JP2006159313A - Grinding method - Google Patents

Grinding method Download PDF

Info

Publication number
JP2006159313A
JP2006159313A JP2004350886A JP2004350886A JP2006159313A JP 2006159313 A JP2006159313 A JP 2006159313A JP 2004350886 A JP2004350886 A JP 2004350886A JP 2004350886 A JP2004350886 A JP 2004350886A JP 2006159313 A JP2006159313 A JP 2006159313A
Authority
JP
Japan
Prior art keywords
workpiece
polishing
grinding
abrasive
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004350886A
Other languages
Japanese (ja)
Inventor
Masahiro Ihara
正博 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004350886A priority Critical patent/JP2006159313A/en
Publication of JP2006159313A publication Critical patent/JP2006159313A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grinding method for realizing simple, inexpensive, and highly accurate groove machining or the like of an optical element by executing the groove machining or the like of an optical element by using a conventional grinding device with conventional grinding work. <P>SOLUTION: A different material 2, which is ground with an abrasive 8 at a grinding speed slower than the speed of a workpiece 1, is vapor-deposited on a machining face of the workpiece 1 with a photo-lithography technique. The workpiece 1 is pasted on a grinding plate 4 with an adhesive or the like when executing the grinding. An exclusive jig is mounted on a naval 5 part of the grinding plate 4. The grinding is executed while relatively reciprocating the grinding plate 4 to a grinding surface plate 7, to which a grinding cloth 6 is pasted, and allowing the abrasive 8 to flow. The workpiece 1 is removed by the grinding when the grinding is finished. The different material 2 remains. Eventually, the different material 2 is also removed. Consequently, an objective groove machining shape can be formed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学素子の被加工物に溝加工のための研磨加工を行う。たとえば具体的には光導波路を形成するための研磨加工方法に関する。   The present invention performs polishing for groove processing on a workpiece of an optical element. For example, the present invention specifically relates to a polishing method for forming an optical waveguide.

通常、光学素子に光導波路などの溝加工を施す場合、ダイヤモンドツールを使用した精密機械加工をはじめダイシング加工やエキシマレーザを利用したレーザ加工、あるいは異方性イオンエッチング(RIE)などのドライエッチングを利用した加工等が用いられている(たとえば特許文献1、特許文献2、特許文献3、特許文献4参照)。   Usually, when grooves such as optical waveguides are formed on optical elements, dry machining such as precision machining using diamond tools, laser processing using excimer laser, or anisotropic ion etching (RIE) is performed. Utilized processing or the like is used (for example, see Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4).

その中でもリッジ型の光導波路形成手段に用いられる機械加工では、ダイヤモンドツールを用い、このツールを移動させるか或は光学素子を移動させ、目的とする溝形状を加工する。また、ダイシング加工は、ダイヤモンドが塗布された回転刃により光学素子を移動させることによって溝形状を加工する。レーザ加工は、エキシマレーザなどを使い、レーザアブレレーションを利用し、光学素子或はレーザ位置を移動させることで溝形状を加工する。また、エッチング加工は、光学素子上にフォトリソグラフィ技術を利用してマスクによりパターンを転写し、プラズマやイオンによるドライエッチングによって溝形状加工を行なうものである。
特許第2550606号公報 特開2003−119044号公報 特開2004−109915号公報 特開2004−219494号公報
Among them, in machining used for the ridge type optical waveguide forming means, a diamond tool is used, and this tool is moved or an optical element is moved to process a target groove shape. In the dicing process, the groove shape is processed by moving the optical element with a rotary blade coated with diamond. Laser processing uses an excimer laser or the like, uses laser ablation, and processes the groove shape by moving the optical element or the laser position. In the etching process, a pattern is transferred onto an optical element using a photolithographic technique with a mask, and a groove shape process is performed by dry etching using plasma or ions.
Japanese Patent No. 2550606 JP 2003-119044 A JP 2004-109915 A JP 2004-219494 A

しかしながら、通常光学素子の溝加工は幅と深さは共にμmオーダーの精度が求められる加工である。そのため、溝加工を行なう装置における加工具の作動は、μmオーダー以上の精度で制御することが必要であり、しかも充分な安定性が必要である。エッチング加工の場合は他の加工法と多少異なり、半導体技術を用いるため非常に細かい加工が可能であるが、μmオーダーのエッチングは非常に長時間を要し、かつイオン或はプラズマが光学素子にダメージを与える可能性がある。またダイシング加工やレーザ加工等はいずれの加工法も非常に高価な機械を必要とする。
そこで本発明は上記の事情を鑑み、光学素子の溝加工等を従来の研磨装置を使い、しかも従来の研磨作業により、簡単で安価にしてかつ精度の高い溝加工等を可能とする研磨加工方法を提供するものである。
However, the groove processing of an optical element is a processing that requires accuracy on the order of μm in both width and depth. For this reason, the operation of the processing tool in the apparatus for performing the groove processing needs to be controlled with an accuracy of the order of μm or more, and sufficient stability is required. The etching process is slightly different from other processing methods, and because it uses semiconductor technology, very fine processing is possible. However, etching on the order of μm takes a very long time, and ions or plasma is applied to the optical element. May cause damage. In addition, dicing processing, laser processing, and the like all require very expensive machines.
Therefore, in view of the above circumstances, the present invention uses a conventional polishing apparatus for groove processing of an optical element and the like, and makes it possible to perform simple and inexpensive groove processing with high accuracy by using a conventional polishing operation. Is to provide.

本発明が提供する研磨加工方法は、上記課題を解決するためにつぎの研磨加工方法を提供する。
すなわち、被加工物の加工面上に被加工物より研磨剤による研磨速度の遅い異なる材料を、目的とする加工形状にパターニングする工程と、被加工物の前記パターニングされた加工面に研磨剤を供与しつつ研磨加工する工程とからなり、被加工物とパターニングした材料との研磨速度差を生じさせることによって、被加工物の研磨面上に目的とする加工形状の研磨加工を施すようにしたものである。
研磨剤による研磨速度の差は、その被加工物(光学素子)と研磨剤、パターニングする材料と研磨剤による研磨し易さにより決まり、より具体的には被加工物とパターニングする材料とのそれぞれの硬度の差に起因する。
The polishing method provided by the present invention provides the following polishing method in order to solve the above problems.
That is, a process of patterning different materials having a polishing rate slower than that of the workpiece on the processed surface of the workpiece into a target processing shape, and applying an abrasive to the patterned processed surface of the workpiece The process consists of a process of polishing while supplying, and a polishing process of a desired processing shape is performed on the polishing surface of the work piece by causing a difference in polishing speed between the work piece and the patterned material. Is.
The difference in the polishing rate by the abrasive is determined by the workpiece (optical element) and the abrasive, the material to be patterned and the ease of polishing by the abrasive, and more specifically each of the workpiece and the material to be patterned. Due to the difference in hardness.

パターニングは、フォトリソグラフィ技術を利用することで容易に行なえる。またパターニングする材料は、被加工物と研磨剤により最適な材料を選べばよく、物理蒸着法(PVD)や化学蒸着法(CVD)を用いることができる。
さらに、本発明が提供する研磨加工方法は、研磨剤の溶液による化学反応によって研磨速度の差を生起させるもので、目的とする加工形状にパターニングした材料に比して被加工物の研磨速度を早め化学効果を生じさせる溶液を用いるものである。
化学効果とは、メカニカル・ケミカルポリッシングと呼ばれる研磨剤のエッチング効果や、ケモメカニカルポリッシングと呼ばれる被加工物表面の酸化膜や水和物の生成効果などがあげられる。このいずれの化学効果を活用するかは、被加工物や研磨剤(砥粒)の種類により選択する。
Patterning can be easily performed by using a photolithography technique. As a material for patterning, an optimum material may be selected depending on a workpiece and an abrasive, and physical vapor deposition (PVD) or chemical vapor deposition (CVD) can be used.
Furthermore, the polishing method provided by the present invention causes a difference in the polishing rate due to a chemical reaction by a solution of an abrasive, and the polishing rate of a workpiece is higher than that of a material patterned into a target processing shape. A solution that produces a chemical effect early is used.
Examples of the chemical effect include an etching effect of an abrasive called mechanical chemical polishing, and an effect of generating an oxide film or hydrate on a workpiece surface called chemomechanical polishing. Which chemical effect to use is selected depending on the type of workpiece or abrasive (abrasive grain).

本発明が提供する研磨加工方法は以上詳述したとおりであり、高価な装置を必要とせず、従来より常用されている研磨装置を利用でき、加工作業も簡単でしかも安価に被加工物の研磨面上に目的とする加工形状すなわち溝状の研磨加工を施すことができる。   The polishing method provided by the present invention is as described above in detail, and does not require an expensive apparatus, can use a conventionally used polishing apparatus, and can easily and inexpensively process a workpiece. A desired processing shape, that is, a groove-shaped polishing process can be performed on the surface.

本発明は、材料にはそれぞれ硬さを有すること、そしてその硬さは材質により異なることという2つの物理的特徴を利用し、その研磨中に硬度の違いに起因する研磨速度差を生起させることで、材料間の研磨量の違いを発生させ、最終的に目的とする加工形状を得ることができる。
目的とする加工形状たとえば溝形状は、被加工物の加工面上にフォトリソグラフィ技術を利用し、異なる材料(被加工物より研磨剤による研磨速度の遅い材料)を、目的とする形状にパターニングするが、このパターニングには、物理蒸着あるいは化学蒸着が利用されるのが望ましい。またパターニングする材料は、被加工物の材料の特性(硬度)によって選択すればよく、たとえば、SiO、Ti、Cr、窒化膜や炭化膜などがある。ここで目的とする溝形状を得るために、被加工物の加工面上に目的とする加工形状のパターニングを行なう場合、必ずしも最終形の溝形状とパターニング形状は一致させる必要は無く、研磨終了後に目的とする溝形状ができるようにパターニング形状を決定すればよい。
The present invention uses two physical characteristics that each material has hardness, and that the hardness varies depending on the material, and causes a polishing rate difference due to the difference in hardness during the polishing. Thus, it is possible to generate a difference in the polishing amount between the materials and finally obtain a desired processed shape.
The target processed shape, for example, the groove shape, is patterned on the processed surface of the workpiece by using a photolithography technique to pattern a different material (a material having a lower polishing rate with an abrasive than the workpiece) into the target shape. However, it is desirable to use physical vapor deposition or chemical vapor deposition for this patterning. The material to be patterned may be selected depending on the characteristics (hardness) of the material of the workpiece, and examples thereof include SiO 2 , Ti, Cr, a nitride film, and a carbide film. Here, in order to obtain the target groove shape, when patterning the target processing shape on the processing surface of the workpiece, the final groove shape and the patterning shape do not necessarily have to coincide with each other. What is necessary is just to determine patterning shape so that the target groove shape may be made.

研磨剤は、両材料より硬度が高いことは望まれる。たとえば、ダイヤモンド砥粒などが望ましい。また粒径は、パターン形状や目的する溝形状により選べばよく、粒径の違による段階的な研磨も可能である。
研磨布は、不繊布タイプあるいはスエードタイプのいずれでも良いが、溝形状の研磨加工時にはスエードタイプの方が望ましい。
また、研磨剤に化学効果のある溶液を利用する場合、物理的な硬度差だけでなく、化学的効果が付加され、より選択的に被加工物の研磨ができる。化学効果を得るには、被加工物の材質により異なるが、たとえばニオブ酸リチウム(LiNbO)であれば、研磨液をアルカリ性にすることで化学効果を利用する研磨加工が保障される。
It is desirable that the abrasive has a higher hardness than both materials. For example, diamond abrasive grains are desirable. The particle size may be selected depending on the pattern shape and the desired groove shape, and stepwise polishing due to the difference in particle size is also possible.
The polishing cloth may be either a non-woven cloth type or a suede type, but a suede type is more desirable when polishing the groove shape.
In addition, when a solution having a chemical effect is used as an abrasive, not only a physical hardness difference but also a chemical effect is added, and the workpiece can be polished more selectively. For obtaining a chemical effect, depending on the material of the workpiece, for example, lithium niobate (LiNbO 3 ), the polishing process utilizing the chemical effect is ensured by making the polishing liquid alkaline.

以下、本発明の第1の実施例を図1から図3に基づいて説明する。
まず第一に、図1に示すように被加工物1の加工面に被加工物1より研磨剤による研磨速度の遅い異なる材料(以下単に異材料という)2をフォトリソグラフィ技術にて蒸着し、目的とする加工形状(溝形状)のパターニングを行う。
この加工作業は、まず被加工物1の加工面にレジストを塗布する。そしてこのレジスト塗布面に対して溝形状のスリットを有するマスク(図示せず)を対置し、このマスクを介して光を照射してレジスト塗布面の焼付けと現像を行う。この焼付け、現像により加工形状の凹凸ができる。この凹部は被加工物1の上面であり、凸部は被加工物1の上面に塗布されたレジストである。このようにして形成された凹凸面に対して異材料2である材料、たとえば二酸化ケイ素の材料を蒸着する。すると、凹部ならびに凸部の上面に二酸化ケイ素の材料が成膜される。
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
First, as shown in FIG. 1, a different material (hereinafter simply referred to as a different material) 2 having a lower polishing rate than the workpiece 1 is deposited on the processed surface of the workpiece 1 by a photolithography technique. Patterning the desired processing shape (groove shape).
In this processing operation, first, a resist is applied to the processed surface of the workpiece 1. Then, a mask (not shown) having a groove-shaped slit is placed on the resist-coated surface, and light is irradiated through the mask to burn and develop the resist-coated surface. As a result of this baking and development, irregularities in the processed shape are formed. The concave portion is the upper surface of the workpiece 1, and the convex portion is a resist coated on the upper surface of the workpiece 1. A material which is the different material 2, for example, a silicon dioxide material is deposited on the uneven surface thus formed. Then, a silicon dioxide material is formed on the upper surfaces of the concave portions and the convex portions.

つぎに、成膜され被加工物1全体を溶剤(図示せず)中に浸漬し、レジストを除去する。すると前記凸部はレジストとともに二酸化ケイ素の材料が成膜も除去され、結果的には被加工物1の上面に蒸着された二酸化ケイ素の材料の成膜のみが残存する。このようにして、異材料2によるパターニング作業が終了する。このパターニングによる結果が図1における部分3の拡大図を示す図2に示しているが、被加工物1の加工面上に異材料2のパターン形状が凸状に盛上った状態を示している。なお、この図2において、異材料2の幅がa、異材料2と異材料2の間隔がb、そして異材料2の高さがcで示されている。   Next, the film-formed workpiece 1 is entirely immersed in a solvent (not shown) to remove the resist. Then, the film of the silicon dioxide material is removed from the convex portion together with the resist, and as a result, only the film of the silicon dioxide material deposited on the upper surface of the workpiece 1 remains. In this way, the patterning operation using the different material 2 is completed. The result of this patterning is shown in FIG. 2, which shows an enlarged view of the portion 3 in FIG. 1, and shows a state in which the pattern shape of the different material 2 is raised in a convex shape on the processed surface of the workpiece 1. Yes. In FIG. 2, the width of the different material 2 is indicated by a, the distance between the different material 2 and the different material 2 is indicated by b, and the height of the different material 2 is indicated by c.

つぎに、研磨工程に移るが、この研磨工程では、たとえば、図3に示す研磨装置が利用される。この図では図2に示すパターニングされた異材料2が大きくは示されていない。
以下図3に示す研磨装置による具体的な加工方法、条件や材料などについて説明する。被加工物1は研磨皿4にワックスや接着剤等で貼付けられ、他方研磨皿4には取り付けられたヘソ5の部分に専用の治具たとえばカンザシ(図示せず)が取り付けられる。この専用の治具などは一定の重量を有しており、研磨皿4は被加工物1を研磨定盤7の上面に貼り付けられた研磨布6に対して一定の荷重で押圧するようになっている。研磨布6の布地はポリウレタン等を使用する。
Next, the polishing process is performed. In this polishing process, for example, a polishing apparatus shown in FIG. 3 is used. In this figure, the patterned foreign material 2 shown in FIG. 2 is not shown greatly.
Hereinafter, specific processing methods, conditions, materials, and the like by the polishing apparatus shown in FIG. 3 will be described. The workpiece 1 is affixed to the polishing dish 4 with wax, an adhesive, or the like, and on the other hand, a dedicated jig, for example, a kanzashi (not shown) is attached to the portion of the tread 5 attached to the polishing dish 4. The dedicated jig has a constant weight, and the polishing dish 4 presses the workpiece 1 against the polishing cloth 6 attached to the upper surface of the polishing surface plate 7 with a constant load. It has become. The cloth of the polishing cloth 6 uses polyurethane or the like.

研磨に際して、研磨布6と研磨定盤7との間に研磨剤8を供与具体的には流しながら行う。被加工物1の材料によってはダイヤモンド粒子を混合したダイヤモンド水を採用する。
研磨皿4を研磨定盤7に対して相対的に往復移動させることによって研磨加工が進行する。このようにして、目的とする加工形状を溝としたとき、この溝加工ができるまでを図で示すと、図4から図7に示すとおりである。図4から図7は図2と同様加工面を拡大して示している。
In polishing, the polishing agent 8 is supplied between the polishing cloth 6 and the polishing surface plate 7, specifically, while flowing. Depending on the material of the workpiece 1, diamond water mixed with diamond particles is employed.
The polishing process proceeds by reciprocating the polishing plate 4 relative to the polishing surface plate 7. In this way, when the target processing shape is a groove, the process until the groove processing can be performed is shown in FIGS. 4 to 7. 4 to 7 show the processing surface in an enlarged manner as in FIG.

図4は、研磨皿4に取り付けた研磨前の状態である。図5は、研磨加工当初の状態である。研磨により異材料2の角が取れ始め、異材料2の無い部分の被加工物1が少し研磨される(溝の深さ:d1)。
図6は、研磨加工の終了に近い状態である。異材料2の多くが研磨され、それに伴い異材料2の無い部分も大きく研磨される(溝の深さ:d2)。
図7は、研磨加工終了時の状態である。被加工物1は研磨により除去され、さらに異材料2が除去された状態で、溝1Mができる。溝1Mの幅をe、溝の間隔をf、溝の深さをd3で示す。なお、d1とd2およびd3との間には次の関係が成立する。
d1<d2<d3
FIG. 4 shows a state before polishing attached to the polishing dish 4. FIG. 5 shows the initial state of polishing. The corners of the different material 2 begin to be removed by polishing, and the workpiece 1 in a portion without the different material 2 is slightly polished (groove depth: d1).
FIG. 6 shows a state close to the end of the polishing process. Most of the different material 2 is polished, and accordingly, the portion without the different material 2 is also greatly polished (groove depth: d2).
FIG. 7 shows a state at the end of the polishing process. The workpiece 1 is removed by polishing, and the groove 1M is formed with the foreign material 2 removed. The width of the groove 1M is indicated by e, the groove interval is indicated by f, and the groove depth is indicated by d3. The following relationship is established between d1, d2 and d3.
d1 <d2 <d3

この最終の溝の幅e、溝の間隔f、溝の深さd3は、研磨剤、研磨時間や研磨布によって異なるが、同一条件ではほぼ初期の異材料2の幅a、間隔b、高さcの値により決定される。そのため、目的とする加工形状により幅a、間隔b、高さc値を決定することが必要である。このようにして目的とする溝(形状)の研磨加工が完了する。
この実施例で示した被加工物1の材料としては、たとえばニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)、シリコン(Si)、ガラスなどがあり、他方蒸着物としては、金属膜(Ti、Crなど)や窒化膜(TiNなど)、炭化膜(TiCなど)などが挙げられる。
The final groove width e, groove interval f, and groove depth d3 vary depending on the abrasive, polishing time, and polishing cloth, but under the same conditions, the width a, interval b, and height of the dissimilar material 2 at the initial stage are almost the same. determined by the value of c. Therefore, it is necessary to determine the width a, the interval b, and the height c value according to the intended processing shape. In this way, the target groove (shape) polishing process is completed.
Examples of the material of the workpiece 1 shown in this embodiment include lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), silicon (Si), glass, and the like. (Ti, Cr, etc.), nitride films (TiN, etc.), carbide films (TiC, etc.), and the like.

つぎに本発明の第2の実施例について説明する。
第2の実施例における研磨加工装置の構成、作動は第1の実施例と全く同じで、研磨剤に被加工物1に対し化学効果のある材料を用いたものである。この研磨剤とは具体的にはPH値が9〜11のアルカリ水とコロイダルシリカの粒剤を重量比60%:40%で混合したアルカリ水を利用する。粒子径はナノオーダーである。物理的な硬度差による研磨だけではなく、化学効果により選択的に被加工物の研磨が行なわれ、より効率的に溝加工が可能となる。
Next, a second embodiment of the present invention will be described.
The configuration and operation of the polishing apparatus in the second embodiment are exactly the same as those in the first embodiment, and a material having a chemical effect on the workpiece 1 is used as the abrasive. Specifically, the polishing agent uses alkaline water in which alkaline water having a PH value of 9 to 11 and colloidal silica granules are mixed at a weight ratio of 60%: 40%. The particle size is on the nano order. In addition to polishing due to a physical hardness difference, the workpiece is selectively polished by a chemical effect, and groove processing can be performed more efficiently.

この化学効果の材料すなわち溶液としては、被加工物1の材料により異なるが、たとえば被加工物1の材料が前述のニオブ酸リチウム(LiNbO)やタンタル酸リチウム(LiTaO)などの場合、研磨剤としては、前期した例と同様アルカリ水溶液が有益である。 The material of the chemical effect, that is, the solution differs depending on the material of the workpiece 1. For example, when the material of the workpiece 1 is the above-described lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), or the like, polishing is performed. As the agent, an alkaline aqueous solution is beneficial as in the previous example.

本発明の特徴は以上詳述したとおりであるが、上記ならびに図示例に限定されるものではなく、種々の変形例を包含する。まず被加工物であるが、加工目的、製品として光学素子特に光導波路について説明したが、その他の加工目的における加工にも適用できる。材料もニオブ酸リチウム(LiNbO)やタンタル酸リチウム(LiTaO)に限定されない。加工も溝加工のみならず模様加工にも適用可能である。化学効果を活用する溶液もアルカリ水溶液には限定されない。研磨加工装置についても図示例に限定されず、研磨剤の供与も流し供給でなく一定の圧を付与しながら供与する方式とすることもできる。本発明はこれらすべての変形実施例を包含する。 The features of the present invention are as described in detail above, but the present invention is not limited to the above and illustrated examples, and includes various modifications. First, regarding the workpiece, the optical element, particularly the optical waveguide, has been described as the processing object and product, but it can also be applied to processing for other processing purposes. The material is not limited to lithium niobate (LiNbO 3 ) or lithium tantalate (LiTaO 3 ). The processing can be applied not only to groove processing but also to pattern processing. The solution utilizing the chemical effect is not limited to the alkaline aqueous solution. The polishing apparatus is not limited to the example shown in the figure, and it is possible to use a method of supplying an abrasive while applying a constant pressure instead of supplying the abrasive. The present invention includes all these modified embodiments.

研磨剤による研磨速度の遅い異なる材料をパターニングした被加工物を示す図である。It is a figure which shows the to-be-processed object which patterned different materials with the slow polishing speed by an abrasive | polishing agent. 被加工物の部分を拡大して示す図である。It is a figure which expands and shows the part of a to-be-processed object. 研磨加工装置の構成を示す図である。It is a figure which shows the structure of a grinding | polishing processing apparatus. 研磨加工における溝加工前を示す図である。It is a figure which shows before the groove process in grinding | polishing. 被加工における加工当初の状態を示す図である。It is a figure which shows the state of the process initial stage in a to-be-processed. 研磨加工の終了に近い状態を示す図である。It is a figure which shows the state near completion | finish of grinding | polishing process. 研磨加工の終了時の状態を示す図である。It is a figure which shows the state at the time of completion | finish of grinding | polishing process.

符号の説明Explanation of symbols

1 被加工物
1M 溝
2 異材料
3 部分
4 研磨皿
5 ヘソ
6 研磨布
7 研磨定盤
8 研磨剤
a 幅
b 間隔
c 高さ
d1、d2、d3 溝の深さ
e 溝の幅
f 溝の間隔
DESCRIPTION OF SYMBOLS 1 Workpiece 1M Groove 2 Dissimilar material 3 Portion 4 Polishing dish 5 Navel 6 Polishing cloth 7 Polishing surface plate 8 Polishing agent a Width b Interval c Height d1, d2, d3 Groove depth e Groove width f Groove interval

Claims (4)

被加工物の加工面上に被加工物より研磨剤による研磨速度の遅い異なる材料を、目的とする加工形状にパターニングする工程と、被加工物の前記パターニングされた加工面に研磨剤を供与しつつ研磨加工する工程とからなり、被加工物とパターニングした材料との研磨速度差を生じさせることによって、被加工物の研磨面上に目的とする加工形状の研磨加工を施すようにしたことを特徴とする研磨加工方法。   A process of patterning different materials having a polishing rate slower than that of the workpiece on the processed surface of the workpiece into a target processing shape, and supplying an abrasive to the patterned processed surface of the workpiece The polishing process of the desired shape of processing on the polishing surface of the workpiece by causing a difference in the polishing rate between the workpiece and the patterned material. A characteristic polishing method. 研磨剤の溶液は、被加工物がパターニングされた材料に比して化学反応を受けて早く研磨される化学効果を及ぼす溶液であることを特徴とする請求項1記載の研磨加工方法。   2. The polishing method according to claim 1, wherein the abrasive solution is a solution that exerts a chemical effect such that the workpiece is subjected to a chemical reaction and is quickly polished as compared with a patterned material. 被加工物が光学素子であることを特徴とする請求項1または請求項2記載の研磨加工方法。   The polishing method according to claim 1 or 2, wherein the workpiece is an optical element. 被加工物が光導波路であることを特徴とする請求項3記載の研磨加工方法。   4. The polishing method according to claim 3, wherein the workpiece is an optical waveguide.
JP2004350886A 2004-12-03 2004-12-03 Grinding method Withdrawn JP2006159313A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004350886A JP2006159313A (en) 2004-12-03 2004-12-03 Grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004350886A JP2006159313A (en) 2004-12-03 2004-12-03 Grinding method

Publications (1)

Publication Number Publication Date
JP2006159313A true JP2006159313A (en) 2006-06-22

Family

ID=36661872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004350886A Withdrawn JP2006159313A (en) 2004-12-03 2004-12-03 Grinding method

Country Status (1)

Country Link
JP (1) JP2006159313A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513921A (en) * 2011-12-13 2012-06-27 长春航空液压控制有限公司 Grinder and finish machining method for arc surface of tungsten carbide after flame spraying
CN103769996A (en) * 2012-10-25 2014-05-07 三芳化学工业股份有限公司 Adsorption cushion, grinding device and manufacture method of the adsorption cushion
CN105710750A (en) * 2016-04-12 2016-06-29 温州市开诚机械有限公司 Machining and polishing cutter for radial sealing slot of flange in valve

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102513921A (en) * 2011-12-13 2012-06-27 长春航空液压控制有限公司 Grinder and finish machining method for arc surface of tungsten carbide after flame spraying
CN103769996A (en) * 2012-10-25 2014-05-07 三芳化学工业股份有限公司 Adsorption cushion, grinding device and manufacture method of the adsorption cushion
CN103769996B (en) * 2012-10-25 2017-03-01 三芳化学工业股份有限公司 The manufacture method of adsorption gasket, lapping device and adsorption gasket
CN105710750A (en) * 2016-04-12 2016-06-29 温州市开诚机械有限公司 Machining and polishing cutter for radial sealing slot of flange in valve

Similar Documents

Publication Publication Date Title
KR102047598B1 (en) Method for manufacturing electronic grade synthetic quartz glass substrate
JP6398902B2 (en) Rectangular substrate for imprint lithography and method for manufacturing the same
TWI353006B (en) Method for manufacturing epitaxial wafer
CN110208906A (en) A kind of preparation method of the film micro optical structure based on reactive ion etching
TWI618616B (en) Rectangular mold-forming substrate
JP2008073902A (en) Mold and method for producing mold
CN109149047A (en) A kind of preparation method of the ultra-fine rib waveguide of on piece low-loss
JP2006159313A (en) Grinding method
JPH1010348A (en) Production of optical waveguide device
JP4125894B2 (en) Polishing apparatus and method
JP6874736B2 (en) Manufacturing method of substrate for imprint mold
JP2005059176A (en) Truing dressing method and its device
JP2003266397A (en) Processing method of precision-cutting of thin film material
KR101211140B1 (en) Method for producing mirror-like finishing cutting tip and mirror-like finishing grinding apparatus comprising the cutting tip
US20220088832A1 (en) Manufacturing of imprint mold-forming substrate
JP2000271862A (en) Wafer holding plate for wafer polishing device and manufacture thereof
JP6973280B2 (en) Synthetic quartz glass substrate for imprint mold
JP2000042902A (en) Polishing tool, and polishing work method using the tool
JPH08132340A (en) Grinding and polishing of lens
CN100587916C (en) Methods of fabricating complex blade geometries from silicon wafers and strengthening blade geometries
JP2000061819A (en) Polishing process
JP3911106B2 (en) Processing method, processing apparatus, tool and mold
JPH11170168A (en) Highly precise smooth surface working method
JPH04373128A (en) Polishing method of substrate
JP2000000760A (en) Method for truing cylinder grinding wheel, and method for grinding semiconductor wafer by means of cylinder grinding wheel formed in the truing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090825