JP2006159277A - Ultrasonic welding method, ultrasonic welding equipment, and conductor unit - Google Patents

Ultrasonic welding method, ultrasonic welding equipment, and conductor unit Download PDF

Info

Publication number
JP2006159277A
JP2006159277A JP2004358464A JP2004358464A JP2006159277A JP 2006159277 A JP2006159277 A JP 2006159277A JP 2004358464 A JP2004358464 A JP 2004358464A JP 2004358464 A JP2004358464 A JP 2004358464A JP 2006159277 A JP2006159277 A JP 2006159277A
Authority
JP
Japan
Prior art keywords
metal
plating layer
ultrasonic welding
core wire
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004358464A
Other languages
Japanese (ja)
Other versions
JP4541121B2 (en
Inventor
Kazuhiro Murakami
和宏 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2004358464A priority Critical patent/JP4541121B2/en
Publication of JP2006159277A publication Critical patent/JP2006159277A/en
Application granted granted Critical
Publication of JP4541121B2 publication Critical patent/JP4541121B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic welding method, an ultrasonic welding equipment, and a conductor unit capable of preventing short circuit with other electric components, and constituting first and second metals from a material weak against the heat. <P>SOLUTION: The ultrasonic welding equipment 10 has an ultrasonic welding machine 11 and a cooling mechanism 12. The ultrasonic welding machine 11 has a chip 14 and an anvil 15 to hold a metal piece 2 and a core wire 7 with a plated layer 6 formed therebetween. The cooling mechanism 12 cools the metal piece 2 and the core wire 7 held between the chip 14 and the anvil 15. In the ultrasonic welding equipment 10, the core wire 7 overlaps the plated layer 6, the metal piece 2 and the core wire 7 are held between the chip 14 and the anvil 15, and cooled by the cooling mechanism 12 while the ultrasonic welding machine 11 gives ultrasonic vibration of the intensity at which the plated layer 6 is melted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、錫または錫合金などからなるめっき層を備えた金属と、他の金属とを接合する超音波溶接方法、超音波溶接装置及び錫または錫合金などからなるめっき層を備えた金属と他の金属とを備えた導体ユニットに関する。   The present invention relates to a metal having a plating layer made of tin or a tin alloy, an ultrasonic welding method for joining another metal, an ultrasonic welding apparatus, a metal having a plating layer made of tin or a tin alloy, and the like. The present invention relates to a conductor unit including other metals.

例えば、自動車などに配索されるワイヤハーネスは、電線と該電線の端部に取り付けられる第1金属としての端子金具と、を備えている。前記電線は、銅などの金属からなる第2金属としての芯線と、該芯線を被覆する絶縁性の被覆部と、を備えている。端子金具は、導電性の金属からなる母材の表面に、錫などからなるめっき層が形成されている。   For example, a wire harness routed in an automobile or the like includes an electric wire and a terminal fitting as a first metal attached to an end portion of the electric wire. The said electric wire is provided with the core wire as a 2nd metal which consists of metals, such as copper, and the insulating coating | coated part which coat | covers this core wire. In the terminal fitting, a plating layer made of tin or the like is formed on the surface of a base material made of a conductive metal.

従来から、前記端子金具と前記電線とを電気的及び機械的に接続する際には、端子金具の一部分を前記電線にかしめてきた。このため、例えば、自動車などに前記ワイヤハーネスが配索された際に、該自動車の走行中の振動などによって、前記端子金具と電線との電気的な接続が、断線する恐れが生じる。   Conventionally, when the terminal fitting and the electric wire are electrically and mechanically connected, a part of the terminal fitting is caulked to the electric wire. For this reason, for example, when the wire harness is routed in an automobile or the like, there is a risk that the electrical connection between the terminal fitting and the electric wire is broken due to vibration or the like while the automobile is running.

このため、前記端子金具と前記電線の芯線とを加熱して、これらを所謂超音波溶接で互いに接合して、前記端子金具と電線とを確実に電気的に接続することが提案されている。(例えば、特許文献1参照。)。
特開平9−168876号公報
For this reason, it has been proposed to heat the terminal metal fitting and the core wire of the electric wire and to join them together by so-called ultrasonic welding to reliably connect the terminal metal fitting and the electric wire. (For example, refer to Patent Document 1).
JP-A-9-168876

しかしながら、前述した特許文献1に示された超音波溶接方法は、錫又は錫合金を含んだめっき層を一旦溶融して、溶融しためっき層を母材と芯線との間から除去して、これらの母材と芯線とを所謂超音波溶接する。このため、特許文献1に示された方法では、溶融しためっき層が、母材の表面に沿って該母材の外側に拡がることがあった。このように、溶融しためっき層があたかもバリのように、母材の外側に拡がって、他の端子金具などの電気部品などと接触する虞があった。このように、前述した特許文献1に示された超音波溶接方法を用いると、電気部品同士が短絡する虞がった。   However, in the ultrasonic welding method disclosed in Patent Document 1 described above, the plating layer containing tin or tin alloy is once melted, and the molten plating layer is removed from between the base material and the core wire. The base material and the core wire are so-called ultrasonic welded. For this reason, in the method shown in Patent Document 1, the molten plating layer sometimes spreads outside the base material along the surface of the base material. As described above, there is a possibility that the molten plating layer spreads outside the base material as if it is a burr and comes into contact with other electrical parts such as other terminal fittings. As described above, when the ultrasonic welding method disclosed in Patent Document 1 described above is used, there is a fear that electrical components are short-circuited.

また、前述した特許文献1に示された超音波溶接方法は、端子金具や電線の芯線を加熱しながら超音波溶接するので、端子金具の母材や電線の芯線を熱に弱い材質から形成することができなかった。   In addition, since the ultrasonic welding method disclosed in Patent Document 1 described above performs ultrasonic welding while heating the terminal fitting and the core wire of the electric wire, the base metal of the terminal fitting and the core wire of the electric wire are formed from a material that is weak against heat. I couldn't.

したがって、本発明の目的は、他の電気部品などと短絡することを防止できかつ熱に弱い材質から第1及び第2金属を構成することができる超音波溶接方法、超音波溶接装置及び導体ユニットを提供することにある。   Accordingly, an object of the present invention is to provide an ultrasonic welding method, an ultrasonic welding apparatus, and a conductor unit that can prevent a short circuit with other electrical components and the like and can constitute the first and second metals from a heat-sensitive material. Is to provide.

前記課題を解決し目的を達成するために、請求項1に記載の本発明の超音波溶接方法は、母材の表面にめっき層が形成された第1金属と、該第1金属とは別体の第2金属と、を接合する超音波溶接方法において、前記第1金属のめっき層に前記第2金属を重ねて、第1金属と第2金属とを互いに近づける方向に加圧して前記めっき層が溶融する超音波振動を付与して、前記母材、めっき層及び第2金属を冷却しながら、前記第2金属と前記めっき層とを接合することを特徴としている。   In order to solve the problems and achieve the object, the ultrasonic welding method of the present invention according to claim 1 is different from the first metal in which a plating layer is formed on the surface of a base material and the first metal. In the ultrasonic welding method for joining the second metal of the body, the plating is performed by pressing the first metal and the second metal close to each other, overlapping the second metal on the plating layer of the first metal. The second metal and the plating layer are joined while cooling the base material, the plating layer, and the second metal by applying ultrasonic vibration that melts the layer.

請求項2に記載の本発明の超音波溶接方法は、請求項1に記載の超音波溶接方法において、前記めっき層は、錫又は錫合金を含み、前記第2金属は、アルミニウム又はアルミニウム合金を含んでいることを特徴としている。   The ultrasonic welding method according to a second aspect of the present invention is the ultrasonic welding method according to the first aspect, wherein the plating layer includes tin or a tin alloy, and the second metal includes aluminum or an aluminum alloy. It is characterized by including.

請求項3に記載の本発明の超音波溶接装置は、母材の表面にめっき層が形成された第1金属と、該第1金属とは別体の第2金属と、を接合する超音波溶接装置において、前記第1金属のめっき層に前記第2金属を重ねて、第1金属と第2金属とを互いに近づける方向に加圧して、前記めっき層が溶融する超音波振動を付与する超音波振動付与手段と、前記母材、めっき層及び第2金属を冷却する冷却機構と、を備え、前記超音波振動付与手段が第1金属と第2金属とを互いに近づける方向に加圧して超音波振動を付与して、前記冷却機構が母材、めっき層及び第2金属を冷却しながら、前記第2金属と前記めっき層とを接合することを特徴としている。   According to a third aspect of the present invention, there is provided an ultrasonic welding apparatus for joining a first metal having a plating layer formed on a surface of a base material and a second metal separate from the first metal. In the welding apparatus, the second metal is superposed on the plating layer of the first metal, and the first metal and the second metal are pressed in a direction approaching each other, and an ultrasonic vibration that melts the plating layer is applied. An ultrasonic vibration applying means, and a cooling mechanism for cooling the base material, the plating layer, and the second metal, and the ultrasonic vibration applying means pressurizes the first metal and the second metal in a direction to bring them close to each other. It is characterized in that the cooling mechanism joins the second metal and the plating layer while applying sound wave vibration and cooling the base material, the plating layer and the second metal.

請求項4に記載の本発明の導体ユニットは、母材の表面にめっき層が形成された第1金属と、該第1金属とは別体の第2金属と、を備え、前記めっき層と前記第2金属とが接合された導体ユニットにおいて、前記第1金属のめっき層に前記第2金属を重ねて、第1金属と第2金属とを互いに近づける方向に加圧して前記めっき層が溶融する超音波振動を付与されて、前記母材、めっき層及び第2金属を冷却しながら、前記第2金属と前記めっき層とが接合されたことを特徴としている。   The conductor unit of the present invention according to claim 4 includes a first metal having a plating layer formed on a surface of a base material, and a second metal separate from the first metal, and the plating layer; In the conductor unit in which the second metal is joined, the second metal is superimposed on the plating layer of the first metal, and the plating is melted by pressing the first metal and the second metal toward each other. The second metal and the plating layer are bonded to each other while cooling the base material, the plating layer, and the second metal.

請求項1に記載した本発明の超音波溶接方法によれば、冷却しながらめっき層が溶融する超音波振動を付与するので、超音波振動を付与している間則ち超音波溶接中にめっき層が溶融することを規制できるとともに、溶融しためっき層が直ちに固まる。   According to the ultrasonic welding method of the present invention described in claim 1, since the ultrasonic vibration that melts the plating layer while cooling is applied, the plating is performed during the ultrasonic welding while applying the ultrasonic vibration. It is possible to regulate the melting of the layer, and the molten plating layer is immediately solidified.

請求項2に記載した本発明の超音波溶接方法によれば、めっき層が錫又は錫合金を含み、第2金属がアルミニウム又はアルミニウム合金を含んでいるので、めっき層と第2金属との接合箇所で金属間化合物を形成することがない。その上、前述した接合箇所に超音波振動が付与された時の塑性流動などにより、前述した錫又は錫合金及びアルミニウム又はアルミニウム合金を含んだ合金が形成される。   According to the ultrasonic welding method of the present invention described in claim 2, since the plating layer includes tin or a tin alloy and the second metal includes aluminum or an aluminum alloy, the bonding between the plating layer and the second metal is performed. An intermetallic compound is not formed at a location. In addition, the aforementioned tin or tin alloy and the alloy containing aluminum or aluminum alloy are formed by plastic flow when ultrasonic vibration is applied to the above-described joint.

請求項3に記載した本発明の超音波溶接装置によれば、冷却機構が冷却しながら、超音波振動付与手段は、めっき層が溶融する超音波振動を付与する。このため、超音波振動を付与している間則ち超音波溶接中にめっき層が溶融することを規制できるとともに、溶融しためっき層が直ちに固まる。   According to the ultrasonic welding apparatus of the present invention as set forth in claim 3, the ultrasonic vibration applying means applies ultrasonic vibration that melts the plating layer while the cooling mechanism cools. For this reason, while the ultrasonic vibration is applied, that is, it is possible to regulate the melting of the plating layer during ultrasonic welding, and the molten plating layer is immediately solidified.

請求項4に記載した本発明の導体ユニットによれば、冷却されながら、めっき層が溶融する超音波振動が付与されて、めっき層と第2金属とが接合されている。このため、超音波振動を付与している間則ち超音波溶接中にめっき層が溶融することを規制されるとともに、溶融しためっき層が直ちに固まる。   According to the conductor unit of the present invention described in claim 4, while being cooled, ultrasonic vibration that melts the plating layer is applied, and the plating layer and the second metal are joined. For this reason, while the ultrasonic vibration is applied, that is, the plating layer is restricted from melting during ultrasonic welding, and the molten plating layer is immediately solidified.

以上説明したように、請求項1に記載の本発明は、超音波振動を付与している間則ち超音波溶接中にめっき層が溶融することを規制できるとともに、溶融しためっき層を直ちに固めることができる。このため、めっき層が母材の外側に拡がることを防止できる。したがって、第2金属と接合されためっき層が他の電気部品と接触して、該他の電気部品と短絡することを防止できる。   As described above, the present invention described in claim 1 can regulate the melting of the plating layer during ultrasonic welding while applying ultrasonic vibration, and immediately solidifies the molten plating layer. be able to. For this reason, it can prevent that a plating layer spreads on the outer side of a base material. Therefore, it can prevent that the plating layer joined with the 2nd metal contacts other electrical components, and is short-circuited with the other electrical components.

また、めっき層が溶融する強さの超音波振動を付与するので、接合箇所で塑性流動が生じめっき層と第2金属とが金属間化合物を形成することなく混ざり合う。このため、めっき層と第2金属との接合強度を強くすることができる。   Moreover, since the ultrasonic vibration of the intensity | strength which a plating layer fuse | melts is provided, a plastic flow arises in a joining location and a plating layer and a 2nd metal mix without forming an intermetallic compound. For this reason, the joint strength between the plating layer and the second metal can be increased.

さらに、冷却しながら超音波溶接を行うので、めっき層などの温度が過度に上昇することを防止できる。したがって、めっき層、母材及び第2金属を耐熱性の低い金属から構成することができる。   Furthermore, since ultrasonic welding is performed while cooling, it is possible to prevent the temperature of the plating layer and the like from rising excessively. Therefore, a plating layer, a base material, and a 2nd metal can be comprised from a metal with low heat resistance.

請求項2に記載の本発明は、めっき層と第2金属との接合箇所で金属間化合物を形成することなく、接合箇所で塑性流動などにより錫又は錫合金及びアルミニウム又はアルミニウム合金を含んだ合金が形成される。したがって、めっき層と第2金属との接合強度を強くすることができる。   The present invention according to claim 2 is an alloy containing tin or a tin alloy and aluminum or an aluminum alloy by plastic flow or the like at the joining location without forming an intermetallic compound at the joining location between the plating layer and the second metal. Is formed. Therefore, the bonding strength between the plating layer and the second metal can be increased.

請求項3に記載の本発明は、超音波振動を付与している間則ち超音波溶接中にめっき層が溶融することを規制できるとともに、溶融しためっき層を直ちに固めることができる。このため、めっき層が母材の外側に拡がることを防止できる。したがって、第2金属と接合されためっき層が他の電気部品と接触して、該他の電気部品と短絡することを防止できる。   According to the third aspect of the present invention, while the ultrasonic vibration is applied, it is possible to regulate the melting of the plating layer during ultrasonic welding, and it is possible to immediately solidify the molten plating layer. For this reason, it can prevent that a plating layer spreads on the outer side of a base material. Therefore, it can prevent that the plating layer joined with the 2nd metal contacts other electrical components, and is short-circuited with the other electrical components.

また、めっき層が溶融する強さの超音波振動を付与するので、接合箇所で塑性流動が生じめっき層と第2金属とが金属間化合物を形成することなく混ざり合う。このため、めっき層と第2金属との接合強度を強くすることができる。   Moreover, since the ultrasonic vibration of the intensity | strength which a plating layer fuse | melts is provided, a plastic flow arises in a joining location and a plating layer and a 2nd metal mix without forming an intermetallic compound. For this reason, the joint strength between the plating layer and the second metal can be increased.

さらに、冷却しながら超音波溶接を行うので、めっき層などの温度が過度に上昇することを防止できる。したがって、めっき層、母材及び第2金属を耐熱性の低い金属から構成することができる。   Furthermore, since ultrasonic welding is performed while cooling, it is possible to prevent the temperature of the plating layer and the like from rising excessively. Therefore, a plating layer, a base material, and a 2nd metal can be comprised from a metal with low heat resistance.

請求項4に記載の本発明は、超音波振動を付与している間則ち超音波溶接中にめっき層が溶融することが規制されているとともに、溶融しためっき層が直ちに固められている。このため、めっき層が母材の外側に拡がることを防止できる。したがって、第2金属と接合されためっき層が他の電気部品と接触して、該他の電気部品と短絡することを防止できる。   In the present invention described in claim 4, while the ultrasonic vibration is applied, that is, the plating layer is restricted from melting during ultrasonic welding, and the molten plating layer is immediately hardened. For this reason, it can prevent that a plating layer spreads on the outer side of a base material. Therefore, it can prevent that the plating layer joined with the 2nd metal contacts other electrical components, and is short-circuited with the other electrical components.

また、めっき層が溶融する強さの超音波振動が付与されるので、接合箇所で塑性流動が生じめっき層と第2金属とが金属間化合物を形成することなく混ざり合う。このため、めっき層と第2金属との接合強度を強くすることができる。   In addition, since ultrasonic vibration having such a strength that the plating layer is melted is applied, plastic flow occurs at the joining portion, and the plating layer and the second metal are mixed without forming an intermetallic compound. For this reason, the joint strength between the plating layer and the second metal can be increased.

さらに、冷却しながら超音波溶接が行われるので、めっき層などの温度が過度に上昇することを防止できる。したがって、めっき層、母材及び第2金属を耐熱性の低い金属から構成することができる。   Furthermore, since ultrasonic welding is performed while cooling, it is possible to prevent the temperature of the plating layer and the like from rising excessively. Therefore, a plating layer, a base material, and a 2nd metal can be comprised from a metal with low heat resistance.

以下、本発明の一実施形態を、図1ないし図8を参照して説明する。第1の実施形態には、図1に示す導体モジュール1を組み立てる。導体モジュール1は、図1に示すように、第1金属としての金属片2と、被覆電線3とを備えている。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. In the first embodiment, the conductor module 1 shown in FIG. 1 is assembled. As shown in FIG. 1, the conductor module 1 includes a metal piece 2 as a first metal and a covered electric wire 3.

金属片2は、板状の母材5と、該母材5の一方または両方の表面に形成されためっき層6と、を備えて、比較的薄い薄板状に形成されている。母材5は、導電性を有する金属からなる。図示例では、母材5は黄銅からなる。めっき層6は、錫または錫合金からなる(を含んでいる)。図示例では、めっき層6は、錫からなる(を含んでいる)。   The metal piece 2 includes a plate-like base material 5 and a plating layer 6 formed on one or both surfaces of the base material 5 and is formed in a relatively thin thin plate shape. The base material 5 is made of a conductive metal. In the illustrated example, the base material 5 is made of brass. The plating layer 6 is made of (or contains) tin or a tin alloy. In the illustrated example, the plating layer 6 is made of (includes) tin.

被覆電線3は、断面形状が丸形に形成されている。被覆電線3は、断面丸形の第2金属としての芯線7と、この芯線7を被覆する被覆部8と、を備えている。芯線7は、前記金属片2とは勿論別体である。芯線7は、導電性を有する金属からなる(を含んている)。芯線7は、一本の導電性の素線または、複数の導電性の素線が撚られて構成されている。   The covered electric wire 3 has a round cross section. The covered electric wire 3 includes a core wire 7 as a second metal having a round cross section and a covering portion 8 that covers the core wire 7. The core wire 7 is of course separate from the metal piece 2. The core wire 7 is made of (including) a conductive metal. The core wire 7 is formed by twisting one conductive strand or a plurality of conductive strands.

芯線7は、可撓性を有している。素線則ち芯線7は、アルミニウム又はアルミニウム合金からなる(を含んでいる)。図示例では、芯線7を構成する素線は、アルミニウム合金からなる(を含んでいる)。被覆部8は、絶縁性と可撓性とを有する合成樹脂からなる。   The core wire 7 has flexibility. The wire rule, ie, the core wire 7 is made of (or contains) aluminum or an aluminum alloy. In the example of illustration, the strand which comprises the core wire 7 consists of (includes) an aluminum alloy. The covering portion 8 is made of a synthetic resin having insulating properties and flexibility.

前記導体モジュール1は、金属片2のめっき層6に芯線7が重なった状態で、金属片2のめっき層6と芯線7とが互いに接合している。このとき、めっき層6と芯線7との接合箇所Sでは、図2に示すように、めっき層6を構成する錫と芯線7を構成するアルミニウム合金とを含んだ合金Gが形成されている。また、接合箇所Sには、めっき層6を構成する錫と芯線7を構成するアルミニウム合金との金属間化合物が形成されていない。前述した接合箇所Sは、冷却されながら、めっき層6が溶融する強さの超音波振動が後述するチップ14などを介して芯線7、めっき層6及び母材5に付与されて、形成されている。   In the conductor module 1, the plating layer 6 of the metal piece 2 and the core wire 7 are joined to each other with the core wire 7 overlapping the plating layer 6 of the metal piece 2. At this time, in the joint portion S between the plating layer 6 and the core wire 7, an alloy G containing tin that constitutes the plating layer 6 and an aluminum alloy that constitutes the core wire 7 is formed as shown in FIG. 2. In addition, an intermetallic compound of tin that constitutes the plating layer 6 and an aluminum alloy that constitutes the core wire 7 is not formed in the joint portion S. The joint S described above is formed by applying ultrasonic vibration with a strength that the plating layer 6 melts to the core wire 7, the plating layer 6, and the base material 5 through the chip 14 described later while being cooled. Yes.

前記導体モジュール1は、前記金属片2のめっき層6と、芯線7とが、超音波溶接装置10(図3に示す)によって互いに接合されて得られる。超音波溶接装置10は、図3に示すように、超音波振動付与手段としての超音波溶接機11と、冷却機構12と、制御手段としての制御装置13とを備えている。   The conductor module 1 is obtained by joining the plating layer 6 of the metal piece 2 and the core wire 7 to each other by an ultrasonic welding apparatus 10 (shown in FIG. 3). As shown in FIG. 3, the ultrasonic welding apparatus 10 includes an ultrasonic welding machine 11 as an ultrasonic vibration applying unit, a cooling mechanism 12, and a control unit 13 as a control unit.

超音波溶接機11は、図3に示すように、チップ14(工具ホーンともいう)と、このチップ14に相対するアンビル15と、図示しない発振機と、振動子と、ホーン16などを備えている。   As shown in FIG. 3, the ultrasonic welder 11 includes a tip 14 (also referred to as a tool horn), an anvil 15 opposed to the tip 14, an oscillator (not shown), a vibrator, a horn 16, and the like. Yes.

超音波溶接機11は、チップ14とアンビル15との間に互いに溶接する溶接対象物を挟み、これらのチップ14とアンビル15とを互いに近づける方向に加圧した状態で、発振機で振動子を振動させてこの振動(超音波振動ともいう)をホーン16経由でチップ14に伝える。そして、超音波溶接機11は、チップ14とアンビル15との間に挟んだ溶接対象物に超音波振動を加えて該対象物同士を溶接する。   The ultrasonic welder 11 sandwiches an object to be welded between the tip 14 and the anvil 15 and presses the tip 14 and the anvil 15 close to each other, and presses the vibrator with an oscillator. This vibration (also referred to as ultrasonic vibration) is transmitted to the chip 14 via the horn 16. Then, the ultrasonic welder 11 applies ultrasonic vibration to the welding object sandwiched between the tip 14 and the anvil 15 to weld the objects.

冷却機構12は、冷却剤吹き付け装置17と、冷却剤循環装置18とを備えている。冷却剤吹き付け装置17は、冷却剤供給源19と、複数のノズル20(図3には一つのみ示す)とを備えている。冷却剤供給源19は、冷却された例えば空気などの気体などの冷却剤を収容しており、前述したノズル20内に供給する。ノズル20は、冷却剤供給源19から供給された冷却剤をチップ14の先端に吹き付ける。冷却剤吹き付け装置17は、ノズル20から冷却剤をチップ14の先端に吹き付けて、チップ14とアンビル15との間に挟まれた芯線7、めっき層6及び母材5を冷却する。   The cooling mechanism 12 includes a coolant spraying device 17 and a coolant circulation device 18. The coolant spraying device 17 includes a coolant supply source 19 and a plurality of nozzles 20 (only one is shown in FIG. 3). The coolant supply source 19 contains a cooled coolant such as a gas such as air and supplies the coolant into the nozzle 20 described above. The nozzle 20 sprays the coolant supplied from the coolant supply source 19 onto the tip of the chip 14. The coolant spraying device 17 sprays coolant from the nozzle 20 to the tip of the tip 14 to cool the core wire 7, the plating layer 6 and the base material 5 sandwiched between the tip 14 and the anvil 15.

冷却剤循環装置18は、配管21と、冷媒タンク22と、膨張弁23と、圧縮機24と、熱交換器25とを備えている。配管21は、一部がアンビル15に取り付けられている。配管21は、前述した冷媒タンク22と、膨張弁23と、圧縮機24と、熱交換器25とを直列に連結している。冷媒タンク22は、熱交換器25により冷却された冷媒を収容する。膨張弁23は、冷媒タンク22内の冷媒を膨張させて冷却して、配管21のアンビル15に取り付けられた部分を通して圧縮機24に送り出す。   The coolant circulation device 18 includes a pipe 21, a refrigerant tank 22, an expansion valve 23, a compressor 24, and a heat exchanger 25. A part of the pipe 21 is attached to the anvil 15. The pipe 21 connects the above-described refrigerant tank 22, the expansion valve 23, the compressor 24, and the heat exchanger 25 in series. The refrigerant tank 22 stores the refrigerant cooled by the heat exchanger 25. The expansion valve 23 expands and cools the refrigerant in the refrigerant tank 22 and sends the refrigerant to the compressor 24 through a portion attached to the anvil 15 of the pipe 21.

配管21内の冷媒は、膨張弁23から圧縮機24に向かって流れて、アンビル15の熱を奪い、加熱される。則ち、配管21内の冷媒はアンビル15を冷却する。圧縮機24は、アンビル15によって加熱された冷媒を圧縮して液化して熱交換器25に送り出す。熱交換器25は、圧縮機24により液化された冷媒を冷却して冷媒タンク22に送り出す。   The refrigerant in the pipe 21 flows from the expansion valve 23 toward the compressor 24, deprives the anvil 15 of heat, and is heated. That is, the refrigerant in the pipe 21 cools the anvil 15. The compressor 24 compresses and liquefies the refrigerant heated by the anvil 15 and sends it out to the heat exchanger 25. The heat exchanger 25 cools the refrigerant liquefied by the compressor 24 and sends it out to the refrigerant tank 22.

前述した冷却剤循環装置18は、配管21内の冷媒を冷媒タンク22、膨張弁23、圧縮機24及び熱交換器25と順に循環させて、アンビル15を冷却することで、チップ14とアンビル15とに挟まれた母材5、めっき層6及び芯線7を冷却する。   The coolant circulating device 18 described above circulates the refrigerant in the pipe 21 in order through the refrigerant tank 22, the expansion valve 23, the compressor 24, and the heat exchanger 25 to cool the anvil 15, whereby the chip 14 and the anvil 15 are circulated. The base material 5, the plating layer 6 and the core wire 7 sandwiched between are cooled.

前述した冷却機構12は、冷却剤吹き付け装置17がチップ14の先端に冷却剤を吹き付け、冷却剤循環装置18がアンビル15を冷却して、チップ14とアンビル15とに挟まれた母材5、めっき層6及び芯線7を冷却する。   In the cooling mechanism 12 described above, the coolant spraying device 17 sprays coolant on the tip of the tip 14, and the coolant circulating device 18 cools the anvil 15, and the base material 5 sandwiched between the tip 14 and the anvil 15, The plating layer 6 and the core wire 7 are cooled.

制御装置13は、周知のRAM、ROM、CPUなどを備えたコンピュータである。制御装置13は、超音波溶接機11と冷却機構12などと接続しており、これらの動作を制御することにより、超音波溶接装置10全体の制御を司る。前述した制御装置13は、チップ14とアンビル15とを互いに近づける方向に加圧する力、超音波振動の振幅や周波数及び振動時間などがめっき層6が溶融するような値となるように、超音波溶接機11を制御する。則ち、制御装置13は、超音波溶接機11にめっき層6が溶融する超音波振動を付与させる。   The control device 13 is a computer including a known RAM, ROM, CPU, and the like. The control device 13 is connected to the ultrasonic welding machine 11 and the cooling mechanism 12, and controls the entire ultrasonic welding device 10 by controlling these operations. The control device 13 described above uses ultrasonic waves so that the force that presses the tip 14 and the anvil 15 closer to each other, the amplitude and frequency of ultrasonic vibration, the vibration time, and the like have values that cause the plating layer 6 to melt. The welding machine 11 is controlled. In other words, the control device 13 causes the ultrasonic welder 11 to apply ultrasonic vibration that melts the plating layer 6.

また、制御装置13は、前述した冷却機構12の冷却剤吹き付け装置17が冷却剤を吹き付けるパターンや冷却剤循環装置18が冷媒を循環するパターンを記憶しており、これらの予め記憶したパターンどおりに冷却剤吹き付け装置17及び冷却剤循環装置18を動作して、チップ14とアンビル15との間に挟まれた母材5、めっき層6及び芯線7を冷却する。   Further, the control device 13 stores a pattern in which the coolant spraying device 17 of the cooling mechanism 12 described above sprays the coolant and a pattern in which the coolant circulation device 18 circulates the refrigerant, and according to these previously stored patterns. The coolant spraying device 17 and the coolant circulation device 18 are operated to cool the base material 5, the plating layer 6 and the core wire 7 sandwiched between the chip 14 and the anvil 15.

前記導体モジュール1を組み立てる際、即ち、金属片2のめっき層6と芯線7とを固定する際には、予め被覆部8の一部分を除去して芯線7の一部分を露出させておく。なお、図示例では、被覆電線3の端部3aに位置する被覆部8を除去している。   When the conductor module 1 is assembled, that is, when the plating layer 6 of the metal piece 2 and the core wire 7 are fixed, a part of the covering portion 8 is removed in advance to expose a part of the core wire 7. In the illustrated example, the covering portion 8 located at the end 3a of the covered electric wire 3 is removed.

そして、図3に示すように、めっき層6がチップ14に相対するように、アンビル15に金属片2を重ねる。金属片2のめっき層6に露出した芯線7を重ねる。芯線7にチップ14の先端面を接触させる。こうして、チップ14とアンビル15との間に、金属片2と板部材4と芯線7とを挟む。   Then, as shown in FIG. 3, the metal piece 2 is overlaid on the anvil 15 so that the plating layer 6 faces the chip 14. The exposed core wire 7 is superimposed on the plating layer 6 of the metal piece 2. The tip surface of the chip 14 is brought into contact with the core wire 7. Thus, the metal piece 2, the plate member 4, and the core wire 7 are sandwiched between the tip 14 and the anvil 15.

そして、チップ14とアンビル15とを互いに近づける方向に加圧した後、発振機で振動子を振動させてこの振動をホーン経由でチップ14に伝える。すると、チップ14が、例えば、図4中の矢印Kに沿って、振動する。なお、矢印Kは、チップ14とアンビル15とが相対する方向に対し直交し、金属片2の表面と平行である。   Then, after pressurizing the chip 14 and the anvil 15 toward each other, the vibrator is vibrated by an oscillator and this vibration is transmitted to the chip 14 via a horn. Then, the chip | tip 14 vibrates, for example along the arrow K in FIG. The arrow K is orthogonal to the direction in which the tip 14 and the anvil 15 face each other, and is parallel to the surface of the metal piece 2.

制御装置13が、図4に示すように、超音波溶接機11に、前述しためっき層6が溶融する超音波振動を前述した芯線7などに付与させる。さらに、制御装置13は、冷却機構12にチップ14とアンビル15との間に挟まれた母材5、めっき層6及び芯線7を冷却させる。こうして、冷却しながらチップ14とアンビル15との間に挟まれた母材5、めっき層6及び芯線7にめっき層6が溶融する強さの超音波振動を付与する。   As shown in FIG. 4, the control device 13 causes the ultrasonic welding machine 11 to apply the ultrasonic vibration that melts the plating layer 6 described above to the core wire 7 described above. Further, the control device 13 causes the cooling mechanism 12 to cool the base material 5, the plating layer 6, and the core wire 7 sandwiched between the chip 14 and the anvil 15. In this way, ultrasonic vibration having such a strength that the plating layer 6 melts is applied to the base material 5, the plating layer 6, and the core wire 7 sandwiched between the chip 14 and the anvil 15 while being cooled.

すると、芯線7とめっき層6との間に前述した振動が生じる。そして、めっき層6の一部が溶けようとしても冷却機構12により冷却されているので、溶融しにくくなっているとともに、溶融しためっき層6が冷却機構12により冷却されているので、直ちに固まる。このため、前述しためっき層6を構成する錫と、芯線7を構成するアルミニウム合金とが塑性流動又は拡散現象を起こして、互いに混ざり合う。こうして、金属片2のめっき層6と芯線7と金属結合する。   Then, the vibration described above occurs between the core wire 7 and the plating layer 6. And even if a part of the plating layer 6 is about to melt, it is cooled by the cooling mechanism 12, so that it is difficult to melt and the molten plating layer 6 is cooled by the cooling mechanism 12, so that it hardens immediately. For this reason, the tin which comprises the plating layer 6 mentioned above, and the aluminum alloy which comprises the core wire 7 raise | generate a plastic flow or a diffusion phenomenon, and mutually mix. In this way, the metal layer 2 and the core wire 7 are metal-bonded.

こうして、前記金属片2のめっき層6と芯線7とは、所謂超音波溶接(超音波溶着または超音波接合ともいう)によって互いに接合される。そして、前述した構成の導体モジュール1を得る。   Thus, the plating layer 6 and the core wire 7 of the metal piece 2 are bonded to each other by so-called ultrasonic welding (also referred to as ultrasonic welding or ultrasonic bonding). And the conductor module 1 of the structure mentioned above is obtained.

次に、本発明の発明者は、前述した金属同士の接合方法で得られた導体モジュール1の接合箇所の断面を走査型電子顕微鏡で撮影した。この撮影した結果を、図5及び図6に示す。図5は、図6に示す実際に撮像して得られた画像を、模式的に示す図である。また、図5中には、図2などと同一部分には、同一符号を付している。さらに、図6中に薄い灰色で示す部分はアルミニウム合金からなる被覆電線3の芯線7を示しており、図6中に白っぽく見える部分は、芯線7を構成するアルミニウム合金とめっき層6を構成する錫との合金を示している。   Next, the inventor of the present invention photographed a cross section of the joint portion of the conductor module 1 obtained by the above-described metal-to-metal joining method with a scanning electron microscope. The photographed results are shown in FIGS. FIG. 5 is a diagram schematically showing an image obtained by actually capturing the image shown in FIG. In FIG. 5, the same parts as those in FIG. Further, the portion shown in light gray in FIG. 6 shows the core wire 7 of the covered electric wire 3 made of an aluminum alloy, and the portion that appears whitish in FIG. 6 constitutes the aluminum alloy and the plating layer 6 constituting the core wire 7. An alloy with tin is shown.

図5及び図6に示すように、アルミニウム合金からなる芯線7と錫からなるめっき層6との間には、アルミニウム合金と錫からなる合金Gが形成され、該合金Gが形成されていない部分ではアルミニウム合金からなる芯線7と錫からなるめっき層6とが密に接触している。このため、前述した走査型電子顕微鏡で得られた画像によって、金属片2のめっき層6と芯線7とが確実に金属的に接合していることが明らかとなった。   As shown in FIGS. 5 and 6, a portion in which an alloy G made of aluminum alloy and tin is formed between the core wire 7 made of aluminum alloy and a plating layer 6 made of tin, and the alloy G is not formed. Then, the core wire 7 made of an aluminum alloy and the plating layer 6 made of tin are in close contact. For this reason, it became clear from the image obtained with the scanning electron microscope mentioned above that the plating layer 6 of the metal piece 2 and the core wire 7 were reliably joined metallically.

本実施形態によれば、冷却しながらめっき層6が溶融する超音波振動を付与するので、超音波振動を付与している間則ち超音波溶接中にめっき層6が溶融することを規制できるとともに、溶融しためっき層6が直ちに固まる。このため、めっき層6が母材5の外側に拡がることを防止できる。したがって、芯線7と接合されためっき層6が他の電気部品と接触して、該他の電気部品と短絡することを防止できる。   According to this embodiment, since the ultrasonic vibration that melts the plating layer 6 is applied while cooling, it is possible to regulate melting of the plating layer 6 during ultrasonic welding while applying ultrasonic vibration. At the same time, the molten plating layer 6 immediately hardens. For this reason, the plating layer 6 can be prevented from spreading to the outside of the base material 5. Therefore, it is possible to prevent the plating layer 6 joined to the core wire 7 from coming into contact with another electrical component and short-circuiting with the other electrical component.

また、めっき層6が溶融する強さの超音波振動を付与するので、接合箇所Sで塑性流動が生じめっき層6と第2金属としての芯線7とが金属間化合物を形成することなく混ざり合う。このため、めっき層6と芯線7との接合強度を強くすることができる。   In addition, since ultrasonic vibration having such a strength that the plating layer 6 is melted is applied, plastic flow is generated at the joining portion S, and the plating layer 6 and the core wire 7 as the second metal are mixed without forming an intermetallic compound. . For this reason, the joint strength between the plating layer 6 and the core wire 7 can be increased.

さらに、冷却しながら超音波溶接を行うので、めっき層6などの温度が過度に上昇することを防止できる。したがって、めっき層6、母材5及び芯線7を耐熱性の低い金属から構成することができる。   Furthermore, since ultrasonic welding is performed while cooling, it is possible to prevent the temperature of the plating layer 6 and the like from rising excessively. Therefore, the plating layer 6, the base material 5, and the core wire 7 can be comprised from a metal with low heat resistance.

また、めっき層6が錫を含み、芯線7がアルミニウム合金を含んでいるので、めっき層6と芯線7との接合箇所Sで金属間化合物を形成することがない。その上、前述した接合箇所Sに超音波振動が付与された時の塑性流動などにより、前述した錫及びアルミニウム合金を含んだ合金Gが形成される。したがって、めっき層6と芯線7との接合強度を強くすることができる。   Moreover, since the plating layer 6 includes tin and the core wire 7 includes an aluminum alloy, an intermetallic compound is not formed at the joint portion S between the plating layer 6 and the core wire 7. In addition, the alloy G containing the above-described tin and aluminum alloy is formed by plastic flow or the like when the ultrasonic vibration is applied to the above-described joining portion S. Therefore, the bonding strength between the plating layer 6 and the core wire 7 can be increased.

次に、本発明の発明者らは、めっき層6が形成された金属片2に被覆電線3の芯線7を実際に超音波溶接して、本発明の効果を確認した。結果を図7及び図8に示す。図7中に実線及び一点鎖線で示し図8中に実線で示す本発明品では、前述した実施形態に記載した超音波溶接装置10で被覆電線3の芯線7と金属片2のめっき層6とを超音波溶接した。   Next, the inventors of the present invention actually ultrasonically welded the core wire 7 of the covered electric wire 3 to the metal piece 2 on which the plating layer 6 was formed, and confirmed the effect of the present invention. The results are shown in FIGS. In the product of the present invention indicated by a solid line and an alternate long and short dash line in FIG. 7 and indicated by a solid line in FIG. 8, the core wire 7 of the covered wire 3 and the plating layer 6 of the metal piece 2 are formed by the ultrasonic welding apparatus 10 described in the above-described embodiment. Were ultrasonically welded.

前述した本発明品では、芯線7と金属片2とを互いに近づける方向に加圧して、前述しためっき層6が溶融する強さの超音波振動を、めっき層6が溶融する時間付与している。本発明品では、超音波振動を付与し始めてからめっき層6が溶融する前から超音波振動の付与を停止するまでの間に前述した冷却機構12を動作させてチップ14とアンビル15との間に挟んだ母材5、めっき層6及び芯線7を冷却する。こうして、本発明品では、めっき層6が溶融する強さの超音波振動を付与している。   In the product of the present invention described above, the core wire 7 and the metal piece 2 are pressed in a direction to bring them close to each other, and the ultrasonic vibration having such a strength that the plating layer 6 is melted is applied for a time during which the plating layer 6 is melted. . In the product of the present invention, the cooling mechanism 12 described above is operated between the tip 14 and the anvil 15 before the ultrasonic vibration is stopped until the plating layer 6 is melted after the ultrasonic vibration is started. The base material 5, the plating layer 6 and the core wire 7 sandwiched between the two are cooled. In this way, in the product of the present invention, ultrasonic vibration having such a strength that the plating layer 6 is melted is applied.

また、図8中に点線で示す比較例では、本発明品と同じ強さで芯線7と金属片2とを互いに近づける方向に加圧して、前述しためっき層6が溶融しない程度の超音波振動を、前述した本発明品と同じ時間付与している。こうして、比較例では、前述しためっき層6が溶融しない強さの超音波振動を芯線7、めっき層6及び母材5に付与している。   Further, in the comparative example shown by the dotted line in FIG. 8, the ultrasonic vibration is applied so that the core layer 7 and the metal piece 2 are pressed in the direction close to each other with the same strength as the product of the present invention and the above-described plating layer 6 is not melted. Is given for the same time as the product of the present invention described above. Thus, in the comparative example, the ultrasonic vibration having such a strength that the above-described plating layer 6 does not melt is applied to the core wire 7, the plating layer 6, and the base material 5.

さらに、前述した本発明品と比較例との双方では、芯線7をアルミニウム合金から構成しかつ該芯線7の外径を1.0mmとし、めっき層6を錫から構成しかつ該めっき層6の厚みを2.5mmとし、母材5を黄銅から構成しかつ該母材5の厚みを0.3mmとした。   Furthermore, in both the product of the present invention and the comparative example described above, the core wire 7 is made of an aluminum alloy, the outer diameter of the core wire 7 is 1.0 mm, the plating layer 6 is made of tin, and the plating layer 6 The thickness was 2.5 mm, the base material 5 was made of brass, and the thickness of the base material 5 was 0.3 mm.

図7中の実線は、前述した条件で超音波溶接した際の各超音波溶接を行った時間に対する接合強度を示している。なお、接合強度とは、超音波溶接の終了後に金属片2則ち母材5の表面に対し直交する図2中の矢印K1,K2に沿って、芯線7とめっき層6とを引き剥がした際に、該芯線7とめっき層6とが分離するときの力である。また、接合強度は、芯線7とめっき層6とを接合してこれらを分離させようとした際に、アルミニウム合金で構成される芯線7自体が破断した時の力を100%にしている。   The solid line in FIG. 7 indicates the bonding strength with respect to the time during which each ultrasonic welding is performed when ultrasonic welding is performed under the above-described conditions. Note that the bonding strength is determined by peeling the core wire 7 and the plating layer 6 along the arrows K1 and K2 in FIG. 2 orthogonal to the surface of the metal piece 2, that is, the base material 5 after the ultrasonic welding is completed. In this case, it is a force when the core wire 7 and the plating layer 6 are separated. In addition, when the core wire 7 and the plating layer 6 are joined and separated from each other, the joint strength is 100% when the core wire 7 made of an aluminum alloy is broken.

また、図7中の一点鎖線は、前述した条件で超音波溶接した際の接合箇所の温度の変化を示している。なお、接合箇所の温度は、周知の熱電対を接合箇所の近傍に接触させたり、接合箇所からの放射熱を測定することで、測定した。   Moreover, the dashed-dotted line in FIG. 7 has shown the change of the temperature of the junction location at the time of ultrasonic welding on the conditions mentioned above. In addition, the temperature of a junction location was measured by making a known thermocouple contact the vicinity of a junction location, or measuring the radiant heat from a junction location.

さらに、図8中に実線で示す本発明品及び点線で示す比較例は、前述した条件で超音波溶接した際の各超音波溶接を行った時間に対する接合強度を示している。また、図7及び図8中の横軸である接合時間は、超音波振動を付与した時間を示しており、本発明品で接合箇所Sの温度がめっき層6を構成する錫の融点である232.4℃となる時間を100%にしている。   Furthermore, the product of the present invention indicated by the solid line in FIG. 8 and the comparative example indicated by the dotted line indicate the bonding strength with respect to the time during which each ultrasonic welding was performed when ultrasonic welding was performed under the above-described conditions. Moreover, the joining time which is a horizontal axis in FIG.7 and FIG.8 has shown the time which provided the ultrasonic vibration, and the temperature of the joining location S is melting | fusing point of the tin which comprises the plating layer 6 by this invention product. The time to reach 232.4 ° C. is set to 100%.

図7によれば、本発明品では、超音波振動の付与を開始してから接合時間100%となると、接合箇所Sの温度がめっき層6を構成する錫の融点である232.4℃を越えている。このため、本発明品は、超音波振動の付与を開始してから接合時間100%となると、めっき層6が溶融し始めることが明らかとなった。   According to FIG. 7, in the product of the present invention, when the joining time is 100% after the start of application of ultrasonic vibration, the temperature of the joining portion S is 232.4 ° C., which is the melting point of tin constituting the plating layer 6. It is over. For this reason, it became clear that the plated layer 6 starts to melt in the product of the present invention when the joining time reaches 100% after the start of application of ultrasonic vibration.

また、図8中の比較例によれば、接合強度が最大でも25%程度であった。則ち、めっき層6が溶融しない強さの超音波振動を付与しても、十分な接合強度でめっき層6と芯線7とを接合できないことが明らかとなった。   Further, according to the comparative example in FIG. 8, the bonding strength was about 25% at the maximum. In other words, it has been clarified that the plating layer 6 and the core wire 7 cannot be bonded with sufficient bonding strength even when ultrasonic vibration having such a strength that the plating layer 6 does not melt is applied.

また、図7及び図8中の本発明品によれば、本発明品の接合強度が100%に近づくことが明らかとなった。則ち、冷却しながらめっき層6が溶融する強さの超音波振動を付与することで、接合強度がアルミニウム合金自体の強度に近づき、十分な接合強度でめっき層6と芯線7とを接合できることが明らかとなった。   Moreover, according to the product of the present invention in FIGS. 7 and 8, it became clear that the bonding strength of the product of the present invention approaches 100%. In other words, by applying ultrasonic vibration with such a strength that the plating layer 6 melts while cooling, the bonding strength approaches that of the aluminum alloy itself, and the plating layer 6 and the core wire 7 can be bonded with sufficient bonding strength. Became clear.

前述した実施形態では、金属片2に被覆電線3の芯線7を接合する場合を示している。しかしながら、本発明では、被覆電線3の芯線7に限らず、金属片2に多種多様な導電性の金属を接合しても良いことは勿論である。また、前述した実施形態の金属片2は、自動車などのワイヤハーネスに用いられる端子金具を構成しても良い。   In embodiment mentioned above, the case where the core wire 7 of the covered electric wire 3 is joined to the metal piece 2 is shown. However, in the present invention, it is needless to say that not only the core wire 7 of the covered electric wire 3 but also various conductive metals may be joined to the metal piece 2. Further, the metal piece 2 of the above-described embodiment may constitute a terminal fitting used for a wire harness such as an automobile.

さらに、本発明では、図9に示すように、第2金属としての芯線7に更に第3金属30を重ねて、第1金属としての金属片2のめっき層6と第2金属としての芯線7とを超音波溶接で接合し、第2金属としての芯線7と第3金属30とを超音波溶接で接合しても良い。なお、図9において、前述した実施形態と同一部分には、同一符号を付して説明を省略する。   Furthermore, in this invention, as shown in FIG. 9, the 3rd metal 30 is further piled up on the core wire 7 as a 2nd metal, the plating layer 6 of the metal piece 2 as a 1st metal, and the core wire 7 as a 2nd metal. May be joined by ultrasonic welding, and the core wire 7 and the third metal 30 as the second metal may be joined by ultrasonic welding. In FIG. 9, the same parts as those of the above-described embodiment are denoted by the same reference numerals and description thereof is omitted.

前述した実施形態では、制御装置13に予め記憶されたパターンにしたがって、冷却機構12の冷却材吹き付け装置17と冷却材循環装置18とを動作させて、チップ14とアンビル15との間に挟まれた芯線7と金属片2とを冷却している。しかしながら、本発明では、熱電対などの温度検出手段などを用いて、チップ14とアンビル15との間に挟まれた芯線7と金属片2の温度を検出して、該検出した温度に基づいて、制御装置13が冷却材吹き付け装置17と冷却材循環装置18とを制御して、チップ14とアンビル15との間に挟まれた芯線7と金属片2とを冷却しても良い。要するに、冷却機構12は、種々のパターンで、超音波振動が付与された芯線7と金属片2などを冷却しても良い。さらに、冷却機構12が、周知のペルチェ素子などを用いても良い。   In the above-described embodiment, the coolant spraying device 17 and the coolant circulation device 18 of the cooling mechanism 12 are operated according to the pattern stored in advance in the control device 13, and are sandwiched between the chip 14 and the anvil 15. The core wire 7 and the metal piece 2 are cooled. However, in the present invention, the temperature of the core wire 7 and the metal piece 2 sandwiched between the chip 14 and the anvil 15 is detected by using a temperature detection means such as a thermocouple, and based on the detected temperature. The control device 13 may control the coolant spraying device 17 and the coolant circulation device 18 to cool the core wire 7 and the metal piece 2 sandwiched between the tip 14 and the anvil 15. In short, the cooling mechanism 12 may cool the core wire 7 and the metal piece 2 to which the ultrasonic vibration is applied in various patterns. Further, the cooling mechanism 12 may use a known Peltier element or the like.

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

本発明の一実施形態にかかる超音波溶接方法で組み立てられる導体モジュールを示す斜視図である。It is a perspective view which shows the conductor module assembled with the ultrasonic welding method concerning one Embodiment of this invention. 図1中のII−II線に沿った断面図である。It is sectional drawing along the II-II line | wire in FIG. 図1に示された導体モジュールを組み立てる際に用いられる超音波溶接装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the ultrasonic welding apparatus used when assembling the conductor module shown by FIG. 図3に示された超音波溶接装置が導体モジュールを組み立てる状態を示す説明図である。It is explanatory drawing which shows the state which the ultrasonic welding apparatus shown by FIG. 3 assembles a conductor module. 図1に示された導体モジュールの接合箇所を走査型電子顕微鏡で撮像して得られた結果を模式的に示す図である。It is a figure which shows typically the result obtained by imaging the junction location of the conductor module shown by FIG. 1 with a scanning electron microscope. 図1に示された導体モジュールの接合箇所を走査型電子顕微鏡で撮像して得られた結果を示す図である。It is a figure which shows the result obtained by imaging the joining location of the conductor module shown by FIG. 1 with a scanning electron microscope. 本発明品の超音波溶接中の接合強度の変化と接合箇所の温度の変化を示す説明図である。It is explanatory drawing which shows the change of the joint strength in ultrasonic welding of this invention goods, and the change of the temperature of a joining location. 本発明品と比較例の超音波溶接中の接合強度の変化を示す説明図である。It is explanatory drawing which shows the change of the joining strength in ultrasonic welding of this invention product and a comparative example. 図3に示された超音波溶接装置の他の使用方法を示す説明図である。It is explanatory drawing which shows the other usage method of the ultrasonic welding apparatus shown by FIG.

符号の説明Explanation of symbols

1 導体モジュール
2 金属片(第1金属)
5 母材
6 めっき層
7 芯線(第2金属)
10 超音波溶接装置
11 超音波溶接機(超音波振動付与手段)
12 冷却機構
1 Conductor Module 2 Metal Piece (First Metal)
5 Base material 6 Plating layer 7 Core wire (second metal)
10 Ultrasonic welding equipment 11 Ultrasonic welding machine (Ultrasonic vibration applying means)
12 Cooling mechanism

Claims (4)

母材の表面にめっき層が形成された第1金属と、該第1金属とは別体の第2金属と、を接合する超音波溶接方法において、
前記第1金属のめっき層に前記第2金属を重ねて、第1金属と第2金属とを互いに近づける方向に加圧して前記めっき層が溶融する超音波振動を付与して、前記母材、めっき層及び第2金属を冷却しながら、前記第2金属と前記めっき層とを接合することを特徴とする超音波溶接方法。
In an ultrasonic welding method for joining a first metal having a plating layer formed on the surface of a base material and a second metal separate from the first metal,
Superposing the second metal on the plating layer of the first metal, applying pressure in a direction in which the first metal and the second metal are brought close to each other, and applying ultrasonic vibration to melt the plating layer, An ultrasonic welding method comprising joining the second metal and the plating layer while cooling the plating layer and the second metal.
前記めっき層は、錫又は錫合金を含み、
前記第2金属は、アルミニウム又はアルミニウム合金を含んでいることを特徴とする請求項1記載の超音波溶接方法。
The plating layer includes tin or a tin alloy,
The ultrasonic welding method according to claim 1, wherein the second metal includes aluminum or an aluminum alloy.
母材の表面にめっき層が形成された第1金属と、該第1金属とは別体の第2金属と、を接合する超音波溶接装置において、
前記第1金属のめっき層に前記第2金属を重ねて、第1金属と第2金属とを互いに近づける方向に加圧して、前記めっき層が溶融する超音波振動を付与する超音波振動付与手段と、
前記母材、めっき層及び第2金属を冷却する冷却機構と、を備え、
前記超音波振動付与手段が第1金属と第2金属とを互いに近づける方向に加圧して超音波振動を付与して、前記冷却機構が母材、めっき層及び第2金属を冷却しながら、前記第2金属と前記めっき層とを接合することを特徴とする超音波溶接装置。
In an ultrasonic welding apparatus for joining a first metal having a plating layer formed on a surface of a base material and a second metal separate from the first metal,
The ultrasonic vibration applying means for applying the ultrasonic vibration that melts the plating layer by applying the second metal on the plating layer of the first metal and pressurizing the first metal and the second metal in a direction approaching each other. When,
A cooling mechanism for cooling the base material, the plating layer, and the second metal,
The ultrasonic vibration applying means pressurizes the first metal and the second metal in a direction approaching each other to apply ultrasonic vibration, and the cooling mechanism cools the base material, the plating layer, and the second metal, An ultrasonic welding apparatus for joining a second metal and the plating layer.
母材の表面にめっき層が形成された第1金属と、該第1金属とは別体の第2金属と、を備え、前記めっき層と前記第2金属とが接合された導体ユニットにおいて、
前記第1金属のめっき層に前記第2金属を重ねて、第1金属と第2金属とを互いに近づける方向に加圧して前記めっき層が溶融する超音波振動を付与されて、前記母材、めっき層及び第2金属を冷却しながら、前記第2金属と前記めっき層とが接合されたことを特徴とする導体ユニット。
In a conductor unit comprising: a first metal having a plating layer formed on a surface of a base material; and a second metal separate from the first metal, wherein the plating layer and the second metal are joined.
Superposing the second metal on the plating layer of the first metal, pressing the first metal and the second metal in a direction approaching each other, and applying ultrasonic vibration that melts the plating layer, the base material, A conductor unit in which the second metal and the plating layer are joined while cooling the plating layer and the second metal.
JP2004358464A 2004-12-10 2004-12-10 Ultrasonic welding method and ultrasonic welding apparatus Expired - Fee Related JP4541121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004358464A JP4541121B2 (en) 2004-12-10 2004-12-10 Ultrasonic welding method and ultrasonic welding apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004358464A JP4541121B2 (en) 2004-12-10 2004-12-10 Ultrasonic welding method and ultrasonic welding apparatus

Publications (2)

Publication Number Publication Date
JP2006159277A true JP2006159277A (en) 2006-06-22
JP4541121B2 JP4541121B2 (en) 2010-09-08

Family

ID=36661847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004358464A Expired - Fee Related JP4541121B2 (en) 2004-12-10 2004-12-10 Ultrasonic welding method and ultrasonic welding apparatus

Country Status (1)

Country Link
JP (1) JP4541121B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004289A (en) * 2010-06-16 2012-01-05 Toshiba Mitsubishi-Electric Industrial System Corp Member joining method
JP2012129463A (en) * 2010-12-17 2012-07-05 Adwelds:Kk Bonding method
JP2012187597A (en) * 2011-03-09 2012-10-04 Hitachi Cable Ltd Ultrasonic welding method
CN107138846A (en) * 2017-06-27 2017-09-08 哈尔滨工业大学深圳研究生院 Ultrasonic micro-bonding method and its device applied to RFID magnetic card copper lines
JP2019034316A (en) * 2017-08-15 2019-03-07 イーグル工業株式会社 Ultrasonic joint jig, ultrasonic joining method, and joint structure
DE102021117697B3 (en) 2021-07-08 2022-05-12 Technische Universität Chemnitz, Körperschaft des öffentlichen Rechts Process for determining the temperature in a joining zone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101771875B1 (en) * 2017-03-16 2017-08-28 임준수 Ultrasonic Sewing Machine Having Function of Cooling

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337563A (en) * 1976-09-21 1978-04-06 Tokyo Shibaura Electric Co Electromagnetic solid phase bonding method
JPH11129331A (en) * 1997-10-31 1999-05-18 Sekisui Chem Co Ltd Ultrasonic bonding method
JP2002231407A (en) * 2001-01-29 2002-08-16 Yazaki Corp Method for joining metals together
JP2002336974A (en) * 2001-05-15 2002-11-26 Denso Corp Ultrasonic welding machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337563A (en) * 1976-09-21 1978-04-06 Tokyo Shibaura Electric Co Electromagnetic solid phase bonding method
JPH11129331A (en) * 1997-10-31 1999-05-18 Sekisui Chem Co Ltd Ultrasonic bonding method
JP2002231407A (en) * 2001-01-29 2002-08-16 Yazaki Corp Method for joining metals together
JP2002336974A (en) * 2001-05-15 2002-11-26 Denso Corp Ultrasonic welding machine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004289A (en) * 2010-06-16 2012-01-05 Toshiba Mitsubishi-Electric Industrial System Corp Member joining method
JP2012129463A (en) * 2010-12-17 2012-07-05 Adwelds:Kk Bonding method
JP2012187597A (en) * 2011-03-09 2012-10-04 Hitachi Cable Ltd Ultrasonic welding method
CN107138846A (en) * 2017-06-27 2017-09-08 哈尔滨工业大学深圳研究生院 Ultrasonic micro-bonding method and its device applied to RFID magnetic card copper lines
CN107138846B (en) * 2017-06-27 2022-12-06 哈尔滨工业大学深圳研究生院 Ultrasonic micro-welding method and device applied to RFID magnetic card metal copper wire
JP2019034316A (en) * 2017-08-15 2019-03-07 イーグル工業株式会社 Ultrasonic joint jig, ultrasonic joining method, and joint structure
DE102021117697B3 (en) 2021-07-08 2022-05-12 Technische Universität Chemnitz, Körperschaft des öffentlichen Rechts Process for determining the temperature in a joining zone
WO2023280340A1 (en) 2021-07-08 2023-01-12 Technische Universität Chemnitz Körperschaft Des Öffentlichen Rechts Method for determining the temperature in a joining zone

Also Published As

Publication number Publication date
JP4541121B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP5794577B2 (en) Heater chip, joining device, joining method, and conductor thin wire and terminal connection structure
US9289842B2 (en) Structure and method of bonding copper and aluminum
JP4541121B2 (en) Ultrasonic welding method and ultrasonic welding apparatus
JPH10328855A (en) Manufacture of conductive joined body joined with different kinds of metal
US5921460A (en) Method of soldering materials supported on low-melting substrates
JP2023013804A (en) Joining device and joining method for friction stir joining and resistance welding
JP2000174059A (en) Method of mounting electronic component
JP3943838B2 (en) Metal-to-metal joining method
JPH0832194A (en) Flexible printed board for thermal fusion, and its connection mechanism
JP2003334669A (en) Ultrasonic welding device
JP2004042117A (en) Friction stir welding method and part welded by the method
CN112638567A (en) Method for producing at least one defined connection layer between two components made of different metals
JPH0516950B2 (en)
JP3344289B2 (en) Mounting method of work with bump
JP6719176B2 (en) Method of joining aluminum members
JP2018114536A (en) Joining method and joined body
JPH0671651B2 (en) Method of joining metals via thermal spray coating
JP2007035280A (en) Laser welding method of copper lead wire and fuse element
JP2870506B2 (en) Soldering method of work with bump
JP2020157321A (en) Fusion welding joining method of metallic wire
JPH08340176A (en) Connecting method of lead wire
JP6961159B2 (en) Joining method of metal member and synthetic resin molded member and its joining body
JPH1177192A (en) Energizing caulking method for aluminum alloy casting
US20090230101A1 (en) Method of soldering metallic join partners and an appratus for this purpose
JP2001127426A (en) Method and structure for connecting circuit conductor of flat conductor wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

R150 Certificate of patent or registration of utility model

Ref document number: 4541121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees