JP2006160180A - 車両運動制御装置 - Google Patents

車両運動制御装置 Download PDF

Info

Publication number
JP2006160180A
JP2006160180A JP2004357949A JP2004357949A JP2006160180A JP 2006160180 A JP2006160180 A JP 2006160180A JP 2004357949 A JP2004357949 A JP 2004357949A JP 2004357949 A JP2004357949 A JP 2004357949A JP 2006160180 A JP2006160180 A JP 2006160180A
Authority
JP
Japan
Prior art keywords
control
vehicle
vehicle motion
amount
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004357949A
Other languages
English (en)
Inventor
Takeshi Torii
毅 鳥居
Shunsuke Tezuka
俊介 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP2004357949A priority Critical patent/JP2006160180A/ja
Publication of JP2006160180A publication Critical patent/JP2006160180A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

【課題】外乱による車両の運動状態の変化を精度よく特定することにより、応答性或いは安定性に優れた車両運動制御を行う。
【解決手段】検出部22は、車輪5のそれぞれに作用する横力Fyを直接的に検出する。ハンドル角センサ16は、操舵輪5に対する操作量Haを検出する。処理部21は、操作量Haが、直進走行とみなせる範囲内である場合に、横力Fyに基づいて、外乱による車両の運動状態の変化を抑制する制御量δaを決定する。制御部15は、決定された制御量δaに基づいて、車両の運動状態を制御する。
【選択図】図1

Description

本発明は、車両運動制御装置に係り、特に、直進走行時における車両の運動制御に関する。
従来より、操安性の向上といった観点から、横風、わだちといった外乱(ドライバーの操作以外の成分)に起因する車両の運動状態の変化を抑制する車両運動制御装置が知られている(例えば、特許文献1,2参照)。この類の装置では、直進走行時、外乱による運動状態の横方向の変化を特定し、この変化を抑制するように車両の運動状態が制御される。このような装置では、運動状態の横方向変化を特定すべく、各種のセンサにより車両に作用する横加速度、或いは、車両に作用するヨーレートが検出される。
特開平09−207803号公報 特開2002−211380号公報
しかしながら、これらのセンサによって検出される横加速度或いはヨーレートは、実際に外乱が作用したタイミングよりも遅延して検出されるという傾向がある。そのため、従来の手法では、制御の応答性或いは安定性が悪いといった問題がある。
そこで、本発明の目的は、外乱による車両の運動状態の変化を迅速かつ精度よく特定することにより、応答性或いは安定性に優れた車両運動制御を行うことである。
かかる課題を解決するために、本発明は、車両運動制御装置を提供する。この車両運動制御装置は、車輪のそれぞれに作用する横力を直接的に検出する第1の検出部と、操舵輪に対する操作量を検出する第2の検出部と、第2の検出部によって検出される操作量が直進走行とみなせる範囲内である場合に、横力のそれぞれに基づいて、外乱による車両の運動状態の変化を抑制する制御量を決定する処理部と、決定された制御量に基づいて、車両の運動状態を制御する制御部とを有する。
ここで、本発明において、処理部は、車輪のそれぞれに作用する横力の合力と、前輪側および後輪側にそれぞれ作用する横力に応じた偶力とを演算パラメータとして用いて制御量を決定することが好ましい。
また、本発明において、処理部は、それぞれが異なる種別の演算パラメータに対応した複数のゲインを用いた重み付け演算により、制御量を決定することが好ましい。この場合、複数のゲインは、ハンドルの操作量に基づいて、それぞれ可変に設定されることが好ましい。この処理部は、演算パラメータのそれぞれと、ハンドルの操作量と、制御量とが予め対応付けられたマップに基づいて、制御量を決定してもよい。また、処理部は、演算パラメータのそれぞれとハンドルの操作量との入力から、制御量を出力するニューラルネットワークに基づいて、制御量を決定してもよい。
また、本発明において、処理部は、直進走行時におけるハンドルの操作量を基準値として、基準値からのハンドルの操作量の増加に応じて、制御部による制御が制限されるように、制御量を決定することが好ましい。
さらに、本発明において、車速を検出する車速センサをさらに有し、処理部は、車速の減少に応じて、制御部による制御が制限されるように、制御量を決定することが好ましい。
本発明によれば、それぞれの車輪に作用する横力を直接的に検出しているので、外乱による車両の運動状態の変化を迅速かつ有効に特定することができる。そして、検出された横力に基づいて、運動状態を制御することにより、外乱による変化を有効に抑制することができる。横力は、車両の運動状態をこれから変化させようとする力であるため、この横力に基づいて制御を行うことにより、応答性或いは安定性に優れた制御を行うことができる。その結果、直進走行時における走安性の向上を図ることができる。
(第1の実施形態)
図1は、本実施形態にかかる車両運動制御装置が適用された車両の説明図である。この車両は、前後四輪で駆動する四輪駆動車である。エンジン1のクランクシャフト(図示せず)からの動力は、自動変速機2、センタディファレンシャル装置3を介して、前輪側および後輪側の駆動軸(車軸)4へとそれぞれ伝達される。車軸4に動力が伝達されると、車輪5に回転トルクが加えられ、これにより、車輪5に駆動力が与えられる。
ドライバーによってハンドル6が操作された場合、操舵輪である前側の車輪5は、例えばステアバイワイヤ機構を用いたステアリング装置によって操舵される。このステアバイワイヤ機構では、ハンドル6から車輪5へと至る操舵系が機械的に分離されており、ドライバーによるハンドル6の操作量と、車輪5の操舵角との関係が任意に設定される。
ハンドル6が一端に取付けられたステアリングシャフト7の他端には、第1の動力伝達機構8が接続されており、この第1の動力伝達機構8には、第1の電動モータ9の出力軸が接続されている。第1の電動モータ9において発生した動力は、第1の動力伝達機構8およびステアリングシャフト7を介し、操舵反力としてハンドル6に伝達される。一方、左右の車輪5には、ナックルアーム(図示せず)がそれぞれ設けられており、個々のナックルアームは、タイロッド10を介してラック11にそれぞれ接続している。ラック11には、ピニオンシャフト12が噛合しており、このピニオンシャフト12の他端は、第2の動力伝達機構13に接続している。第2の動力伝達機構13には、第2の電動モータ14が接続されており、この電動モータ14において発生した動力は、第2の動力伝達機構13を介してピニオンシャフト12へ伝達される。これにより、ピニオンシャフト12が回転すると、ラック11が軸線方向に変位し、この変位に応じて、車輪5の操舵角が変化する。
第1および第2の電動モータ9,14の回転出力は、制御部15によって制御されており、この制御部15により、ハンドル6の操作に応じた操舵角と操舵反力とが設定される。制御部15には、これらの電動モータ9,14の出力制御を行うために、センサ16〜18を含む各種センサからの検出値が入力されている。ハンドル角センサ16は、ステアリングシャフト7に取付けられており、ステアリングシャフト7の回転角に基づいて、ハンドル6の操作量(以下「ハンドル角」という)Haを検出する。換言すれば、このハンドル6の操作量(ハンドル角)Haは、操舵輪(前側の車輪5)に対する操作量である。このセンサ16では、ハンドル6の中立位置に相当する直進走行時のハンドル角Haが「0」(基準値)となり、この基準値からのハンドル角Haが検出される。操舵角センサ17は、ピニオンシャフト12に取付けられており、ピニオンシャフト12の回転角に基づいて、車輪5の操舵角を検出する。路面反力センサ18は、ピニオンシャフト12に取付けられており、ピニオンシャフト12に作用するトルクを路面反力トルクとして検出する。また、図1には示していないが、制御部15には、後述する図2に示す車速センサ19からの検出値も入力されている。この車速センサ19は、車輪5の回転状態から車速vを検出するセンサである。
通常の操舵角制御において、制御部15は、実験やシミュレーションを通じて予め作成された操舵角マップを参照し、検出されたハンドル角Haに対応した操舵角の目標値(以下「目標操舵角」という)を決定する。この目標操舵角に基づいて、第2の電動モータ14の出力制御を行うことにより、車輪5の操舵角が目標操舵角に設定される。また、制御部15は、実験やシミュレーションを通じて予め作成された係数マップを参照し、現在の車速vに対応したトルク係数を決定する。そして、トルク係数、ハンドル角Haおよび路面反力トルクに基づいて、第1の電動モータ9の出力制御を行うことにより、ハンドル角Haと車速vとに対応した操舵反力がハンドル6に付与される。
図2は、本実施形態にかかる車両運動制御装置20を示すブロック構成図である。車両運動制御装置20は、車両の直進走行時、外乱による運動状態の変化を抑制する装置であり、処理部21を主体に構成されている。処理部21としては、CPU、ROM、RAM、入出力インターフェース等で構成されるマイクロコンピュータを用いることができる。この処理部21は、ROMに記憶された制御プログラムに従い、車両運動制御に関する演算を行い、この演算によって算出された制御値を、上述した制御部15に出力する。処理部21には、このような演算を行うために、検出部22を含む各種センサからの検出値が入力されている。
図3は、車輪5に作用する作用力の説明図である。検出部22は、車輪5に作用する作用力を検出する。検出部22が検出し得る作用力は、前後力Fx、横力Fyおよび上下力Fzである。前後力Fxは、車輪5の接地面に発生する摩擦力のうち車輪中心面に平行な方向(x軸)に発生する分力であり、横力Fyは、車輪中心面に直角な方向(y軸)に発生する分力である。一方、上下力Fzは、鉛直方向(z軸)に作用する力、いわゆる、垂直荷重である。本実施形態では、これらの作用力Fx,Fy,Fzのうち、横力Fyが重要となる。検出部22は、図1に示すように、ひずみゲージ22aと、このひずみゲージから出力される電気信号を処理し、作用力に応じた検出信号を生成する信号処理回路(図示せず)とを主体に構成されている。車軸4に生じる応力は作用力に比例するという知得に基づき、ひずみゲージ22aを個々の車軸4に埋設することにより、それぞれの車輪5に関する作用力が直接的に検出される。本実施形態では、信号処理回路において、それぞれの横力Fyを示す検出信号が処理され、車輪合力Rと車輪偶力Mとが検出部22から出力される。車輪合力Rは、それぞれの車輪5に作用する横力Fyの合力であり、個々の車輪5に関する横力Fyの加算値に相当する。車輪偶力Mは、前輪側と後輪側とにそれぞれ作用する横力Fyに応じた偶力であり、前輪側の横力(左右前輪の横力Fyの加算値)と、後輪側の横力(左右後輪の横力Fyの加算値)との差分値に相当する。なお、検出部22の基本的な構成については、例えば、特開平04−331336号公報および特開平10−318862号公報に開示されているので、必要ならば参照されたい。
ヨーレートセンサ23は、車両のヨーレートγを検出し、横加速度センサ24は、車両の横方向(車幅方向)の加速度を横加速度ayとして検出する。また、処理部21には、上述したハンドル角センサ16からの検出値Haと、車速センサ19からの検出値vとがさらに入力されている。
マイクロコンピュータである処理部21を機能的に捉えた場合、この処理部21は、それぞれの検出値を演算パラメータとして用いることにより、所定の制御値、本実施形態では、目標操舵角の補正値(以下「補正操舵角δa」という)δaを決定する。演算パラメータであるこれらの検出値は、ローパスフィルタ(LPF)25によって高周波成分が予め除去されている。補正操舵角δaを決定する場合、処理部21は、それぞれが異なる種別の演算パラメータに対応した複数のゲイン(本実施形態では、ゲインk1〜k4)を設定する。そして、ゲインk1〜k4による重み付け演算、すなわち、ゲインk1〜k4と、演算パラメータとの積和演算により、補正操舵角δaが算出される。
図4は、本実施形態にかかる制御ルーチンを示すフローチャートである。本ルーチンは、所定間隔毎に呼び出され、処理部21によって実行される。まず、ステップ1において、各種の検出値が読み込まれる。このステップ1において読み込まれる値は、車輪合力R、車輪偶力M、ヨーレートγ、横加速度ay、車速vおよびハンドル角Haである。
ステップ2において、ゲインk1〜k4が設定される。本制御の主たる目的は、外乱よる変化を抑制することにある。この外乱は、ドライバーがハンドル操作を積極的に行っていないにも拘わらず、車両の運動状態を変化させる要因となり、車輪合力R、車輪偶力M、ヨーレートγ、横加速度ayにそれぞれ反映される。直進走行時には、これらの検出値を外乱とみなすことができるので、これらの値を演算パラメータとして用い、外乱による変化を抑制する補正操舵角δaを比例制御的に決定する。そこで、このステップ2では、補正操舵角δaを決定する前提として、個々の演算パラメータに対応付けられたゲインk1〜k4を設定する。本実施形態では、これらのゲインk1〜k4が、制御の適応性と必要性といった観点から、ハンドル角Haと車速vとに応じて可変に設定される。
図5は、ゲインの傾向を示す説明図であり、同図(a)は、ハンドル角Haに応じたゲインの傾向を示す。直進走行時の操安性向上といった観点から、ハンドル6が中立位置に存在する場合にのみ本制御が実行されるのであれば、ドライバーがハンドル6をわずかに操作しただけでも、制御の適用範囲外となってしまい、適応性といった点で問題がある。そのため、本実施形態では、ドライバーのハンドル操作量が直進走行とみなせる範囲内である場合、すなわち、中立位置からある程度ハンドル6が操作されている場合であっても、これを直進走行とみなし、本制御を実行する(それ故に、制御の適応性が向上する)。本明細書では、直進走行とみなせるハンドル角Haという用語を、ハンドル6が厳密に中立位置に存在していることのみならず、この中立位置から数度程度の範囲内でハンドル6が操作されている状態をも含む意味で用いる。
ただし、ハンドル6が操作されている状態では、演算パラメータである4つの検出値には、車輪5の操舵に起因した成分が含まれる。そのため、この状態で上述した制御をそのまま実行すると、ドライバーの操作に起因した運動状態の変化を抑制する方向に制御が働いてしまう。そこで、この不都合を解消すべく、ゲインk1は、ハンドル角Haが大きくなる程その値(絶対値)が小さくなるように設定される。例えば、図5(a)に示すように、ゲインk1は、ハンドル角Haが直進走行とみなせる範囲において減少関数となり、それ以上ハンドル角Haが大きくなると、「0」となるといった如くである。なお、同図には、ゲインk1の傾向のみを示したが、他のゲインk2〜k4もこれと同様の傾向を示すため、その説明を省略する(後述する同図(b)についても同様)。
図5(b)は、車速vに応じたゲインの傾向を示す。停止時、或いは低速走行時には、外乱が作用したとしても、これが車両の運動状態に与える影響は小さいので、制御を積極的に行う必要性は殆どない。そこで、ゲインk1は、停止時(v=0)において、最小値(例えば、「0」)に設定され、車速vが大きくなる程その値が増加するように設定される。例えば、同図(b)に示すように、ゲインk1は、増加関数となるといった如くである。
このような傾向を示す各ゲインk1〜k4は、最適な補正操舵角δaが決定されるように、他の演算パラメータとの関係を考慮した上で、ハンドル角Haと車速vとの対応関係が実験やシミュレーションを通じて予め設定されている。これらの関係を記述したマップは、処理部21のROM内に格納されており、各ゲインk1〜k4は、それぞれのマップに基づいて一義的に設定される。
ステップ3では、設定されたゲインk1〜k4に基づいて、補正操舵角δaが決定される(数式1参照)。
(数式1)
δa = R・k1 + M・k2 + γ・k3 + ay・k4
同数式から分かるように、この補正操舵角δaは、各演算パラメータと、これらに対応したゲインk1〜k4との積算値をそれぞれ加算することにより、一義的に算出される(積和演算)。補正操舵角δaは、図6に示すような傾向に従って決定される。例えば、外乱により進行方向右向きの横運動が生じる場合、この補正操舵角δaは、左回りのモーメントによってこの横運動を抑制すべく、車輪5を進行方向に対して左側に操舵するような値に決定される。これ以外の運動状態変化についても、同図に示す対応関係に従って補正操舵角δaが決定される。
ステップ4において、補正操舵角δaに基づいて、車両の運動状態が制御される。具体的には、決定された補正操舵角δaは、制御部15に出力される。制御部15は、処理部21から割り込み的に補正操舵角δaが入力されると、現在の目標操舵角を補正操舵角δaに更新する。車輪5の操舵角が更新された目標操舵角、すなわち、補正操舵角δaに設定されると、外乱による変化を抑制する方向へ運動状態が制御される。
このように本実施形態によれば、それぞれの車輪5に作用する横力Fyを直接検出しているので、外乱による運動状態の変化を迅速かつ精度よく特定することができる。そして、検出された横力Fyに基づいて、車輪5の操舵角を制御することにより、外乱による変化を有効に抑制することができる。横力Fyは、車両が運動をこれから起こそうとする力であり、この運動の結果として遅延を伴って生じるヨーレートγまたは横加速度ayのみを用いて制御を行う場合と比較して、制御の応答性・安定性の向上を図ることができる。また、横力Fyを直接的に検出する手法では、推定等によりこの値を検出する、いわゆる間接的な手法と比較して、横力Fyを精度よく特定することができる。そのため、この検出結果に基づいて制御を行うことにより、より高い精度で車両運動制御を行うことができる。これにより、走安性の向上を図ることができる。
また、本実施形態では、同じような外乱が作用するケースであっても、ハンドル角Haが大きい程、補正操舵角δaの値が小さくなるように、ゲインk1〜k4がハンドル角Haに応じて可変に設定される。換言すれば、補正操舵角δaは、ハンドル角Haの増加に応じて、制御部15による制御が制限されるような値に決定される。これにより、ドライバーがハンドル6を操作している場合でも、制御がドライバーの操作の妨げとなるような事態の発生を抑制することができる。また、車速vが小さい程、補正操舵角δaの値が小さくなるように、ゲインk1〜k4が車速vに応じて可変に設定される。換言すれば、補正操舵角δaは、車速vの減少に応じて、制御部15による制御が制限されるような値に決定される。これにより、低速走行時における不必要な制御を抑制することができる。
なお、本実施形態では、補正操舵角δaを決定する演算パラメータとして、車輪合力R、車輪偶力M、ヨーレートγおよび横加速度ayの4種類を用いた。しかしながら、本発明はこれに限定されず、少なくとも横力Fy、すなわち、車輪合力Rと車輪偶力Mとを用いれば足りる。ただし、ヨーレートγと横加速度ayとを演算パラメータとしてさらに用いた場合には、車両挙動を制御に反映することができので、制御精度の向上を図ることができる。
また、本実施形態では、車速vとハンドル角Haとに基づいて、ゲインk1〜k4を可変に設定し、制御部15による制御を制限している。しかしながら、車両に関する種々の状態(加減速度など)に基づいて、制御部15による制御を制限してもよい。例えば、急激な加速時には、車両にふらつきが生じる場合があるので、これを防止するといった観点から、加速度が大きい程本制御が適用されるべく、加速度の減少に応じて制御を制限するといった如くである。これにより、直進走行時の操安性の一層の向上を図ることができる。なお、これらの種々の変形例については、後述する第2の実施形態においても同様に適用することができる。
(第2の実施形態)
図7は、第2の実施形態にかかる車両運動制御装置20を示すブロック構成図である。本実施形態にかかる車両運動制御装置20が、第1の実施形態のそれと相違する点は、ゲインk1〜k4を設定することなく、一義的に補正操舵角δaを決定する点にある。なお、第2の実施形態において、第1の実施形態で説明した構成要素と同じ要素については、同一の符号を付してその説明を省略する。
第1の実施形態における処理部21は、第2の実施形態において、処理部21’としてつぎのように変更されている。この処理部21’のROMには、4つの演算パラメータと、車速vと、ハンドル角Haと対応付けられた補正操舵角δaの関係を記述したマップが格納されている。すなわち、第1の実施形態では、一旦ゲインk1〜k4を設定した上で補正操舵角δaを設定したが、本実施形態では、これらのゲインk1〜k4を含んだマップが予め構築されている。このようなマップは、実験やシミュレーションを通じて、或いは遺伝的アルゴリズム等の最適化手法によりこれらの対応関係を予め決定しておくことにより作成可能である。このように本実施形態によれば、第1の実施形態と同様の効果を奏するとともに、種々の構成で車両運動制御装置20を実現することができる。
なお、補正操舵角δaを一義的に決定する場合には、マップを用いる手法以外にも、ニューラルネットワークを用いてもよい。ニューラルネットワークに、4つの演算パラメータと、車速vと、ハンドル角Haを入力として与え、補正操舵角δaを出力として得る。ニューラルネットワークによって適切な解(補正操舵角δa)を得るためには、予め学習を行い、ノード間の結合重み係数を適切に設定する必要がある。この学習方法としては、バックプロパゲーションや遺伝的アルゴリズムに代表される各種の最適化手法が挙げられる。
第1または第2の実施形態では、車両の運動状態を制御する手法として、操舵角制御を例示したが、本発明はこれに限定されない。これ以外にも、左右輪のトルク配分制御、四輪操舵角制御、制動力制御などを用いて車両の運動状態を制御してもよい。これらの制御手法であっても、実験やシミュレーションを通じて、外乱による運動状態変化を抑制するような制御量が得られるように、ゲインk1〜k4、マップ、或いは結合重み係数が適切に設定されればよい。このような手法であっても、上述した第1または第2の実施形態と同様の効果を奏する。
図8は、変形例に対応した各種の制御の傾向と、外乱による運動状態変化との対応関係を示す。同図に示す対応関係は、上述した図6の説明と同様に読み進めることができる。なお、第1または第2の実施形態における制御手法を含むこれらの制御は、それぞれを独立して実行する必要はなく、複数の手法を併用してもよい。左右トルク配分制御については、例えば、特開2002−316634号公報に、四輪操舵角制御については、例えば、特開平11−91607号公報または特開2003−261056号公報に開示されているので必要ならば参照されたい。制動力制御については、例えば、特開2001−345131号公報に開示されているので必要ならば参照されたい。
また、各実施形態において、検出部22は、作用力として三方向に作用する力を検出する構成であるが、本発明は、これに限定されるものではなく、必要となる分力方向に作用する作用力を検出可能であれば足りる。また、この三方向回りのモーメントをも含む六分力を検出する六分力計であってもよい。かかる構成であっても、制御において必要となる作用力は少なくも検出することができるので、当然ながら問題はない。なお、車輪5に作用する六分力を検出する手法については、例えば、特開2002−039744号公報、特開2002−022579号公報に開示されているので、必要ならば参照されたい。
さらに、各実施形態では、検出部22を車軸4に埋設するケースを説明したが、本発明はこれに限定されるものではなく、その他のバリエーションも考えられる。作用力を検出するという観点でいえば、例えば、車輪5を保持する部材、例えば、ハブやハブキャリア等に検出部22を設けてもよい。なお、検出部22をハブ等に設ける手法については、特開2003−104139号公報に開示されているので、必要ならば参照されたい。
また、上述した各実施形態では、ドライバーによりハンドル6が操作される場合について説明したが、本発明はこれに限定されない。例えば、先行車に追従、または設定された経路を自動的に走行するような自動操舵機能を備えたシステムにも適用することができる。また、各実施形態では、操舵輪に対する操作量として、ハンドル6の操作量(ハンドル角)Haに基づいた制御例を開示した。しかしながら、これ以外にも、操舵輪に対する操作量としては、自動操舵機能における制御量(目標操舵角)であってもよく、例えば、この目標操舵角から直進走行とみなせる範囲を判断し、更には、この目標操作角に応じて制御部15における制を制限するといった如くである。すなわち、ゲインk1〜k4は、操舵輪に対する操作量に基づいて、それぞれ可変に設定される。
車両運動制御装置が適用された車両の説明図 第1の実施形態にかかる車両運動制御装置を示すブロック構成図 車輪に作用する作用力の説明図 制御ルーチンを示すフローチャート ゲインの傾向を示す説明図 外乱による車両運動変化を抑制するための補正操舵角の傾向を示す説明図 第2の実施形態にかかる車両運動制御装置を示すブロック構成図 外乱による車両運動変化を抑制するための制御量の傾向を示す説明図
符号の説明
1 エンジン
2 自動変速機
3 センタディファレンシャル装置
4 車軸
5 車輪
6 ハンドル
7 ステアリングシャフト
8 第1の動力伝達機構
9 第1の電動モータ
10 タイロッド
11 ラック
12 ピニオンシャフト
13 第2の動力伝達機構
14 第2の電動モータ
15 制御部
16 ハンドル角センサ
17 操舵角センサ
18 路面反力センサ
19 車速センサ
20 車両運動制御装置
21 処理部
22 検出部
23 ヨーレートセンサ
24 横加速度センサ
25 ローパスフィルタ

Claims (8)

  1. 車両運動制御装置において、
    車輪のそれぞれに作用する横力を直接的に検出する第1の検出部と、
    操舵輪に対する操作量を検出する第2の検出部と、
    前記第2の検出部によって検出される前記操作量が直進走行とみなせる範囲内である場合に、前記横力のそれぞれに基づいて、外乱による前記車両の運動状態の変化を抑制する制御量を決定する処理部と、
    前記決定された制御量に基づいて、前記車両の運動状態を制御する制御部と
    を有することを特徴とする車両運動制御装置。
  2. 前記処理部は、前記車輪のそれぞれに作用する前記横力の合力と、前輪側および後輪側にそれぞれ作用する前記横力に応じた偶力とを演算パラメータとして用いて前記制御量を決定することを特徴とする請求項1に記載された車両運動制御装置。
  3. 前記処理部は、それぞれが異なる種別の前記演算パラメータに対応した複数のゲインを用いた重み付け演算により、前記制御量を決定することを特徴とする請求項2に記載された車両運動制御装置。
  4. 前記複数のゲインは、ハンドルの操作量に基づいて、それぞれ可変に設定されることを特徴とする請求項3に記載された車両運動制御装置。
  5. 前記処理部は、前記演算パラメータのそれぞれと、ハンドルの操作量と、前記制御量とが予め対応付けられたマップに基づいて、前記制御量を決定することを特徴とする請求項2に記載された車両運動制御装置。
  6. 前記処理部は、前記演算パラメータのそれぞれとハンドルの操作量との入力から、前記制御量を出力するニューラルネットワークに基づいて、前記制御量を決定することを特徴とする請求項2に記載された車両運動制御装置。
  7. 前記処理部は、前記直進走行時におけるハンドルの操作量を基準値として、当該基準値からのハンドルの操作量の増加に応じて、前記制御部による制御が制限されるように、前記制御量を決定することを特徴とする請求項1から6のいずれかに記載された車両運動制御装置。
  8. 車速を検出する車速センサをさらに有し、
    前記処理部は、前記車速の減少に応じて、前記制御部による制御が制限されるように、前記制御量を決定することを特徴とする請求項1から7のいずれかに記載された車両運動制御装置。
JP2004357949A 2004-12-10 2004-12-10 車両運動制御装置 Withdrawn JP2006160180A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004357949A JP2006160180A (ja) 2004-12-10 2004-12-10 車両運動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004357949A JP2006160180A (ja) 2004-12-10 2004-12-10 車両運動制御装置

Publications (1)

Publication Number Publication Date
JP2006160180A true JP2006160180A (ja) 2006-06-22

Family

ID=36662652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004357949A Withdrawn JP2006160180A (ja) 2004-12-10 2004-12-10 車両運動制御装置

Country Status (1)

Country Link
JP (1) JP2006160180A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044784A1 (ja) 2007-10-04 2009-04-09 Toyota Jidosha Kabushiki Kaisha 車両転舵制御装置
JP2010254184A (ja) * 2009-04-27 2010-11-11 Isuzu Motors Ltd 走行制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009044784A1 (ja) 2007-10-04 2009-04-09 Toyota Jidosha Kabushiki Kaisha 車両転舵制御装置
JP2010254184A (ja) * 2009-04-27 2010-11-11 Isuzu Motors Ltd 走行制御装置

Similar Documents

Publication Publication Date Title
EP1837266B1 (en) Electric power steering device controller
JP5445532B2 (ja) 車両制御装置、車両制御プログラム、および車両制御方法
US9656686B2 (en) Drive supporting device, operation detecting device, and controller
US6886656B2 (en) Electric power steering apparatus
JP4491400B2 (ja) 車両タイヤ状態検出方法および車両タイヤ状態検出装置
US20140229072A1 (en) Methods of controlling four-wheel steered vehicles
US20110259663A1 (en) Steering apparatus for vehicle
JP4281828B2 (ja) 電動パワーステアリング装置
CN103596832B (zh) 电动助力转向设备
JP2003127888A (ja) 物理量推定装置、路面摩擦状態推定装置、操舵角中立点推定装置、及び空気圧低下推定装置
WO2014034597A1 (ja) ステアバイワイヤの操舵反力制御装置
JP2007050743A (ja) 車輪横力推定装置及び操舵反力制御装置
JP2007269251A (ja) 電動パワーステアリング装置
KR101720313B1 (ko) 차량의 전동식 조향장치 및 그 제어 방법
WO2019130599A1 (ja) 制御装置、および、ステアリング装置
JPH0390482A (ja) 後輪操舵制御装置
WO2021111643A1 (ja) 保舵判定装置、ステアリング制御装置、及びステアリング装置
JP2003081119A (ja) 自動車の電動パワーステアリング装置
JP5141311B2 (ja) 車両制御装置
JP6428497B2 (ja) 車両制御装置
JP2010234935A (ja) 車両の後輪トー角制御装置
EP2855239A1 (en) Sensory feedback when driving near a vehicle's handling limits
JP2006160180A (ja) 車両運動制御装置
JP2010162958A (ja) 車両制御装置
JP4492289B2 (ja) パワーステアリング装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304