JP2006160556A - Sintered material and its manufacturing method - Google Patents

Sintered material and its manufacturing method Download PDF

Info

Publication number
JP2006160556A
JP2006160556A JP2004353524A JP2004353524A JP2006160556A JP 2006160556 A JP2006160556 A JP 2006160556A JP 2004353524 A JP2004353524 A JP 2004353524A JP 2004353524 A JP2004353524 A JP 2004353524A JP 2006160556 A JP2006160556 A JP 2006160556A
Authority
JP
Japan
Prior art keywords
sintered body
pores
pore
porosity
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004353524A
Other languages
Japanese (ja)
Inventor
Shiyougo Yamaguchi
将吾 山口
Terubumi Okada
光史 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2004353524A priority Critical patent/JP2006160556A/en
Publication of JP2006160556A publication Critical patent/JP2006160556A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered material as a biomaterial having high mechanical strength and bio-compatibility, easy to be penetrated, fixed, and grown by an osteoblast cell, etc., in its pore, and having a porous structure easy for a living body to be metabolized therein, and its manufacturing method. <P>SOLUTION: This sintered material as a biomaterial comprises a porous structure with its pore non-spherical and communicating and has a porosity of 50-90%. In this manufacturing method, a powder of an inorganic material is mixed with a polymerizable monomer, the monomer is polymerized after foaming into a porous polymer, and the porous polymer is sintered while it is kept deformed by applying stress. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は焼結体およびその製造方法に関し、詳しくは人工骨や人工歯などに利用できる生体材料としての焼結体およびその製造方法に関する。   The present invention relates to a sintered body and a manufacturing method thereof, and more particularly to a sintered body as a biomaterial that can be used for artificial bones, artificial teeth, and the like, and a manufacturing method thereof.

外科や歯科などで用いられる人工骨、人工歯あるいは骨や歯などへの補填材料(以下「骨補填材」という)は、機械的強度が十分で、無毒性など生体との適合性が高いものが好適とされている。さらに、使用部位によっては生体内での代謝性がよく、新生の骨や歯と自然に置き替えられる骨補填材が求められている。このような観点から、リン酸カルシウム化合物からなる多孔質構造の骨補填材は生体の骨や歯に近い成分であり、優れた骨補填材として利用されている。生体内での代謝性のよい骨補填材として、リン酸カルシウム化合物などのセラミックス粉末と有機物等とを混合成形し、これを焼結した多孔質骨補填材が知られている(特許文献1、特許文献2)。これらの従来から公知の多孔質な生体材料用の焼結体では、気孔の形成方法によっては形成された気孔の大部分は独立した気孔となり易く、形成された隣接気孔同士が接しており連続していたとしても、各気孔の連通する部分(以下「連通部」ともいう)の断面積が小さくなりやすかった。このような気孔構造の焼結体では生体内に挿入した際、各気孔内に満遍なく骨生成に必要な骨芽細胞等を侵入させることが困難である。そこで、多孔質骨補填材の気孔連通性、生体適合性等の改善を目指し、例えば気孔率、気孔径、球形気孔およびその連通部分の孔径を調整した燐酸カルシウム系多孔質焼結体(特許文献3)、有機多孔質体にセラミック原料スラリーを含浸させこれを変形させた状態で焼成した気孔密度に偏りを持たせた骨補填材成形品(特許文献4)などが知られている。   Artificial bones, artificial teeth, or bone or tooth replacement materials (hereinafter referred to as “bone replacement materials”) used in surgery and dentistry have sufficient mechanical strength and are non-toxic and highly compatible with living bodies. Is preferred. Furthermore, there is a need for a bone prosthesis material that has good in vivo metabolism depending on the site of use and can be naturally replaced with new bones and teeth. From this point of view, a porous bone substitute material made of a calcium phosphate compound is a component close to living bones and teeth, and is used as an excellent bone substitute material. As a bone filling material having good metabolism in vivo, a porous bone filling material obtained by mixing and sintering ceramic powder such as a calcium phosphate compound and an organic substance is known (Patent Document 1, Patent Document). 2). In these conventionally known sintered bodies for porous biomaterials, most of the formed pores tend to be independent pores depending on the pore formation method, and the adjacent pores formed are in contact with each other and are continuous. Even in such a case, the cross-sectional area of the portion where each pore communicates (hereinafter also referred to as “communication portion”) tends to be small. When the sintered body having such a pore structure is inserted into a living body, it is difficult to uniformly introduce osteoblasts and the like necessary for bone formation into each pore. Therefore, with the aim of improving the porosity connectivity, biocompatibility, etc. of the porous bone filling material, for example, a calcium phosphate porous sintered body in which the porosity, the pore diameter, the spherical pores, and the pore diameter of the communicating portion thereof are adjusted (patent document) 3) A bone prosthesis molded article (Patent Document 4) in which an organic porous material is impregnated with a ceramic raw material slurry and fired in a deformed state to have an uneven pore density is known.

特開昭60−16879号公報Japanese Unexamined Patent Publication No. 60-16879 特開昭60−21763号公報Japanese Patent Application Laid-Open No. 60-21773 特開2000−302567号公報JP 2000-302567 A 特開2002−58688号公報JP 2002-58688 A

しかしながら、上述の多孔質補填材においても、生体適合性等の改善の点では十分ではなく、特に、流動性のある原料中に気泡を生成させて製造する多孔体の場合、気孔の連通部分はある程度広くなっているものの、ほとんどの気泡はほぼ球形であり、気孔内での骨芽細胞等の定着、成長、代謝、骨形成等をスムースに進行させるためにも気孔容積に対し、気孔表面積を大きくすることが望ましい。一方、焼結体の気孔の表面積を上げるためには気孔率を大幅に高くしたり、気孔径を小さくせねばならない。気孔率を上げすぎれば焼結体の強度が下がってしまい生体材料としては好ましくない。また、気孔径を小さくしすぎると骨芽細胞等の気孔内への侵入が困難になり、生体内での代謝が難しくなり生体適合性が悪くなる。   However, the above-mentioned porous filling material is not sufficient in terms of improving biocompatibility and the like, and particularly in the case of a porous body produced by generating bubbles in a fluid raw material, the pore communicating portion is Although it is widened to some extent, most of the bubbles are almost spherical, and the surface area of the pores is reduced with respect to the pore volume in order to smoothly promote the establishment, growth, metabolism, bone formation, etc. of osteoblasts in the pores. It is desirable to enlarge it. On the other hand, in order to increase the surface area of the pores of the sintered body, the porosity must be significantly increased or the pore diameter must be reduced. If the porosity is increased too much, the strength of the sintered body decreases, which is not preferable as a biomaterial. If the pore diameter is too small, it becomes difficult for osteoblasts or the like to enter the pores, and metabolism in the living body becomes difficult, resulting in poor biocompatibility.

本発明は上記の課題を解決するため、比較的大きな連通孔で繋がった特殊な形状の気孔の多孔質構造を有し、機械的強度および気孔内へ骨芽細胞等の侵入、定着、成長及び骨形成し易い代謝適合性の高い焼結体およびその製造方法を提供することを目的としている。   In order to solve the above problems, the present invention has a porous structure of pores having a special shape connected by relatively large communication holes, and has mechanical strength and penetration, establishment, growth, and the like of osteoblasts into the pores. An object of the present invention is to provide a sintered body having a high metabolic compatibility and easily producing bone, and a method for producing the same.

本発明の課題を解決するための手段は、
(1)気孔が非球形でかつ連通している多孔質構造からなり、気孔率が50〜90%である生体材料用の焼結体である。
(2)気孔率が60〜80%である(1)に記載の焼結体である。
(3)無機質粉末と重合性モノマーとを混合、起泡させたのちモノマーを重合させ多孔質重合体とし、該多孔質重合体に応力を加え変形させた状態を保ったまま焼成する焼結体の製造方法である。
(4)多孔質重合体に加える応力が圧縮応力である(3)に記載の焼結体の製造方法である。
Means for solving the problems of the present invention include:
(1) A sintered body for a biomaterial which has a porous structure in which pores are non-spherical and communicate with each other, and has a porosity of 50 to 90%.
(2) The sintered body according to (1), wherein the porosity is 60 to 80%.
(3) A sintered body in which an inorganic powder and a polymerizable monomer are mixed and foamed, the monomer is polymerized to form a porous polymer, and the porous polymer is baked while being deformed by applying stress. It is a manufacturing method.
(4) The method for producing a sintered body according to (3), wherein the stress applied to the porous polymer is compressive stress.

本発明の焼結体は、機械的強度および生体適合性が高く、大半の気孔が大きな連通孔による連通状態にあり、かつ気孔の形状が複雑であるため、気孔表面積が大きく、気孔内に骨芽細胞等が侵入、定着、成長やすく、生体内での代謝及び骨形成が容易な多孔質構造を有する生体材料用の焼結体である。また、本発明の焼結体の製造方法は上記焼結体の好適な製造方法である。   Since the sintered body of the present invention has high mechanical strength and biocompatibility, most of the pores are in communication with large communication holes, and the pore shape is complicated, the pore surface area is large, and bones are contained in the pores. It is a sintered body for a biomaterial having a porous structure in which blast cells and the like are easy to enter, settle and grow, and are easily metabolized and bone-formed in vivo. Moreover, the manufacturing method of the sintered compact of this invention is a suitable manufacturing method of the said sintered compact.

本発明の焼結体は、気孔が非球形でかつ連通している多孔質構造からなり、気孔率が50〜90%、好ましくは60〜80%である。本発明の特長のとして気孔が非球形であることが重要である。非球形とは楕円球や扁平球、多面体、多角形、半月形、三日月形などは勿論、断面が四角や三角になった形状でもよい。通常液体やスラリー等の粘性流体を攪拌等により発泡体とすると、その多孔質構造の気泡は球形になる。気泡が独立気泡でも気泡同士が連通している連続気泡でも各気泡はほぼ球形をしている。連続気泡の場合は完全な球形ではないが、球形の気泡が連通したものであり実質的に球形とみなすことができる。上記のような実質的に球形の気孔を持つ多孔質な弾性体を圧縮、引張り、ねじりなどの応力により変形させると球形の気孔も変形する。本発明における非球形とは、このような球形の気孔を応力によって種々の変形をさせた際に生ずる気孔のような形状のことを呼んでいる。なお、この非球形の形状は結果として非球形の形状となっておればよく、上述のような気孔生成方法による必要はない。また、本発明の非球形の形状は実質的に非球形となっており、ほとんどの気孔が非球形の形状をしており、逆にほとんどの気孔が実質的に球形の形状をしているものは含まない。このように気孔を非球形にすることで同じ気孔率でも気孔の表面積を大きくでき、焼結体と骨芽細胞等の生体物質等との接触面積を大きくでき骨芽細胞等の定着を容易にし、生体への代謝適性をよくする効果がある。   The sintered body of the present invention has a porous structure in which pores are non-spherical and communicate with each other, and has a porosity of 50 to 90%, preferably 60 to 80%. As a feature of the present invention, it is important that the pores are non-spherical. The non-spherical shape may be an elliptical sphere, a flat sphere, a polyhedron, a polygon, a half moon, a crescent, or the like, or a shape having a square or triangular cross section. Usually, when a viscous fluid such as a liquid or a slurry is made into a foam by stirring or the like, the bubbles of the porous structure become spherical. Each bubble has a substantially spherical shape, whether it is a closed bubble or a continuous bubble in which the bubbles communicate with each other. In the case of open cells, it is not a perfect sphere, but it can be regarded as a substantially spherical shape because spherical bubbles are connected. When a porous elastic body having substantially spherical pores as described above is deformed by a stress such as compression, tension or torsion, the spherical pores are also deformed. The non-spherical shape in the present invention refers to a shape like a pore generated when such a spherical pore is variously deformed by stress. This non-spherical shape only needs to be a non-spherical shape as a result, and it is not necessary to use the pore generation method as described above. In addition, the non-spherical shape of the present invention is substantially non-spherical, most of the pores are non-spherical, and conversely, most of the pores are substantially spherical. Is not included. By making the pores non-spherical in this way, the surface area of the pores can be increased even with the same porosity, and the contact area between the sintered body and the biological material such as osteoblasts can be increased to facilitate the establishment of osteoblasts and the like. It has the effect of improving metabolic suitability to the living body.

本発明の焼結体はこれらの非球形の気孔同士が連通して多孔質構造となっている。気孔同士の連通は規則的でなくともよい。一部の気孔は独立していても構わないし、一部の気孔は数個の他の気孔と連通している場合もある。連通している多孔質構造とは焼結体外部から気体や液体、骨芽細胞などの生体物質等が連通している各気孔に侵入できる構造である。   The sintered body of the present invention has a porous structure in which these non-spherical pores communicate with each other. The communication between the pores may not be regular. Some pores may be independent, and some pores may communicate with several other pores. The porous structure that communicates is a structure that can enter the pores through which biological materials such as gas, liquid, and osteoblasts communicate from the outside of the sintered body.

気孔率Pの算出は通常の方法で行えばよい。例えば、測定対象の焼結体と同じ組成、結晶形の気孔を持たない焼結体の真密度ρを測定しておき、測定対象の焼結体の体積と重さから算出した見かけ密度ρ’とから気孔率P=1−ρ’/ρとして算出すればよい。あるいは焼結体の電子顕微鏡写真における気孔面積の比率から計算値として求めてこれを近似値として気孔率としてもよい。気孔率が50〜90%、好ましくは60〜80%であると、焼結体の強度を保てると同時に表面積が大きくなり骨芽細胞等の生体物質等との接触面積が大きくなり代謝適性がよくなる効果がある。また、気孔率がこの範囲であると気孔同士の連通が容易な構造になり易い特長もある。   The porosity P may be calculated by a normal method. For example, the true density ρ of a sintered body having the same composition and crystal form pores as the measurement target is measured, and the apparent density ρ ′ calculated from the volume and weight of the measurement target sintered body. And the porosity P = 1−ρ ′ / ρ may be calculated. Or it is good also as a porosity by calculating | requiring as a calculated value from the ratio of the pore area in the electron micrograph of a sintered compact, and making this into an approximate value. When the porosity is 50 to 90%, preferably 60 to 80%, the strength of the sintered body can be maintained, and at the same time, the surface area becomes large and the contact area with biological materials such as osteoblasts becomes large and the metabolic suitability is improved. effective. In addition, when the porosity is within this range, there is a feature that the structure is easy to communicate between the pores.

このような焼結体は、気孔同士の連通部分すなわち連通孔の大きさが25μm以上、好ましくは50μm以上であることが好ましい。連通孔は通常円形ではなく、大きさに分布もある。連通孔の大きさは、ここでは水銀ポロシメーターで測定した平均的な換算直径としての大きさである。連通孔の大きさが25μm以上、好ましくは50μm以上であれば骨芽細胞等の生体物質等が侵入しやすく生体材料として好適である。なお、連通孔の大きさが25μm以上、好ましくは50μm以上であれば当然気孔径も25μm以上、好ましくは50μm以上であるので、気孔全体にも骨芽細胞等の生体物質等が侵入しやすい生体材料である。通常は連続気泡の連通部分が最も細くなっていると考えられるので、この部分に生体物質等が侵入しやすくなっておれば問題はない。連通孔の大きさに上限はないが8mm位までは製造可能であるが、現実的には1mm以下の場合が多い。気孔径および連通孔の大きさをあまり大きくすると、焼結体の強度低下とともに表面積が小さくなり、骨芽細胞等の生体物質等との接触面積が小さくなり代謝適性が落ちてくることがある。   In such a sintered body, the communicating portion between pores, that is, the size of the communicating hole is preferably 25 μm or more, and preferably 50 μm or more. The communication holes are usually not circular but have a size distribution. Here, the size of the communication hole is a size as an average converted diameter measured by a mercury porosimeter. If the size of the communication hole is 25 μm or more, preferably 50 μm or more, biological materials such as osteoblasts are likely to enter and suitable as a biological material. Note that if the size of the communication hole is 25 μm or more, preferably 50 μm or more, the pore diameter is naturally 25 μm or more, preferably 50 μm or more. Therefore, a biological material such as osteoblasts can easily enter the entire pore. Material. Normally, it is considered that the communicating part of the open cell is the thinnest, so there is no problem as long as a biological substance or the like easily enters this part. Although there is no upper limit to the size of the communication hole, it can be manufactured up to about 8 mm, but in reality, it is often 1 mm or less. If the pore diameter and the size of the communication hole are too large, the surface area of the sintered body decreases as the strength of the sintered body decreases, and the contact area with biological materials such as osteoblasts decreases, which may reduce metabolic suitability.

本発明の焼結体はどのような材料で出来ていても良いが、リン酸カルシウム系材料が好適である。例えば、CaHPO4、Ca3(PO4)2、Ca5(PO4)3OH、Ca4O(PO4)2、Ca10(PO4)6(OH)2、CaP411、Ca(PO3)2、Ca227、Ca(H2PO4)2、Ca227、Ca(H2PO4)2・H2Oからなる1群の化合物の1種または2種以上を主成分とするリン酸カルシウム系焼結体がある。これらのCaの成分の一部が、Sr、Ba、Mg、Fe、Al、Y、La、Na、K、Ag、Pd、Zn、Pb、Cd、H、および、前記以外の希土類元素から選ばれる1種または2種以上の原子で置換され得るものでもよい。また、(PO4)成分の一部が、VO4、BO3、SO4、CO3、SiO4から選ばれる1種または2種以上の原子団で置換されたものでもよい。さらに、(OH)成分の一部が、F、Cl、O、CO3、I、Brから選ばれる1種または2種以上の原子等で置換されたものでもよい。その他の材料としては、アルミナ、ジルコニア、カーボン、窒化珪素、シリカ、チタニア等を用いることが出来る。また、焼結体は結晶体、非晶質体、固溶体のいずれかあるいはこれらの混合物でもよい。 The sintered body of the present invention may be made of any material, but a calcium phosphate material is suitable. For example, CaHPO 4 , Ca 3 (PO 4 ) 2 , Ca 5 (PO 4 ) 3 OH, Ca 4 O (PO 4 ) 2 , Ca 10 (PO 4 ) 6 (OH) 2 , CaP 4 O 11 , Ca ( One of a group of compounds consisting of PO 3 ) 2 , Ca 2 P 2 O 7 , Ca (H 2 PO 4 ) 2 , Ca 2 P 2 O 7 , Ca (H 2 PO 4 ) 2 .H 2 O There is a calcium phosphate-based sintered body mainly containing two or more kinds. Some of these Ca components are selected from Sr, Ba, Mg, Fe, Al, Y, La, Na, K, Ag, Pd, Zn, Pb, Cd, H, and other rare earth elements. It may be substituted with one or more atoms. Further, a part of the (PO 4 ) component may be substituted with one or more atomic groups selected from VO 4 , BO 3 , SO 4 , CO 3 and SiO 4 . Further, a part of the (OH) component may be substituted with one or two or more atoms selected from F, Cl, O, CO 3 , I and Br. As other materials, alumina, zirconia, carbon, silicon nitride, silica, titania and the like can be used. The sintered body may be a crystalline body, an amorphous body, a solid solution, or a mixture thereof.

本発明の焼結体の製造方法は特に限定はされないが、以下に好適な製造方法について図13を参照しながら述べる。通常は最初に無機質粉末スラリー調製を行う。原料無機質粉末としては、上述の材料の原料となる無機質粉末を用いればよい。特にリン酸カルシウム系の粉末が好適である。すなわち、リン酸カルシウム、リン酸水素カルシウム、リン酸2水素カルシウム、およびこれらの混合物や化合物が用いられる。水酸アパタイトやβ−リン酸カルシウムの混合物を800℃で焼成した粉末は特に好適な原料である。粉末の粒度や粒形には特に制限はなく、スラリー媒体と混合してスラリーを生成し易いものであればよい。   Although the manufacturing method of the sintered compact of the present invention is not particularly limited, a preferable manufacturing method will be described below with reference to FIG. Usually, the inorganic powder slurry is first prepared. As the raw material inorganic powder, an inorganic powder that is a raw material of the above-described material may be used. In particular, calcium phosphate powder is suitable. That is, calcium phosphate, calcium hydrogen phosphate, calcium dihydrogen phosphate, and mixtures and compounds thereof are used. A powder obtained by firing a mixture of hydroxyapatite or β-calcium phosphate at 800 ° C. is a particularly suitable raw material. There are no particular restrictions on the particle size or particle shape of the powder, as long as it is easily mixed with the slurry medium to produce a slurry.

スラリー媒体は、通常は水である。水の割合は後述の起泡、重合体製造に支障のない範囲で少なくしておくとよい。ただし、あまり水の割合が少ないと適度な大きさの気孔を持つ発泡体が生成しにくいので注意をする。原料無機質粉末に対して10〜200重量%、好ましくは20〜100重量%の水を使用すれば所望のスラリーが得易い。原料無機質粉末に水を加えて攪拌し均一なスラリーとする。水以外のスラリー媒体としてはアルコールあるいは下記の重合用のモノマーを溶解し得る液体を用いてもよい。   The slurry medium is usually water. The proportion of water is preferably reduced within a range that does not hinder foaming and polymer production described below. However, it should be noted that if the proportion of water is too small, it is difficult to produce a foam having moderately sized pores. If 10 to 200% by weight, preferably 20 to 100% by weight of water based on the raw inorganic powder is used, a desired slurry can be easily obtained. Water is added to the raw inorganic powder and stirred to obtain a uniform slurry. As the slurry medium other than water, a liquid capable of dissolving alcohol or the following monomer for polymerization may be used.

この原料無機質粉末スラリーに重合用のモノマーを添加する。モノマーとしては、モノマーを添加した原料無機質粉末スラリーを後述のように発泡させ、重合させた際に連通した多孔質構造を持つ弾性体または塑性変形可能な成形体(塑性体という)である重合体を形成できるものであればよい。例えば、アクリルアミド、メタクリルアミド、アクリル酸、メタクリル酸、アクリロニトリル、マレイン酸などの単官能基モノマーが挙げられる。その中でもアクリルアミド、メタクリルアミドが好ましいモノマーとして挙げられる。また、架橋成分として三次元構造の重合体を生成する多官能基モノマーを加えることも好ましい。多官能基モノマーとしては、メチレンビスアクリルアミド、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、エチレングリコールジアリルエーテル、ジエチレングリコールジアリルエーテル、エチレングリコールジアクリレート、エチレングリコールジメタクリレートなどが好適である。さらに、重合体に架橋剤を加えて三次元構造重合体を生成することもできる。架橋剤としてはエポキシ化合物などが好適である。その他にもモノマーの分散を良くするための分散剤、必要な時期に重合を開始させるための触媒や重合禁止剤等の添加剤を加えてもよい。   A monomer for polymerization is added to the raw inorganic powder slurry. As the monomer, a raw material inorganic powder slurry to which the monomer is added is foamed as will be described later, and a polymer that is an elastic body or a plastically deformable molded body (referred to as a plastic body) having a porous structure communicated when polymerized. What is necessary is just to be able to form. Examples thereof include monofunctional group monomers such as acrylamide, methacrylamide, acrylic acid, methacrylic acid, acrylonitrile, and maleic acid. Among these, acrylamide and methacrylamide are preferable monomers. It is also preferable to add a polyfunctional monomer that forms a three-dimensional polymer as a crosslinking component. As the polyfunctional group monomer, methylene bisacrylamide, ethylene glycol divinyl ether, diethylene glycol divinyl ether, ethylene glycol diallyl ether, diethylene glycol diallyl ether, ethylene glycol diacrylate, ethylene glycol dimethacrylate and the like are suitable. Furthermore, a three-dimensional structure polymer can be produced by adding a crosslinking agent to the polymer. As the crosslinking agent, an epoxy compound or the like is suitable. In addition, a dispersant for improving the dispersion of the monomer, and an additive such as a catalyst for starting polymerization at a necessary time and a polymerization inhibitor may be added.

また、モノマーが酸素等で重合し難い場合は、モノマー添加原料無機質粉末スラリーを真空脱気等して窒素等の不活性ガス雰囲気中で工程を進めるとよい。原料無機質粉末スラリーへのモノマーの添加量は特に制限はないが、通常は目的の重合体ができる範囲で少ないことが経済的にも焼成工程上からも望ましい。一般に、原料無機質粉末スラリー100重量部に対しモノマーの添加量1〜50重量部を用いればよい。   If the monomer is difficult to polymerize with oxygen or the like, the process may be carried out in an inert gas atmosphere such as nitrogen by vacuum degassing the monomer-added raw material inorganic powder slurry. The amount of the monomer added to the raw inorganic powder slurry is not particularly limited, but it is usually desirable from the economical and firing step that the amount of the monomer is within the range where the desired polymer can be formed. Generally, the added amount of the monomer may be 1 to 50 parts by weight with respect to 100 parts by weight of the raw inorganic powder slurry.

次に起泡工程としてモノマー添加原料無機質粉末スラリーを攪拌したり、界面活性剤や発泡剤(これらを合わせて発泡剤という。)を添加して攪拌したりしてスラリーを発泡させる。発泡は通常のスラリーの発泡方法に従えばよい。発泡の程度により重合体の気孔率が決まるので、これを勘案して発泡させることが必要である。なお、焼結体の気孔率は重合体をさらに変形させた後の気孔率に近くなるので、圧縮変形の場合は特に圧縮分も考慮して発泡させる。また、重合体の気孔の大きさもこの起泡工程でほぼ決まるのでこれにも注意して発泡させるとよい。一般に、攪拌を強く長時間行えば気泡は小さくなる。通常攪拌は1〜60分程度が適当である。発泡剤としては、陰イオン性、陽イオン性、非イオン性、両性の界面活性剤を用いることが出来る。例えばポリオキシエチレンラウリルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンアルキルアミン、ポリエチレングリコール脂肪酸エステル、デカグリセリンモノラウレート、アルカノールアミドなどを使用することが出来る。   Next, as the foaming step, the monomer-added raw material inorganic powder slurry is stirred, or a surfactant or a foaming agent (these are collectively referred to as a foaming agent) is stirred to foam the slurry. Foaming may follow the usual slurry foaming method. Since the porosity of the polymer is determined by the degree of foaming, it is necessary to foam the polymer in consideration of this. In addition, since the porosity of the sintered body is close to the porosity after the polymer is further deformed, in the case of compressive deformation, foaming is performed particularly considering the compression. In addition, since the pore size of the polymer is almost determined by this foaming step, it is preferable to perform foaming with care. In general, if stirring is carried out for a long time, bubbles become smaller. Usually, stirring is suitably about 1 to 60 minutes. As the foaming agent, anionic, cationic, nonionic and amphoteric surfactants can be used. For example, polyoxyethylene lauryl ether, polyoxyethylene alkyl ether, polyoxyethylene nonyl phenyl ether, polyoxyethylene alkyl allyl ether, polyoxyethylene alkylamine, polyethylene glycol fatty acid ester, decaglycerin monolaurate, alkanolamide, etc. are used. I can do it.

発泡が終わったら発泡スラリー中のモノマーを重合させる。重合は重合開始剤を加えたり、あるいは熱、光、放射線を加える等、モノマーの通常の重合条件に合わせて行えばよい。通常は室温で重合開始剤により重合させることが便利である。例えばアクリルアミド系モノマーに対しては過硫酸アンモニウム水溶液を少量加えてやればよい。重合を均一に早く行うため、重合開始剤を加えた直後にスラリーを攪拌し、重合開始剤を均一に分散させるとよい。ただし、重合が進んできたら攪拌は行わず多孔質の重合成形体の形成を待つ。この重合成形体を切断して所望の形状にする。あるいは重合前の発泡スラリーを所望の形状をした容器に入れて重合させて所望の形状の重合成形体を得ることもできる。この重合成形体は次の重合体変形工程において実質的に弾性変形または塑性変形できるものでなければならない。言いかえれば、この重合成形体に変形のための応力を加えた際、成形体が分断されて破壊してしまうものではない。このためには重合用モノマーおよび重合条件等を適宜選択する必要がある。   When foaming is completed, the monomer in the foamed slurry is polymerized. The polymerization may be performed in accordance with the normal polymerization conditions of the monomer, such as adding a polymerization initiator or adding heat, light, or radiation. Usually, it is convenient to polymerize with a polymerization initiator at room temperature. For example, a small amount of an aqueous ammonium persulfate solution may be added to the acrylamide monomer. In order to carry out the polymerization uniformly and quickly, it is advisable to stir the slurry immediately after adding the polymerization initiator to uniformly disperse the polymerization initiator. However, when the polymerization proceeds, stirring is not performed and the formation of a porous polymer molded body is awaited. The polymer molded body is cut into a desired shape. Alternatively, the foamed slurry before polymerization can be put into a container having a desired shape and polymerized to obtain a polymer molded body having a desired shape. This polymer molded body must be capable of substantially elastic deformation or plastic deformation in the subsequent polymer deformation step. In other words, when a stress for deformation is applied to the polymer molded body, the molded body is not divided and destroyed. For this purpose, it is necessary to appropriately select a monomer for polymerization and polymerization conditions.

重合体変形工程では、この重合成形体に応力を加えて変形させる。応力としては圧縮、引張り、剪断、ねじり、曲げ、さらにこれらの複合的な応力など重合成形体が変形する応力ならばどのようなものでもよい。通常はこの重合成形体より容積の小さい容器に圧縮しながら挿入すればよい。これによって、重合成形体は圧縮応力により変形し、内部の気孔も球形から非球形へと変形する。変形の程度としては、圧縮の場合で言えば容積を20〜95%、このましくは35〜85%、さらに好ましくは50〜75%に圧縮することが望ましい。   In the polymer deformation step, the polymer molded body is deformed by applying stress. As the stress, any stress may be used as long as it deforms the polymer molded body, such as compression, tension, shearing, twisting, bending, and composite stress thereof. Usually, it may be inserted while being compressed into a container having a smaller volume than the polymer molded body. As a result, the polymer molded body is deformed by compressive stress, and the internal pores are also deformed from spherical to non-spherical. Regarding the degree of deformation, in the case of compression, it is desirable to compress the volume to 20 to 95%, preferably 35 to 85%, more preferably 50 to 75%.

変形した重合体が得られたら、これを焼成して焼結体を製造する。焼成の前に成形体を乾燥する。乾燥が不十分だと通常の焼結体のように焼成時にひびが入ったり異常変形したりするので注意する。乾燥は変形やひびの入らない条件で実施することが重要である。重合体の大きさ、形状により適当な条件を決めればよいが、通常は90℃以下の温度で数時間から数日かけて行う。また、変形後の成形体は弾性変形による成形体であれば、応力をかけたまま乾燥および次に説明する焼成を行う。塑性変形による成型体であれば応力をかけたままでなくとも乾燥、焼成ができる。   When a deformed polymer is obtained, this is fired to produce a sintered body. The molded body is dried before firing. Note that if the drying is insufficient, cracking or abnormal deformation may occur during firing as in the case of ordinary sintered bodies. It is important to dry under conditions that do not cause deformation or cracking. Appropriate conditions may be determined depending on the size and shape of the polymer, but it is usually performed at a temperature of 90 ° C. or less over several hours to several days. In addition, if the molded body after deformation is a molded body by elastic deformation, drying and baking described below are performed while applying stress. If it is a molded body by plastic deformation, it can be dried and fired without being stressed.

焼成工程は原料無機質粉末を焼成して焼結体とする工程である。その際、ポリマーをはじめ添加した有機物や残存水分は分解または脱離してしまう。焼成条件は原料無機質粉末および成形体に含まれる有機物量、水分量等により適宜選べばよい。通常は、室温から800〜1300℃の焼結最終温度までは5〜100℃/時程度で昇温し、1〜12時間程度焼結最終温度で焼結すればよい。なお、100℃前後の水分蒸発温度域、300〜450℃の有機物分解温度域、無機質原料の結晶水脱離温度域など成形体の形状変形が起こり易い温度領域では、昇温速度を落とす等特に注意して焼成する必要がある。成形体は焼結後放冷して良好な本発明の焼結体となる。   The firing step is a step of firing the raw inorganic powder to form a sintered body. At that time, the added organic substance and residual moisture including the polymer are decomposed or detached. The firing conditions may be appropriately selected depending on the amount of organic matter contained in the raw material inorganic powder and the molded body, the amount of water, and the like. Usually, the temperature may be increased from room temperature to a sintering final temperature of 800 to 1300 ° C. at about 5 to 100 ° C./hour and sintered at the sintering final temperature for about 1 to 12 hours. In addition, in a temperature range where shape deformation of the molded body is likely to occur, such as a water evaporation temperature range of about 100 ° C., an organic matter decomposition temperature range of 300 to 450 ° C., a crystal water desorption temperature range of an inorganic raw material, etc. Careful firing is required. The molded body is allowed to cool after sintering to be a good sintered body of the present invention.

(実施例1)
水酸化アパタイト2重量部、β−リン酸3カルシウム8重量部の割合で混合し、800℃で焼成したリン酸カルシウム粉末170gに蒸留水67,6gを加えてリン酸カルシウムスラリーを調製した。このスラリーに単官能基モノマーとしてアクリルアミド8.37g、多官能基モノマーとしてメチレンビスアクリルアミド0.0628g、ジエチレングリコールジアリルエーテル0.39g、触媒としてテトラメチルエチレンジアミン0.110g、分散剤としてポイズ532A(花王株式会社製)2.30gを加えて15分間真空脱気した。この脱気スラリーを窒素雰囲気下に置いて、起泡用界面活性剤としてポリオキシエチレンラウリルアルコール3.45gを加えてハンドミキサーで室温で20分間攪拌し発泡させた。この発泡スラリーに重合開始剤としてペルオキソ二硫酸アンモニウム水溶液1g(ペルオキソ二硫酸アンモニウムとして0.0265g相当)を加え、約1分撹拌を続け均一に混合した。この発泡スラリーを正方形の容器に移し、蓋をして30分間放置し架橋重合を完成させ発泡体を得た。この発泡体を1cm四方の正方形に切断して圧縮用サンプルとする。
Example 1
A calcium phosphate slurry was prepared by adding 67.6 g of distilled water to 170 g of calcium phosphate powder mixed at a ratio of 2 parts by weight of hydroxyapatite and 8 parts by weight of β-tricalcium phosphate and calcined at 800 ° C. In this slurry, 8.37 g of acrylamide as a monofunctional group monomer, 0.0628 g of methylenebisacrylamide as a polyfunctional group monomer, 0.39 g of diethylene glycol diallyl ether, 0.110 g of tetramethylethylenediamine as a catalyst, and Poise 532A (Kao Corporation) 2.30 g was added and vacuum degassed for 15 minutes. This deaerated slurry was placed in a nitrogen atmosphere, 3.45 g of polyoxyethylene lauryl alcohol was added as a foaming surfactant, and the mixture was stirred and foamed at room temperature for 20 minutes with a hand mixer. 1 g of ammonium peroxodisulfate aqueous solution (corresponding to 0.0265 g as ammonium peroxodisulfate) was added as a polymerization initiator to the foamed slurry, and the mixture was stirred for about 1 minute and mixed uniformly. The foamed slurry was transferred to a square container, capped and allowed to stand for 30 minutes to complete cross-linking polymerization to obtain a foam. This foam is cut into 1 cm squares to obtain compression samples.

この圧縮用サンプルを体積を20%圧縮するため、容積が0.8cmの正方形容器に挿入した。軽く蓋をして80℃で12時間乾燥する。乾燥したサンプルを形状を保ったまま20時間で600℃まで等速昇温し、8時間そのまま保つ。その後2時間で1050℃まで等速昇温し、1050℃で3時間焼成した。焼成が終了したら放冷して本発明の焼結体を得た。この焼結体の気孔率、連通孔の平均径、および相対的表面積を測定した。その結果を表1に示した。なお、焼結体の気孔率は焼結体の体積及び重量から算出した。連通孔の平均径は水銀ポロシメーターによる水銀圧入法により測定した。気孔の相対的表面積は、電子顕微鏡の100倍断面写真の測定領域内(640×480μm)における気孔の全周囲長を測定し、圧縮をしていない比較例1を基準(100%)として各実施例の相対的な周囲長を算出してこれを相対的表面積とした。通常は実際の表面積の比は相対的表面積(周囲長比)よりさらに大きいと考えられる。焼結体の電子顕微鏡写真を図3(100倍),図4(30倍)に示した。図9には連通孔の気孔径の分布の測定チャートを示した。 This compression sample was inserted into a square container having a volume of 0.8 cm 3 in order to compress the volume by 20%. Cover lightly and dry at 80 ° C. for 12 hours. The dried sample is heated at a constant rate to 600 ° C. in 20 hours while maintaining the shape, and is maintained for 8 hours. Thereafter, the temperature was raised to 1050 ° C. at a constant rate in 2 hours, followed by firing at 1050 ° C. for 3 hours. When firing was completed, the mixture was allowed to cool to obtain a sintered body of the present invention. The porosity, average diameter of communication holes, and relative surface area of this sintered body were measured. The results are shown in Table 1. The porosity of the sintered body was calculated from the volume and weight of the sintered body. The average diameter of the communication holes was measured by a mercury intrusion method using a mercury porosimeter. The relative surface area of the pores was measured by measuring the total perimeter of the pores in the measurement region (640 × 480 μm) of a 100-fold cross-sectional photograph of an electron microscope and using Comparative Example 1 without compression as a reference (100%). The relative perimeter of the example was calculated and used as the relative surface area. Usually, the actual surface area ratio is considered to be greater than the relative surface area (perimeter length ratio). Electron micrographs of the sintered body are shown in FIG. 3 (100 times) and FIG. 4 (30 times). FIG. 9 shows a measurement chart of the pore diameter distribution of the communication holes.

(実施例2)
実施例1において圧縮用サンプルを体積を20%圧縮したかわりに、40%圧縮した以外は実施例1と同様にして焼結体を作製した。この焼結体の気孔率、連通孔の平均径、相対的表面積、圧縮強度を実施例1と同様にして測定した。その結果を表1に示した。焼結体の電子顕微鏡写真を図1(100倍),図2(30倍)に示した。また、図10には気孔径の分布の測定チャートを示した。
(Example 2)
A sintered body was produced in the same manner as in Example 1 except that the compression sample in Example 1 was compressed by 40% instead of 20% in volume. The porosity, average diameter of communication holes, relative surface area, and compressive strength of this sintered body were measured in the same manner as in Example 1. The results are shown in Table 1. Electron micrographs of the sintered body are shown in FIG. 1 (100 times) and FIG. 2 (30 times). FIG. 10 shows a measurement chart of pore size distribution.

(実施例3)
実施例1において圧縮用サンプルを体積を20%圧縮したかわりに、60%圧縮した以外は実施例1と同様にして焼結体を作製した。この焼結体の気孔率、連通孔の平均径、相対的表面積、圧縮強度を実施例1と同様にして測定した。その結果を表1に示した。焼結体の電子顕微鏡写真を図5(100倍),図6(30倍)に示した。また、図11には気孔径の分布の測定チャートを示した。
(Example 3)
A sintered body was produced in the same manner as in Example 1 except that the compression sample in Example 1 was compressed by 60% instead of being compressed by 20%. The porosity, average diameter of communication holes, relative surface area, and compressive strength of this sintered body were measured in the same manner as in Example 1. The results are shown in Table 1. Electron micrographs of the sintered body are shown in FIG. 5 (100 times) and FIG. 6 (30 times). FIG. 11 shows a measurement chart of pore size distribution.

(比較例1)
実施例1において圧縮用サンプル圧縮せずに、実施例1と同様にして乾燥、焼成して焼結体を作製した。この焼結体の気孔率、連通孔の平均径、相対的表面積、圧縮強度を実施例1と同様にして測定した。その結果を表1に示した。焼結体の電子顕微鏡写真を図7(100倍),図8(30倍)に示した。また、図12には気孔径の分布の測定チャートを示した。
(Comparative Example 1)
The sample for compression in Example 1 was not compressed and dried and fired in the same manner as in Example 1 to produce a sintered body. The porosity, average diameter of communication holes, relative surface area, and compressive strength of this sintered body were measured in the same manner as in Example 1. The results are shown in Table 1. Electron micrographs of the sintered body are shown in FIG. 7 (100 times) and FIG. 8 (30 times). FIG. 12 shows a measurement chart of pore size distribution.

Figure 2006160556
Figure 2006160556

測定結果および電子顕微鏡写真から判るように、比較例の気孔はほぼ円形(球形)で実施例の気孔はどれも変形した非円形(非球形)である。図9〜12は実施例1〜3、比較例1の連通部の気孔径の分布を示しているが、圧縮率が高くなるに従い連通部の気孔径は小さくなるが、表1に示すように実施例の気孔径のピークはいずれもほぼ30μm以上あり骨芽細胞、歯芽細胞等の侵入には十分な大きさである。また、実施例の相対的表面積(周囲長比)は圧縮率が高くなるに従い上昇しており、変形により表面積が増加していることが窺われる。なお、焼結体の圧縮強度は記載していないが1MPa以上あり使用上問題はない。   As can be seen from the measurement results and electron micrographs, the pores of the comparative example are almost circular (spherical), and all of the pores of the examples are non-circular (nonspherical) deformed. 9 to 12 show the pore size distribution of the communicating portions of Examples 1 to 3 and Comparative Example 1, but the pore size of the communicating portion becomes smaller as the compressibility increases, but as shown in Table 1. The pore diameter peaks of the examples are almost 30 μm or more, and are large enough for invasion of osteoblasts, odontocytes and the like. In addition, the relative surface area (peripheral length ratio) of the examples increases as the compression ratio increases, indicating that the surface area increases due to deformation. Although the compressive strength of the sintered body is not described, there is no problem in use because it is 1 MPa or more.

本発明の焼結体は、外科や歯科などで用いられる人工骨、人工歯あるいは骨や歯などへの補填材料として利用できる。人体は勿論、動物の骨や歯などにも利用が可能である。また、生体外での骨芽細胞、歯芽細胞等の増殖用基体などにも応用できる。   The sintered body of the present invention can be used as a material for artificial bones, artificial teeth or bones and teeth used in surgery and dentistry. It can be used not only for human bodies but also for animal bones and teeth. It can also be applied to a substrate for proliferation of osteoblasts, odontocytes and the like in vitro.

図1は60%に圧縮した後の焼結体の電子顕微鏡写真(100倍)である。FIG. 1 is an electron micrograph (100 times) of the sintered body after compression to 60%. 図2は60%に圧縮した後の焼結体の電子顕微鏡写真(30倍)である。FIG. 2 is an electron micrograph (30 times) of the sintered body after compression to 60%. 図3は80%に圧縮した後の焼結体の電子顕微鏡写真(100倍)である。FIG. 3 is an electron micrograph (100 times) of the sintered body after being compressed to 80%. 図4は80%に圧縮した後の焼結体の電子顕微鏡写真(30倍)である。FIG. 4 is an electron micrograph (30 times) of the sintered body after being compressed to 80%. 図5は40%に圧縮した後の焼結体の電子顕微鏡写真(100倍)である。FIG. 5 is an electron micrograph (100 times) of the sintered body after being compressed to 40%. 図6は40%に圧縮した後の焼結体の電子顕微鏡写真(30倍)である。FIG. 6 is an electron micrograph (30 times) of the sintered body after being compressed to 40%. 図7は圧縮しない焼結体の電子顕微鏡写真(100倍)である。FIG. 7 is an electron micrograph (100 times) of a sintered body that is not compressed. 図8は圧縮しない焼結体の電子顕微鏡写真(30倍)である。FIG. 8 is an electron micrograph (30 ×) of a sintered body that is not compressed. 図9はは40%に圧縮した後の焼結体の気孔径分布チャートである。FIG. 9 is a pore size distribution chart of the sintered body after being compressed to 40%. 図10は60%に圧縮した後の焼結体の気孔径分布チャートである。FIG. 10 is a pore size distribution chart of the sintered body after being compressed to 60%. 図11は80%に圧縮した後の焼結体の気孔径分布チャートである。FIG. 11 is a pore size distribution chart of the sintered body after being compressed to 80%. 図12は圧縮しない焼結体の気孔径分布チャートである。FIG. 12 is a pore size distribution chart of a sintered body that is not compressed. 図13は本発明の焼結体の製造方法を示したブロックフロー図である。FIG. 13 is a block flow diagram showing a method for manufacturing a sintered body according to the present invention.

Claims (4)

気孔が非球形でかつ連通している多孔質構造からなり、気孔率が50〜90%である生体材料用の焼結体。   A sintered body for a biomaterial which has a porous structure in which pores are non-spherical and communicate with each other, and has a porosity of 50 to 90%. 気孔率が60〜80%である請求項1に記載の焼結体。   The sintered body according to claim 1, wherein the porosity is 60 to 80%. 無機質粉末と重合性モノマーとを混合、起泡させたのちモノマーを重合させ多孔質重合体とし、該多孔質重合体に応力を加え変形させた状態を保ったまま焼成する焼結体の製造方法。   A method for producing a sintered body in which an inorganic powder and a polymerizable monomer are mixed and foamed, and then the monomer is polymerized to form a porous polymer, and the porous polymer is fired while being deformed by applying stress. . 多孔質重合体に加える応力が圧縮応力である請求項3に記載の焼結体の製造方法。
4. The method for producing a sintered body according to claim 3, wherein the stress applied to the porous polymer is a compressive stress.
JP2004353524A 2004-12-07 2004-12-07 Sintered material and its manufacturing method Withdrawn JP2006160556A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353524A JP2006160556A (en) 2004-12-07 2004-12-07 Sintered material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004353524A JP2006160556A (en) 2004-12-07 2004-12-07 Sintered material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006160556A true JP2006160556A (en) 2006-06-22

Family

ID=36662988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353524A Withdrawn JP2006160556A (en) 2004-12-07 2004-12-07 Sintered material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006160556A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178392A (en) * 2008-01-31 2009-08-13 Ngk Spark Plug Co Ltd In-vivo implant
JP2011229854A (en) * 2010-04-30 2011-11-17 Chiba Inst Of Technology BIOMATERIAL CERAMICS CONSISTING OF β-TYPE TRICALCIUM PHOSPHATE AND MANUFACTURING METHOD OF THE SAME
JP2017060779A (en) * 2016-10-08 2017-03-30 学校法人千葉工業大学 BIOMATERIAL CERAMIC COMPRISING β-TYPE TRICALCIUM PHOSPHATE, AND PRODUCTION METHOD THEREOF

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178392A (en) * 2008-01-31 2009-08-13 Ngk Spark Plug Co Ltd In-vivo implant
JP2011229854A (en) * 2010-04-30 2011-11-17 Chiba Inst Of Technology BIOMATERIAL CERAMICS CONSISTING OF β-TYPE TRICALCIUM PHOSPHATE AND MANUFACTURING METHOD OF THE SAME
JP2017060779A (en) * 2016-10-08 2017-03-30 学校法人千葉工業大学 BIOMATERIAL CERAMIC COMPRISING β-TYPE TRICALCIUM PHOSPHATE, AND PRODUCTION METHOD THEREOF

Similar Documents

Publication Publication Date Title
US6340648B1 (en) Calcium phosphate porous sintered body and production thereof
Descamps et al. Synthesis of macroporous β-tricalcium phosphate with controlled porous architectural
US9610174B2 (en) Intervertebral implant
Prananingrum et al. Bone ingrowth of various porous titanium scaffolds produced by a moldless and space holder technique: an in vivo study in rabbits
US20050158535A1 (en) Methods for making porous ceramic structures
KR101268408B1 (en) Composition and Manufacturing method for porous calcium phosphate granules by physical foaming
US8871167B2 (en) Biocompatible ceramic-polymer hybrids and calcium phosphate porous body
JP4699902B2 (en) Calcium phosphate ceramic porous body and method for producing the same
Ajaal et al. Employing the Taguchi method in optimizing the scaffold production process for artificial bone grafts
CN114761048B (en) Collagen matrix or particle blend of bone substitute material
JP2006160556A (en) Sintered material and its manufacturing method
JP6005046B2 (en) Porous body and method for producing porous body
JP3873085B2 (en) Calcium phosphate porous sintered body and method for producing the same
RU2297249C1 (en) Method for preparing composition material for filling osseous defects
JP5783864B2 (en) Bioabsorbable implant and method for producing the same
JP7030113B2 (en) Inorganic-organic composite medical material and method for manufacturing inorganic-organic composite medical material
US20090088311A1 (en) Bio-material and method of preparation thereof
JP3934418B2 (en) Calcium phosphate hardened body, calcium phosphate porous body and method for producing the same
Sopyan et al. Fabrication of porous ceramic scaffolds via polymeric sponge method using sol-gel derived strontium doped hydroxyapatite powder
JP5793045B2 (en) Method for producing ceramic porous body
JP5846972B2 (en) Bioabsorbable implant and method for producing the same
Ślósarczyk et al. New bone implant material with calcium sulfate and Ti modified hydroxyapatite
KR20110129007A (en) Graular porous bone substitute and method for preparing the same
JP2506826B2 (en) Granular inorganic molded body and method for producing the same
CN113144276B (en) Composite medicine-carrying bone cement and preparation method and application thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304