the synthesis takes time and the synthesis cost tends to increase.
The present invention provides a novel squarylium compound and an optical recording medium containing the squarylium, which is an organic compound having an appropriate absorption peak and high molar extinction coefficient for recording and reproducing information by a next-generation blue semiconductor laser. For the purpose.
本発明は、第1に、下記一般式(1)で表わされる(一般式(1)中、R1及びR12はそれぞれ独立してハロゲン原子、水酸基、置換又は未置換のアルコキシ基又は置換又は未置換のフェノキシ基を表わし、R2〜R5及びR8〜R11はそれぞれ独立して水素原子、ハロゲン原子、水酸基又は置換又は未置換のアルキル基を表わし、R6及びR7は、それぞれ独立して水素原子、置換又は未置換のアルキル基又は置換又は未置換の芳香族環を表し、R13は、分枝を有していても良い炭素数1から5のアルキレン基を表す)ことを特徴とするスクワリリウム化合物、第2に、下記一般式(2)で表わされる(一般式(2)中、R21、R22及R23はそれぞれ独立してハロゲン原子、水酸基、置換又は未置換のアルコキシ基又は置換又は未置換のフェノキシ基を表わし、R24〜R35はそれぞれ独立して水素原子、ハロゲン原子、水酸基又は置換又は未置換のアルキル基を表わし、R36〜R38は、それぞれ独立して水素原子、置換又は未置換のアルキル基又は置換又は未置換の芳香族環を表し、R39は−CR40(R40は水素原子、ハロゲン、水酸基、置換又は未置換のアルコキシ基、置換又は未置換のアルキル基を表す)、又は置換又は未置換の炭素数2〜8の3価の炭化水素基を表す)ことを特徴とするスクワリリウム化合物であり、第3に、下記一般式(3)で表わされる(一般式(3)中、R51〜R54はそれぞれ独立してハロゲン原子、水酸基、置換又は未置換のアルコキシ基又は置換又は未置換のフェノキシ基を表わし、R55〜R70はそれぞれ独立して水素原子、ハロゲン原子、水酸基又は置換又は未置換のアルキル基を表わし、R71〜R74は、それぞれ独立して水素原子、置換又は未置換のアルキル基又は置換又は未置換の芳香族環を表し、R75は置換又は未置換の炭素数2〜8の4価の炭化水素基を表す)ことを特徴とするスクワリリウム化合物、及び第4に、基板、及び該基板上に形成された記録層を含む光学記録媒体において、前記記録層が、基板、及び該基板上に形成された記録層を含む光学記録媒体において、前記記録層が、一般式(1)〜(3)で表されるスクワリリウム化合物の少なくとも一つを含有することを特徴とする光学記録媒体である。 The present invention is first represented by the following general formula (1) (in the general formula (1), R 1 and R 12 are each independently a halogen atom, a hydroxyl group, a substituted or unsubstituted alkoxy group, a substituted or Represents an unsubstituted phenoxy group, R 2 to R 5 and R 8 to R 11 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, or a substituted or unsubstituted alkyl group, and R 6 and R 7 each represent Independently represents a hydrogen atom, a substituted or unsubstituted alkyl group or a substituted or unsubstituted aromatic ring, and R 13 represents an optionally substituted alkylene group having 1 to 5 carbon atoms). Second, represented by the following general formula (2) (in the general formula (2), R 21 , R 22 and R 23 are each independently a halogen atom, hydroxyl group, substituted or unsubstituted) An alkoxy group or substituted or unsubstituted phenoxy R 24 to R 35 each independently represents a hydrogen atom, a halogen atom, a hydroxyl group or a substituted or unsubstituted alkyl group, and R 36 to R 38 each independently represents a hydrogen atom, a substituted or unsubstituted group. R 39 represents —CR 40 (R 40 represents a hydrogen atom, a halogen, a hydroxyl group, a substituted or unsubstituted alkoxy group, or a substituted or unsubstituted alkyl group). Or a substituted or unsubstituted trivalent hydrocarbon group having 2 to 8 carbon atoms). Thirdly, it is represented by the following general formula (3) (general formula (3 R 51 to R 54 each independently represents a halogen atom, a hydroxyl group, a substituted or unsubstituted alkoxy group or a substituted or unsubstituted phenoxy group, and R 55 to R 70 each independently represents a hydrogen atom or a halogen atom. Atom, hydroxyl group or Represents a substituted or unsubstituted alkyl group, R 71 to R 74 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group or a substituted or unsubstituted aromatic ring, and R 75 represents substituted or unsubstituted. And an optical recording medium comprising a substrate and a recording layer formed on the substrate. In an optical recording medium including a substrate and a recording layer formed on the substrate, the recording layer contains at least one of squarylium compounds represented by the general formulas (1) to (3). An optical recording medium characterized by the above.
以下本発明を詳細に説明する。
本発明のスクワリリウム化合物は、一般式(1)〜(3)のいずれかで表される有機化合物である。一般式(1)〜(3)の化合物は、スクワリリウム化合物の特徴である1,2ジオン型4員環を順に2個、3個及び4個含有する。
前記各一般式中、前記4員環に結合しているR1、R12、R21、R22、R23及びR51〜R54は、フッ素原子、塩素原子、臭素原子及びヨウ素原子等のハロゲン原子;水酸基;又はメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の炭素数1〜6の未置換アルコキシ基;クロルメトキシ基やベンジロキシ基等の置換アルコキシ基;フェノキシ基や4−クロルフェノキシ基等の置換又は未置換のフェノキシ基から選択される原子や置換基を表わす。
The present invention will be described in detail below.
The squarylium compound of the present invention is an organic compound represented by any one of the general formulas (1) to (3). The compounds of the general formulas (1) to (3) contain two, three and four 1,2-dione type four-membered rings, which are characteristic of the squarylium compound, in order.
In each of the above general formulas, R 1 , R 12 , R 21 , R 22 , R 23 and R 51 to R 54 bonded to the 4-membered ring are a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. A halogen atom; a hydroxyl group; or an unsubstituted alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, and a tert-butoxy group; A substituted alkoxy group such as a group or a benzyloxy group; an atom or substituent selected from a substituted or unsubstituted phenoxy group such as a phenoxy group or a 4-chlorophenoxy group;
前記各一般式中、ベンゼン環に結合しているR2〜R5、R8〜R11、R24〜R35及びR55〜R70は同一でも異なっていても良く、水素原子;塩素原子、臭素原子及びヨウ素原子等のハロゲン原子;水酸基;メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−へプチル基等の炭素数1〜8の直鎖又は分岐の未置換アルキル基;クロルメチル基等の置換アルキル基;シクロペンチル基やシクロヘキシル基等の炭素数5〜6のシクロアルキル基から選択される。
前記各一般式中、窒素に結合しているR6、R7、R36〜R38及びR71〜R74は、同一でも異なっていても良く、水素原子;メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−へプチル基等の炭素数1〜8の直鎖又は分岐の未置換アルキル基;クロルメチル基、フルオロメチル基、ブロモメチル基、トリフルオロメチル基、2,2,2−トリフルオロエチル基、3,3,3−トリフルオロプロピル基等のハロゲン(特にフッ素)置換アルキル基及びヒドロキシメチル基等のヒドロキシ置換アルキル基等を含む各種置換アルキル基;シクロペンチル基やシクロヘキシル基等の炭素数5〜6のシクロアルキル基から選択される。
R13は、−CH2CH2CH2CH2−及び−CH2CH(CH3)CH2−等の分枝を有していても良い炭素数1から5のアルキレン基であり、R39は−CR40(R40は水素原子、ハロゲン、水酸基、置換又は未置換のアルコキシ基、置換又は未置換のアルキル基を表す)、又は置換又は未置換の炭素数2〜8の3価の炭化水素基を表し、R75は置換又は未置換の炭素数2〜8の4価の炭化水素基を表す。
In the above general formulas, R 2 to R 5 , R 8 to R 11 , R 24 to R 35, and R 55 to R 70 bonded to the benzene ring may be the same or different and are a hydrogen atom; a chlorine atom , Halogen atoms such as bromine atom and iodine atom; hydroxyl group; carbon number 1 such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-heptyl group -8 linear or branched unsubstituted alkyl group; a substituted alkyl group such as chloromethyl group; and a cycloalkyl group having 5 to 6 carbon atoms such as cyclopentyl group and cyclohexyl group.
In the above general formulas, R 6 , R 7 , R 36 to R 38 and R 71 to R 74 bonded to nitrogen may be the same or different, and are hydrogen atoms; methyl groups, ethyl groups, propyl groups , An isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, an n-heptyl group, etc., a linear or branched unsubstituted alkyl group having 1 to 8 carbon atoms; a chloromethyl group, a fluoromethyl group, a bromomethyl Group, trifluoromethyl group, 2,2,2-trifluoroethyl group, halogen (especially fluorine) substituted alkyl group such as 3,3,3-trifluoropropyl group and hydroxy substituted alkyl group such as hydroxymethyl group, etc. Various substituted alkyl groups to be included; selected from cycloalkyl groups having 5 to 6 carbon atoms such as cyclopentyl group and cyclohexyl group.
R 13 is an alkylene group having 1 to 5 carbon atoms which may have branches such as —CH 2 CH 2 CH 2 CH 2 — and —CH 2 CH (CH 3 ) CH 2 —, and R 39 Is —CR 40 (R 40 represents a hydrogen atom, a halogen, a hydroxyl group, a substituted or unsubstituted alkoxy group, a substituted or unsubstituted alkyl group), or a substituted or unsubstituted trivalent carbon atom having 2 to 8 carbon atoms. Represents a hydrogen group, and R 75 represents a substituted or unsubstituted tetravalent hydrocarbon group having 2 to 8 carbon atoms.
一般式(1)〜(3)のスクワリリウム化合物は、一般に黄色の板状結晶で、水に不溶、ヘキサンに難溶、その他多くの有機溶媒に可溶である。
一般式(1)〜(3)のスクワリリウム化合物の好ましい具体例として下記の化合物が挙げられ、本発明の化合物はこれらに限定されない。下記化合物のうち化合物(1)〜(8)が、スクワリリウムダイマー、化合物(9)〜(14)がスクワリリウムトリマー、化合物(15)〜(20)がスクワリリウムテトラマーである。
The squarylium compounds of the general formulas (1) to (3) are generally yellow plate crystals, insoluble in water, hardly soluble in hexane, and soluble in many other organic solvents.
Preferred specific examples of the squarylium compounds of the general formulas (1) to (3) include the following compounds, and the compounds of the present invention are not limited to these. Of the following compounds, compounds (1) to (8) are squarylium dimers, compounds (9) to (14) are squarylium trimers, and compounds (15) to (20) are squarylium tetramers.
一般式(1)のスクワリリウムダイマー(例えばR1がOH、R2〜R12が水素、R13が直鎖状の−CH2CH2CH2CH2−)の合成は例えば次のようにして行う。
1,4−ジブロモブタンとアニリン(理論量で1:2のモル比)を反応させて前者のC−Brと後者のN−Hとで脱HBrを生じさせて1位及び4位がアニリノ化されたブタンを合成する。次いでこの置換ブタンに対して2倍モルの3,4-ジクロロシクロ-3-ブテン-1,2−ジオンを反応させてアニリンのパラ位水素と前記3,4-ジクロロシクロ-3-ブテン-1,2−ジオン間で脱塩化水素し、更に加水分解して目的化合物を得る。
一般式(2)のスクワリリウムトリマーの場合も同様に、トリブロモ置換アルカンとアニリン(理論量で1:3のモル比)を反応させて3等量のアニリンで置換されたアルカンを得て、更に各アニリノ基のパラ位水素と3,4-ジクロロシクロ-3-ブテン-1,2−ジオン間で脱塩化水素し更に加水分解して目的化合物を得る。
一般式(3)のスクワリリウムテトラマーの場合も、テトラブロモ置換アルカンを出発原料として同様に合成できる。
The synthesis of the squarylium dimer of the general formula (1) (for example, R 1 is OH, R 2 to R 12 are hydrogen, and R 13 is linear —CH 2 CH 2 CH 2 CH 2 —) is as follows, for example. Do it.
1,4-dibromobutane and aniline (theoretical amount of 1: 2 molar ratio) are reacted to form de-HBr with the former C-Br and the latter N—H, and the 1- and 4-positions are anilinolated. Synthesized butane. Subsequently, 2-fold moles of 3,4-dichlorocyclo-3-butene-1,2-dione are reacted with the substituted butane to react the aniline para-position hydrogen with the 3,4-dichlorocyclo-3-butene-1 described above. , 2-dione is dehydrochlorinated and further hydrolyzed to obtain the target compound.
Similarly, in the case of the squarylium trimer of the general formula (2), a tribromo-substituted alkane is reacted with aniline (a molar ratio of 1: 3 in theory) to obtain an alkane substituted with 3 equivalents of aniline. Dehydrochlorination between the para-position hydrogen of each anilino group and 3,4-dichlorocyclo-3-butene-1,2-dione, followed by further hydrolysis yields the target compound.
In the case of the squarylium tetramer of the general formula (3), it can be similarly synthesized using a tetrabromo-substituted alkane as a starting material.
前記合成方法の場合、中心となるアルカンに結合する2〜4分子のヒドロキシシクロ-3-ブテン-1,2−ジオン置換アニリンが同じ分子になる。本発明のスクワリリウム化合物の各置換アニリンは異なった置換基を有しても良く、この場合には適宜の保護基等の導入により目的の化合物を合成すれば良い。
各置換アニリンが同じ置換基を有する一般式(1)〜(3)のスクワリリウム化合物の合成は、原料であるハロゲン置換アルカンの置換ハロゲンの数を2〜4で調節するのみで目的のダイマー、トリマー又はテトラマーを容易に合成できる。
In the case of the synthesis method, 2 to 4 molecules of hydroxycyclo-3-butene-1,2-dione substituted aniline bonded to the central alkane are the same molecule. Each substituted aniline of the squarylium compound of the present invention may have a different substituent. In this case, the target compound may be synthesized by introducing an appropriate protective group.
The synthesis of the squarylium compounds of the general formulas (1) to (3) in which each substituted aniline has the same substituent can be achieved by simply adjusting the number of substituted halogens of the halogen-substituted alkane as a raw material by 2 to 4 Alternatively, tetramers can be easily synthesized.
ところで、本発明者らは従来から光学記録媒体の記録層で使用されているスクワリリウム化合物について研究し、次世代の青色半導体レーザー用として望ましい405nm付近の吸収ピークを有する化合物を模索したが望ましい結果は得られなかった。つまり置換基の種類や置換位置を変えて各種スクワリリウム化合物の吸収ピークを測定することを試みたが、いずれも前述した530〜600nm程度であり、405nm付近の吸収ピークを有する化合物は得られなかった。
この理由を本発明者らは次のように推測した。つまり従来の光学記録媒体用のスクワリリウム化合物は、2,4−ジヒドロキシタイプのスクワリリウム4員環構造であり、この2,4−ジヒドロキシタイプの4員環構造を有するスクワリリウム化合物は置換基の種類や置換位置を変える程度では大幅な吸収ピークの波長変更は不可能である。
By the way, the present inventors have studied a squarylium compound conventionally used in a recording layer of an optical recording medium, and searched for a compound having an absorption peak near 405 nm desirable for a next-generation blue semiconductor laser. It was not obtained. That is, it was tried to measure the absorption peak of various squarylium compounds by changing the type of substituent and the substitution position, but all of them were about 530 to 600 nm as described above, and a compound having an absorption peak near 405 nm was not obtained. .
The inventors presumed this reason as follows. That is, the conventional squarylium compound for optical recording media has a 2,4-dihydroxy type squarylium four-membered ring structure, and the squarylium compound having a 2,4-dihydroxy type four-membered ring structure is not limited to the type of substituent or the substitution. It is impossible to change the wavelength of the absorption peak significantly by changing the position.
従って本発明者らは。光学記録媒体用のスクワリリウム化合物の4員環の構造を従来の2,4−ジヒドロキシタイプから1,2ジオンタイプに変換し、得られた1,2ジオンタイプのスクワリリウム化合物の吸収ピークが次世代の青色半導体レーザー用として望ましい405nm付近に存在することを見出し、単一の前記4員環構造を有するスクワリリウム化合物を含有する光学記録媒体に関する出願を行った(特願2004−301046)。 Therefore, the present inventors. The structure of the 4-membered ring of the squarylium compound for optical recording media is converted from the conventional 2,4-dihydroxy type to the 1,2 dione type, and the absorption peak of the resulting 1,2 dione type squarylium compound is the next generation. The present inventors found that it exists in the vicinity of 405 nm, which is desirable for a blue semiconductor laser, and filed an application regarding an optical recording medium containing a single squarylium compound having the 4-membered ring structure (Japanese Patent Application No. 2004-301406).
この単一の4員環構造を有するスクワリリウム化合物は、その最大ピークの吸収波長(λmax)が360〜435nmに存在し、また1×104〜1×105のモル吸光係数を有しているので、明確で信頼性の高いピット形成に適している。
本発明者らは、前述した一般式(1)〜(3)の新規スクワリリウム化合物の光学記録媒体におけるの使用可能性を鋭意検討し、本発明の光学記録媒体に到達したものである。
本発明の光学記録媒体は、基材と、該基材上に形成された記録層を含み、この記録層中に前記一般式(1)〜(3)のスクワリリウム化合物の少なくとも一部を含むことを特徴とする。
The squarylium compound having a single four-membered ring structure has a maximum peak absorption wavelength (λ max ) of 360 to 435 nm and a molar extinction coefficient of 1 × 10 4 to 1 × 10 5. Therefore, it is suitable for clear and reliable pit formation.
The present inventors diligently studied the applicability of the above-described novel squarylium compounds of the general formulas (1) to (3) in an optical recording medium, and reached the optical recording medium of the present invention.
The optical recording medium of the present invention includes a base material and a recording layer formed on the base material, and the recording layer contains at least a part of the squarylium compound of the general formulas (1) to (3). It is characterized by.
一般式(1)〜(3)のスクワリリウム化合物は、その最大ピークの吸収波長(λmax)が350〜450nm、好ましくは355〜420nm、更に好ましくは365〜410nmに存在する。換言すると、前記スクワリリウム化合物の中の殆どが次世代の青色半導体レーザー用として望ましい最大ピークの吸収波長405nm前後±30nmに最大ピークの吸収波長を有する。この吸収波長は単一の単一の前記4員環構造を有するスクワリリウム化合物の吸収波長とは部分的にオーバーラップするものの異なる範囲も有し、用途に応じて使い分けることができる。
更に一般式(1)〜(3)のスクワリリウム化合物は通常5×104〜20×105のモル吸光係数を有し、このモル吸光係数は、明確で信頼性の高いピット形成に適している。
各スクワリリウム化合物は溶媒に溶解しやすく、基板上への該スクワリリウム化合物を含む記録層の形成を容易かつ確実に行うことができる。
The squarylium compounds of the general formulas (1) to (3) have a maximum peak absorption wavelength (λ max ) of 350 to 450 nm, preferably 355 to 420 nm, more preferably 365 to 410 nm. In other words, most of the squarylium compounds have a maximum peak absorption wavelength at ± 30 nm around the maximum peak absorption wavelength of 405 nm desirable for the next-generation blue semiconductor laser. Although this absorption wavelength partially overlaps with the absorption wavelength of the single squalylium compound having the four-membered ring structure, it has a different range and can be used properly depending on the application.
Further, the squarylium compounds of the general formulas (1) to (3) usually have a molar extinction coefficient of 5 × 10 4 to 20 × 10 5 , and this molar extinction coefficient is suitable for clear and reliable pit formation. .
Each squarylium compound is easily dissolved in a solvent, and a recording layer containing the squarylium compound can be easily and reliably formed on the substrate.
一般式(1)〜(3)のスクワリリウム化合物は前述のような方法で合成でき、この合成方法によると、スクワリリウム化合物の骨格を、アニリン又はその誘導体と、前述の1,2-ジオン化合物の反応により1段階反応で形成することができる。従って従来の光学記録媒体で使用されている他の青色レーザー用のスクワリリウム化合物と比較すると、より簡便な合成ルートつまり少ないプロセスで目的化合物が得られることが判る。しかし一般式(1)〜(3)のスクワリリウム化合物は他の経路を経て合成しても良い。
前記記録層は一般式(1)〜(3)のスクワリリウム化合物を単独で含んでいても複数化合物の混合物としても良い。更に当該スクワリリウム化合物以外に、アゾ系色素、フタロシアニン系色素、シアニン系色素など、他の色素を含有していても良い。
The squarylium compounds of the general formulas (1) to (3) can be synthesized by the method as described above. According to this synthesis method, the skeleton of the squarylium compound is reacted with aniline or a derivative thereof and the aforementioned 1,2-dione compound. Can be formed in a one-step reaction. Therefore, it can be seen that the target compound can be obtained with a simpler synthesis route, that is, with fewer processes, as compared with other squarylium compounds for blue lasers used in conventional optical recording media. However, the squarylium compounds of the general formulas (1) to (3) may be synthesized through other routes.
The recording layer may contain the squarylium compounds of the general formulas (1) to (3) alone or may be a mixture of a plurality of compounds. Furthermore, in addition to the squarylium compound, other dyes such as azo dyes, phthalocyanine dyes, and cyanine dyes may be contained.
本発明の光情報記録媒体は、一定のトラックピッチのプレグループが形成された円盤状基板上に記録層、光反射層および保護層をこの順に有する構成、あるいは該基板上に光反射層、記録層、および保護層をこの順に有する構成であることが好ましい。また、一定のトラックピッチのプレグループが形成された透明な円盤状基板上に記録層、および光反射層が設けられてなる二枚の積層体が、それぞれの記録層が内側となるように接合された構成も好ましい。以下に、この構造の媒体を例に本発明の光学記録媒体について説明する。
本発明の光学記録媒体における基板の材質は、従来の光情報記録媒体の基板として用いられている各種の材料から任意に選択する事ができる。基板材料としては、例えばガラス、ポリカーボネート樹脂、ポリメチルメタクリレート等のアクリル樹脂、ポリ塩化ビニル樹脂、塩化ビニル共重合体等の塩化ビニル系樹脂、エポキシ樹脂、アモルファスポリオレフィン樹脂およびポリエステル樹脂などを挙げることができ、上記材料の中では、耐湿性、寸法安定性および価格などの点から射出成型ポリカーボネートが好ましい。記録層に接して樹脂基板または樹脂層を設け、その樹脂基板または樹脂層上に記録再生光の案内溝やピットを有していてもよい。案内溝がスパイラル状の場合、この溝ピッチが0.5〜1.2μm程度であることが好ましい。
The optical information recording medium of the present invention has a configuration in which a recording layer, a light reflecting layer, and a protective layer are arranged in this order on a disk-like substrate on which a pregroup having a constant track pitch is formed, or a light reflecting layer and a recording layer on the substrate. A structure having a layer and a protective layer in this order is preferable. In addition, two laminates in which a recording layer and a light reflecting layer are provided on a transparent disk-like substrate on which a pregroup having a constant track pitch is formed are bonded so that each recording layer is inside. The configuration is also preferable. Hereinafter, the optical recording medium of the present invention will be described using the medium having this structure as an example.
The material of the substrate in the optical recording medium of the present invention can be arbitrarily selected from various materials used as a substrate of a conventional optical information recording medium. Examples of the substrate material include glass, polycarbonate resin, acrylic resin such as polymethyl methacrylate, polyvinyl chloride resin such as polyvinyl chloride resin and vinyl chloride copolymer, epoxy resin, amorphous polyolefin resin, and polyester resin. Among these materials, injection molded polycarbonate is preferable from the viewpoints of moisture resistance, dimensional stability, and price. A resin substrate or a resin layer may be provided in contact with the recording layer, and guide grooves or pits for recording / reproducing light may be provided on the resin substrate or resin layer. When the guide groove has a spiral shape, the groove pitch is preferably about 0.5 to 1.2 μm.
記録層の形成は、真空蒸着法、スパッタリング法、CVD法等の気相法やドクターブレード法、キャスト法、スピンコート法、浸漬法等の液相法など一般に行われている薄膜形成方法によって行う事ができるが、量産性、コスト面からスピンコート法が好ましい。
液相法の溶媒としては、基板を侵さない溶媒であればよく、特に限定されない。例えば、酢酸ブチル、乳酸エチル、セロソルブアセテートなどのエステル;メチルエチルケトン、シクロヘキサノン、メチルイソブチルケトンなどのケトン;ジクロルメタン、1,2―ジクロルエタン、クロロホルムなどの塩素化炭化水素;ジメチルホルムアミドなどのアミド;メチルシクロヘキサンなどの炭化水素、;ジブチルエーテル、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル;エタノール、n―プロパノール、イソプロパノール、n―ブタノール、ジアセトンアルコールなどのアルコール;2,2,3,3―テトラフルオロプロパノールなどのフッ素系溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテルなどのグリコールエーテル類などを挙げることができる。上記溶剤は使用する化合物の溶解性を考慮して単独で、あるいは二種以上を組み合わせて使用することができる。
The recording layer is formed by a generally used thin film forming method such as a vapor phase method such as a vacuum deposition method, a sputtering method, or a CVD method, a liquid phase method such as a doctor blade method, a cast method, a spin coating method, or an immersion method. However, the spin coating method is preferable from the viewpoint of mass productivity and cost.
The solvent for the liquid phase method is not particularly limited as long as it does not attack the substrate. For example, esters such as butyl acetate, ethyl lactate and cellosolve acetate; ketones such as methyl ethyl ketone, cyclohexanone and methyl isobutyl ketone; chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane and chloroform; amides such as dimethylformamide; Hydrocarbons; ethers such as dibutyl ether, diethyl ether, tetrahydrofuran, dioxane; alcohols such as ethanol, n-propanol, isopropanol, n-butanol, diacetone alcohol; 2,2,3,3-tetrafluoropropanol, etc. Fluorine-based solvents; glycols such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether And the like ethers. The above solvents can be used alone or in combination of two or more in consideration of the solubility of the compound used.
記録層の層厚は一般に20〜500nmの範囲にあり、好ましくは30〜300nmの範囲にあり、より好ましくは50〜150nmの範囲にある。
また、記録層は、記録層の耐光性を向上させるために、一重項酸素クエンチャーが用いられる。一重項クエンチャーとして、アセチルアセトナートキレート、ビスフェニルジチオール、サルチルアルデヒドオキシム、ビスジチオ−α−ジケトン等の遷移金属キレート錯体や、芳香族ニトロソ化合物、アミニウム化合物、イミニウム化合物、ビスイミニウム化合物等が挙げられる。これらの成分の使用量はスクワリリウム化合物の量に対して、通常0.1〜50質量%の範囲であり、好ましくは3〜40質量%の範囲である。
The thickness of the recording layer is generally in the range of 20 to 500 nm, preferably in the range of 30 to 300 nm, and more preferably in the range of 50 to 150 nm.
The recording layer uses a singlet oxygen quencher to improve the light resistance of the recording layer. Examples of the singlet quencher include transition metal chelate complexes such as acetylacetonate chelate, bisphenyldithiol, saltylaldehyde oxime, and bisdithio-α-diketone, aromatic nitroso compounds, aminium compounds, iminium compounds, and bisiminium compounds. The amount of these components used is usually in the range of 0.1 to 50% by weight, preferably in the range of 3 to 40% by weight, based on the amount of the squarylium compound.
記録層の上には、前述の光反射層を形成してもよく、その膜厚は好ましくは、厚さ50〜300nmである。光反射層の材料としては、再生光の波長で反射率の十分高いもの、例えば、Au、Al、Ag、Cu、Ti、Cr、Ni、Pt、Ta、及びPdの金属を単独あるいは合金にして用いることが可能である。この中でもAu、Al、Agは反射率が高く反射層の材料として適している。反射層は、例えば、上記光反射性物質を蒸着、スパッタリングまたはイオンプレーディングすることにより基板若しくは記録層の上に形成することができる。光反射層の層厚は、一般的には10〜300nmの範囲にあり、50〜200nmの範囲にあることが好ましい。
反射層の上に形成する可能な前述の保護層の材料としては、反射層を外力から保護するものであれば特に限定されない。有機物質の材料としては、熱可塑性樹脂、熱硬化性樹脂、電子線硬化性樹脂、UV硬化性樹脂等を挙げることができる。また、無機物質としては、SiO2、Si3N4、SnO2等が挙げられる。
The light reflecting layer described above may be formed on the recording layer, and the thickness thereof is preferably 50 to 300 nm. As a material of the light reflecting layer, a material having a sufficiently high reflectance at the wavelength of the reproduction light, for example, Au, Al, Ag, Cu, Ti, Cr, Ni, Pt, Ta, and Pd metal alone or in an alloy is used. It is possible to use. Among these, Au, Al, and Ag have high reflectivity and are suitable as the material for the reflective layer. The reflective layer can be formed on the substrate or the recording layer, for example, by vapor deposition, sputtering or ion plating of the light reflective material. The layer thickness of the light reflecting layer is generally in the range of 10 to 300 nm, and preferably in the range of 50 to 200 nm.
The material of the above-described protective layer that can be formed on the reflective layer is not particularly limited as long as it protects the reflective layer from external force. Examples of the organic material include thermoplastic resins, thermosetting resins, electron beam curable resins, and UV curable resins. Examples of inorganic substances include SiO 2 , Si 3 N 4 , SnO 2 and the like.
熱可塑性樹脂、熱硬化性樹脂などは適当な溶剤に溶解して塗布液を塗布し、乾燥することによって形成することができる。UV硬化性樹脂は、そのままもしくは適当な溶剤に溶解して塗布液を調製した後にこの塗布液を塗布し、UV光を照射して硬化させることによって形成することができる。UV硬化性樹脂としては、例えば、ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレートなどのアクリレート系樹脂を用いることができる。これらの材料は単独であるいは混合して用いても良いし、1層だけではなく多層膜にして用いても良い。保護層の形成方法としては、記録層と同様にスピンコート法やキャスト法等の塗布法やスパッタ法や化学蒸着法等の方法が用いられるが、この中でもスピンコート法が好ましい。保護層の膜厚は、一般に0.1〜100μmの範囲であるが、本発明においては、3〜30μmが好ましい。 A thermoplastic resin, a thermosetting resin, or the like can be formed by dissolving in an appropriate solvent, applying a coating solution, and drying. The UV curable resin can be formed by preparing a coating solution as it is or by dissolving in a suitable solvent, and then applying the coating solution and curing it by irradiating with UV light. As the UV curable resin, for example, acrylate resins such as urethane acrylate, epoxy acrylate, and polyester acrylate can be used. These materials may be used alone or in combination, and may be used not only as a single layer but also as a multilayer film. As a method for forming the protective layer, a coating method such as a spin coating method and a casting method, a sputtering method, a chemical vapor deposition method, and the like are used as in the recording layer. Among these, a spin coating method is preferable. The thickness of the protective layer is generally in the range of 0.1 to 100 μm, but is preferably 3 to 30 μm in the present invention.
本発明の光学記録媒体について使用されるレーザー光は、高密度記録のため波長は短いほど好ましいが、特に350〜430nmの青紫色半導体レーザー光が好ましく、特にさらに好ましくは390〜415nmの範囲の発振波長を有する青紫色半導体レーザー光である。
上記のようにして得られた本発明の光学記録媒体への記録は、基板の両面または片面に設けた記録層に0.4〜0.6μm程度に集束したレーザー光を照射することにより行う。レーザー光の照射された部分には、レーザー光エネルギーの吸収による、分解、発熱、溶解等の記録層の熱的変形が起こり、光学特性が変化する。記録された情報の再生は、レーザー光により、光学特性の変化が起きている部分と起きていない部分の反射率の差を読みとることにより行う。
The laser beam used for the optical recording medium of the present invention is preferably as short as possible for high-density recording, but is preferably a blue-violet semiconductor laser beam of 350 to 430 nm, and more preferably oscillation of 390 to 415 nm. Blue-violet semiconductor laser light having a wavelength.
Recording on the optical recording medium of the present invention obtained as described above is performed by irradiating the recording layer provided on both sides or one side of the substrate with laser light focused to about 0.4 to 0.6 μm. In the portion irradiated with the laser beam, thermal deformation of the recording layer such as decomposition, heat generation and dissolution due to absorption of laser beam energy occurs, and the optical characteristics change. Reproduction of recorded information is performed by reading the difference in reflectance between the portion where the change in optical characteristics has occurred and the portion where the change has not occurred, with laser light.
以上説明したように、一般式(1)〜(3)のスクワリリウム化合物は、新規化合物である。
これらの新規スクワリリウム化合物は、従来から光学記録媒体用として使用されてきたスクワリリウム化合物と異なり、最大ピークの吸収波長が次世代の青色半導体レーザー用として望ましい405nm付近(その殆どが405nm±30nm、その多くが±10nm)に存在する。)に存在し、更に適度なモル吸光係数を有する。
従って前記構造のスクワリリウム化合物を記録層中に含有する光学記録媒体は、青色半導体レーザー用として好ましく使用でき、青色半導体レーザー用の特色である高密度記録及び再生を確実に実現できる。
As explained above, the squarylium compounds of the general formulas (1) to (3) are novel compounds.
These new squarylium compounds are different from the squarylium compounds conventionally used for optical recording media, and have a maximum peak absorption wavelength of around 405 nm (mostly 405 nm ± 30 nm, most of which are desirable for next-generation blue semiconductor lasers) Is present at ± 10 nm). And has a moderate molar extinction coefficient.
Therefore, the optical recording medium containing the squarylium compound having the above structure in the recording layer can be preferably used for a blue semiconductor laser, and high-density recording and reproduction, which are features for a blue semiconductor laser, can be reliably realized.
以下、本発明のスクワリリウム化合物の合成、及び得られたスクワリリウム化合物を含有する光学記録媒体を実施例により更に具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the synthesis of the squarylium compound of the present invention and the optical recording medium containing the obtained squarylium compound will be described more specifically with reference to examples, but the present invention is not limited thereto.
[実施例1]1,4-ブテンジ(N,N'-ジメチルアニリン)の合成(化合物A)
冷却管をつけた三つ口ナスフラスコにN-メチルアニリン(5.40g,50mmol)、1,4-ジブロモブタン(5.40g,25mmol)を入れ、トルエン、炭酸カリウムを加えた後、10時間加熱環流した。反応終了後、減圧ろ過して溶媒を減圧留去した。カラムクロマトグラフィー(シリカゲルWakogel C-300、展開溶媒:トルエン)にて精製を行い、化合物A(3.62g,13.5mmol)を得た。
Example 1 Synthesis of 1,4-butenedi (N, N′-dimethylaniline) (Compound A)
N-methylaniline (5.40 g, 50 mmol) and 1,4-dibromobutane (5.40 g, 25 mmol) are placed in a three-necked eggplant flask equipped with a condenser, and toluene and potassium carbonate are added. did. After completion of the reaction, the solvent was removed under reduced pressure by filtration under reduced pressure. Purification by column chromatography (silica gel Wakogel C-300, developing solvent: toluene) gave Compound A (3.62 g, 13.5 mmol).
収率54%;LC−MS(m/z)268([M+]) Yield 54%; LC-MS (m / z) 268 ([M + ])
なお各実施例において、質量分析(LC−MS)はWaters アライアンスLC−MSシステムにより測定した。元素分析は、アセトアニリドを標準物質としYANACO-CHN-CORDER MT-3により測定した。UV-VisスペクトルはSHIMADZU UV−3100により測定した。 In each example, mass spectrometry (LC-MS) was measured by a Waters Alliance LC-MS system. Elemental analysis was performed by YANACO-CHN-CORDER MT-3 using acetanilide as a standard substance. The UV-Vis spectrum was measured by SHIMADZU UV-3100.
[実施例2] スクワリリウムダイマー(塩化物、化合物B)の合成
窒素雰囲気下にて、冷却管をつけた三つ口ナスフラスコに3,4-ジクロロシクロ-3-ブテン-1,2-ジオン(4.08g,27mmol)と化合物A(3.62g,13.5mmol)、を入れ、そこに脱水したトルエン(30ml)を加え24時間室温にて攪拌した。反応終了後、蒸留水、炭酸水素ナトリウムにて洗浄し、溶媒を減圧留去した。固体をカラムクロマトグラフィー(シリカゲル(Wakogel C-300、展開溶媒:トルエン)にて精製し、黄色固体(化合物B、3.22g,6.5mmol)を得た。
[Example 2] Synthesis of squarylium dimer (chloride, compound B) Under a nitrogen atmosphere, a three-necked eggplant flask equipped with a condenser tube was subjected to 3,4-dichlorocyclo-3-butene-1,2-dione. (4.08 g, 27 mmol) and Compound A (3.62 g, 13.5 mmol) were added, dehydrated toluene (30 ml) was added thereto, and the mixture was stirred at room temperature for 24 hours. After completion of the reaction, the reaction mixture was washed with distilled water and sodium hydrogen carbonate, and the solvent was distilled off under reduced pressure. The solid was purified by column chromatography (silica gel (Wakogel C-300, developing solvent: toluene)) to obtain a yellow solid (Compound B, 3.22 g, 6.5 mmol).
収率48%;LC−MS(m/z)496([M+])、元素分析:計算値;C26H22NCl2N2O4;C62.79、H4.46、N5.63(%)、分析値;C62.66、H4.37、N5.73(%) Yield 48%; LC-MS (m / z) 496 ([M + ]), elemental analysis: calculated value; C 26 H 22 NCl 2 N 2 O 4 ; C62.79, H4.46, N5.63 ( %), Analysis value: C62.66, H4.37, N5.73 (%)
[実施例3] スクワリリウムダイマー(ヒドロキシル化物、化合物C)の合成
冷却管をつけた三つ口ナスフラスコに化合物B(3.00g,6.0mmol)を入れ、酢酸(10ml)と蒸留水(10ml)を加えた。90℃にて6時間環流した後、室温まで冷却し、減圧ろ過により濾取し、減圧乾燥によって黄色固体(化合物C、2.50g,5.4mmol)を得た。
[Example 3] Synthesis of squarylium dimer (hydroxylated product, compound C) Compound B (3.00 g, 6.0 mmol) was placed in a three-necked eggplant flask equipped with a condenser, acetic acid (10 ml) and distilled water (10 ml). Was added. After refluxing at 90 ° C. for 6 hours, the mixture was cooled to room temperature, collected by filtration under reduced pressure, and dried under reduced pressure to obtain a yellow solid (compound C, 2.50 g, 5.4 mmol).
収率90%;LC−MS(m/z)460([M+])、元素分析:計算値;C26H25N2O6;C67.82、H5.25、N6.08(%)、分析値;C67.85、H5.36、N5.67(%) Yield 90%; LC-MS (m / z) 460 ([M + ]), elemental analysis: calculated value; C 26 H 25 N 2 O 6 ; C67.82, H5.25, N6.08 (%) Analytical value: C67.85, H5.36, N5.67 (%)
[実施例4] スクワリリウムトリマー(化合物D)の合成
1,4-ジブロモブタンの代わりに、1,4−ジブロモ−2−ブロモメチルブタン(6.8g,22mmol)を使用し、N-メチルアニリンの量を7.2g(68mmol)としたこと以外は実施例1〜3に準じて黄色固体(化合物D、8.6g,13mmol)を得た。
Example 4 Synthesis of squarylium trimer (Compound D)
Example except that 1,4-dibromo-2-bromomethylbutane (6.8 g, 22 mmol) was used instead of 1,4-dibromobutane, and the amount of N-methylaniline was 7.2 g (68 mmol). A yellow solid (compound D, 8.6 g, 13 mmol) was obtained according to 1-3.
収率58%;LC−MS(m/z)675([M+])、元素分析:計算値;C38H33N3O9;C67.55、H4.92、N6.22(%)、分析値;C67.30、H4.88、N6.01(%) Yield 58%; LC-MS (m / z) 675 ([M + ]), elemental analysis: calculated value; C 38 H 33 N 3 O 9 ; C67.55, H4.92, N6.22 (%) Analytical value: C67.30, H4.88, N6.01 (%)
[実施例5] スクワリリウムテトラマー(化合物E)の合成
1,4-ジブロモブタンの代わりに、1,4−ジブロモ−2,3−ジブロモメチルブタン(9.0g,22mmol)を使用し、N-メチルアニリンの量を9.6g(90mmol)としたこと以外は実施例4に準じて黄色固体(化合物E、9.8g,11mmol)を得た。
Example 5 Synthesis of squarylium tetramer (Compound E)
Except that 1,4-dibromo-2,3-dibromomethylbutane (9.0 g, 22 mmol) was used instead of 1,4-dibromobutane, and the amount of N-methylaniline was 9.6 g (90 mmol). A yellow solid (Compound E, 9.8 g, 11 mmol) was obtained according to Example 4.
収率50%;LC−MS(m/z)890([M+])、元素分析:計算値;C50H42N4O12;C67.41、H4.75、N6.29(%)、分析値;C66.94、H4.56、N6.33(%) Yield 50%; LC-MS (m / z) 890 ([M + ]), elemental analysis: calculated value; C 50 H 42 N 4 O 12 ; C67.41, H4.75, N6.29 (%) Analytical value: C66.94, H4.56, N6.33 (%)
次いで化合物B〜Eをそれぞれクロロフォルム及びメタノールに5μMとなるように溶解させ、それぞれの溶液ごとに吸光スペクトルから最大ピークの吸収波長(λmax)を測定し、更にモル吸光係数(ε)を測定した。その結果を表1に示す。なお参考としてスクワリリウムモノマーである化合物F及びGのλmaxとεを表1に示す。
更に図1に化合物Cの吸光スペクトル(溶媒:メタノール)を示した。
Next, compounds B to E were dissolved in chloroform and methanol to a concentration of 5 μM, the absorption wavelength (λ max ) of the maximum peak was measured from the absorption spectrum for each solution, and the molar extinction coefficient (ε) was further measured. . The results are shown in Table 1. For reference, λ max and ε of compounds F and G, which are squarylium monomers, are shown in Table 1.
Further, FIG. 1 shows an absorption spectrum of the compound C (solvent: methanol).
[実施例に関する考察]
表1から判るように、スクワリリウム化合物ダイマーである化合物B及びC、トリマーである化合物D及びテトラマーである化合物Eは、それぞれ360〜435nmに最大ピークの吸収波長(λmax)を有し、これらの吸収波長は次世代の青色半導体レーザー用光学記録媒体として望ましい405nmに接近していて青色半導体レーザー用光学記録媒体の記録層の有機化合物色素として非常に有用である。
しかもこれらのスクワリリウム化合物はモル吸光係数が5×104〜20×105の間で、スクワリリウムモノマーのモル吸光係数よりかなり高く、記録及び再生に十分でかつ過度の発熱によるピットの乱れが生じることも殆どない。
これらから実施例のスクワリリウム化合物が非常に優れた青色半導体レーザー対応の光学記録媒体用有機化合物色素であることが判った。
[Consideration of Examples]
As can be seen from Table 1, compounds B and C, which are squarylium compound dimers, compound D, which is a trimer, and compound E, which is a tetramer, each have a maximum peak absorption wavelength (λ max ) at 360 to 435 nm. The absorption wavelength is close to 405 nm, which is desirable as a next-generation blue semiconductor laser optical recording medium, and is very useful as an organic compound dye in the recording layer of the blue semiconductor laser optical recording medium.
Moreover, these squarylium compounds have a molar extinction coefficient of 5 × 10 4 to 20 × 10 5 , which is much higher than the molar extinction coefficient of the squarylium monomer, which is sufficient for recording and reproduction and causes pit disturbance due to excessive heat generation. There is almost nothing.
From these, it was found that the squarylium compounds of the examples are very excellent organic compound dyes for optical recording media compatible with blue semiconductor lasers.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004358020A JP4557286B2 (en) | 2004-12-10 | 2004-12-10 | Squalilium compound and optical recording medium containing the squarilium compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004358020A JP4557286B2 (en) | 2004-12-10 | 2004-12-10 | Squalilium compound and optical recording medium containing the squarilium compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006160984A true JP2006160984A (en) | 2006-06-22 |
JP4557286B2 JP4557286B2 (en) | 2010-10-06 |
Family
ID=36663360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004358020A Expired - Fee Related JP4557286B2 (en) | 2004-12-10 | 2004-12-10 | Squalilium compound and optical recording medium containing the squarilium compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4557286B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006110877A (en) * | 2004-10-15 | 2006-04-27 | Japan Carlit Co Ltd:The | Optical recording medium |
-
2004
- 2004-12-10 JP JP2004358020A patent/JP4557286B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006110877A (en) * | 2004-10-15 | 2006-04-27 | Japan Carlit Co Ltd:The | Optical recording medium |
Also Published As
Publication number | Publication date |
---|---|
JP4557286B2 (en) | 2010-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3438587B2 (en) | Optical recording medium | |
JP3540327B2 (en) | Light-stabilized cyanine dye | |
WO2007074861A1 (en) | Optical recording medium and azacyanine dye | |
US20070300248A1 (en) | New Monosubstituted Squaric Acid Metal Complex Dyes and Their Use in Optical Layers for Optical Data Recording | |
JP4178783B2 (en) | Optical recording medium | |
TW200405120A (en) | Optical recording materials having high storage density | |
JP4557286B2 (en) | Squalilium compound and optical recording medium containing the squarilium compound | |
WO2006103254A1 (en) | Betaines of squaric acid for use in optical layers for optical data recording | |
US20090135706A1 (en) | Optical recording medium, and optical recording method and optical recording apparatus thereof | |
JP4605773B2 (en) | Metal-containing squarylium compound and optical recording medium using the compound | |
JP2006264241A (en) | Optical recording medium, optical recording method using the same and optical recording device | |
JP4190352B2 (en) | Optical recording material | |
WO2003068865A1 (en) | Phthalocyanine compound, process for producing the same, and optical recording medium containing the same | |
JP2006110877A (en) | Optical recording medium | |
US20060019198A1 (en) | Optical recording materials | |
JPH11256056A (en) | Benzopyrromethene-metal chelate compound and optical recording medium containing the sane | |
JP4789137B2 (en) | Optical recording medium using metal-containing squarylium compound | |
JP4120340B2 (en) | Optical recording medium and optical recording method | |
JPH11170695A (en) | Optical recording material | |
JPH1143491A (en) | Pyrromethene metallic chelate compound and optical recording medium using the same | |
JP5352986B2 (en) | Metal complex compound, optical recording medium and optical recording material | |
JP5088861B2 (en) | SQUARYLIUM COMPOUND METAL COMPLEX AND OPTICAL RECORDING MEDIUM USING SAME | |
JP2006089646A (en) | Dimethine compound and optical recording medium by using the same | |
JP2003103935A (en) | Optical recording medium | |
US20040109973A1 (en) | Optical recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071010 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071025 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071104 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100714 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100714 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100716 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4557286 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |