JP2006160885A - Light oil base material, light oil, and manufacturing process for these - Google Patents

Light oil base material, light oil, and manufacturing process for these Download PDF

Info

Publication number
JP2006160885A
JP2006160885A JP2004354259A JP2004354259A JP2006160885A JP 2006160885 A JP2006160885 A JP 2006160885A JP 2004354259 A JP2004354259 A JP 2004354259A JP 2004354259 A JP2004354259 A JP 2004354259A JP 2006160885 A JP2006160885 A JP 2006160885A
Authority
JP
Japan
Prior art keywords
light oil
massppm
benzo
oil
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004354259A
Other languages
Japanese (ja)
Other versions
JP4920188B2 (en
Inventor
Ryutaro Koide
隆太郎 小出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2004354259A priority Critical patent/JP4920188B2/en
Priority to KR1020050116323A priority patent/KR100738847B1/en
Priority to CNB2005101272593A priority patent/CN100393846C/en
Publication of JP2006160885A publication Critical patent/JP2006160885A/en
Application granted granted Critical
Publication of JP4920188B2 publication Critical patent/JP4920188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/04Catalyst added to fuel stream to improve a reaction

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light oil base material which contains a reduced amount of high unit risk PAH and is obtained from readily available petroleum materials by a low energy consumption manufacturing process and light oil. <P>SOLUTION: Hydrogenation refining is conducted using at least one kind of catalyst containing a porous body containing Ni and Mo as active metal elements to manufacture the light oil base material and the light oil involving 10-20 vol% of the total aromatics, 0.5-1.5 vol% of aromatics with two or more rings, having a 90 vol% distillation temperature of 320-360°C, a sulfur content of ≤10 mass ppm and a total content of high unit risk comounds of ≤0.2 mass ppm with those compounds less than 0.1 mass ppm in content as 0 mass ppm. The high unit risk comounds are benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-c,d]pyrene and dibenzo[a,h]anthracene. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、軽油基材及び軽油、並びにそれらの製造方法に関し、特にユニットリスクの高い多環芳香族を低減した軽油基材及び軽油、並びに、当該軽油基材及び軽油の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a light oil base material and light oil, and methods for producing them, and more particularly to a light oil base material and light oil with reduced polycyclic aromatics having a high unit risk, and a method for producing the light oil base material and light oil. .

昨今、ディーゼルエンジンの燃料である軽油に含まれる多環芳香族(PAH)の低減が要求されている。これに対して、フィッシャー−トロプシュ(FT)合成軽油のように芳香族分を含まない原料から軽油を製造する方法(方法1)や、石油系の軽油留分を核水添して、芳香族分を除去する方法(方法2)が検討されている。   Recently, reduction of polycyclic aromatic (PAH) contained in light oil which is a fuel of a diesel engine is required. In contrast to this, a method (Method 1) for producing light oil from a raw material that does not contain an aromatic component such as Fischer-Tropsch (FT) synthetic light oil, or a nuclear hydrogenation of a petroleum-based light oil fraction, A method of removing the minute (method 2) has been studied.

上記方法1は、芳香族分を含まない原料から製造するため、PAHを含まない軽油を製造できるが、原料の供給が限定的であり、合成コストが高くなるという欠点もある。   Since the above-mentioned method 1 is produced from a raw material not containing an aromatic component, it is possible to produce a light oil that does not contain PAH.

一方、上記方法2は、核水添を行うために大量に水素を消費すること、高圧水素共存下で軽油留分を処理すること、更には、一度精製された軽油留分を更に水素化処理すること等、軽油を製造するための設備投資や運転コストが嵩むという欠点がある。しかしながら、現状、軽油は主に石油留分を水素化精製することにより製造されているため、既存の設備を利用できる経済性や連産品である石油製品のバランスを考慮すると、上記方法2が現実的である。   On the other hand, the above method 2 consumes a large amount of hydrogen for nuclear hydrogenation, treats a light oil fraction in the presence of high-pressure hydrogen, and further hydrotreats a once refined light oil fraction. However, there are disadvantages such as increased capital investment and operation costs for producing light oil. However, at present, light oil is mainly produced by hydrorefining petroleum fractions. Therefore, considering the economics of using existing facilities and the balance of petroleum products that are co-products, the above method 2 is a reality. Is.

上記方法2については、軽油中に含まれるPAHを低減する技術が種々試みられている。例えば、下記特許文献1は、PAHを低減した軽油組成物を開示しているが、全PAHを2vol%以下に低減した軽油に関するものであって、PAH個々のユニットリスクに関して言及していない。このように、従来のPAH低減技術は、PAH全体を低減する手法に着目したものがほとんどであり、PAH個々のユニットリスクに着目したもの、特に、運転のシビアリティとユニットリスクの高いPAHの低減とのバランスに着目した技術は知られていない。   Regarding the method 2, various techniques for reducing PAH contained in light oil have been tried. For example, Patent Document 1 below discloses a gas oil composition with a reduced PAH, but relates to a gas oil with a total PAH reduced to 2 vol% or less, and does not mention the unit risk of each PAH. As described above, most of the conventional PAH reduction techniques focus on the method of reducing the overall PAH, and focus on the unit risk of each PAH, especially the reduction of PAH with high driving severity and high unit risk. There is no known technology that focuses on balance.

また、PAHを低減した軽油の製造方法として、下記特許文献2が知られているが、ここでもPAH全体を低減する効果について言及されているのみであり、加えて、導入する水素量が非常に多いことから経済的な運転を行うことが難しい。   Further, Patent Document 2 below is known as a method for producing light oil with reduced PAH, but here, only the effect of reducing the entire PAH is mentioned, and in addition, the amount of hydrogen to be introduced is very large. It is difficult to drive economically because there are many.

更に、下記特許文献3では、軽油留分を既に他の装置で水素化された油で希釈して水素化処理した後、気液分離装置を用いて液留分のみを更に水素化処理する方法でPAHを低減している。これもPAH全体を低減する技術であることに加えて、通常の水素化精製装置の下流側に気液分離装置を新設する必要がある等、新規に設備投資が必要となる。   Furthermore, in the following Patent Document 3, after diluting a light oil fraction with oil already hydrogenated in another device and hydrotreating, only a liquid fraction is further hydrotreated using a gas-liquid separator. PAH is reduced. In addition to the technology for reducing the overall PAH, it is necessary to newly invest in equipment such as a new gas-liquid separation device on the downstream side of a normal hydrorefining device.

一方、PAHの個々の物質について、ユニットリスクという観点から健康への影響を評価する試みが行われており、下記非特許文献1には、種々の化学物質のユニットリスクに関する記載がある。該非特許文献1には、PAHの中でも、ユニットリスクの高い物質として、ベンゾ[a]アントラセン、クリセン、ベンゾ[b]フルオランテン、ベンゾ[k]フルオランテン、ベンゾ[a]ピレン、インデノ[1,2,3−c,d]ピレン、ジベンゾ[a,h]アントラセン(以降、高ユニットリスク化合物と称する)が挙げられている。これに対して、アセナフチレン、アセナフテン、フルオレン、アントラセン、フェナントレン、フルオランテン、ベンゾ[g,h,i]ペリレン並びにピレンはPAHの中でも比較的ユニットリスクが低い物質とされている。   On the other hand, attempts have been made to evaluate the effects on health of individual substances of PAH from the viewpoint of unit risk, and Non-Patent Document 1 described below relates to unit risks of various chemical substances. In Non-patent Document 1, among PAHs, benzo [a] anthracene, chrysene, benzo [b] fluoranthene, benzo [k] fluoranthene, benzo [a] pyrene, indeno [1,2, 3-c, d] pyrene, dibenzo [a, h] anthracene (hereinafter referred to as high unit risk compounds). On the other hand, acenaphthylene, acenaphthene, fluorene, anthracene, phenanthrene, fluoranthene, benzo [g, h, i] perylene, and pyrene are considered to have a relatively low unit risk among PAHs.

特開2004−067906号公報JP 2004-0697906 A 特開2001−064657号公報JP 2001-064657 A 特開2000−198990号公報JP 2000-198990 A ニュージャージー州環境局,“UNIT RISK FACTORS FOR INHALATION”(April 2003).New Jersey Environment Department, “UNIT RISK FACTORS FOR INHALATION” (April 2003).

このような状況下、本発明が解決しようとする課題は、十分に供給することが可能な石油系原料から、エネルギー消費の少ない製造プロセスによりユニットリスクの高いPAHを低減した軽油基材及び軽油、並びにそれらの製造方法を提供することにある。   Under such circumstances, the problem to be solved by the present invention is a light oil base material and light oil in which PAH with high unit risk is reduced by a production process with low energy consumption from a petroleum-based raw material that can be sufficiently supplied, It is another object of the present invention to provide a manufacturing method thereof.

本発明者は、上記課題を解決するために鋭意研究を進めた結果、芳香族の低減処理のされていない軽油留分に対して適度なシビアリティの水素化精製を行うことで、ユニットリスクの高いPAHを低減できることを見出し、本発明に到達した。   As a result of diligent research to solve the above-mentioned problems, the present inventor has achieved unit risk reduction by hydrorefining with moderate severity on a light oil fraction not subjected to aromatic reduction treatment. The present inventors have found that high PAH can be reduced and have reached the present invention.

即ち、本発明の軽油基材及び軽油は、(1)適度なシビアリティの水素化精製を行うことにより、ユニットリスクの高い多環芳香族を低減した軽油基材及び軽油であり、全芳香族分が10〜20vol%、2環以上の芳香族分が0.5〜1.5vol%、90容量%留出温度が320〜360℃、硫黄分が10massppm以下、高ユニットリスク化合物の合計量が0.2massppm以下である。ここで、上記高ユニットリスク化合物は、ベンゾ[a]アントラセン、クリセン、ベンゾ[b]フルオランテン、ベンゾ[k]フルオランテン、ベンゾ[a]ピレン、インデノ[1,2,3−c,d]ピレン、ジベンゾ[a,h]アントラセンであり、0.1massppm未満は0massppmとして積算する。   That is, the light oil base material and light oil of the present invention are (1) a light oil base material and light oil in which polycyclic aromatics with a high unit risk are reduced by performing hydrorefining with moderate severity. 10 to 20% by volume of aromatics, 0.5 to 1.5% by volume of aromatics of 2 or more rings, 90% by volume, distillation temperature of 320 to 360 ° C., sulfur content of 10 massppm or less, and the total amount of high unit risk compounds It is 0.2 massppm or less. Here, the high unit risk compound is benzo [a] anthracene, chrysene, benzo [b] fluoranthene, benzo [k] fluoranthene, benzo [a] pyrene, indeno [1,2,3-c, d] pyrene, Dibenzo [a, h] anthracene, and less than 0.1 massppm is integrated as 0 massppm.

上記水素化精製のシビアリティの設定基準として、水素化精製後の軽油留分中における低ユニットリスク化合物の合計量が0.1〜1.5massppmであることが好ましい。ここで、該低ユニットリスク化合物は、アセナフチレン、アセナフテン、フルオレン、アントラセン、フェナントレン、フルオランテン、ベンゾ[g,h,i]ペリレンであり、0.1massppm未満は0massppmとして積算する。特に、HPLC法により算出した全芳香族分が13〜18vol%であり、かつ、ピレン含有量が5〜15massppmであることが好ましい。   As a criterion for setting the hydrorefining severity, the total amount of low unit risk compounds in the gas oil fraction after hydrorefining is preferably 0.1 to 1.5 mass ppm. Here, the low unit risk compound is acenaphthylene, acenaphthene, fluorene, anthracene, phenanthrene, fluoranthene, benzo [g, h, i] perylene, and less than 0.1 massppm is integrated as 0 massppm. In particular, the total aromatic content calculated by the HPLC method is preferably 13 to 18 vol%, and the pyrene content is preferably 5 to 15 mass ppm.

また、本発明の軽油基材及び軽油の製造方法は、(2)上記軽油留分の製造方法であり、活性金属元素として、ニッケル及びモリブデンを含む多孔質体(NiMo触媒)を含む少なくとも1種類の触媒を用いて、芳香族低減処理のされていない石油由来の軽油留分を水素化精製することを特徴とし、液空間速度(LHSV)が0.1〜2.0h-1の条件、特に、0.3〜1.5h-1の条件にて行うことが好ましい。この方法で得られる留分は、そのまま、軽油として用いることができ、また、該留分を軽油基材として、他の基材と混合して軽油とすることもできる。 Moreover, the manufacturing method of the light oil base material and light oil of this invention is (2) The manufacturing method of the said light oil fraction, At least 1 type containing the porous body (NiMo catalyst) containing nickel and molybdenum as an active metal element The oil-derived gas oil fraction that has not been subjected to the aromatic reduction treatment is hydrorefined using a catalyst of the above, and the liquid space velocity (LHSV) is 0.1 to 2.0 h −1 , particularly , 0.3 to 1.5 h −1 is preferable. The fraction obtained by this method can be used as a light oil as it is, or the fraction can be used as a light oil base material and mixed with other base materials to make a light oil.

本発明によれば、上記記載により、石油系原料中の芳香族分を完全に除去しなくても、適度なシビアリティの水素化精製を行うことにより、ベンゾ[a]アントラセン等のユニットリスクの高いPAHを十分に低減した軽油基材及び軽油を提供することができる。   According to the present invention, according to the above description, it is possible to reduce the unit risk of benzo [a] anthracene and the like by performing hydrorefining with an appropriate severity without completely removing the aromatic component in the petroleum-based raw material. It is possible to provide a light oil base and light oil in which high PAH is sufficiently reduced.

以下に、本発明を詳細に説明する。本発明の軽油基材及び軽油は、適度なシビアリティの水素化精製を行うことにより、ユニットリスクの高いPAHを低減した軽油基材及び軽油であり、全芳香族分が10〜20vol%、2環以上の芳香族分が0.5〜1.5vol%、90容量%留出温度が320〜360℃、硫黄分が10massppm以下、高ユニットリスク化合物の合計量が0.2massppm以下であることを特徴とする。ここで、該高ユニットリスク化合物は、ベンゾ[a]アントラセン、クリセン、ベンゾ[b]フルオランテン、ベンゾ[k]フルオランテン、ベンゾ[a]ピレン、インデノ[1,2,3−c,d]ピレン、ジベンゾ[a,h]アントラセンであり、上記高ユニットリスク化合物の合計量は、0.1massppm未満を0massppmとして各高ユニットリスク化合物の量を積算した値である。上記水素化精製のシビアリティの設定基準として、水素化精製後の軽油留分中における低ユニットリスク化合物の合計量が0.1〜1.5massppmであることが好ましい。ここで、該低ユニットリスク化合物は、アセナフチレン、アセナフテン、フルオレン、アントラセン、フェナントレン、フルオランテン、ベンゾ[g,h,i]ペリレンであり、上記低ユニットリスク化合物の合計量は、0.1massppm未満を0massppmとして各低ユニットリスク化合物の量を積算した値である。ここで、PAHの測定方法は、個々のPAHについて、ガスクロマトグラフ−質量分析装置(GC−MS)により定量されたものである。この方法は、成分特有の選択イオンのみを検出して測定する選択イオン検出法(SIM)を用いることで、特定成分を高感度で定量できるものである。   The present invention is described in detail below. The light oil base material and light oil of the present invention are a light oil base material and light oil in which PAH with high unit risk is reduced by performing hydrorefining with moderate severity, and the total aromatic content is 10 to 20 vol%, 2 The aromatic content in the ring or higher is 0.5 to 1.5 vol%, the 90 vol% distillation temperature is 320 to 360 ° C, the sulfur content is 10 massppm or less, and the total amount of high unit risk compounds is 0.2 massppm or less. Features. Here, the high unit risk compound is benzo [a] anthracene, chrysene, benzo [b] fluoranthene, benzo [k] fluoranthene, benzo [a] pyrene, indeno [1,2,3-c, d] pyrene, It is dibenzo [a, h] anthracene, and the total amount of the high unit risk compound is a value obtained by integrating the amount of each high unit risk compound with 0 massppm being less than 0.1 massppm. As a criterion for setting the hydrorefining severity, the total amount of low unit risk compounds in the gas oil fraction after hydrorefining is preferably 0.1 to 1.5 mass ppm. Here, the low unit risk compound is acenaphthylene, acenaphthene, fluorene, anthracene, phenanthrene, fluoranthene, benzo [g, h, i] perylene, and the total amount of the low unit risk compound is less than 0.1 massppm and less than 0 massppm. As a value obtained by integrating the amount of each low unit risk compound. Here, the measurement method of PAH is determined for each PAH by a gas chromatograph-mass spectrometer (GC-MS). In this method, a specific component can be quantified with high sensitivity by using a selected ion detection method (SIM) that detects and measures only a component-specific selected ion.

適度なシビアリティで水素化精製した場合、高ユニットリスク化合物であるベンゾ[a]アントラセン等を測定限界以下にまで低減できる。ベンゾ[a]アントラセン等は、上記非特許文献1に記載のように、フルオレンやフェナントレンに比べてユニットリスクが100倍程度高い。このようなユニットリスクの高い物質を実質的に減少させることで、軽油燃焼後に発生する粒子状物質(PM)に含まれる高ユニットリスク化合物の割合や、給油時等に蒸散する蒸気が与える環境負荷を低減することができる。なお、シビアリティを上げてフルオレンやフェナントレン等の低ユニットリスク化合物を低減しすぎると、全芳香族分が低下することにより、燃料タンクシールのゴム膨潤性が低下してエンジンへの燃料供給ロスや燃料漏れの原因となることがある。また、マイルドに水素化精製した場合にPAHが低減する場合もあるが、この場合は硫黄分等の不純物濃度が高いため、燃焼ガス中に含まれる硫黄酸化物が、排出ガス中のPM低減に用いる触媒を被毒して、触媒のPM除去能力を低下もしくは触媒寿命を短縮させてしまう。   When hydrorefined with moderate severity, benzo [a] anthracene and the like, which are high unit risk compounds, can be reduced below the measurement limit. As described in Non-Patent Document 1, benzo [a] anthracene and the like have a unit risk about 100 times higher than that of fluorene or phenanthrene. By substantially reducing such high-unit-risk substances, the proportion of high-unit-risk compounds contained in particulate matter (PM) generated after light oil combustion, and the environmental impact of vapors that evaporate during refueling, etc. Can be reduced. If the low unit risk compounds such as fluorene and phenanthrene are excessively reduced by increasing the severity, the total aromatic content will decrease, and the rubber swellability of the fuel tank seal will decrease, resulting in a loss of fuel supply to the engine. May cause fuel leakage. In addition, PAH may be reduced when it is mildly hydrorefined. In this case, since the concentration of impurities such as sulfur is high, sulfur oxides contained in the combustion gas reduce the PM in the exhaust gas. The catalyst to be used is poisoned, and the PM removal ability of the catalyst is reduced or the catalyst life is shortened.

ここでいう全芳香族分は、HPLC法による炭化水素のタイプ分析(石油学会規格JPI−5S−49−97)により測定できる。本発明の軽油基材及び軽油は、この方法により測定した全芳香族分が10〜20vol%であり、13〜18vol%であることが好ましい。また、本発明の軽油基材及び軽油は、2環以上の芳香族分が0.5〜1.5vol%である。ここに示す範囲の芳香族分を残さない場合、前記の燃料タンクシールのゴム膨潤性が維持出来ない。更に、本発明の軽油基材及び軽油は、90容量%留出温度が320〜360℃であり、330〜350℃であることが好ましい。90容量%留出温度が320℃未満の場合、流動性向上剤の添加効果がなく、360℃より高い場合は、軽油基材及び軽油中に含まれるPAHの量が増大することや、燃焼性の悪化によって排出ガス中のPM量が増大する等の悪影響が出てくる。加えて、本発明の軽油基材及び軽油は、硫黄分が10massppm以下であり、5massppm以下、特には3massppmであることが好ましい。硫黄分が10massppm以下であることにより、排出ガス中のPM低減に用いる触媒の寿命を延命できる。   The total aromatic content here can be measured by a hydrocarbon type analysis by the HPLC method (Japan Petroleum Institute Standard JPI-5S-49-97). The light oil base and light oil of the present invention have a total aromatic content measured by this method of 10 to 20 vol%, preferably 13 to 18 vol%. Moreover, the light oil base material and light oil of this invention are 0.5-1.5 vol% of aromatic content of 2 or more rings. If the aromatic content in the range shown here is not left, the rubber swelling property of the fuel tank seal cannot be maintained. Furthermore, the light oil base material and light oil of the present invention have a 90% by volume distillation temperature of 320 to 360 ° C, preferably 330 to 350 ° C. When the 90% by volume distillation temperature is less than 320 ° C, there is no effect of adding a fluidity improver, and when it is higher than 360 ° C, the amount of PAH contained in the light oil base material and light oil increases, and the combustibility As a result of this deterioration, adverse effects such as an increase in the amount of PM in the exhaust gas occur. In addition, the light oil base material and light oil of the present invention preferably have a sulfur content of 10 massppm or less, 5 massppm or less, particularly 3 massppm. When the sulfur content is 10 mass ppm or less, the life of the catalyst used for reducing PM in the exhaust gas can be extended.

上述の適度なシビアリティとは、具体的には、芳香族の低減処理のされていない石油由来の軽油留分の水素化精製を、NiMo触媒を含む少なくとも1種類の触媒を用いて、LHSVが0.1〜2.0h-1の条件、好ましくは0.3〜1.5h-1の条件で行うことを指す。 Specifically, the above-mentioned moderate severity means that hydrorefining of petroleum-derived light oil fraction that has not been subjected to aromatic reduction treatment is performed using LHSV using at least one type of catalyst including NiMo catalyst. conditions 0.1~2.0h -1, preferably refers to be carried out in the conditions of 0.3~1.5h -1.

芳香族低減処理のされていない石油由来の軽油留分としては、硫黄分が0.5mass%以上、90容量%留出温度が390℃以下である炭化水素油が挙げられ、FT法等で誘導される合成軽油や植物油メチルエステル等の非石油由来の炭化水素油を含まない。通常、芳香族低減処理のされていない石油由来の軽油留分(以下、原料油と称する)の硫黄分は0.5〜5mass%、特には0.7〜3mass%である。また、通常、原料油の窒素分は、50massppm以上、特には80〜500massppmである。原料油の密度(15℃)は、好ましくは0.795g/cm3以上、より好ましくは0.80〜0.92g/cm3である。上述の条件を満たしている限り、炭化水素油の由来に特に制限はないが、直留軽油留分単独の原料油又は直留軽油留分を主成分とする原料油を用いることが好ましい。また、各種石油精製プロセスから得られるプロセス油を直留軽油留分に混合して用いてもよい。該直留軽油留分は、原油を常圧蒸留して得られ、おおよそ10容量%留出温度が150〜280℃、50容量%留出温度が240〜320℃、90%容量留出温度が300〜390℃である。該直留軽油留分に混合して原料油とすることができるプロセス油としては、例えば、熱分解油、接触分解油、直接脱硫軽油、間接脱硫軽油が挙げられる。 Examples of petroleum-derived light oil fractions that have not been subjected to aromatic reduction treatment include hydrocarbon oils having a sulfur content of 0.5 mass% or more and a 90 vol% distillation temperature of 390 ° C or less. It does not contain non-petroleum derived hydrocarbon oils such as synthetic light oil and vegetable oil methyl ester. Usually, the sulfur content of petroleum-derived light oil fraction (hereinafter referred to as feedstock) that has not undergone aromatic reduction treatment is 0.5 to 5 mass%, particularly 0.7 to 3 mass%. Moreover, the nitrogen content of the feedstock oil is usually 50 massppm or more, particularly 80 to 500 massppm. The density (15 ° C.) of the raw material oil is preferably 0.795 g / cm 3 or more, more preferably 0.80 to 0.92 g / cm 3 . As long as the above-described conditions are satisfied, there is no particular limitation on the origin of the hydrocarbon oil, but it is preferable to use a raw oil of a straight-run gas oil fraction alone or a feed oil mainly composed of a straight-run gas oil fraction. In addition, process oils obtained from various petroleum refining processes may be used by mixing with straight-run gas oil fractions. The straight-run gas oil fraction is obtained by atmospheric distillation of crude oil, and approximately 10% by volume distillation temperature is 150 to 280 ° C, 50% by volume distillation temperature is 240 to 320 ° C, and 90% volume distillation temperature is. 300-390 ° C. Examples of the process oil that can be mixed with the straight-run gas oil fraction to obtain a raw material oil include pyrolysis oil, catalytic cracking oil, direct desulfurization gas oil, and indirect desulfurization gas oil.

上記熱分解油とは、重質油留分に熱を加えて、ラジカル反応を主体にした反応により得られる軽質留分油で、例えば、ディレードコーキング法、ビスブレーキング法あるいはフルードコーキング法等により得られる留分をいう。これらの留分は得られる全留分を熱分解油として用いてもよいが、留出温度が150〜390℃の範囲内にある留分を用いることが好適である。   The above pyrolytic oil is a light fraction oil obtained by a reaction mainly composed of radical reaction by applying heat to a heavy oil fraction. For example, a delayed coking method, a visbreaking method or a fluid coking method is used. This refers to the fraction obtained. Although these fractions may use the whole fraction obtained as pyrolysis oil, it is suitable to use the fraction whose distillation temperature exists in the range of 150-390 degreeC.

上記接触分解油とは、中間留分や重質留分、特には減圧軽油留分や常圧蒸留残油等をゼオライト系触媒と接触分解する際に得られる留分、特に高オクタン価ガソリン製造を目的とした流動接触分解装置において副生する分解軽油留分である。この留分は、一般に、沸点が相対的に低い軽質接触分解油と、沸点が相対的に高い重質接触分解油とが別々に採取されている。本発明においては、これらの留分のいずれを用いてもよいが、前者の軽質接触分解油、いわゆるライトサイクルオイル(LCO)を用いることが好ましい。このLCOは、一般に、10容量%留出温度が210〜250℃、50容量%留出温度が260〜290℃、90容量%留出温度が310〜370℃の範囲内にある。一方、重質接触分解油、いわゆるヘビーサイクルオイル(HCO)は、通常、10容量%留出温度が280〜340℃、50容量%留出温度が390〜420℃、90容量%留出温度が450℃以上であるので、本発明の軽油基材及び軽油の製造に用いる原料油の90容量%留出温度が390℃以下になるよう、HCOを更に分留して軽質な留分を原料油に混合し、また、原料油に混合する量を制限することが好ましい。   The above catalytic cracked oil is a fraction obtained when catalytically cracking middle distillate and heavy fraction, especially vacuum gas oil distillate or atmospheric distillation residue with zeolitic catalyst, especially high octane gasoline production. It is a cracked gas oil fraction by-produced in the intended fluid catalytic cracker. In general, a light catalytic cracked oil having a relatively low boiling point and a heavy catalytic cracked oil having a relatively high boiling point are separately collected from this fraction. In the present invention, any of these fractions may be used, but it is preferable to use the former light catalytic cracking oil, so-called light cycle oil (LCO). The LCO generally has a 10 vol% distillation temperature of 210 to 250 ° C, a 50 vol% distillation temperature of 260 to 290 ° C, and a 90 vol% distillation temperature of 310 to 370 ° C. On the other hand, heavy catalytic cracked oil, so-called heavy cycle oil (HCO), usually has a 10 vol% distillation temperature of 280-340 ° C, a 50 vol% distillation temperature of 390-420 ° C, and a 90 vol% distillation temperature of 450. Since the temperature is higher than or equal to ° C, the HCO is further fractionated so that the 90% by volume distillation temperature of the gas oil base material and gas oil used in the production of the gas oil of the present invention is equal to or less than 390 ° C. It is preferable to mix and limit the amount mixed with the raw material oil.

上記直接脱硫軽油とは、常圧残油および/または減圧残油を直接脱硫装置で水素化精製する際に副生する軽油留分である。また、上記間接脱硫軽油とは、減圧軽油留分を間接脱硫装置で水素化精製する際に副生する軽油留分である。これら直接脱硫軽油や間接脱硫軽油を原料油の一部とする場合も、本発明の軽油及び軽油基材の製造に用いる原料油の90容量%留出温度が390℃以下になるよう、適切な分留を行い、原料油に混合する量を制限して用いることが好ましい。   The direct desulfurized gas oil is a gas oil fraction produced as a by-product when hydrorefining atmospheric pressure residue and / or reduced pressure residue with a direct desulfurizer. The indirect desulfurized gas oil is a gas oil fraction produced as a by-product when the vacuum gas oil fraction is hydrorefined with an indirect desulfurization apparatus. Even when these direct desulfurized light oil and indirect desulfurized light oil are used as part of the feedstock, it is appropriate that the 90% by volume distillation temperature of the feedstock used in the production of the light oil and light oil base of the present invention is 390 ° C. or less. It is preferable to perform fractional distillation and limit the amount to be mixed with the raw oil.

本発明の軽油及び軽油基材の製造方法で行う水素化精製は、バッチ式、流通式、固定床式、流動床式等の反応形式に特に制限はないが、固定床流通式反応装置に充填された水素化精製触媒に水素と原料油とを連続的に供給して接触させる形式が好ましい。   The hydrorefining performed in the method for producing gas oil and gas oil base of the present invention is not particularly limited in the reaction type such as batch type, flow type, fixed bed type, fluidized bed type, etc., but packed in a fixed bed flow type reactor. A form in which hydrogen and raw material oil are continuously supplied and brought into contact with the resulting hydrorefining catalyst is preferable.

本発明における水素化精製は、反応温度が280〜450℃、好ましくは300〜420℃、水素圧力が3〜10MPa、好ましくは4〜9MPaの反応条件で行われる。水素圧力が3MPaより低いと、ユニットリスクの高いPAHを低減した軽油基材及び軽油中の硫黄分を10massppm以下にすることが困難になり、10MPaを超えるとユニットリスクの高いPAHを低減した軽油基材及び軽油の単位体積あたりの発熱量が小さくなり、好ましくない。本発明における水素化精製は、好ましくは、LHSVが0.1〜2h-1、特には0.3〜1.5h-1の反応条件で行うことが好ましい。LHSVが0.1h-1未満では、一定量のユニットリスクの高いPAHを低減した軽油基材及び軽油を製造するための反応装置が大きくなり過ぎ、LHSVが2h-1を超えると、ユニットリスクの高いPAHを低減した軽油基材及び軽油の硫黄分を10massppm以下にすることが困難になり、好ましくない。 The hydrorefining in the present invention is carried out under reaction conditions of a reaction temperature of 280 to 450 ° C., preferably 300 to 420 ° C., and a hydrogen pressure of 3 to 10 MPa, preferably 4 to 9 MPa. When the hydrogen pressure is lower than 3 MPa, it becomes difficult to make the sulfur content in the light oil base material and light oil with a high unit risk reduced to 10 mass ppm or less, and when it exceeds 10 MPa, the light oil base with a reduced unit risk PAH is reduced. The calorific value per unit volume of the wood and light oil becomes small, which is not preferable. The hydrorefining in the present invention is preferably performed under the reaction conditions of LHSV of 0.1 to 2 h −1 , particularly 0.3 to 1.5 h −1 . The LHSV is less than 0.1 h -1, a certain amount reactor for the production of gas oil bases and gas oil with reduced high PAH of unit risk is increased too, and the LHSV is more than 2h -1, the unit risk It is difficult to make the sulfur content of the light oil base material and light oil with high PAH reduced to 10 mass ppm or less, which is not preferable.

また、本発明における水素化精製は、水素/オイル比が100〜1000NL/L、好ましくは150〜500NL/Lの反応条件で行う。水素/オイル比が100NL/L未満では、ユニットリスクの高いPAHを低減した軽油基材及び軽油の硫黄分を10massppm以下にすることが困難になり、1000NL/Lを超えると、水素供給のためのコストが嵩み、経済的にユニットリスクの高いPAHを低減した軽油基材及び軽油を製造することが困難になり、好ましくない。固定床流通式反応装置で水素化精製を行う場合、水素化精製触媒は、単一触媒床に充填してもよいし、2つ以上の触媒床に分割して充填してもよい。2つ以上の触媒床に分割して水素化精製触媒を充填する場合においては、触媒床間にクエンチ水素を供給することが好ましい。触媒床間にクエンチ水素を供給する場合にあっては、反応器入口に原料油とともに供給する水素とクエンチ水素の合計量と原料油の供給量の比が、100〜1000NL/L、特には150〜500NL/Lとすることが好ましい。   Moreover, the hydrorefining in this invention is performed on the reaction conditions whose hydrogen / oil ratio is 100-1000NL / L, Preferably it is 150-500NL / L. When the hydrogen / oil ratio is less than 100 NL / L, it becomes difficult to reduce the sulfur content of the light oil base material and light oil with a high unit risk of PAH to 10 massppm or less. It is not preferable because the cost increases and it becomes difficult to produce a light oil base and light oil in which PAH with a high unit risk is economically reduced. When hydrorefining is performed in a fixed bed flow reactor, the hydrorefining catalyst may be packed in a single catalyst bed or divided into two or more catalyst beds. When dividing into two or more catalyst beds and filling the hydrorefining catalyst, it is preferable to supply quench hydrogen between the catalyst beds. When quench hydrogen is supplied between the catalyst beds, the ratio of the total amount of hydrogen and quench hydrogen supplied together with the raw material oil to the reactor inlet and the supply amount of the raw material oil is 100 to 1000 NL / L, particularly 150. It is preferable to set it to -500NL / L.

本発明のユニットリスクの高いPAHを低減した軽油基材及び軽油の製造方法に用いる水素化精製触媒は、NiMo触媒を含む少なくとも1種類の触媒からなる。ここでいうNiMo触媒とは、活性金属元素として、ニッケル及びモリブデンを含む多孔質体であり、好ましくは、ニッケルの含有量が1〜10mass%、モリブデンの含有量が2〜30mass%である。また、該水素化精製触媒は、リン、ホウ素、フッ素等の元素を含んでもよい。更に、エチレンジアミン四酢酸(EDTA)、trans−1,2−シクロヘキサンジアミン−N,N,N’,N’−四酢酸、ニトリロ三酢酸、クエン酸等のキレート性の有機化合物を含ませた水素化精製触媒も好ましく用いられる。本発明のユニットリスクの高いPAHを低減した軽油基材及び軽油の製造方法に用いる水素化精製触媒は、メソポアの中央細孔直径が、好ましくは、4〜20nmであり、更に好ましくは、4〜15nmである。また、比表面積が、好ましくは、30〜800m2/gであり、更に好ましくは、50〜600m2/gである。本発明のユニットリスクの高いPAHを低減した軽油基材及び軽油の製造方法に用いる水素化精製触媒は、粉体ではなく、成形体であることが好ましい。ここで、成形体の形状や成形方法に特に制限はないが、球状や柱状の形状が好ましい。球状の場合は、直径が0.5〜20mmであることが好ましい。また、柱状の場合の断面形状は、特に制限はないが、円型、三つ葉型、四つ葉型が好ましい。柱状の場合における成形体の寸法は、断面積が0.25〜400mm2、長さ0.5〜20mm程度であることが好ましい。上記水素化精製触媒の製造方法に特に制限はないが、多孔質無機酸化物担体に上述の活性金属元素やリン等の添加元素を含ませて製造することが好ましい。多孔質無機酸化物としては、アルミナ、シリカ、チタニア、マグネシア、ジルコニア等の酸化物、シリカ−アルミナ、シリカ−チタニア、シリカ−ジルコニア、シリカ−マグネシア、シリカ−アルミナ−チタニア、シリカ−アルミナ−ジルコニア等の複合酸化物、Y型ゼオライト、安定化Y型ゼオライト、βゼオライト、モルデナイト型ゼオライト及びMCM−22等のゼオライトから選ばれる1種又は2種以上からなるものが好ましい。 The hydrorefining catalyst used for the light oil base material and the manufacturing method of light oil which reduced PAH with high unit risk of this invention consists of at least 1 type of catalyst containing a NiMo catalyst. Here, the NiMo catalyst is a porous body containing nickel and molybdenum as active metal elements, and preferably the nickel content is 1 to 10 mass% and the molybdenum content is 2 to 30 mass%. The hydrorefining catalyst may contain elements such as phosphorus, boron, and fluorine. Further, hydrogenation containing a chelating organic compound such as ethylenediaminetetraacetic acid (EDTA), trans-1,2-cyclohexanediamine-N, N, N ′, N′-tetraacetic acid, nitrilotriacetic acid, citric acid, etc. A purified catalyst is also preferably used. The hydrorefining catalyst used in the gas oil base and gas oil production method with reduced unit risk PAH of the present invention preferably has a mesopore central pore diameter of 4 to 20 nm, more preferably 4 to 4 nm. 15 nm. The specific surface area is preferably 30 to 800 m 2 / g, and more preferably 50 to 600 m 2 / g. It is preferable that the hydrorefining catalyst used for the light oil base material and the manufacturing method of light oil which reduced PAH with a high unit risk of this invention is not a powder but a molded object. Here, the shape of the molded body and the molding method are not particularly limited, but a spherical or columnar shape is preferable. In the case of a spherical shape, the diameter is preferably 0.5 to 20 mm. The cross-sectional shape in the case of a columnar shape is not particularly limited, but a circular shape, a three-leaf shape, and a four-leaf shape are preferable. The dimensions of the molded body in the case of a columnar shape are preferably about 0.25 to 400 mm 2 in cross-sectional area and about 0.5 to 20 mm in length. Although there is no restriction | limiting in particular in the manufacturing method of the said hydrorefining catalyst, It is preferable to manufacture by including additional elements, such as the above-mentioned active metal element and phosphorus, in a porous inorganic oxide support | carrier. Examples of porous inorganic oxides include oxides such as alumina, silica, titania, magnesia, zirconia, silica-alumina, silica-titania, silica-zirconia, silica-magnesia, silica-alumina-titania, silica-alumina-zirconia, etc. Of these, one or two or more selected from zeolites such as composite oxide, Y-type zeolite, stabilized Y-type zeolite, β-zeolite, mordenite-type zeolite and MCM-22 are preferred.

また、本発明のユニットリスクの高いPAHを低減した軽油基材及び軽油の製造方法においては、NiMo触媒の他に1種以上の水素化精製触媒を組み合わせて反応装置内で積層させて用いてよい。NiMo触媒と組み合わせる水素化精製触媒としては、CoMo触媒、NiCoMo触媒、NiW触媒等、活性金属元素として、モリブデン及び/又はタングステン並びにコバルト及び/又はニッケルを含む多孔質体であり、好ましくは、コバルト及びニッケル合計の含有量が1〜10mass%、モリブデン及びタングステンの含有量が2〜30mass%である。また、NiMo触媒と組み合わせる水素化精製触媒は、リン、ホウ素、フッ素等の元素を含んでもよい。更に、エチレンジアミン四酢酸(EDTA)、trans−1,2−シクロヘキサンジアミン−N,N,N’,N’−四酢酸、ニトリロ三酢酸、クエン酸等のキレート性の有機化合物を含ませた水素化精製触媒も好ましく用いられる。本発明のユニットリスクの高いPAHを低減した軽油基材及び軽油の製造方法に用いる水素化精製触媒は、メソポアの中央細孔直径が、好ましくは、4〜20nmであり、更に好ましくは、4〜15nmである。また、比表面積が、好ましくは、30〜800m2/gであり、更に好ましくは、50〜600m2/gである。本発明のユニットリスクの高いPAHを低減した軽油基材及び軽油の製造方法に用いる水素化精製触媒は、粉体ではなく、成形体であることが好ましい。成形体の形状や成形方法に特に制限はないが、球状や柱状の形状が好ましい。球状の場合は、直径が0.5〜20mmであることが好ましい。また、柱状の場合の断面形状は、特に制限はないが、円型、三つ葉型、四つ葉型が好ましい。柱状の場合における成形体の寸法は、断面積が0.25〜400mm2、長さ0.5〜20mm程度であることが好ましい。上記NiMo触媒と組み合わせる水素化精製触媒の製造方法に特に制限はないが、多孔質無機酸化物担体に上述の活性金属元素やリン等の添加元素を含ませて製造することが好ましい。多孔質無機酸化物としては、アルミナ、シリカ、チタニア、マグネシア、ジルコニア等の酸化物、シリカ−アルミナ、シリカ−チタニア、シリカ−ジルコニア、シリカ−マグネシア、シリカ−アルミナ−チタニア、シリカ−アルミナ−ジルコニア等の複合酸化物、Y型ゼオライト、安定化Y型ゼオライト、βゼオライト、モルデナイト型ゼオライト及びMCM−22等のゼオライトから選ばれる1種又は2種以上からなるものが好ましい。 Moreover, in the light oil base material and the light oil manufacturing method with reduced PAH with high unit risk according to the present invention, one or more hydrorefining catalysts may be combined and stacked in the reaction apparatus in addition to the NiMo catalyst. . The hydrorefining catalyst combined with the NiMo catalyst is a porous material containing molybdenum and / or tungsten and cobalt and / or nickel as active metal elements, such as a CoMo catalyst, NiCoMo catalyst, NiW catalyst, preferably cobalt and The total nickel content is 1 to 10 mass%, and the molybdenum and tungsten contents are 2 to 30 mass%. The hydrorefining catalyst combined with the NiMo catalyst may contain elements such as phosphorus, boron, and fluorine. Further, hydrogenation containing a chelating organic compound such as ethylenediaminetetraacetic acid (EDTA), trans-1,2-cyclohexanediamine-N, N, N ′, N′-tetraacetic acid, nitrilotriacetic acid, citric acid, etc. A purified catalyst is also preferably used. The hydrorefining catalyst used in the gas oil base and gas oil production method with reduced unit risk PAH of the present invention preferably has a mesopore central pore diameter of 4 to 20 nm, more preferably 4 to 4 nm. 15 nm. The specific surface area is preferably 30 to 800 m 2 / g, and more preferably 50 to 600 m 2 / g. It is preferable that the hydrorefining catalyst used for the light oil base material and the manufacturing method of light oil which reduced PAH with a high unit risk of this invention is not a powder but a molded object. Although there is no restriction | limiting in particular in the shape of a molded object, and a shaping | molding method, A spherical shape or a columnar shape is preferable. In the case of a spherical shape, the diameter is preferably 0.5 to 20 mm. The cross-sectional shape in the case of a columnar shape is not particularly limited, but a circular shape, a three-leaf shape, and a four-leaf shape are preferable. The dimensions of the molded body in the case of a columnar shape are preferably about 0.25 to 400 mm 2 in cross-sectional area and about 0.5 to 20 mm in length. Although there is no restriction | limiting in particular in the manufacturing method of the hydrorefining catalyst combined with the said NiMo catalyst, It is preferable to manufacture by adding an additive element, such as the above-mentioned active metal element and phosphorus, to a porous inorganic oxide support | carrier. Examples of porous inorganic oxides include oxides such as alumina, silica, titania, magnesia, zirconia, silica-alumina, silica-titania, silica-zirconia, silica-magnesia, silica-alumina-titania, silica-alumina-zirconia, etc. Of these, one or two or more selected from zeolites such as composite oxide, Y-type zeolite, stabilized Y-type zeolite, β-zeolite, mordenite-type zeolite and MCM-22 are preferred.

軽油留分中に含まれている4−メチルジベンゾチオフェン(4−MDBT)、4,6−ジメチルジベンゾチオフェン(4,6−DMDBT)のように、ジベンゾチオフェン(DBT)の4位及び/又は6位に硫黄原子に対して立体障害となるアルキル置換基を有する硫黄化合物が存在することが知られており、難脱硫性硫黄化合物と呼ばれている[T.Kabe,A.Ishihara,W.Quin,“Hydrodesulfurization and Hydrodenitrogenation”,Kodansha(1999)参照]。従って、軽油留分を水素化精製すると、難脱硫性硫黄化合物が選択的に残留することになる。一方、このような難脱硫性硫黄化合物の脱硫には、DBT骨格中の硫黄原子を直接脱硫する反応ルート(直接脱硫ルート)よりも、DBT骨格内のベンゼン環を水素化して置換基による立体障害を緩和した後に脱硫する反応ルート(水素化脱硫ルート)を取りやすい水素化精製触媒を用いる方が有利であることが知られている。また、コバルト−モリブデン系水素化精製触媒とニッケル−モリブデン系水素化精製触媒とを比較すると、後者の方が水素化脱硫ルートを取りやすいことが知られている。従って、2種類以上の水素化精製触媒を組み合わせて、反応装置内に積層させて用いる場合は、水素化精製触媒中に含まれるコバルトとニッケルの含有量合計に占めるニッケルの比率がより小さいものを原料油が供給される反応器入口により近い側に、コバルトとニッケルの含有量合計に占めるニッケルの比率がより大きいものを反応器出口により近い側に配置することが好ましい。   4-position and / or 6 of dibenzothiophene (DBT) such as 4-methyldibenzothiophene (4-MDBT) and 4,6-dimethyldibenzothiophene (4,6-DMDBT) contained in the light oil fraction. It is known that there is a sulfur compound having an alkyl substituent that is sterically hindered with respect to the sulfur atom at the position, and it is called a hard-to-desulfurize sulfur compound [T. Kabe, A .; Ishihara, W .; Quin, "Hydrodesulfurization and Hydrodentrogenation", Kodansha (1999)]. Therefore, when the gas oil fraction is hydrorefined, the hardly-desulfurizable sulfur compound remains selectively. On the other hand, in the desulfurization of such a hard-to-desulfurize sulfur compound, a steric hindrance due to a substituent is caused by hydrogenating the benzene ring in the DBT skeleton rather than a reaction route (direct desulfurization route) in which sulfur atoms in the DBT skeleton are directly desulfurized. It is known that it is more advantageous to use a hydrorefining catalyst that can easily take a reaction route (hydrodesulfurization route) for desulfurization after relaxing the catalyst. In addition, when the cobalt-molybdenum-based hydrorefining catalyst is compared with the nickel-molybdenum-based hydrorefining catalyst, it is known that the latter tends to take a hydrodesulfurization route. Therefore, when two or more types of hydrorefining catalysts are combined and used in a reactor, a catalyst having a smaller proportion of nickel in the total content of cobalt and nickel contained in the hydrotreating catalyst is used. It is preferable to arrange the one having a larger proportion of nickel in the total content of cobalt and nickel closer to the reactor inlet to which the feedstock is supplied, closer to the reactor outlet.

本発明のユニットリスクの高いPAHを低減した軽油基材及び軽油の製造方法によれば、得られる軽油留分をそのままユニットリスクの高いPAHを低減した軽油として用いることができ、あるいは他の基材と混合してユニットリスクの高いPAHを低減した軽油製品を調製するための軽油基材として用いることもできる。本発明の軽油基材と混合される他の軽油基材としては、例えば、原油を精製して生産される灯油、フィッシャー・トロプシュ法等で誘導される合成軽油、水素化分解軽油、あるいはそれらの半製品、中間製品等の配合用基材が挙げられる。また、植物油メチルエステル、エーテル類等も他の軽油基材として配合することができる。本発明の軽油基材と他の軽油基材とを配合して、本発明のユニットリスクの高いPAHを低減した軽油を調製する場合、所望の品質の軽油となるように適宜配合することができるが、他の軽油基材の配合割合は、20mass%以下、特には15mass%にすることが好ましい。   According to the gas oil base material with reduced unit risk and reduced gas oil production method of the present invention, the obtained light oil fraction can be used as it is as light oil with reduced unit risk PAH, or another base material. It can also be used as a light oil base for preparing a light oil product with a high unit risk and reduced PAH. Other light oil bases to be mixed with the light oil base of the present invention include, for example, kerosene produced by refining crude oil, synthetic light oil derived by the Fischer-Tropsch method, hydrocracked light oil, or their Examples include base materials for blending such as semi-finished products and intermediate products. Moreover, vegetable oil methyl ester, ethers, etc. can be mix | blended as another light oil base material. When the light oil base material of the present invention and other light oil base materials are blended to prepare a light oil with a high unit risk of the present invention and reduced PAH, it can be blended as appropriate so as to obtain a light oil of a desired quality. However, the blending ratio of the other light oil base is preferably 20 mass% or less, and particularly preferably 15 mass%.

また、本発明のユニットリスクの高いPAHを低減した軽油の製造方法においては、添加剤として、低温流動性向上剤、耐摩耗性向上剤、セタン価向上剤、酸化防止剤、金属不活性化剤、腐食防止剤等の公知の燃料添加剤を添加してよい。低温流動性向上剤としては、エチレン共重合体等を用いることができるが、特には、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル等の飽和脂肪酸のビニルエステルが好ましく用いられる。また、耐摩耗性向上剤としては、長鎖(例えば、炭素数12〜24)の脂肪酸又はその脂肪酸エステルが好ましく用いられ、10〜500massppm、好ましくは、50〜100massppmの添加量で十分に耐摩耗性を向上させることができる。   Further, in the method for producing a light oil with reduced unit risk PAH of the present invention, low temperature fluidity improver, wear resistance improver, cetane improver, antioxidant, metal deactivator as additives. A known fuel additive such as a corrosion inhibitor may be added. As the low temperature fluidity improver, an ethylene copolymer or the like can be used. In particular, vinyl esters of saturated fatty acids such as vinyl acetate, vinyl propionate, and vinyl butyrate are preferably used. In addition, as the wear resistance improver, a long-chain (for example, C12-24) fatty acid or a fatty acid ester thereof is preferably used, and the wear resistance is sufficient with an addition amount of 10 to 500 massppm, preferably 50 to 100 massppm. Can be improved.

以下に、本発明を実施例に基づいて具体的に説明するが、本発明はこれにより何ら限定されるものではない。   Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto.

後述する水素化精製処理生成油のPAH測定を、以下に述べる方法にて行った。
(PAH測定前処理)
試料の一定量を測り取った後、n−ヘプタンで溶解した溶液をアルミナカートリッジカラムに注入した。次に、アルミナカラムに保持したPAH成分をトルエンで溶出し、溶出したトルエン溶液をトルエンで1mLに定容し、測定溶液とした。
The PAH measurement of the hydrorefined product oil described later was performed by the method described below.
(PAH measurement pretreatment)
After measuring a certain amount of the sample, a solution dissolved with n-heptane was injected into an alumina cartridge column. Next, the PAH component held on the alumina column was eluted with toluene, and the eluted toluene solution was made up to 1 mL with toluene to obtain a measurement solution.

(GC−MS(SIM)測定)
下記の装置及び条件にてPAHの定量を行った。
GC装置: Agilent社製6890N型GC
検出器: Agilent社製5973N型四重極質量分析計
カラム: Agilent社製HP−5MS
液相: 95%ジメチルポリシロキサン−5%ジフェニルポリシロキサン
カラムサイズ: 内径0.25mm×30m、 膜厚=0.25ミクロン
カラムオーブン温度: 70℃(10分保持)→10℃/minで昇温→300℃(17分保持)
注入口温度: 290℃
トランスファーライン温度: 290℃
検出器温度: イオン源温度=230℃、四重極温度=150℃
カラム流量: 0.7mL
キャリアガス: ヘリウム
注入方法: パルスドスプリットレス 注入時パルス圧=25psi(1.5min)
スプリットベントライン: 50mL(1.5min)
SIM条件(定量イオン)
アセナフチレン=152、アセナフテン=154、フルオレン=166、フェナントレン及びアントラセン=178、フルオランテン及びピレン=202、ベンゾ[a]アントラセン及びクリセン=228、ベンゾ[b]フルオランテン, ベンゾ[k]フルオランテン, ベンゾ[a]ピレン=252、ベンゾ[g,h,i]ペリレン, インデノ[1,2,3−c,d]ピレン=276、ジベンゾ[a,h]アントラセン=278.
(GC-MS (SIM) measurement)
PAH was quantified using the following apparatus and conditions.
GC device: Agilent 6890N type GC
Detector: Agilent 5973N type quadrupole mass spectrometer Column: Agilent HP-5MS
Liquid phase: 95% dimethylpolysiloxane-5% diphenylpolysiloxane Column size: Inner diameter 0.25 mm × 30 m, Film thickness = 0.25 micron Column oven temperature: 70 ° C. (10 minutes hold) → Temperature rise at 10 ° C./min → 300 ° C (17 minutes hold)
Inlet temperature: 290 ° C
Transfer line temperature: 290 ° C
Detector temperature: ion source temperature = 230 ° C., quadrupole temperature = 150 ° C.
Column flow rate: 0.7 mL
Carrier gas: Helium injection method: Pulsed splitless Pulse pressure at injection = 25 psi (1.5 min)
Split vent line: 50 mL (1.5 min)
SIM conditions (quantitative ions)
Acenaphthylene = 152, acenaphthene = 154, fluorene = 166, phenanthrene and anthracene = 178, fluoranthene and pyrene = 202, benzo [a] anthracene and chrysene = 228, benzo [b] fluoranthene, benzo [k] fluoranthene, benzo [a] Pyrene = 252, benzo [g, h, i] perylene, indeno [1,2,3-c, d] pyrene = 276, dibenzo [a, h] anthracene = 278.

(実施例1)
固定床流通式反応装置に水素化精製触媒HOP−414(NiMo触媒、ART K.K.製)100mLを充填し、水素圧力5.0MPa、10L/hで水素を流通させながら室温から150℃まで昇温し、その後、以下の手順で触媒を予備硫化した。硫化剤(市販軽油に1mass%の二硫化炭素を混合したもの)を水素圧力5.0MPa、水素/オイル比500NL/L、LHSV=2.0h-1、150℃の条件下で2時間通油した。その後、温度以外の条件を一定として硫化剤と水素の供給を継続し、20℃/hで230℃まで昇温して、4時間、230℃で一定とした。その後さらに、17.5℃/hで300℃まで昇温して、4時間、300℃で一定とした。この後、この硫化処理された水素化処理触媒を用いて下記軽油留分A(表1)の水素化精製反応を行った。なお、水素化精製反応は、水素圧力8.0MPa、水素/原料油供給比300NL/L、LHSV=1.2h-1及び反応温度352℃で行った。得られた生成油に含まれる高ユニットリスク化合物の合計量は0massppm、生成油中の硫黄分は1.3massppmであった。また、生成油に含まれる低ユニットリスク化合物の合計量は1.1massppm、ピレン含有量は8.7massppmであった(表2)。
Example 1
A fixed bed flow reactor is charged with 100 mL of a hydrorefining catalyst HOP-414 (NiMo catalyst, manufactured by ART K.K.), from room temperature to 150 ° C. while flowing hydrogen at a hydrogen pressure of 5.0 MPa and 10 L / h. The temperature was raised, and then the catalyst was presulfided by the following procedure. Sulfurizing agent (mixed with 1 mass% carbon disulfide in commercial light oil) was passed for 2 hours under the conditions of hydrogen pressure 5.0 MPa, hydrogen / oil ratio 500 NL / L, LHSV = 2.0 h −1 , 150 ° C. did. Thereafter, the supply of the sulfiding agent and hydrogen was continued under constant conditions other than temperature, the temperature was raised to 230 ° C. at 20 ° C./h, and the temperature was kept constant at 230 ° C. for 4 hours. Thereafter, the temperature was further increased to 300 ° C. at 17.5 ° C./h, and the temperature was kept constant at 300 ° C. for 4 hours. Then, the hydrorefining reaction of the following light oil fraction A (Table 1) was performed using this sulfuration-treated hydrotreating catalyst. The hydrorefining reaction was carried out at a hydrogen pressure of 8.0 MPa, a hydrogen / feed oil supply ratio of 300 NL / L, LHSV = 1.2 h −1, and a reaction temperature of 352 ° C. The total amount of high unit risk compounds contained in the resulting product oil was 0 mass ppm, and the sulfur content in the product oil was 1.3 mass ppm. Moreover, the total amount of the low unit risk compound contained in produced | generated oil was 1.1 massppm, and pyrene content was 8.7 massppm (Table 2).

(実施例2)
水素圧6.5MPa、水素/原料油供給比350NL/L、LHSV=1.0h-1及び反応温度350℃とした以外は、実施例1と同じ装置・運転手順・原料油・触媒にて水素化精製反応を行った。得られた生成油に含まれる高ユニットリスク化合物の合計量は0massppm、生成油中の硫黄分は3.7massppmであった。また、生成油に含まれる低ユニットリスク化合物の合計量は0.4massppm、ピレン含有量は7.0massppmであった(表2)。
(Example 2)
Hydrogen with the same equipment, operation procedure, raw material oil and catalyst as in Example 1 except that the hydrogen pressure was 6.5 MPa, the hydrogen / raw oil supply ratio was 350 NL / L, LHSV = 1.0 h −1 and the reaction temperature was 350 ° C. Purification reaction was performed. The total amount of high unit risk compounds contained in the resulting product oil was 0 mass ppm, and the sulfur content in the product oil was 3.7 mass ppm. Further, the total amount of low unit risk compounds contained in the product oil was 0.4 massppm, and the pyrene content was 7.0 massppm (Table 2).

(実施例3)
固定床流通式反応装置に水素化精製触媒HOP−467(CoMo触媒、ART K.K.製)を15m3、HOP−414(NiMo触媒、ART K.K.製)45m3を充填した。DMDSを用いて予備硫化した水素化処理触媒を用いて、下記軽油留分B(表1)の水素化精製反応を行った。なお、水素化精製反応は、反応器入口水素圧力6.8MPa、水素/原料油供給比300Nm3/KL、LHSV=1.0h-1、及び触媒重量平均温度350℃で行った。得られた生成油に含まれる高ユニットリスク化合物の合計量は0massppm、生成油中の硫黄分は7.4massppmであった。また、生成油に含まれる低ユニットリスク化合物の合計量は0.1massppm、ピレン含有量は10massppmであった(表2)。
(Example 3)
The hydrotreating catalyst HOP-467 (CoMo catalyst, manufactured by ART KK) and 15 m 3 of HOP-414 (NiMo catalyst, manufactured by ART KK) 45 m 3 were charged in a fixed bed flow reactor. The hydrorefining reaction of the following light oil fraction B (Table 1) was performed using the hydrotreating catalyst pre-sulfided using DMDS. The hydrorefining reaction was carried out at a reactor inlet hydrogen pressure of 6.8 MPa, a hydrogen / raw oil supply ratio of 300 Nm 3 / KL, LHSV = 1.0 h −1 , and a catalyst weight average temperature of 350 ° C. The total amount of high unit risk compounds contained in the resulting product oil was 0 massppm, and the sulfur content in the product oil was 7.4 massppm. Moreover, the total amount of the low unit risk compound contained in produced | generated oil was 0.1 massppm, and pyrene content was 10 massppm (Table 2).

(比較例1)
固定床流通式反応装置に水素化精製触媒HOP−467(CoMo触媒、ART K.K.製)を40m3、HOP−414(NiMo触媒、ART K.K.製)20m3を充填した。DMDSを用いて予備硫化した水素化処理触媒を用いて、下記軽油留分C(表1)の水素化精製反応を行った。なお、水素化精製反応は、反応器入口水素圧力5.2MPa、水素/原料油供給比250Nm3/KL、LHSV=2.8h-1及び触媒重量平均温度370℃で行った。得られた生成油に含まれる高ユニットリスク化合物の合計量は0.5massppm、生成油中の硫黄分は38massppmであった。また、生成油に含まれる低ユニットリスク化合物の合計量は0.7massppm、ピレン含有量は9.8massppmであった(表2)。
(Comparative Example 1)
Fixed hydrotreating catalyst bed flow reactor HOP-467 (CoMo catalyst, manufactured by ART K. K.) was charged 40m 3, HOP-414 (NiMo catalyst, ART K. K. Ltd.) 20 m 3. The hydrorefining reaction of the following light oil fraction C (Table 1) was performed using the hydrotreating catalyst pre-sulfided using DMDS. The hydrorefining reaction was carried out at a reactor inlet hydrogen pressure of 5.2 MPa, a hydrogen / raw oil feed ratio of 250 Nm 3 / KL, LHSV = 2.8 h −1, and a catalyst weight average temperature of 370 ° C. The total amount of high unit risk compounds contained in the resulting product oil was 0.5 mass ppm, and the sulfur content in the product oil was 38 mass ppm. The total amount of low unit risk compounds contained in the product oil was 0.7 massppm, and the pyrene content was 9.8 massppm (Table 2).

(比較例2)
水素圧5.0MPa、水素/原料油供給比200NL/L、LHSV=4.5h-1、反応器温度345℃とし、原料油を下記軽油留分D(表1)、触媒を水素化精製触媒HOP−467(CoMo触媒、ART K.K.製)100mLとした以外は、実施例1と同じ装置・運転手順にて水素化精製反応を行った。得られた生成油に含まれる高ユニットリスク化合物の合計量は0massppmであったが、生成油中の硫黄分は511massppmであった。また、生成油に含まれる低ユニットリスク化合物の合計量は0massppm、ピレン含有量は2.6massppmであった(表2)。
(Comparative Example 2)
The hydrogen pressure is 5.0 MPa, the hydrogen / feed oil supply ratio is 200 NL / L, LHSV = 4.5 h −1 , the reactor temperature is 345 ° C., the feed oil is the following light oil fraction D (Table 1), and the catalyst is a hydrorefining catalyst. The hydrorefining reaction was performed in the same apparatus and operation procedure as in Example 1 except that HOP-467 (CoMo catalyst, manufactured by ART KK) was 100 mL. The total amount of high unit risk compounds contained in the resulting product oil was 0 mass ppm, but the sulfur content in the product oil was 511 mass ppm. The total amount of low unit risk compounds contained in the product oil was 0 massppm, and the pyrene content was 2.6 massppm (Table 2).

(比較例3)
水素圧5.9MPa、水素/原料油供給比170NL/L、LHSV=0.9h-1、反応器温度345℃とし、原料油を下記軽油留分E(表1)、触媒を水素化精製触媒Z(CoMo触媒、Co:3.5mass%、Mo:15mass%)100mLとした以外は、実施例1と同じ装置・運転手順にて水素化精製反応を行った。得られた生成油に含まれる高ユニットリスク化合物の合計量は0.3massppm、生成油中の硫黄分は7.3massppmであった。また、生成油に含まれる低ユニットリスク化合物の合計量は3.0massppm、ピレン含有量は56massppmであった(表2)。
(Comparative Example 3)
Hydrogen pressure 5.9 MPa, hydrogen / feed oil feed ratio 170 NL / L, LHSV = 0.9 h −1 , reactor temperature 345 ° C., feedstock oil is the following light oil fraction E (Table 1), and catalyst is hydrorefining catalyst The hydrorefining reaction was performed in the same apparatus and operation procedure as in Example 1 except that Z (CoMo catalyst, Co: 3.5 mass%, Mo: 15 mass%) was 100 mL. The total amount of high unit risk compounds contained in the resulting product oil was 0.3 mass ppm, and the sulfur content in the product oil was 7.3 mass ppm. Moreover, the total amount of the low unit risk compound contained in produced | generated oil was 3.0 massppm, and pyrene content was 56 massppm (Table 2).

(比較例4)
水素/原料油供給比を200NL/L、反応器温度を355℃とした以外は、比較例3と同じ装置・運転手順にて水素化精製反応を行った。得られた生成油に含まれる高ユニットリスク化合物の合計量は0.9massppm、生成油中の硫黄分は5.8massppmであった。また、生成油に含まれる低ユニットリスク化合物の合計量は1.1massppm、ピレン含有量は66massppmであった(表2)。
(Comparative Example 4)
The hydrorefining reaction was performed in the same apparatus and operation procedure as in Comparative Example 3 except that the hydrogen / raw oil supply ratio was 200 NL / L and the reactor temperature was 355 ° C. The total amount of high unit risk compounds contained in the resulting product oil was 0.9 mass ppm, and the sulfur content in the product oil was 5.8 mass ppm. Moreover, the total amount of the low unit risk compound contained in produced | generated oil was 1.1 massppm, and pyrene content was 66 massppm (Table 2).

Figure 2006160885
Figure 2006160885

Figure 2006160885
Figure 2006160885

上記表2から、実施例における軽油は、適度なシビアリティの水素化精製を行うことにより、ベンゾ[a]アントラセン等のユニットリスクの高いPAHが十分に低減されており、かつ、硫黄分が十分に低いことがわかる。   From Table 2 above, the gas oil in the examples has a sufficiently high unit risk PAH such as benzo [a] anthracene and the like, and has a sufficient sulfur content. It can be seen that it is low.

Claims (10)

全芳香族分が10〜20vol%、2環以上の芳香族分が0.5〜1.5vol%、90容量%留出温度が320〜360℃、硫黄分が10massppm以下であり、
高ユニットリスク化合物としてのベンゾ[a]アントラセン、クリセン、ベンゾ[b]フルオランテン、ベンゾ[k]フルオランテン、ベンゾ[a]ピレン、インデノ[1,2,3−c,d]ピレン及びジベンゾ[a,h]アントラセンの合計量が、0.1massppm未満を0massppmとして積算して0.2massppm以下であることを特徴とする軽油基材。
The total aromatic content is 10 to 20 vol%, the aromatic content of two or more rings is 0.5 to 1.5 vol%, the 90 vol% distillation temperature is 320 to 360 ° C, the sulfur content is 10 massppm or less,
Benzo [a] anthracene, chrysene, benzo [b] fluoranthene, benzo [k] fluoranthene, benzo [a] pyrene, indeno [1,2,3-c, d] pyrene and dibenzo [a, as high unit risk compounds h] A light oil base material, wherein the total amount of anthracene is 0.2 massppm or less by integrating less than 0.1 massppm as 0 massppm.
低ユニットリスク化合物としてのアセナフチレン、アセナフテン、フルオレン、アントラセン、フェナントレン、フルオランテン及びベンゾ[g,h,i]ペリレンの合計量が、0.1massppm未満を0massppmとして積算して0.1〜1.5massppmである請求項1に記載の軽油基材。   The total amount of acenaphthylene, acenaphthene, fluorene, anthracene, phenanthrene, fluoranthene and benzo [g, h, i] perylene as a low unit risk compound is 0.1 to 1.5 massppm by integrating less than 0.1 massppm as 0 massppm. The light oil base material according to claim 1. ピレン含有量が5〜15massppmである請求項1又は2に記載の軽油基材。   The light oil base material according to claim 1 or 2, wherein the pyrene content is 5 to 15 massppm. 活性金属元素として、ニッケル及びモリブデンを含む多孔質体を含む少なくとも1種類の触媒を用いて、芳香族低減処理のされていない石油由来の軽油留分の水素化精製を行うことを特徴とする請求項1〜3のいずれかに記載の軽油基材の製造方法。   The hydrorefining of petroleum-derived light oil fraction not subjected to aromatic reduction treatment is performed using at least one type of catalyst containing a porous material containing nickel and molybdenum as an active metal element. The manufacturing method of the light oil base material in any one of claim | item 1-3. 前記水素化精製をLHSVが0.1〜2.0h-1の条件で行う請求項4に記載の軽油基材の製造方法。 The manufacturing method of the light oil base material of Claim 4 which performs the said hydrorefining on the conditions whose LHSV is 0.1-2.0h < -1 >. 全芳香族分が10〜20vol%、2環以上の芳香族分が0.5〜1.5vol%、90容量%留出温度が320〜360℃、硫黄分が10massppm以下であり、
高ユニットリスク化合物としてのベンゾ[a]アントラセン、クリセン、ベンゾ[b]フルオランテン、ベンゾ[k]フルオランテン、ベンゾ[a]ピレン、インデノ[1,2,3−c,d]ピレン及びジベンゾ[a,h]アントラセンの合計量が、0.1massppm未満を0massppmとして積算して0.2massppm以下であることを特徴とする軽油。
The total aromatic content is 10 to 20 vol%, the aromatic content of two or more rings is 0.5 to 1.5 vol%, the 90 vol% distillation temperature is 320 to 360 ° C, the sulfur content is 10 massppm or less,
Benzo [a] anthracene, chrysene, benzo [b] fluoranthene, benzo [k] fluoranthene, benzo [a] pyrene, indeno [1,2,3-c, d] pyrene and dibenzo [a, as high unit risk compounds h] A light oil in which the total amount of anthracene is 0.2 massppm or less by integrating less than 0.1 massppm as 0 massppm.
低ユニットリスク化合物としてのアセナフチレン、アセナフテン、フルオレン、アントラセン、フェナントレン、フルオランテン及びベンゾ[g,h,i]ペリレンの合計量が、0.1massppm未満を0massppmとして積算して0.1〜1.5massppmである請求項6に記載の軽油。   The total amount of acenaphthylene, acenaphthene, fluorene, anthracene, phenanthrene, fluoranthene and benzo [g, h, i] perylene as a low unit risk compound is 0.1 to 1.5 massppm by integrating less than 0.1 massppm as 0 massppm. The diesel oil according to claim 6. ピレン含有量が5〜15massppmである請求項6又は7に記載の軽油。   The gas oil according to claim 6 or 7, wherein the pyrene content is 5 to 15 massppm. 活性金属元素として、ニッケル及びモリブデンを含む多孔質体を含む少なくとも1種類の触媒を用いて、芳香族低減処理のされていない石油由来の軽油留分の水素化精製を行うことを特徴とする請求項6〜8のいずれかに記載の軽油の製造方法。   The hydrorefining of petroleum-derived light oil fraction not subjected to aromatic reduction treatment is performed using at least one type of catalyst containing a porous material containing nickel and molybdenum as an active metal element. Item 9. A process for producing light oil according to any one of Items 6 to 8. 前記水素化精製をLHSVが0.1〜2.0h-1の条件で行う請求項9に記載の軽油の製造方法。

The method for producing light oil according to claim 9, wherein the hydrorefining is performed under the condition of LHSV of 0.1 to 2.0 h- 1 .

JP2004354259A 2004-12-07 2004-12-07 Light oil base material, light oil, and production method thereof Active JP4920188B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004354259A JP4920188B2 (en) 2004-12-07 2004-12-07 Light oil base material, light oil, and production method thereof
KR1020050116323A KR100738847B1 (en) 2004-12-07 2005-12-01 Base material for gas oil and gas oil and method of producing the same
CNB2005101272593A CN100393846C (en) 2004-12-07 2005-12-06 Light oil base material, light oil, and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004354259A JP4920188B2 (en) 2004-12-07 2004-12-07 Light oil base material, light oil, and production method thereof

Publications (2)

Publication Number Publication Date
JP2006160885A true JP2006160885A (en) 2006-06-22
JP4920188B2 JP4920188B2 (en) 2012-04-18

Family

ID=36663269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004354259A Active JP4920188B2 (en) 2004-12-07 2004-12-07 Light oil base material, light oil, and production method thereof

Country Status (3)

Country Link
JP (1) JP4920188B2 (en)
KR (1) KR100738847B1 (en)
CN (1) CN100393846C (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0717456A2 (en) * 2006-10-19 2013-12-24 Shell Int Research ELECTRIC OIL COMPOSITION, AND, USE OF COMPOSITION

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860165A (en) * 1994-08-24 1996-03-05 Idemitsu Kosan Co Ltd Fuel oil composition and production thereof
JPH1180434A (en) * 1997-09-12 1999-03-26 Nippon Oil Co Ltd Rubber compounding oil
JP2000198990A (en) * 1999-01-05 2000-07-18 Idemitsu Kosan Co Ltd Hydrogenation process for gas oil fraction
JP2001303079A (en) * 2000-04-20 2001-10-31 Nippon Mitsubishi Oil Corp Gas oil composition
JP2004075901A (en) * 2002-08-20 2004-03-11 Nippon Oil Corp Gas oil composition
JP2004075723A (en) * 2002-08-09 2004-03-11 Nippon Oil Corp Gas oil composition
WO2004078887A1 (en) * 2003-03-07 2004-09-16 Nippon Oil Corporation Method of hydrotreating gas oil fraction

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1059846C (en) * 1994-11-09 2000-12-27 中国石油化工总公司抚顺石油化工研究院 Light oil type hydrogen cracking catalyst and preparation method thereof
BR9608589A (en) * 1995-06-07 1999-09-14 Willian C Orr Steam phase combustion and compositions
JP3868128B2 (en) * 1998-10-05 2007-01-17 新日本石油株式会社 Gas oil hydrodesulfurization apparatus and method
JP2001064657A (en) * 1999-08-26 2001-03-13 Idemitsu Kosan Co Ltd Production of low-sulfur gas oil
JP2004067906A (en) * 2002-08-07 2004-03-04 Nippon Oil Corp Gas oil composition and its manufacturing method
JP4436608B2 (en) * 2003-02-19 2010-03-24 新日本石油株式会社 Hydrodesulfurization method for diesel oil fraction

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860165A (en) * 1994-08-24 1996-03-05 Idemitsu Kosan Co Ltd Fuel oil composition and production thereof
JPH1180434A (en) * 1997-09-12 1999-03-26 Nippon Oil Co Ltd Rubber compounding oil
JP2000198990A (en) * 1999-01-05 2000-07-18 Idemitsu Kosan Co Ltd Hydrogenation process for gas oil fraction
JP2001303079A (en) * 2000-04-20 2001-10-31 Nippon Mitsubishi Oil Corp Gas oil composition
JP2004075723A (en) * 2002-08-09 2004-03-11 Nippon Oil Corp Gas oil composition
JP2004075901A (en) * 2002-08-20 2004-03-11 Nippon Oil Corp Gas oil composition
WO2004078887A1 (en) * 2003-03-07 2004-09-16 Nippon Oil Corporation Method of hydrotreating gas oil fraction

Also Published As

Publication number Publication date
KR20060063685A (en) 2006-06-12
JP4920188B2 (en) 2012-04-18
KR100738847B1 (en) 2007-07-12
CN100393846C (en) 2008-06-11
CN1796499A (en) 2006-07-05

Similar Documents

Publication Publication Date Title
US10316263B2 (en) Fuel components from hydroprocessed deasphalted oils
JP5622736B2 (en) High energy distillate fuel composition and method of making the same
US9719034B2 (en) Co-production of lubricants and distillate fuels
US20190078027A1 (en) Hydroprocessing of high density cracked fractions
KR20190035583A (en) Catalytic cracking process with increased production of a gasoline having a low olefin content and a high octane number
KR20150021529A (en) Process for direct hydrogen injection in liquid full hydroprocessing reactors
JP5912299B2 (en) Production method of diesel oil fraction
Marafi et al. Deep desulfurization of full range and low boiling diesel streams from Kuwait Lower Fars heavy crude
JP2011079995A (en) Method for producing high aromatic hydrocarbon oil
CA2899196C (en) Fixed bed hydrovisbreaking of heavy hydrocarbon oils
JP2011042734A (en) Method for producing highly aromatic hydrocarbon oil
JP4920188B2 (en) Light oil base material, light oil, and production method thereof
JP5439245B2 (en) Hydrorefining method for diesel oil fraction
JP6801927B2 (en) Manufacturing method of light oil base material
JP2009167308A (en) Hydrorefining method of naphtha fraction
JP5501048B2 (en) Method for producing catalytic reforming feedstock
JP6346837B2 (en) Method for desulfurizing hydrocarbon oil, method for producing desulfurized oil, and method for suppressing decrease in catalyst activity
JP5314355B2 (en) Method for producing hydrocarbon oil
JP5352057B2 (en) Method for producing fuel oil base material
JP5108329B2 (en) Kerosene composition
JP6360372B2 (en) Production method of light oil base
JP2006104224A (en) Unleaded gasoline composition and its production method
JP2015052089A (en) Desulfurization method of light oil fraction
AU2018341697A1 (en) Optimized global positioning system correction message for interoperable train control messaging transport
JP4771509B2 (en) Hydrorefining method for diesel oil fraction

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070928

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120201

R150 Certificate of patent or registration of utility model

Ref document number: 4920188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250