JP2006160534A - Method of separating and recovering phosphoric acid from mixed acid waste liquid containing acetic, nitric and phosphoric acids - Google Patents

Method of separating and recovering phosphoric acid from mixed acid waste liquid containing acetic, nitric and phosphoric acids Download PDF

Info

Publication number
JP2006160534A
JP2006160534A JP2004350135A JP2004350135A JP2006160534A JP 2006160534 A JP2006160534 A JP 2006160534A JP 2004350135 A JP2004350135 A JP 2004350135A JP 2004350135 A JP2004350135 A JP 2004350135A JP 2006160534 A JP2006160534 A JP 2006160534A
Authority
JP
Japan
Prior art keywords
acid
phosphoric acid
nitric
acetic acid
nitric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004350135A
Other languages
Japanese (ja)
Other versions
JP4397802B2 (en
Inventor
Hayaji Shibata
隼次 芝田
Hideki Yamamoto
秀樹 山本
Koichiro Inoue
興一郎 井上
Takeshi Ozu
毅 小津
Ko Ishikawa
香 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Yuka Industry Corp
Original Assignee
Sanwa Yuka Industry Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Yuka Industry Corp filed Critical Sanwa Yuka Industry Corp
Priority to JP2004350135A priority Critical patent/JP4397802B2/en
Priority to TW094134047A priority patent/TW200618850A/en
Priority to KR1020050097022A priority patent/KR20060061883A/en
Priority to CN2005101134822A priority patent/CN1781842B/en
Publication of JP2006160534A publication Critical patent/JP2006160534A/en
Application granted granted Critical
Publication of JP4397802B2 publication Critical patent/JP4397802B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/18Phosphoric acid
    • C01B25/234Purification; Stabilisation; Concentration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/26Treatment of water, waste water, or sewage by extraction
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B7/00Fertilisers based essentially on alkali or ammonium orthophosphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Water Treatments (AREA)
  • Fertilizers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of highly efficiently, selectively separating and recovering phosphoric acid from a mixed acid waste liquid containing acetic, nitric and phosphoric acids even in a practical large scale production by suppressing the emulsification of an oil phase with a water phase in a settling state in a separation process to enable the circulating use of an extractant solution sufficiently. <P>SOLUTION: The separating/recovering method comprises an extraction process for selectively dissolving acetic and nitric acids in the extractant solution to extract by mixing the waste liquid containing those acids with the extractant solution containing trialkyl phosphate, a recovery process for recovering phosphoric acid from a residual liquid left by the above process, and a separation process for bringing the obtained acetic/nitric acids-containing extractant solution into contact with a salt-containing water for separation to dissolve and transfer their acids into the above water for separation. The extractant solution can circularly be used by feeding back the oil-phase solution obtained from the separation process to the extraction process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、例えば液晶製造工程や半導体製造工程等から排出される酢酸−硝酸−リン酸系混酸廃液からリン酸を高効率でかつ選択性良く分離回収する方法に関し、特に剥離工程で出た油相の抽剤液を抽出工程に供給して抽剤液を循環使用する方法に関する。   The present invention relates to a method for separating and recovering phosphoric acid with high efficiency and selectivity, for example, from an acetic acid-nitric acid-phosphoric acid mixed acid waste liquid discharged from, for example, a liquid crystal manufacturing process or a semiconductor manufacturing process. The present invention relates to a method of supplying a phase extractant solution to an extraction process and circulatingly using the extractant solution.

近年飛躍的に成長した液晶製造産業や半導体製造産業においては、その製造過程において多様な廃水が出るが、各廃水の種類、性質等に応じてしかるべき処理が施されて排出されている。例えば、液晶製造工程や半導体製造工程から酢酸、硝酸、リン酸が混合された混酸廃液が出るが、これらのうち例えばリン酸を分離回収できれば肥料としての有効利用が期待できるところであるが、このような混酸廃液からリン酸を分離回収することは現状では技術的に困難であることから、この混酸廃液に対して中和処理を施して排水するのが一般的であった。   In the liquid crystal manufacturing industry and the semiconductor manufacturing industry that have grown dramatically in recent years, various types of wastewater are produced in the manufacturing process, but they are discharged after being subjected to appropriate treatment according to the type and nature of each type of wastewater. For example, a mixed acid waste liquid in which acetic acid, nitric acid, and phosphoric acid are mixed comes out from the liquid crystal manufacturing process and the semiconductor manufacturing process. Of these, for example, if phosphoric acid can be separated and recovered, it can be expected to be effectively used as a fertilizer. Since it is technically difficult to separate and recover phosphoric acid from such a mixed acid waste liquid, it has been common practice to neutralize the mixed acid waste liquid and drain it.

上述のように酢酸、硝酸、リン酸が混合された混酸廃液に対して中和処理を施して排水する場合、この中和処理によって排水中に酢酸塩、硝酸塩等の塩が生じるので、少なからず環境汚染の原因となることは避けられず、環境保全の観点からするとこの中和処理は決して望ましい手段とは言えない。また、地球環境保全の要請から、近年リサイクル利用の重要性が叫ばれているが、従来の中和処理による排出方法は廃酸を全くリサイクル利用することなく捨ててしまう方法であるので、このような社会的要請にも全く応えることができないものであった。   When the mixed acid waste liquid mixed with acetic acid, nitric acid, and phosphoric acid is subjected to neutralization treatment and drained as described above, salt such as acetate and nitrate is generated in the wastewater due to this neutralization treatment. It is inevitable that it causes environmental pollution, and this neutralization treatment is by no means a desirable means from the viewpoint of environmental conservation. The importance of recycling has been sought in recent years due to demands for global environmental conservation. However, the conventional neutralization treatment discharge method is a method of discarding waste acid without recycling at all. It was impossible to meet the social demands at all.

そこで、本発明者らは、資源の有効利用を図り得て環境保護の要請にも十分に応えることができる、酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法として、酢酸、硝酸及びリン酸を含む廃液と、トリアルキルホスフェートを含有してなる抽剤液とを混合することによって、該抽剤液中に前記酢酸及び硝酸を選択的に溶解させて抽出する酢酸・硝酸抽出工程と、前記抽出工程で出た抽出残液から前記リン酸を回収する工程と、前記酢酸・硝酸抽出工程で得られた酢酸・硝酸含有抽剤液と、剥離用水とを接触させることによって、前記酢酸及び硝酸をこの剥離用水に溶解移動せしめて酢酸及び硝酸を回収する工程とを備え、前記酢酸・硝酸回収工程(剥離工程)で出た油相の抽剤液を前記酢酸・硝酸抽出工程に供給することによって抽剤液を循環使用することを特徴とするリン酸の分離回収方法を開発し、特許出願した(特許文献1参照)。
特開2004−160292号公報(請求項1、6、図1)
Therefore, the present inventors have been able to achieve effective utilization of resources and fully meet the demand for environmental protection, and as a method for separating and recovering phosphoric acid from acetic acid-nitric acid-phosphoric acid mixed acid waste liquid, acetic acid, Acetic acid / nitric acid extraction in which the acetic acid and nitric acid are selectively dissolved in the extraction liquid by mixing the waste liquid containing nitric acid and phosphoric acid and the extraction liquid containing trialkyl phosphate. By bringing the step of recovering the phosphoric acid from the extraction residue obtained in the extraction step, the acetic acid / nitric acid-containing extractant obtained in the acetic acid / nitric acid extraction step, and the peeling water, A step of recovering acetic acid and nitric acid by dissolving and transferring the acetic acid and nitric acid in the stripping water, and extracting the extract liquid of the oil phase from the acetic acid / nitric acid recovery step (peeling step) into the acetic acid / nitric acid extraction step By supplying to Developed a phosphate separation recovery method, characterized by recycling the agent solution applied for a patent (see Patent Document 1).
JP 2004-160292 A (Claims 1, 6 and FIG. 1)

上記分離回収方法は、例えば槽容積約2Lの研究用小型ミキサーセトラーを20槽用いた小型テスト装置では、剥離工程での分離不良も特になく、抽剤液を良好状態に循環使用することができた。   The separation and recovery method described above is, for example, a small test apparatus using 20 tanks of a research mixer mixer with a tank volume of about 2 L. There is no separation failure in the peeling process, and the extractant liquid can be circulated and used in a good state. It was.

しかしながら、槽容積約200L(小型機の約100倍)の実証用ミキサーセトラーを22槽用いて商用運転に必要な最小レベルの循環量、廃混酸供給量でもって実施するためには、例えば実証機のミキサー先端の剪断速度を小型機の約37〜38m/分に対して約100m/分まで上げて実施しなければならないのであるが、このような実機レベルに対応させた状態で(実機レベルに対応させた循環量、廃混酸供給量で)運転すると、即ちミキサー先端の剪断速度を増大させると前記剥離工程において分離不良を生じてしまい、リン酸を分離回収できないという問題を生じていた。   However, in order to carry out with the minimum level of circulation required for commercial operation and the amount of waste mixed acid supply using 22 tanks of the demonstration mixer settler with a tank volume of about 200L (about 100 times that of a small machine) The shear rate at the tip of the mixer must be increased to about 100 m / min with respect to about 37-38 m / min for small machines, but in a state corresponding to such an actual machine level (to the actual machine level) When the operation is performed (with a corresponding circulation amount and waste mixed acid supply amount), that is, when the shearing speed at the tip of the mixer is increased, a separation failure occurs in the separation step, and phosphoric acid cannot be separated and recovered.

即ち、スケールアップによって剥離工程のミキサー槽での攪拌時にブレークし難いエマルジョン状態が形成され、これによって剥離工程のセトラー槽での静置状態においても油相と水相のエマルジョン化が解消されず、このように油相と水相の分離性が低下するために剥離が十分に行われず、その結果、この剥離工程で出た油相の抽剤液は、不純物としての酢酸・硝酸の含有率が多いものとなっており、このためにこの剥離工程で出た抽剤液を次の酢酸・硝酸抽出工程に供給して循環使用してもこの工程で酢酸・硝酸の抽出を十分に行うことは難しく、これによって抽出残液(リン酸が分離される相)の方にも相当量の酢酸・硝酸が混在したものとなり、高純度のリン酸を回収するのが難しいという問題があった。実験レベルの小スケールではそれ程問題にはならなかったのであるが、実機など商業運転レベルまでスケールアップした場合には、前記油相と水相のエマルジョン化に起因した油相と水相の分離性の低下は顕著であった。即ち、上記特許文献1(請求項6)に記載された抽剤液を循環使用する手法において商業運転レベルまでスケールアップした場合には、高純度のリン酸水溶液を回収することはできなかったのである。   That is, an emulsion state that is difficult to break when stirring in the mixer tank of the peeling process is formed by scale-up, and this does not eliminate the emulsion of the oil phase and the aqueous phase even in a stationary state in the settler tank of the peeling process. In this way, the separation between the oil phase and the aqueous phase is reduced, so that the separation is not performed sufficiently. As a result, the extract liquid of the oil phase produced in this separation step has a content of acetic acid / nitric acid as impurities. For this reason, even if the extractant liquid extracted in this stripping process is supplied to the next acetic acid / nitric acid extraction process and circulated, it is not possible to sufficiently extract acetic acid / nitric acid in this process. As a result, the extraction residual liquid (phase from which phosphoric acid is separated) also contains a considerable amount of acetic acid and nitric acid, which makes it difficult to recover high-purity phosphoric acid. Although it was not so much of a problem at the small scale of the experimental level, when it was scaled up to a commercial operation level such as an actual machine, the separability of the oil phase and the water phase due to the emulsion of the oil phase and the water phase. The decrease of was remarkable. That is, when the method of circulating and using the extractant described in Patent Document 1 (Claim 6) was scaled up to a commercial operation level, a high-purity phosphoric acid aqueous solution could not be recovered. is there.

この発明は、かかる技術的背景に鑑みてなされたものであって、小スケールのみならずスケールアップした実機レベルにおいても剥離工程での静置状態で油相と水相のエマルジョン化を十分に抑制し得て油相と水相の分離性を向上することができて抽剤液の循環使用を十分に可能ならしめて、酢酸−硝酸−リン酸系混酸廃液からリン酸を高効率でかつ選択性良く分離回収できると共に、資源の有効利用を図り得て環境保護の要請にも十分に応えることができる、酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法を提供することを目的とする。   The present invention has been made in view of such technical background, and sufficiently suppresses emulsification of an oil phase and an aqueous phase not only in a small scale but also in a scaled-up actual machine level in a stationary state in a peeling process. The separation of the oil phase and the water phase can be improved, and the extractant solution can be recycled and used to efficiently remove phosphoric acid from the acetic acid-nitric acid-phosphoric acid mixed acid waste liquid. An object is to provide a method for separating and recovering phosphoric acid from an acetic acid-nitric acid-phosphoric acid mixed acid waste liquid, which can be separated and recovered well and can sufficiently meet the demand for environmental protection by effectively utilizing resources. And

前記目的を達成するために、本発明は以下の手段を提供する。   In order to achieve the above object, the present invention provides the following means.

[1]酢酸、硝酸及びリン酸を含む廃液と、トリアルキルホスフェートを含有してなる抽剤液とを混合することによって、該抽剤液中に前記酢酸及び硝酸を選択的に溶解させて抽出する酢酸・硝酸抽出工程と、
前記抽出工程で出た抽出残液から前記リン酸を回収する工程と、
前記酢酸・硝酸抽出工程で得られた酢酸・硝酸含有抽剤液と、塩を含有した剥離用水とを接触させることによって、前記酢酸及び硝酸をこの剥離用水に溶解移動せしめる酢酸・硝酸剥離工程とを備え、
前記酢酸・硝酸剥離工程で出た油相の抽剤液を前記酢酸・硝酸抽出工程に供給することによって抽剤液を循環使用することを特徴とする酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。
[1] Extracting by selectively dissolving acetic acid and nitric acid in the extract liquid by mixing waste liquid containing acetic acid, nitric acid and phosphoric acid, and extract liquid containing trialkyl phosphate Acetic acid / nitric acid extraction process,
A step of recovering the phosphoric acid from the extraction residue obtained in the extraction step;
An acetic acid / nitric acid stripping step in which the acetic acid / nitric acid-containing extractant obtained in the acetic acid / nitric acid extraction step and the stripping water containing salt are brought into contact with each other to dissolve and move the acetic acid and nitric acid in the stripping water; With
From the acetic acid-nitric acid-phosphate mixed acid waste liquid, the extractant liquid is circulated and used by supplying the extractant liquid of the oil phase produced in the acetic acid / nitric acid stripping process to the acetic acid / nitric acid extraction process. A method for separating and recovering phosphoric acid.

[2]前記塩が金属塩である前項1に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。   [2] The method for separating and recovering phosphoric acid from the acetic acid-nitric acid-phosphoric acid mixed acid waste liquid according to item 1, wherein the salt is a metal salt.

[3]前記金属塩として塩化金属塩を用いる前項2に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。   [3] The method for separating and recovering phosphoric acid from the acetic acid-nitric acid-phosphoric acid mixed acid waste solution according to the above item 2, wherein a metal chloride salt is used as the metal salt.

[4]前記金属塩として、NaCl、KCl、CaCl2、BaCl2及びAlCl3からなる群より選ばれる1種または2種以上の塩化金属塩を用いる前項2に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。 [4] The acetic acid-nitric acid-phosphate system according to item 2 above, wherein one or more metal chlorides selected from the group consisting of NaCl, KCl, CaCl 2 , BaCl 2 and AlCl 3 are used as the metal salt. Method for separating and recovering phosphoric acid from mixed acid waste liquid.

[5]前記金属塩として、CaCl2、BaCl2及びAlCl3からなる群より選ばれる1種または2種以上の塩化金属塩を用いる前項2に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。 [5] The acetic acid-nitric acid-phosphoric acid mixed acid waste solution according to item 2 above, wherein one or more metal chlorides selected from the group consisting of CaCl 2 , BaCl 2 and AlCl 3 are used as the metal salt. A method for separating and recovering phosphoric acid.

[6]前記剥離用水における塩の含有濃度が1〜5000ppmである前項1〜5のいずれか1項に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。   [6] The method for separating and recovering phosphoric acid from the acetic acid-nitric acid-phosphoric acid mixed acid waste liquid according to any one of 1 to 5 above, wherein the salt concentration in the stripping water is 1 to 5000 ppm.

[7]前記抽剤液として、トリアルキルホスフェート/芳香族系有機溶剤=10/90〜90/10(体積比)の組成からなる抽剤液を用いる前項1〜6のいずれか1項に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。   [7] Any one of [1] to [6], wherein an extractant having a composition of trialkyl phosphate / aromatic organic solvent = 10/90 to 90/10 (volume ratio) is used as the extractant. Of and recovering phosphoric acid from acetic acid-nitric acid-phosphoric acid mixed acid waste liquid.

[8]前記芳香族系有機溶剤としてケロシンを用いる前項7に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。   [8] The method for separating and recovering phosphoric acid from the acetic acid-nitric acid-phosphoric acid mixed acid waste liquid according to item 7, wherein kerosene is used as the aromatic organic solvent.

[9]前記抽剤液として、トリアルキルホスフェート/トリアルキルアミン=99/1〜70/30(体積比)の組成からなる抽剤液を用いる前項1〜6のいずれか1項に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。   [9] The acetic acid according to any one of items 1 to 6, wherein an extractant having a composition of trialkyl phosphate / trialkylamine = 99/1 to 70/30 (volume ratio) is used as the extractant. -Method for separating and recovering phosphoric acid from nitric acid-phosphoric acid mixed acid waste liquid.

[10]前項1〜9のいずれか1項に記載の分離回収方法によって回収されたリン酸。   [10] Phosphoric acid recovered by the separation and recovery method according to any one of items 1 to 9.

[11]肥料用として用いられる前項10に記載のリン酸。   [11] The phosphoric acid as described in 10 above, which is used as a fertilizer.

[1]の発明では、トリアルキルホスフェートを抽剤として用いているので、上記混酸廃液から酢酸と硝酸を同時に選択性良く抽出することができ、これにより抽出残液からリン酸を高効率で回収することが可能となる。また、酢酸と硝酸を同時に抽出できるので、抽出分離操作の工程数が少なくて済み、生産性が非常に良い。更に、剥離工程で使用する剥離用水は塩を含有しているので、剥離用水の表面張力を増大させることができ、その結果、油相(抽剤相)と水相(剥離用水)との界面張力を大きくすることができるから、スケールアップした実機レベル(大スケール)においても、静置状態において油相と水相のエマルジョン化を十分に抑制することができ、これにより油相と水相の分離性を格段に向上させることができて、この剥離工程を経て得られた油相の抽剤液は、酢酸・硝酸を含有しない純度の高い抽剤液となっているから、この抽剤液を酢酸・硝酸抽出工程に供給して循環使用することが十分に可能となる。即ち、酢酸・硝酸抽出工程において、この循環供給された抽剤液によって酢酸・硝酸を十分に抽出することができる。本方法によれば、このように抽剤液を何度も循環使用できて安定した良好な運転状態を維持することができてリン酸を連続的に分離することができるので、低コストでのリン酸の分離回収が可能となる。   In the invention of [1], since a trialkyl phosphate is used as an extractant, acetic acid and nitric acid can be simultaneously extracted from the mixed acid waste liquid with high selectivity, thereby recovering phosphoric acid from the extraction residual liquid with high efficiency. It becomes possible to do. In addition, since acetic acid and nitric acid can be extracted simultaneously, the number of steps for the extraction / separation operation can be reduced, and the productivity is very good. Further, since the peeling water used in the peeling step contains salt, the surface tension of the peeling water can be increased, and as a result, the interface between the oil phase (extractant phase) and the water phase (peeling water). Since the tension can be increased, even in the scaled-up actual machine level (large scale), it is possible to sufficiently suppress the emulsification of the oil phase and the water phase in a stationary state. Separation can be improved remarkably, and the oil phase extract liquid obtained through this peeling step is a high-purity extract liquid that does not contain acetic acid or nitric acid. Can be sufficiently supplied to the acetic acid / nitric acid extraction step and recycled. That is, in the acetic acid / nitric acid extraction step, acetic acid / nitric acid can be sufficiently extracted by the circulating extract solution. According to this method, the extractant solution can be circulated and reused many times in this way, a stable and good operating state can be maintained, and phosphoric acid can be continuously separated. Phosphoric acid can be separated and recovered.

[2]の発明では、塩として金属塩を用いるから、剥離工程での静置状態において、油相と水相のエマルジョン化を十分に抑制することができる。   In the invention of [2], since a metal salt is used as the salt, emulsification of the oil phase and the aqueous phase can be sufficiently suppressed in the stationary state in the peeling step.

[3]の発明では、金属塩として塩化金属塩を用いるから、剥離工程での静置状態において、油相と水相のエマルジョン化をより十分に抑制することができ、これにより油相と水相の分離性をさらに向上させることができる。   In the invention of [3], since a metal chloride salt is used as the metal salt, emulsification of the oil phase and the water phase can be more sufficiently suppressed in the stationary state in the peeling step, whereby the oil phase and water Phase separation can be further improved.

[4]の発明では、金属塩として、NaCl、KCl、CaCl2、BaCl2及びAlCl3からなる群より選ばれる1種または2種以上の塩化金属塩を用いるから、剥離工程での静置状態において、油相と水相のエマルジョン化をより一層十分に抑制することができ、これにより油相と水相の分離性をさらに一層向上させることができる。 In the invention of [4], as the metal salt, one or more metal chlorides selected from the group consisting of NaCl, KCl, CaCl 2 , BaCl 2 and AlCl 3 are used. In the above, emulsification of the oil phase and the aqueous phase can be further sufficiently suppressed, whereby the separability of the oil phase and the aqueous phase can be further improved.

[5]の発明では、金属塩として、CaCl2、BaCl2及びAlCl3からなる群より選ばれる1種または2種以上の塩化金属塩を用いるから、剥離工程での静置状態において、油相と水相のエマルジョン化をさらに一層十分に抑制することができる。 In the invention of [5], one or more metal chlorides selected from the group consisting of CaCl 2 , BaCl 2 and AlCl 3 are used as the metal salt. And water phase emulsification can be further sufficiently suppressed.

[6]の発明では、剥離用水における塩の含有濃度が1〜5000ppmであるので、剥離工程での静置状態における油相と水相の分離性を十分に向上させることができる。   In the invention of [6], since the salt concentration in the peeling water is 1 to 5000 ppm, the separability between the oil phase and the aqueous phase in the stationary state in the peeling step can be sufficiently improved.

[7]の発明では、抽剤液として、トリアルキルホスフェート/芳香族系有機溶剤=10/90〜90/10(体積比)の組成からなる抽剤液を用いるから、酢酸に対する抽出選択性が向上すると共に硝酸に対する抽出選択性も向上する利点がある。   In the invention of [7], an extractant having a composition of trialkyl phosphate / aromatic organic solvent = 10/90 to 90/10 (volume ratio) is used as the extractant. There is an advantage that the extraction selectivity to nitric acid is improved as well.

[8]の発明では、芳香族系有機溶剤としてケロシンを用いる。このケロシンはリン酸を抽出することが実質的にないのでリン酸をより一層高効率で分離回収できる。   In the invention of [8], kerosene is used as the aromatic organic solvent. Since this kerosene does not substantially extract phosphoric acid, it can be separated and recovered with higher efficiency.

[9]の発明では、抽剤液として、トリアルキルホスフェート/トリアルキルアミン=99/1〜70/30(体積比)の組成からなる抽剤液を用いるから、酢酸に対する抽出選択性が向上すると共に硝酸に対する抽出選択性も向上する利点がある。   In the invention of [9], since the extractant having a composition of trialkyl phosphate / trialkylamine = 99/1 to 70/30 (volume ratio) is used as the extractant, the extraction selectivity for acetic acid is improved. In addition, there is an advantage that the extraction selectivity to nitric acid is improved.

[10]の発明に係るリン酸は、上記いずれかの分離回収方法によって回収されたものであり、このリン酸は、極微量の硝酸を含有しているので、即ち極微量のN(窒素)を含有しているので、肥料として好適に用いられる。   The phosphoric acid according to the invention of [10] is recovered by any one of the separation and recovery methods described above, and since this phosphoric acid contains a very small amount of nitric acid, that is, a very small amount of N (nitrogen). Therefore, it is suitably used as a fertilizer.

この発明に係る酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法の一実施形態について図1のフロー図を参照しつつ説明する。本実施形態は、酢酸、硝酸及びリン酸を含む混酸廃水から、酢酸と硝酸を同時に抽出することによって抽出残液からリン酸を回収するものである。   An embodiment of a method for separating and recovering phosphoric acid from an acetic acid-nitric acid-phosphoric acid mixed acid waste liquid according to the present invention will be described with reference to the flowchart of FIG. In the present embodiment, phosphoric acid is recovered from an extraction residue by simultaneously extracting acetic acid and nitric acid from mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid.

まず、酢酸・硝酸抽出工程においては、ミキサー槽内に抽剤液(トリアルキルホスフェート/芳香族系有機溶剤の混合液)を供給すると共に、酢酸、硝酸及びリン酸を含む混酸廃水も供給して、撹拌を行ってこれらを混合せしめた後、セトラー槽に移して静置することによって、油相である抽出液相と水相である抽出残液相との2層に分離させる。この際、トリアルキルホスフェート/芳香族系有機溶剤の混合液からなる抽剤液は、酢酸及び硝酸に対する抽出選択性に優れるのに対し、リン酸を殆ど抽出しないので、酢酸及び硝酸は混酸廃水中から前記抽剤液へ選択的に溶解して油相である抽出液相に抽出される。   First, in the acetic acid / nitric acid extraction step, an extractant solution (a mixed solution of trialkyl phosphate / aromatic organic solvent) is supplied into the mixer tank, and mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid is also supplied. After stirring and mixing these, the mixture is transferred to a settler tank and allowed to stand to separate into two layers of an extraction liquid phase that is an oil phase and an extraction residual liquid phase that is an aqueous phase. At this time, the extract solution composed of a mixed solution of trialkyl phosphate / aromatic organic solvent is excellent in extraction selectivity to acetic acid and nitric acid, but hardly extracts phosphoric acid. Therefore, acetic acid and nitric acid are mixed acid wastewater. To the extract liquid and then extracted into an extract liquid phase that is an oil phase.

一方、前記酢酸・硝酸抽出工程で出た水相の抽出残液にはリン酸が残存しているので、この抽出残液をそのままリン酸水溶液として回収して利用することもできるし、任意の濃度まで濃縮して濃縮リン酸水溶液の状態で回収しても良いし、或いはさらに濃縮してリン酸を固形状態で回収するようにしても良い。また、リン酸の純度をさらに高めるための高純度化操作を施した上で利用に供するようにしても良い。   On the other hand, since phosphoric acid remains in the aqueous phase extraction residue obtained in the acetic acid / nitric acid extraction step, this extraction residue can be recovered and used as a phosphoric acid aqueous solution as it is, It may be concentrated to a concentration and recovered in the form of a concentrated phosphoric acid aqueous solution, or may be further concentrated to recover phosphoric acid in a solid state. Moreover, you may make it use, after performing the refinement | purification operation for raising the purity of phosphoric acid further.

次の酢酸・硝酸剥離工程においては、ミキサー槽内に前記抽出工程で得られた抽出液(抽出酢酸・硝酸を含有した抽剤液)を供給すると共に、塩(えん)を含有した剥離用の水も供給し、撹拌を行ってこれらを混合せしめた後、セトラー槽に移して静置する。混合によって酢酸及び硝酸が水相に移行するので、油相と、酢酸・硝酸水溶液からなる水相の2層に分離する。この時、前記剥離用水は塩を含有しているので、実験レベルの小スケールは勿論のことスケールアップした実機レベルにおいても、セトラー槽での静置状態において油相と水相のエマルジョン化を十分に抑制することができ、これにより油相と水相の分離性を格段に向上させることができるので、この剥離工程を経て得られた油相の抽剤液は、酢酸・硝酸を含有しない純度の高い抽剤液となっており、従ってこの抽剤液を酢酸・硝酸抽出工程に供給して循環使用することが十分に可能となる。即ち、この抽剤液を酢酸・硝酸抽出工程で用いれば、酢酸・硝酸を十分に抽出することができる。本方法では、実機レベルの大スケールでもこのように抽剤液を何度も循環使用できるので、低コストでリン酸を分離回収することができる。   In the next acetic acid / nitric acid stripping step, the extraction liquid (extracted solution containing extracted acetic acid / nitric acid) obtained in the extraction step is supplied into the mixer tank, and the stripping solution containing salt (en) is used. Water is also supplied and mixed by stirring, then transferred to a settler tank and allowed to stand. Since the acetic acid and nitric acid are transferred to the aqueous phase by mixing, the mixture is separated into two layers of an oil phase and an aqueous phase composed of an acetic acid / nitric acid aqueous solution. At this time, since the stripping water contains salt, the oil phase and the water phase are sufficiently emulsified in the still state in the settler tank, not only on the small scale at the experimental level, but also on the scaled up actual machine level. Since the separation property between the oil phase and the aqueous phase can be remarkably improved, the oil phase extractant obtained through this peeling step has a purity that does not contain acetic acid and nitric acid. Therefore, it becomes possible to supply this extractant solution to the acetic acid / nitric acid extraction step and to circulate it. That is, if this extractant solution is used in the acetic acid / nitric acid extraction step, acetic acid / nitric acid can be sufficiently extracted. In this method, the extractant solution can be circulated and used many times in this way even on a large scale at the actual machine level, so that phosphoric acid can be separated and recovered at low cost.

本実施形態では、酢酸・硝酸抽出工程、酢酸・硝酸剥離工程のいずれにおいても、向流多段抽出法を採用している。この向流多段抽出法は、酢酸・硝酸抽出工程を例に挙げて説明すると、図2に示すように、複数個の抽出槽(A)を用いて、混酸廃水と抽剤液(トリアルキルホスフェート/芳香族系有機溶剤の混合液)を向流させながら各抽出槽で抽出を行う方法であり、酢酸・硝酸剥離工程においても同様の手法を採用している。このような向流多段抽出法を採用することにより、酢酸と硝酸の抽出を十分に行うことができるので、より純度の高いリン酸を回収できる。   In this embodiment, the countercurrent multistage extraction method is employed in both the acetic acid / nitric acid extraction step and the acetic acid / nitric acid stripping step. This counter-current multistage extraction method will be described by taking the acetic acid / nitric acid extraction step as an example. As shown in FIG. 2, a plurality of extraction tanks (A) are used to mix mixed acid wastewater and extractant (trialkyl phosphate). / Mixture of aromatic organic solvent) in each extraction tank while counterflowing, and the same method is employed in the acetic acid / nitric acid stripping step. By adopting such a countercurrent multi-stage extraction method, acetic acid and nitric acid can be sufficiently extracted, so that phosphoric acid with higher purity can be recovered.

この発明において用いる抽剤液について説明する。抽剤液としては、トリアルキルホスフェートを含有する抽剤液を用いる。例えば、抽剤液としてはトリアルキルホスフェートのみからなる構成を採用しても良いし、トリアルキルホスフェートと有機溶剤との混合系としても良い。トリアルキルホスフェートを用いることで、酢酸−硝酸−リン酸系混酸廃液から酢酸と硝酸を同時に選択性良く抽出することが可能となる。中でも、トリアルキルホスフェート/芳香族系有機溶剤=10/90〜90/10(体積比)の組成からなる抽剤液を用いるのが好ましく、この場合には酢酸に対する抽出選択性と硝酸に対する抽出選択性の両方を向上できる利点がある。より好適な比率範囲は、トリアルキルホスフェート/芳香族系有機溶剤=20/80〜80/20(体積比)であり、特に好適な範囲はトリアルキルホスフェート/芳香族系有機溶剤=30/70〜70/30(体積比)である。   The extractant used in the present invention will be described. As the extractant, an extractant containing a trialkyl phosphate is used. For example, the extraction liquid may be composed only of a trialkyl phosphate, or may be a mixed system of a trialkyl phosphate and an organic solvent. By using a trialkyl phosphate, acetic acid and nitric acid can be simultaneously extracted with good selectivity from an acetic acid-nitric acid-phosphoric acid mixed acid waste liquid. Among them, it is preferable to use an extractant having a composition of trialkyl phosphate / aromatic organic solvent = 10/90 to 90/10 (volume ratio). In this case, extraction selectivity for acetic acid and extraction selection for nitric acid are preferred. There is an advantage that both sexes can be improved. A more preferable ratio range is trialkyl phosphate / aromatic organic solvent = 20/80 to 80/20 (volume ratio), and a particularly preferable range is trialkyl phosphate / aromatic organic solvent = 30/70 to 70/30 (volume ratio).

前記トリアルキルホスフェートとしては、例えばトリオクチルホスフェート、トリブチルホスフェート等が挙げられる。これらの中でも、トリオクチルホスフェートを用いるのが好ましく、この場合には酢酸・硝酸に対する抽出選択性を一層向上させることができる。前記トリオクチルホスフェートとしては、特に限定されるものではないが、トリス(2−エチルヘキシル)ホスフェートを用いるのが好適であり、この場合には酢酸・硝酸に対する抽出選択性をより一層向上させることができる利点がある。   Examples of the trialkyl phosphate include trioctyl phosphate and tributyl phosphate. Among these, it is preferable to use trioctyl phosphate. In this case, the extraction selectivity for acetic acid and nitric acid can be further improved. The trioctyl phosphate is not particularly limited, but it is preferable to use tris (2-ethylhexyl) phosphate. In this case, the extraction selectivity for acetic acid / nitric acid can be further improved. There are advantages.

前記有機溶剤としては、脂肪族系有機溶剤、芳香族系有機溶剤等が挙げられる。前記脂肪族系有機溶剤としては、例えばイソパラフィン、シクロパラフィン等が挙げられる。   Examples of the organic solvent include aliphatic organic solvents and aromatic organic solvents. Examples of the aliphatic organic solvent include isoparaffin and cycloparaffin.

また、前記芳香族系有機溶剤としては、特に限定されるものではないが、例えばケロシン、トルエン、キシレン等が挙げられる。これらの中でも、ケロシンを用いるのが好ましい。ケロシンは安価であるから分離回収コストを抑制できるし、ケロシンはリン酸を抽出することが実質的にないのでリン酸をより一層高効率で分離回収できる利点がある。   The aromatic organic solvent is not particularly limited, and examples thereof include kerosene, toluene, xylene and the like. Of these, kerosene is preferably used. Since kerosene is inexpensive, the cost of separation and recovery can be suppressed, and kerosene has the advantage that phosphoric acid can be separated and recovered with higher efficiency since it does not substantially extract phosphoric acid.

なお、この発明の効果を阻害しない範囲であれば、前記抽剤液(トリアルキルホスフェートを含有する抽剤液)中に、他の公知の抽出剤(中性抽出剤、酸性抽出剤、塩基性抽出剤)を混合せしめても良い。このような他の公知の抽出剤との混合系の中では、トリアルキルホスフェート/トリアルキルアミン=99/1〜70/30(体積比)の組成からなる抽剤液を用いるのが好ましく、この場合には酢酸に対する抽出選択性と硝酸に対する抽出選択性の両方を向上できる。前記トリアルキルアミンとしては、トリオクチルアミンを用いるのが好ましい。   In addition, if it is a range which does not inhibit the effect of this invention, in the said extract liquid (extract liquid containing a trialkyl phosphate), other well-known extractants (neutral extractant, acidic extractant, basicity) An extractant) may be mixed. In a mixed system with such other known extractants, it is preferable to use an extractant having a composition of trialkyl phosphate / trialkylamine = 99/1 to 70/30 (volume ratio). In some cases, both extraction selectivity to acetic acid and extraction selectivity to nitric acid can be improved. As the trialkylamine, trioctylamine is preferably used.

上記のような分離回収方法によって回収されたリン酸は、極微量の硝酸を含有しており、N(窒素)の供給源にもなるので、肥料として好適に用いられる。   The phosphoric acid recovered by the separation and recovery method as described above contains a very small amount of nitric acid, and also serves as a supply source of N (nitrogen), and therefore is preferably used as a fertilizer.

この発明において、前記酢酸・硝酸剥離工程で使用する剥離用水に含有せしめる塩としては、特に限定されるものではないが、例えばNaCl、KCl、CaCl2、BaCl2、AlCl3、Na2SO4等の金属塩などが挙げられる。前記金属塩を構成する金属としては、特に限定されるものではないが、例えばアルカリ金属(Li、Na、K、Rb、Cs、Fr)、アルカリ土類金属(Be、Mg、Ca、Sr、Ba、Ra)等が挙げられる。前記金属塩としては塩化金属塩を用いるのが好ましく、中でも、NaCl、KCl、CaCl2、BaCl2及びAlCl3からなる群より選ばれる1種または2種以上の塩化金属塩を用いるのがより好ましい。 In the present invention, the salt contained in the stripping water used in the acetic acid / nitric acid stripping step is not particularly limited. For example, NaCl, KCl, CaCl 2 , BaCl 2 , AlCl 3 , Na 2 SO 4, etc. And metal salts thereof. The metal constituting the metal salt is not particularly limited. For example, alkali metal (Li, Na, K, Rb, Cs, Fr), alkaline earth metal (Be, Mg, Ca, Sr, Ba) Ra) and the like. The metal salt is preferably a metal chloride salt, and more preferably one or more metal chloride salts selected from the group consisting of NaCl, KCl, CaCl 2 , BaCl 2 and AlCl 3. .

また、前記剥離用水における塩の含有濃度は、1〜5000ppmの範囲に設定されるのが好ましい。1ppm未満では、油相と水相のエマルジョン化を十分に抑制するのが困難となり、静置状態における油相と水相の分離性を十分に向上させることができなくなるので、好ましくない。一方、5000ppmを超えると酢酸・硝酸の剥離が十分に進行しなくなる恐れがあるので好ましくない。中でも、前記剥離用水における塩の含有濃度は、1000〜3000ppmの範囲に設定されるのがより好ましく、特に好ましい範囲は1500〜2500ppmである。   Moreover, it is preferable that the content density | concentration of the salt in the said water for peeling is set to the range of 1-5000 ppm. If it is less than 1 ppm, it is difficult to sufficiently suppress the emulsification of the oil phase and the aqueous phase, and the separability between the oil phase and the aqueous phase in a stationary state cannot be sufficiently improved, which is not preferable. On the other hand, if it exceeds 5000 ppm, there is a possibility that peeling of acetic acid and nitric acid may not proceed sufficiently, such being undesirable. Among these, the salt concentration in the stripping water is more preferably set in a range of 1000 to 3000 ppm, and a particularly preferable range is 1500 to 2500 ppm.

次に、この発明の具体的実施例について説明する。   Next, specific examples of the present invention will be described.

<実施例1>
前項で例示した実施形態の分離回収方法(図1参照)に従い、酢酸、硝酸及びリン酸を含む混酸廃水からリン酸を分離回収した。この実施例で用いた混酸廃水は、液晶製造工場から出た混酸廃水であり、表1に示すような組成であった(勿論、液晶製造工場から出る混酸廃水が全てこのような組成比にあるわけではなく、各工場等において様々に異なる)。各箇所での流量、各工程での段数、相比などの詳細な条件は図1中に示した。なお、抽剤液としては、トリス(2−エチルヘキシル)ホスフェート(TOP)/ケロシン=50/50(体積比)の組成からなる抽剤液を用いた。前記ケロシンとしては、昭和シェル石油製「Solvesso150」(商品名)を用いた。また、剥離用水としては、CaCl2を2000ppm含有せしめた水を用いた。なお、前記相比とは、油相流量に対する水相流量の比率(水相流量/油相流量)である。
<Example 1>
Phosphoric acid was separated and recovered from the mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid according to the separation and recovery method of the embodiment exemplified in the previous section (see FIG. 1). The mixed acid wastewater used in this example was a mixed acid wastewater from a liquid crystal manufacturing factory, and had a composition as shown in Table 1 (of course, all of the mixed acid wastewater from a liquid crystal manufacturing factory had such a composition ratio. However, it is different in each factory.) Detailed conditions such as the flow rate at each location, the number of stages in each step, and the phase ratio are shown in FIG. In addition, as the extractant, an extractant having a composition of tris (2-ethylhexyl) phosphate (TOP) / kerosene = 50/50 (volume ratio) was used. As the kerosene, “Solvesso 150” (trade name) manufactured by Showa Shell Sekiyu was used. Further, as the peeling water, water containing 2000 ppm of CaCl 2 was used. The phase ratio is the ratio of the water phase flow rate to the oil phase flow rate (water phase flow rate / oil phase flow rate).

この実施例1では、抽出工程でのミキサー槽の容量は50L、抽出工程でのセトラー槽の容量は150Lとし、このようなミキサーセトラー(200L)を10槽(10段)連結して抽出工程部を構成する一方、剥離工程でのミキサー槽の容量は50L、剥離工程でのセトラー槽の容量は150Lとし、このようなミキサーセトラー(200L)を12槽(12段)連結して剥離工程部を構成した。また、ミキサー槽の攪拌翼(パドル翼)の回転数は320rpmに設定した。   In Example 1, the capacity of the mixer tank in the extraction process is 50 L, the capacity of the settler tank in the extraction process is 150 L, and 10 mixers (10 stages) of such mixer settlers (200 L) are connected to the extraction process unit. On the other hand, the capacity of the mixer tank in the peeling process is 50 L, the capacity of the settler tank in the peeling process is 150 L, and such a mixer settler (200 L) is connected to 12 tanks (12 stages) to connect the peeling process section. Configured. Moreover, the rotation speed of the stirring blade (paddle blade) of the mixer tank was set to 320 rpm.

<実施例2>
剥離用水として、NaClを2000ppm含有した水を用いた以外は、実施例1と同様にして、酢酸、硝酸及びリン酸を含む混酸廃水からリン酸を分離回収した。なお、各箇所での流量、各工程での段数、相比などの詳細な条件は実施例1と同様である(図1参照)。
<Example 2>
Phosphoric acid was separated and recovered from the mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid in the same manner as in Example 1 except that water containing 2000 ppm of NaCl was used as the peeling water. Detailed conditions such as the flow rate at each location, the number of stages in each step, and the phase ratio are the same as in Example 1 (see FIG. 1).

<実施例3>
剥離用水として、KClを2000ppm含有した水を用いた以外は、実施例1と同様にして、酢酸、硝酸及びリン酸を含む混酸廃水からリン酸を分離回収した。なお、各箇所での流量、各工程での段数、相比などの詳細な条件は実施例1と同様である(図1参照)。
<Example 3>
Phosphoric acid was separated and recovered from the mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid in the same manner as in Example 1 except that water containing 2000 ppm of KCl was used as the peeling water. Detailed conditions such as the flow rate at each location, the number of stages in each step, and the phase ratio are the same as in Example 1 (see FIG. 1).

<実施例4>
剥離用水として、BaCl2を2000ppm含有した水を用いた以外は、実施例1と同様にして、酢酸、硝酸及びリン酸を含む混酸廃水からリン酸を分離回収した。なお、各箇所での流量、各工程での段数、相比などの詳細な条件は実施例1と同様である(図1参照)。
<Example 4>
Phosphoric acid was separated and recovered from the mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid in the same manner as in Example 1 except that water containing 2000 ppm of BaCl 2 was used as the peeling water. Detailed conditions such as the flow rate at each location, the number of stages in each step, and the phase ratio are the same as in Example 1 (see FIG. 1).

<実施例5>
剥離用水として、AlCl3を2000ppm含有した水を用いた以外は、実施例1と同様にして、酢酸、硝酸及びリン酸を含む混酸廃水からリン酸を分離回収した。なお、各箇所での流量、各工程での段数、相比などの詳細な条件は実施例1と同様である(図1参照)。
<Example 5>
Phosphoric acid was separated and recovered from the mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid in the same manner as in Example 1 except that water containing 2000 ppm of AlCl 3 was used as the peeling water. Detailed conditions such as the flow rate at each location, the number of stages in each step, and the phase ratio are the same as in Example 1 (see FIG. 1).

<実施例6>
剥離用水として、CaCl2を2400ppm含有した水を用いた以外は、実施例1と同様にして、酢酸、硝酸及びリン酸を含む混酸廃水からリン酸を分離回収した。なお、各箇所での流量、各工程での段数、相比などの詳細な条件は実施例1と同様である(図1参照)。
<Example 6>
Phosphoric acid was separated and recovered from the mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid in the same manner as in Example 1 except that water containing 2400 ppm of CaCl 2 was used as the peeling water. Detailed conditions such as the flow rate at each location, the number of stages in each step, and the phase ratio are the same as in Example 1 (see FIG. 1).

<実施例7>
剥離用水として、CaCl2を1670ppm含有した水を用いた以外は、実施例1と同様にして、酢酸、硝酸及びリン酸を含む混酸廃水からリン酸を分離回収した。なお、各箇所での流量、各工程での段数、相比などの詳細な条件は実施例1と同様である(図1参照)。
<Example 7>
Phosphoric acid was separated and recovered from the mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid in the same manner as in Example 1 except that water containing 1670 ppm of CaCl 2 was used as the peeling water. Detailed conditions such as the flow rate at each location, the number of stages in each step, and the phase ratio are the same as in Example 1 (see FIG. 1).

<比較例1>
剥離用水として、塩(えん)を含有しない水を用いた以外は、実施例1と同様にして、酢酸、硝酸及びリン酸を含む混酸廃水からリン酸の分離回収を試みた。
<Comparative Example 1>
The separation and recovery of phosphoric acid was tried from the mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid in the same manner as in Example 1 except that water containing no salt was used as the peeling water.

<実施例8>
抽剤液として、トリス(2−エチルヘキシル)ホスフェート(TOP)/トリ−n−オクチルアミン(TOA)=95/5(体積比)を用い、かつ剥離用水としてCaCl2を3000ppm含有した水を用いた以外は、実施例1と同様にして酢酸、硝酸及びリン酸を含む混酸廃水からリン酸を分離回収した。なお、各箇所での流量、各工程での段数、相比などの詳細な条件は実施例1と同様である(図1参照)。
<Example 8>
Tris (2-ethylhexyl) phosphate (TOP) / tri-n-octylamine (TOA) = 95/5 (volume ratio) was used as the extractant, and water containing 3000 ppm CaCl 2 was used as the stripping water. Except for the above, phosphoric acid was separated and recovered from the mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid in the same manner as in Example 1. Detailed conditions such as the flow rate at each location, the number of stages in each step, and the phase ratio are the same as in Example 1 (see FIG. 1).

<実施例9>
剥離用水として、NaClを3000ppm含有した水を用いた以外は、実施例8と同様にして、酢酸、硝酸及びリン酸を含む混酸廃水からリン酸を分離回収した。なお、各箇所での流量、各工程での段数、相比などの詳細な条件は実施例1と同様である(図1参照)。
<Example 9>
Phosphoric acid was separated and recovered from the mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid in the same manner as in Example 8 except that water containing 3000 ppm of NaCl was used as the peeling water. Detailed conditions such as the flow rate at each location, the number of stages in each step, and the phase ratio are the same as in Example 1 (see FIG. 1).

<実施例10>
剥離用水として、KClを3000ppm含有した水を用いた以外は、実施例8と同様にして、酢酸、硝酸及びリン酸を含む混酸廃水からリン酸を分離回収した。なお、各箇所での流量、各工程での段数、相比などの詳細な条件は実施例1と同様である(図1参照)。
<Example 10>
Phosphoric acid was separated and recovered from the mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid in the same manner as in Example 8, except that water containing 3000 ppm of KCl was used as the peeling water. Detailed conditions such as the flow rate at each location, the number of stages in each step, and the phase ratio are the same as in Example 1 (see FIG. 1).

<実施例11>
剥離用水として、BaCl2を3000ppm含有した水を用いた以外は、実施例8と同様にして、酢酸、硝酸及びリン酸を含む混酸廃水からリン酸を分離回収した。なお、各箇所での流量、各工程での段数、相比などの詳細な条件は実施例1と同様である(図1参照)。
<Example 11>
Phosphoric acid was separated and recovered from the mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid in the same manner as in Example 8, except that water containing 3000 ppm of BaCl 2 was used as the peeling water. Detailed conditions such as the flow rate at each location, the number of stages in each step, and the phase ratio are the same as in Example 1 (see FIG. 1).

<実施例12>
剥離用水として、AlCl3を3000ppm含有した水を用いた以外は、実施例8と同様にして、酢酸、硝酸及びリン酸を含む混酸廃水からリン酸を分離回収した。なお、各箇所での流量、各工程での段数、相比などの詳細な条件は実施例1と同様である(図1参照)。
<Example 12>
Phosphoric acid was separated and recovered from the mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid in the same manner as in Example 8, except that water containing 3000 ppm of AlCl 3 was used as the peeling water. Detailed conditions such as the flow rate at each location, the number of stages in each step, and the phase ratio are the same as in Example 1 (see FIG. 1).

<比較例2>
剥離用水として、塩(えん)を含有しない水を用いた以外は、実施例8と同様にして、酢酸、硝酸及びリン酸を含む混酸廃水からリン酸の分離回収を試みた。
<Comparative example 2>
The separation and recovery of phosphoric acid was tried from the mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid in the same manner as in Example 8 except that water containing no salt was used as the peeling water.

Figure 2006160534
Figure 2006160534

Figure 2006160534
Figure 2006160534

Figure 2006160534
Figure 2006160534

表から明らかなように、実施例1〜12の本発明の分離回収方法によれば、酢酸、硝酸及びリン酸を含む混酸廃水から、リン酸を高い濃度でかつ高純度で分離回収することができた。また、剥離用水に塩を含有せしめているので、剥離工程におけるセトラー槽での静置状態において油相と水相のエマルジョン化を十分に抑制することができた。即ち、剥離工程を経て得られた油相の抽剤液は、酢酸・硝酸を含有しない純度の高い抽剤液となっており、従ってこの抽剤液を酢酸・硝酸抽出工程に供給して何度も循環使用しつつリン酸を高濃度、高純度で分離回収することができた。このように安定した良好な運転状態を維持しつつリン酸を連続的に分離回収することができた。   As is clear from the table, according to the separation and recovery methods of the present invention of Examples 1 to 12, phosphoric acid can be separated and recovered with high concentration and high purity from mixed acid wastewater containing acetic acid, nitric acid and phosphoric acid. did it. Moreover, since salt was contained in the peeling water, the emulsification of the oil phase and the aqueous phase could be sufficiently suppressed in the stationary state in the settling tank in the peeling step. That is, the oil phase extractant obtained through the stripping process is a high-purity extractant that does not contain acetic acid / nitric acid. It was possible to separate and recover phosphoric acid with high concentration and high purity while being repeatedly used. Thus, phosphoric acid could be continuously separated and recovered while maintaining a stable and good operating state.

これに対し、剥離用水に塩を含有せしめていない比較例1、2では、運転開始後短時間でほぼ全槽において分離不良状態に陥り、リン酸を分離回収することができなかった。   On the other hand, in Comparative Examples 1 and 2 in which no salt was contained in the stripping water, a separation failure occurred in almost all tanks in a short time after the start of operation, and phosphoric acid could not be separated and recovered.

混酸廃水からのリン酸の分離回収工程を示すフロー図である。It is a flow figure showing the separation recovery process of phosphoric acid from mixed acid wastewater. 向流多段抽出法の説明図である。It is explanatory drawing of a countercurrent multistage extraction method.

符号の説明Explanation of symbols

A…抽出槽   A ... Extraction tank

Claims (11)

酢酸、硝酸及びリン酸を含む廃液と、トリアルキルホスフェートを含有してなる抽剤液とを混合することによって、該抽剤液中に前記酢酸及び硝酸を選択的に溶解させて抽出する酢酸・硝酸抽出工程と、
前記抽出工程で出た抽出残液から前記リン酸を回収する工程と、
前記酢酸・硝酸抽出工程で得られた酢酸・硝酸含有抽剤液と、塩を含有した剥離用水とを接触させることによって、前記酢酸及び硝酸をこの剥離用水に溶解移動せしめる酢酸・硝酸剥離工程とを備え、
前記酢酸・硝酸剥離工程で出た油相の抽剤液を前記酢酸・硝酸抽出工程に供給することによって抽剤液を循環使用することを特徴とする酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。
Acetic acid and nitric acid extracted by selectively dissolving the acetic acid and nitric acid in the extract liquid by mixing the waste liquid containing acetic acid, nitric acid and phosphoric acid, and the extract liquid containing trialkyl phosphate. Nitric acid extraction process;
A step of recovering the phosphoric acid from the extraction residue obtained in the extraction step;
An acetic acid / nitric acid stripping step in which the acetic acid / nitric acid-containing extractant obtained in the acetic acid / nitric acid extraction step and the stripping water containing salt are brought into contact with each other to dissolve and move the acetic acid and nitric acid in the stripping water; With
From the acetic acid-nitric acid-phosphate mixed acid waste liquid, the extractant liquid is circulated and used by supplying the extractant liquid of the oil phase produced in the acetic acid / nitric acid stripping process to the acetic acid / nitric acid extraction process. A method for separating and recovering phosphoric acid.
前記塩が金属塩である請求項1に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。   The method for separating and recovering phosphoric acid from an acetic acid-nitric acid-phosphoric acid mixed acid waste liquid according to claim 1, wherein the salt is a metal salt. 前記金属塩として塩化金属塩を用いる請求項2に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。   The method for separating and recovering phosphoric acid from an acetic acid-nitric acid-phosphoric acid mixed acid waste liquid according to claim 2, wherein a metal chloride salt is used as the metal salt. 前記金属塩として、NaCl、KCl、CaCl2、BaCl2及びAlCl3からなる群より選ばれる1種または2種以上の塩化金属塩を用いる請求項2に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。 As the metal salt, NaCl, KCl, CaCl 2, BaCl 2 and acetic acid according to claim 2 using one or more metal chloride salt selected from the group consisting of AlCl 3 - nitric - phosphoric acid type mixed acid waste Method for separating and recovering phosphoric acid from 前記金属塩として、CaCl2、BaCl2及びAlCl3からなる群より選ばれる1種または2種以上の塩化金属塩を用いる請求項2に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。 The phosphoric acid from the acetic acid-nitric acid-phosphate mixed acid waste liquid according to claim 2, wherein one or more metal chlorides selected from the group consisting of CaCl 2 , BaCl 2 and AlCl 3 are used as the metal salt. Separation and recovery method. 前記剥離用水における塩の含有濃度が1〜5000ppmである請求項1〜5のいずれか1項に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。   The method for separating and recovering phosphoric acid from an acetic acid-nitric acid-phosphoric acid mixed acid waste liquid according to any one of claims 1 to 5, wherein the salt concentration in the stripping water is 1 to 5000 ppm. 前記抽剤液として、トリアルキルホスフェート/芳香族系有機溶剤=10/90〜90/10(体積比)の組成からなる抽剤液を用いる請求項1〜6のいずれか1項に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。   The acetic acid according to any one of claims 1 to 6, wherein an extractant solution having a composition of trialkyl phosphate / aromatic organic solvent = 10/90 to 90/10 (volume ratio) is used as the extractant solution. -Method for separating and recovering phosphoric acid from nitric acid-phosphoric acid mixed acid waste liquid. 前記芳香族系有機溶剤としてケロシンを用いる請求項7に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。   The method for separating and recovering phosphoric acid from an acetic acid-nitric acid-phosphoric acid mixed acid waste liquid according to claim 7, wherein kerosene is used as the aromatic organic solvent. 前記抽剤液として、トリアルキルホスフェート/トリアルキルアミン=99/1〜70/30(体積比)の組成からなる抽剤液を用いる請求項1〜6のいずれか1項に記載の酢酸−硝酸−リン酸系混酸廃液からのリン酸の分離回収方法。   The acetic acid-nitric acid according to any one of claims 1 to 6, wherein an extractant having a composition of trialkyl phosphate / trialkylamine = 99/1 to 70/30 (volume ratio) is used as the extractant. A method for separating and recovering phosphoric acid from a phosphoric acid mixed acid waste liquid. 請求項1〜9のいずれか1項に記載の分離回収方法によって回収されたリン酸。   The phosphoric acid collect | recovered by the separation-and-recovery method of any one of Claims 1-9. 肥料用として用いられる請求項10に記載のリン酸。   The phosphoric acid according to claim 10, which is used as a fertilizer.
JP2004350135A 2004-12-02 2004-12-02 Method for separating and recovering phosphoric acid from acetic acid-nitric acid-phosphoric acid mixed acid waste liquid Active JP4397802B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004350135A JP4397802B2 (en) 2004-12-02 2004-12-02 Method for separating and recovering phosphoric acid from acetic acid-nitric acid-phosphoric acid mixed acid waste liquid
TW094134047A TW200618850A (en) 2004-12-02 2005-09-29 Method of separating and recovering phosphoric acid from mixed acid waste liquid containing acetic, nitric and phosphoric acids
KR1020050097022A KR20060061883A (en) 2004-12-02 2005-10-14 Method for separating and recovering phosphoric acid from mixing acid waste of acetic acid-nitric acid-phosphoric acid
CN2005101134822A CN1781842B (en) 2004-12-02 2005-10-17 Method for separating and recovering phosphonic acid from acetic acid-nitric acid-phosphonic acid waiste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350135A JP4397802B2 (en) 2004-12-02 2004-12-02 Method for separating and recovering phosphoric acid from acetic acid-nitric acid-phosphoric acid mixed acid waste liquid

Publications (2)

Publication Number Publication Date
JP2006160534A true JP2006160534A (en) 2006-06-22
JP4397802B2 JP4397802B2 (en) 2010-01-13

Family

ID=36662969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350135A Active JP4397802B2 (en) 2004-12-02 2004-12-02 Method for separating and recovering phosphoric acid from acetic acid-nitric acid-phosphoric acid mixed acid waste liquid

Country Status (4)

Country Link
JP (1) JP4397802B2 (en)
KR (1) KR20060061883A (en)
CN (1) CN1781842B (en)
TW (1) TW200618850A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100831060B1 (en) 2006-12-29 2008-05-20 대일개발 주식회사 Method for regenerating etching waste solution of semiconductor including silicon
JP2010058986A (en) * 2008-09-01 2010-03-18 Sanwa Yuka Kogyo Kk Method for separating and recovering phosphoric acid from acetic acid-nitric acid-phosphoric acid type mixed acid waste liquid
JP2010132480A (en) * 2008-12-03 2010-06-17 Sanwa Yuka Kogyo Kk Method for recovering phosphoric acid freed of nitric acid and dissolved metal from phosphoric acid-based mixed acid waste liquid
JP2015136641A (en) * 2014-01-21 2015-07-30 太平洋セメント株式会社 Method and apparatus for treating phosphoric acid waste liquid

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100738506B1 (en) * 2006-01-23 2007-07-11 대일개발 주식회사 The method for separating and collecting each acid from waste acids of etching process in semiconductor and LCD industry
KR100738507B1 (en) * 2006-01-24 2007-07-11 대일개발 주식회사 The method for separating and collecting each acid from waste acids of etching process in IT industry
TWI461354B (en) * 2009-11-10 2014-11-21 Sanwa Yuka Kogyo Co Ltd Separation and Recovery of Phosphoric Acid from Acetic Acid - Nitric Acid - Phosphate Mixed Acid Waste
KR101667418B1 (en) * 2009-12-15 2016-10-18 산와 유카 고교 가부시키가이샤 Method for separating and recovering phosphoric acid from mixing acid waste of acetic acid-nitric acid-phosphoric acid
CN102167415B (en) * 2010-02-26 2015-04-01 三和油化工业株式会社 Method for separating and recovering phosphoric acid from acetic acid-nitric acid-phosphoric acid series mixed acid waste liquor
CN108892116A (en) * 2018-06-22 2018-11-27 湖北永绍科技股份有限公司 A kind of separation method of phosphoric acid, acetic acid and nitric acid mixed acid
CN108640093B (en) * 2018-06-22 2021-11-09 湖北永绍科技股份有限公司 Separation and purification process of mixed waste acid solution
CN109232233A (en) * 2018-10-30 2019-01-18 四川高绿平环境科技有限公司 A kind of system and method handling the mixed acid containing phosphoric acid, nitric acid and acetic acid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004160292A (en) * 2002-11-11 2004-06-10 Hayaji Shibata Method for separating and recovering phosphoric acid from acetic acid-nitric acid-phosphoric acid type mixed acid waste liquid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100831060B1 (en) 2006-12-29 2008-05-20 대일개발 주식회사 Method for regenerating etching waste solution of semiconductor including silicon
JP2010058986A (en) * 2008-09-01 2010-03-18 Sanwa Yuka Kogyo Kk Method for separating and recovering phosphoric acid from acetic acid-nitric acid-phosphoric acid type mixed acid waste liquid
JP2010132480A (en) * 2008-12-03 2010-06-17 Sanwa Yuka Kogyo Kk Method for recovering phosphoric acid freed of nitric acid and dissolved metal from phosphoric acid-based mixed acid waste liquid
JP2015136641A (en) * 2014-01-21 2015-07-30 太平洋セメント株式会社 Method and apparatus for treating phosphoric acid waste liquid

Also Published As

Publication number Publication date
CN1781842A (en) 2006-06-07
CN1781842B (en) 2011-01-12
TW200618850A (en) 2006-06-16
KR20060061883A (en) 2006-06-08
JP4397802B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
CN1781842B (en) Method for separating and recovering phosphonic acid from acetic acid-nitric acid-phosphonic acid waiste liquid
Kumar et al. Lactic acid extraction using environmentally benign green emulsion ionic liquid membrane
EP2995693B1 (en) Extraction/separation method
WO2010064229A2 (en) A process for the recovery of hydrochloric acid
Lee Removal of acetic acid from simulated hemicellulosic hydrolysates by emulsion liquid membrane with organophosphorus extractants
JP2006315931A (en) Method and apparatus for recovering phosphoric acid from metal ion-containing mixed acid aqueous solution containing phosphoric acid and at least one kind of acid except phosphoric acid
JP3440752B2 (en) Purification method of nickel sulfate containing cobalt
JP5275767B2 (en) Method for recovering phosphoric acid from which nitric acid and dissolved metal have been removed from phosphoric acid mixed acid waste liquid
JP2004160292A (en) Method for separating and recovering phosphoric acid from acetic acid-nitric acid-phosphoric acid type mixed acid waste liquid
KR101667418B1 (en) Method for separating and recovering phosphoric acid from mixing acid waste of acetic acid-nitric acid-phosphoric acid
CN102167415B (en) Method for separating and recovering phosphoric acid from acetic acid-nitric acid-phosphoric acid series mixed acid waste liquor
TWI461354B (en) Separation and Recovery of Phosphoric Acid from Acetic Acid - Nitric Acid - Phosphate Mixed Acid Waste
JP5275727B2 (en) Method for separating and recovering phosphoric acid from acetic acid-nitric acid-phosphoric acid mixed acid waste liquid
JPH06279883A (en) Method for separating and recovering lithium
JP4268092B2 (en) Method for separating and recovering acid from waste liquid mixed with multiple acids
JP2004345876A (en) Method for increasing purity in phosphoric acid aqueous solution
NO116843B (en)
JPH10249330A (en) Treatment of boron-containing waste water
JP2002126722A (en) Method for separating and recovering acids from waste liquid mixed with plurality of acids
Kumar et al. Extraction and enrichment of copper by liquid emulsion membrane using LIX 664N
AU2009248000B2 (en) System for decreasing amount of organic solution in the liquid-liquid extraction process
KR20050037994A (en) Application of scrubbing process for “method for treating of etching waste acid or waste acid”
US3911087A (en) Selective solvent extraction of sulfate impurities from phosphoric acid
CA2903516A1 (en) Extraction/separation method
JPH0193418A (en) Separation of rare earth elements by liquid liquid extraction using halogenated diluent or carboxylic acid type diluent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4397802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250