JP2006159165A - Reacting device for high-temperature and high-pressure fluid and manufacturing device - Google Patents

Reacting device for high-temperature and high-pressure fluid and manufacturing device Download PDF

Info

Publication number
JP2006159165A
JP2006159165A JP2004358904A JP2004358904A JP2006159165A JP 2006159165 A JP2006159165 A JP 2006159165A JP 2004358904 A JP2004358904 A JP 2004358904A JP 2004358904 A JP2004358904 A JP 2004358904A JP 2006159165 A JP2006159165 A JP 2006159165A
Authority
JP
Japan
Prior art keywords
temperature
fluid
pressure fluid
metal thin
thin tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004358904A
Other languages
Japanese (ja)
Other versions
JP5137051B2 (en
Inventor
Akira Suzuki
明 鈴木
Kunio Arai
邦夫 新井
Kiyotaka Hatada
清隆 畑田
Yuichiro Wakashima
勇一郎 若嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004358904A priority Critical patent/JP5137051B2/en
Publication of JP2006159165A publication Critical patent/JP2006159165A/en
Application granted granted Critical
Publication of JP5137051B2 publication Critical patent/JP5137051B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reaction device for a high-temperature and high-pressure fluid of microscale and a manufacturing device for the high-temperature and high-pressure fluid capable of increasing temperature in a short time. <P>SOLUTION: In a reacting device for a high-temperature and high-pressure fluid which makes a working fluid react in a high-temperature and high-pressure field, the reaction device for the high-temperature and high-pressure fluid is sequentially arranged a preheater, a reactor and a cooler, in which heat of a metal thin tube in the preheater is generated by a direct energizing or an electromagnetic induction system and a temperature of the working fluid in the metal thin tube is increased by an indirect heat exchange and the manufacturing device for the high-temperature and high-pressure fluid is comprised of the preheater. This invention make it possible to rapidly produce a high-temperature and to effectively control temperature and perform chemical reaction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、微細な高圧流路内の作動流体からなる高温高圧場において、例えば、化学反応を行わせるための高温高圧流体反応装置及び高温高圧流体製造装置に関するものであり、更に詳しくは、作動流体を急速に、加熱・冷却することができる、予熱器、反応器及び冷却器を有する高温高圧流体反応装置において、予熱器内の金属細管を、直接通電又は電磁誘導方式により発熱させることにより、金属細管内の作動流体を間接加熱する高温高圧流体反応装置に関するものである。本発明は、化学プロセス技術、エネルギー化技術及び廃棄物分解技術等の分野で広く利用されている、高温高圧プロセスに関する技術分野において、新しい高温高圧流体反応装置を提供するものであり、迅速な加熱と、冷却を達成することができるとともに、マイクロスケールの高温高圧反応を実行することができる反応装置(マイクロリアクタ)及び高温高圧流体製造装置(マイクロ熱交換器)を提供するものとして有用である。   The present invention relates to a high-temperature and high-pressure fluid reaction device and a high-temperature and high-pressure fluid production device for performing, for example, a chemical reaction in a high-temperature and high-pressure field composed of a working fluid in a fine high-pressure channel. In a high-temperature and high-pressure fluid reaction apparatus having a preheater, a reactor, and a cooler capable of rapidly heating and cooling a fluid, by heating a metal thin tube in the preheater by direct energization or electromagnetic induction, The present invention relates to a high-temperature and high-pressure fluid reaction apparatus for indirectly heating a working fluid in a metal thin tube. The present invention provides a new high-temperature and high-pressure fluid reactor in the technical field related to a high-temperature and high-pressure process widely used in the fields of chemical process technology, energy conversion technology, waste decomposition technology, and the like. The present invention is useful for providing a reaction apparatus (microreactor) and a high-temperature / high-pressure fluid production apparatus (micro heat exchanger) that can achieve cooling and perform microscale high-temperature and high-pressure reactions.

従来、化学合成、生化学分析等の技術分野において、微小な流路や反応室を、薄い金属板もしくはガラスや樹脂基板上に形成・積層して化学反応を行わせるマイクロリアクタと呼ばれる反応装置の開発と利用が進みつつある。このマイクロリアクタは、装置全体の寸法をコンパクトにでき、内部流体の一定体積あたりの表面積(比表面積)が極めて大きいことから、反応物質界面での反応・混合が効率的に行なわれ、また、熱移動が効率的かつ迅速なものにできるという化学反応装置として望ましい特性をもっている、しかし、これら既存の装置・システムは、高温高圧に耐える構造とはなっておらず、常温常圧近傍での利用が主体となっている(特許文献1、2参照)。   Conventionally, in technical fields such as chemical synthesis and biochemical analysis, development of a reaction device called a microreactor that performs chemical reaction by forming and laminating minute channels and reaction chambers on a thin metal plate or glass or resin substrate And use is progressing. This microreactor can reduce the overall dimensions of the device, and the surface area per specific volume (specific surface area) of the internal fluid is extremely large. Therefore, reaction and mixing at the reactant interface can be performed efficiently, and heat transfer. However, these existing devices and systems are not designed to withstand high temperatures and pressures, and are mainly used near normal temperatures and pressures. (See Patent Documents 1 and 2).

一方、純水や二酸化炭素を、それぞれの物性固有値である熱力学的臨界点を超えた超臨界状態とし、それを化学反応場として高度に利用しようとする、超臨界流体を利用した反応技術の開発が活発化している。その応用範囲は、ファインケミカルからナノマテリアル合成、自動車用の新型燃料生産、半導体製造、廃棄物処理、化粧品生産、PCB等の有毒物質の無害化処理、酸化分解処理等、きわめて幅広い産業分野に広がっており、低環境負荷型の流体反応技術としての利用範囲はますます広がると期待されている。特に、水を利用する場合の超臨界水を利用した反応技術では、その熱力学的臨界点(22.1MPa、374℃)が高温高圧であることから、それ以上の圧力・温度条件での化学反応装置には、高温条件下での耐圧性能を高くする工夫が必須である。   On the other hand, in the reaction technology using supercritical fluid, pure water and carbon dioxide are brought into a supercritical state exceeding the thermodynamic critical point, which is the eigenvalue of each physical property, and they are used as a chemical reaction field. Development is active. The range of applications extends to a wide range of industrial fields, from fine chemicals to nanomaterial synthesis, production of new fuels for automobiles, semiconductor manufacturing, waste treatment, cosmetics production, detoxification treatment of toxic substances such as PCB, and oxidative decomposition treatment. Therefore, the range of use as a low environmental load type fluid reaction technology is expected to expand more and more. In particular, in the reaction technology using supercritical water in the case of using water, the thermodynamic critical point (22.1 MPa, 374 ° C.) is high temperature and high pressure. The reaction apparatus must be devised to increase the pressure resistance under high temperature conditions.

前述のマイクロリアクタは、微小な流路空間を利用するために、受圧面積が小さくなることから、耐圧性能を高くすることができる可能性を持ち、更に、化学反応面では、反応物質界面での反応・混合が効率的に行われる等、好ましい特性を持っている。例えば、超臨界水とマイクロリアクタを利用した低環境負荷型の新しい化学原料生産方法が報告されている(特許文献3参照)。この方法は、小さな内径を持ち、耐圧性を有する細い金属管の内部空間をそのままマイクロリアクタとして利用し、常温の反応溶液に対して、超臨界状態の高温高圧水を直接混合することによって溶液温度を上昇させて反応を開始させ、外部保温器によって温度を保つ方式の化学反応装置を利用する。また、このような超臨界流体反応技術とマイクロリアクタ技術が融合した手法により、触媒を使用せずに水のみを利用した、効率的かつ環境負荷の小さい化学反応手法が実証されている。超臨界反応装置のマイクロ化の実用化にあたり、急速熱交換により、急速昇温、短時間反応、及び急速冷却を実施することにより、装置のコスト低減、省エネルギー化、副次反応の抑制、高収率、高選択性が実現可能である。しかしながら、直接熱交換方式、例えば、超臨界水、又は冷却水の直接注入により反応溶液の急速加熱又は冷却を行うと、反応溶液及び回収したい反応生成物が、大量の加熱用の超臨界水等で希釈されるために、被処理流体量が必然的に大きくなり、経済的に不利となる問題がある。   The aforementioned microreactor uses a small flow path space, so the pressure receiving area is small, so there is a possibility that the pressure resistance performance can be increased. Further, on the chemical reaction surface, the reaction at the reactant interface is possible. -It has favorable characteristics such as efficient mixing. For example, a new low environmental load type chemical raw material production method using supercritical water and a microreactor has been reported (see Patent Document 3). In this method, the internal space of a thin metal tube having a small inner diameter and pressure resistance is used as a microreactor as it is, and the temperature of the solution is adjusted by directly mixing high-temperature and high-pressure water in a supercritical state with a normal temperature reaction solution. A chemical reaction apparatus is used in which the reaction is started by raising the temperature and the temperature is maintained by an external incubator. In addition, by combining such supercritical fluid reaction technology and microreactor technology, an efficient and low environmental impact chemical reaction method using only water without using a catalyst has been demonstrated. In putting micro-scale supercritical reactors into practical use, rapid heat exchange, rapid temperature rise, short-time reaction, and rapid cooling enable equipment cost reduction, energy saving, side reaction suppression, high yield. Rate and high selectivity can be realized. However, when the reaction solution is rapidly heated or cooled by direct heat exchange, for example, direct injection of supercritical water or cooling water, the reaction solution and the reaction product to be recovered become a large amount of supercritical water for heating, etc. Therefore, there is a problem that the amount of fluid to be treated is inevitably increased, which is economically disadvantageous.

特開2004−195433号公報JP 2004-195433 A 特開2003−119497号公報JP 2003-119497 A 特開2003−201277号公報JP 2003-201277 A

このような状況の中で、本発明者らは、上記従来技術に鑑みて、例えば、純水を利用する超臨界流体反応技術とマイクロリアクタ技術が融合した化学反応装置において、純水の熱力学的臨界点以上の圧力及び温度条件下で操作するにあたり、処理対象物の希釈によらない、急速昇温及び冷却を実現した超臨界水反応装置を提供することが必要であるとの知見に基づいて、鋭意研究の結果、直接通電又は電磁誘導方式による間接加熱により所期の目的が達成し得ることを見出し本発明に至った。本発明は、装置全体のコンパクト化、及び熱損失を増大させる熱放散面積の縮小により、効率的な温度制御を実現させ、エネルギ効率を高めたマイクロスケールの高温高圧流体反応装置及び高温高圧流体製造装置を提供することを目的とするものである。また、本発明は、流通させる流体の急速な温度変化を、金属を媒体とした間接熱交換方式で実現することにより、流体処理量の増大を回避できる高温高圧流体反応装置を提供することを目的とするものである。また、本発明は、金属細管内の作動流体の加熱を、金属細管に直接通電するジュール熱加熱で行うか、又は外側に配設した電磁誘導コイルによる渦電流により行う高温高圧流体反応装置を提供することを目的とするものである。   Under such circumstances, in view of the above prior art, the present inventors, for example, in a chemical reaction apparatus in which a supercritical fluid reaction technology using pure water and a microreactor technology are fused, Based on the knowledge that it is necessary to provide a supercritical water reactor that realizes rapid temperature rise and cooling, regardless of dilution of the object to be processed, in operation under pressure and temperature conditions above the critical point. As a result of diligent research, the inventors have found that the intended purpose can be achieved by direct energization or indirect heating by an electromagnetic induction method, leading to the present invention. The present invention provides a microscale high-temperature and high-pressure fluid reactor and high-temperature and high-pressure fluid manufacturing that achieves efficient temperature control and energy efficiency by downsizing the entire device and reducing the heat dissipation area that increases heat loss. The object is to provide an apparatus. Another object of the present invention is to provide a high-temperature and high-pressure fluid reactor capable of avoiding an increase in fluid throughput by realizing a rapid temperature change of a fluid to be circulated by an indirect heat exchange method using a metal as a medium. It is what. In addition, the present invention provides a high-temperature and high-pressure fluid reaction apparatus in which the working fluid in the metal thin tube is heated by Joule heating that directly energizes the metal thin tube, or by eddy current generated by an electromagnetic induction coil disposed outside. It is intended to do.

上記の課題を解決するための本発明は、予熱器、反応器、及び冷却器を配設した高温高圧流体反応装置において、金属細管で構成された予熱器、及び該金属細管内の作動流体を、直接通電又は電磁誘導方式により間接加熱する手段、を有することを特徴とする高温高圧流体反応装置、である。本高温高圧流体反応装置は、(1)予熱器と反応器を、別体又は一体に構成されていること、(2)金属細管の内径が、1mm以下であること、(3)予熱器が、単一の金属細管で構成されていること、(4)冷却器が、単一の金属細管、又は多方継手構造により複数の金属細管を集合した構造の金属細管で構成されていること、(5)冷却器が、金属細管内の作動流体を冷媒により間接的に冷却する間接熱交換器であること、(6)作動流体が、水、二酸化炭素、アルコール類、炭化水素類、又はこれらの2以上からなる混合流体、もしくはこれらに反応基質を加えた混合流体であること、(7)作動流体が、亜臨界ないし超臨界状態の流体であること、(8)予熱器が、作動流体を1秒以下で昇温させる機能を有すること、を好ましい態様としている。また、本発明は、上記の高温高圧流体反応装置を1モジュールとして、複数組み合わせたことを特徴とする高温高圧流体反応装置、である。   In order to solve the above problems, the present invention relates to a high-temperature and high-pressure fluid reaction apparatus provided with a preheater, a reactor, and a cooler, and a preheater composed of a metal thin tube and a working fluid in the metal thin tube. , A high-temperature and high-pressure fluid reaction apparatus characterized by having a means for indirect heating by direct energization or electromagnetic induction. This high-temperature and high-pressure fluid reactor has (1) a preheater and a reactor that are separately or integrally configured, (2) the inner diameter of the metal thin tube is 1 mm or less, and (3) the preheater (4) The cooler is composed of a single metal thin tube or a metal thin tube having a structure in which a plurality of metal thin tubes are assembled by a multi-way joint structure. 5) The cooler is an indirect heat exchanger that indirectly cools the working fluid in the metal thin tube with a refrigerant. (6) The working fluid is water, carbon dioxide, alcohols, hydrocarbons, or these. A mixed fluid consisting of two or more, or a mixed fluid obtained by adding a reaction substrate to these fluids; (7) the working fluid is a subcritical or supercritical fluid; (8) the preheater It has a function of raising the temperature in 1 second or less. It is set to. The present invention also provides a high-temperature and high-pressure fluid reactor characterized by combining a plurality of the high-temperature and high-pressure fluid reactors described above as one module.

また、本発明は、作動流体を加熱して高温高圧流体とする高温高圧流体製造装置において、作動流体を加熱するための金属細管、及び該金属細管内の作動流体を、直接通電又は電磁誘導方式により間接加熱する手段、を有することを特徴とする高温高圧流体製造装置、である。本高温高圧流体製造装置は、(1)金属細管の内径が、1mm以下であること、(2)金属細管が、単一であること、(3)作動流体が、水、二酸化炭素、アルコール類、炭化水素類、又はこれらの2以上からなる混合流体、もしくはこれらに反応基質を加えた混合流体であること、(4)作動流体が、亜臨界ないし超臨界状態の流体であること、(5)作動流体を、1秒以下で昇温させる機能を有すること、を好ましい態様としている。   The present invention also relates to a high-temperature and high-pressure fluid manufacturing apparatus that heats a working fluid to produce a high-temperature and high-pressure fluid, and a thin metal tube for heating the working fluid, and a direct current or electromagnetic induction system for the working fluid in the thin metal tube A high-temperature and high-pressure fluid production apparatus, characterized in that it has means for indirectly heating by means of. This high-temperature and high-pressure fluid production apparatus has (1) the inner diameter of the metal capillary is 1 mm or less, (2) the metal capillary is single, and (3) the working fluid is water, carbon dioxide, alcohols , Hydrocarbons, or a mixed fluid composed of two or more of these, or a mixed fluid obtained by adding a reaction substrate to these, (4) the working fluid is a subcritical or supercritical fluid, (5) ) Having a function of raising the temperature of the working fluid in 1 second or less is a preferred embodiment.

次に、本発明について更に詳細に説明する。
本発明者らは、マイクロ熱交換器による間接熱交換方式で、超臨界流体反応装置を開発するにあたり、間接熱交換方式による短時間昇温の可能性を検討した。内径0.25mm、od/id=3のモノチューブ中を流れる高圧水の軸方向昇温過程を求めた。管の表面温度を400℃とし、管内部を流れる27℃の高圧水の温度上昇を、軸方向に対して概算した結果を、図1に示す。この結果から、高圧水を、27℃から400℃に加熱するには、約0.01〜0.05秒の昇温時間で十分実施できることが判明し、間接熱交換方式が、高温高圧流体の製造に有用であることが分かった。
Next, the present invention will be described in more detail.
The present inventors examined the possibility of a short-time temperature increase by the indirect heat exchange method when developing a supercritical fluid reaction device by an indirect heat exchange method using a micro heat exchanger. The axial temperature rising process of high-pressure water flowing through a monotube having an inner diameter of 0.25 mm and od / id = 3 was determined. FIG. 1 shows the result of estimating the temperature rise of high-pressure water of 27 ° C. flowing inside the tube with respect to the axial direction with the surface temperature of the tube being 400 ° C. From this result, it was found that heating the high-pressure water from 27 ° C. to 400 ° C. can be sufficiently performed with a temperature rising time of about 0.01 to 0.05 seconds. It has been found useful for manufacturing.

本発明は、こうした結果に基づいて、マイクロ熱交換器による間接熱交換方式で高温高圧流体反応装置及びその製造装置を構築するものであり、直接通電又は電磁誘導方式により、金属細管を発熱させ、その内部の作動流体を間接熱交換により加熱して、急速に高温高圧状態となして、反応を進行させ、次いで、高速に冷却して反応を停止させる、マイクロスケールで反応を遂行することが可能な反応装置である。また、本発明は、高温高圧技術とマイクロリアクタ技術が融合した新しい反応装置であり、金属細管の内径1mm以下にすることにより、管内部における熱及び物質の拡散を短距離で終了させ、作動流体を所定温度に昇温するための昇温時間を1秒以下とすることを可能とする。また、温度の均一化及び複数種の物質の混合を効率的に行なうことができる。   Based on these results, the present invention constructs a high-temperature and high-pressure fluid reaction apparatus and its manufacturing apparatus by an indirect heat exchange method using a micro heat exchanger, and heats a metal thin tube by direct energization or electromagnetic induction, The internal working fluid is heated by indirect heat exchange, rapidly becoming a high temperature and high pressure state, allowing the reaction to proceed, and then cooling at high speed to stop the reaction, allowing the reaction to be performed on a microscale. Reactor. In addition, the present invention is a new reaction apparatus in which high-temperature and high-pressure technology and microreactor technology are combined. By reducing the inner diameter of the metal thin tube to 1 mm or less, the diffusion of heat and substance inside the tube is completed in a short distance, and the working fluid is The temperature raising time for raising the temperature to the predetermined temperature can be set to 1 second or less. Further, the temperature can be made uniform and a plurality of kinds of substances can be mixed efficiently.

本発明における、「作動流体」とは、高温高圧反応場を形成することができる流体であり、例えば、水、二酸化炭素、アルコール類、炭化水素類、又はこれらの2以上からなる混合流体、もしくはこれらに反応基質を加えた混合流体である。また、本発明における、「高温高圧」とは、常温・常圧よりも高温度、及び高圧力である状態を意味し、それらの具体的な範囲は、作動流体の特性、反応基質に適した反応温度・圧力等により適宜選択されるものである。   In the present invention, the “working fluid” is a fluid that can form a high-temperature and high-pressure reaction field, for example, water, carbon dioxide, alcohols, hydrocarbons, or a mixed fluid composed of two or more of these, or It is a mixed fluid obtained by adding a reaction substrate to these. Further, in the present invention, “high temperature and high pressure” means a state of higher temperature and higher pressure than normal temperature and normal pressure, and the specific range thereof is suitable for the characteristics of the working fluid and the reaction substrate. It is appropriately selected depending on the reaction temperature and pressure.

本発明の反応装置を構築するにあたり必要な技術的手段と要素機器としては、例えば、(1)内径が、1.0mm以下であり、高い耐圧性を有する単一の金属細管を、直接通電もしくは電磁誘導方式により発熱させて、その内部を流通する作動流体(純水、水溶液、二酸化炭素等)を急速に加熱して化学反応を開始させる予熱器、(2)予熱器によって所定の反応温度に達した流体の温度を一定に保ち、流体内部での反応を進行させる単一の流路と、その表面からの熱の放散を防ぐための断熱機構もしくは補助的な保温用加熱機構とを備える反応器、(3)流体用フィルター、(4)急速に流体を冷却して反応を停止させるために、単一の金属細管、又は多方継手構造により複数の金属細管に流体を均等分散させ、再度集合させる流路構造を持ち、更に、その外側に冷媒を流すことができるジャケット構造を持つ熱交換器、(5)流体の圧力を下げて常圧に戻す減圧弁、(6)各部分における温度と圧力を計測する温度センサ・圧力センサ、(7)直接通電もしくは電磁誘導方式によって金属細管内部を通過する流体を加熱する予熱器に対して、電力を供給するための、例えば、トランス等の電源装置とその制御装置、及び(8)これら構成部分の相互の結合に使用される、高温高圧に耐える金属ろう付やアーク溶接等の金属接合技術、を挙げることができる。   As technical means and element devices necessary for constructing the reaction apparatus of the present invention, for example, (1) a single metal thin tube having an inner diameter of 1.0 mm or less and having high pressure resistance is directly energized or A preheater that generates heat by electromagnetic induction and rapidly heats the working fluid (pure water, aqueous solution, carbon dioxide, etc.) that circulates inside thereof, and (2) a preheater brings the reaction temperature to a predetermined reaction temperature. Reaction with a single flow path that keeps the temperature of the fluid reached constant and allows the reaction inside the fluid to proceed, and a heat insulation mechanism or auxiliary heat-retaining heating mechanism to prevent heat dissipation from the surface (3) Fluid filter, (4) In order to rapidly cool the fluid and stop the reaction, the fluid is evenly dispersed in a plurality of metal capillaries by a single metal capillary or multi-way joint structure and assembled again The flow path structure In addition, a heat exchanger having a jacket structure that allows a refrigerant to flow outside thereof, (5) a pressure reducing valve that lowers the pressure of the fluid to return to normal pressure, and (6) a temperature at which each part measures temperature and pressure. Sensor / pressure sensor, (7) for supplying power to the preheater that heats the fluid passing through the inside of the metal thin tube by direct energization or electromagnetic induction, for example, a power supply device such as a transformer and its control device, And (8) metal joining techniques such as metal brazing and arc welding that can withstand high temperatures and pressures, which are used to connect these components to each other.

本発明の高温高圧流体反応装置により、作動流体を、加熱・反応・冷却して反応を行うには、最初、常温常圧状態の作動流体が、高圧ポンプによって所定の圧力まで昇圧され、所定の流量で予熱器に圧送される、予熱器を通過することで、作動流体は目標温度にまで急速に加熱されて化学反応が開始され、次に、流体は反応器に入り、その通過時間の間、反応温度が保たれて反応が進行し、反応器を通過した流体は、冷却を目的とした熱交換器に入り、急速に冷却されて反応を停止した後、減圧弁を通過して常温常圧状態に戻り、反応溶液が回収されることにより実施される。   In order to perform the reaction by heating, reacting, and cooling the working fluid with the high-temperature and high-pressure fluid reaction apparatus of the present invention, first, the working fluid in a normal temperature and normal pressure state is pressurized to a predetermined pressure by a high-pressure pump, By passing through the preheater, which is pumped to the preheater at a flow rate, the working fluid is rapidly heated to the target temperature to initiate a chemical reaction, then the fluid enters the reactor and during its transit time Then, the reaction proceeds while the reaction temperature is maintained, and the fluid that has passed through the reactor enters a heat exchanger for cooling, is rapidly cooled to stop the reaction, passes through a pressure reducing valve, and then is kept at normal temperature. It is carried out by returning to the pressure state and collecting the reaction solution.

次に、本発明の高温高圧流体反応装置を構成する、各要素について説明する。
予熱器については、所定の耐圧性能を満足するように選定された、内径/外径比、及び一定の長さを持つ単一の金属細管からなり、その長さは、反応温度、管材金属の電気抵抗値、内部を通過する流体の加熱に必要な電力と伝熱能力、及び内部を通過する流体による圧力損失等を検討することにより決定されるが、例えば、外径1.5〜6.4mm、内径0.2〜1.0mm、長さ200〜600mmの金属細管からなる。この細管の両端には、電極端子部分が接合された構造となっている。この1対の電極端子は、導電性の良好な金属ブスバーによって電源装置と接続され、金属細管に直接通電して、金属細管をジュール加熱することにより、その内部の作動流体を所定の温度に昇温する。このとき、電極端子の接続部分では、金属同士の接触面に大きな電流が流れることから、導電性の良い金属端子、例えば、純銅のブロック等を利用して、接触面積が大きくなるように電極端子全体を挟み込むようにしてブスバーと接続される。通電された金属細管は、ジュール加熱によって電流量に応じて発熱し、内部を流れる作動流体と、内壁を通じた熱交換により流体の加熱が行われる。この場合の金属細管用材料としては、例えば、ステンレススチール、ニッケル合金が好適であり、ニッケル合金、特にインコネル625がより好適である。通電部分は、装置の他の構成部分からは電気的に絶縁されており、電流は予熱器部分に限定して流れる。
Next, each element which comprises the high temperature / high pressure fluid reaction apparatus of this invention is demonstrated.
The preheater is composed of a single metal thin tube having an inner diameter / outer diameter ratio and a certain length selected so as to satisfy a predetermined pressure resistance performance. Although it is determined by examining the electric resistance value, the electric power and heat transfer capacity necessary for heating the fluid passing through the inside, and the pressure loss due to the fluid passing through the inside, for example, the outer diameter is 1.5 to 6. It consists of a thin metal tube having a diameter of 4 mm, an inner diameter of 0.2 to 1.0 mm, and a length of 200 to 600 mm. An electrode terminal portion is joined to both ends of the thin tube. The pair of electrode terminals are connected to the power supply device by a metal bus bar having good conductivity, and the metal thin tube is energized directly to heat the metal thin tube, thereby raising the working fluid therein to a predetermined temperature. Warm up. At this time, since a large current flows in the contact surface between the metals at the connection portion of the electrode terminal, the electrode terminal is made to have a large contact area by using a metal terminal having good conductivity, for example, a pure copper block. It is connected to the bus bar so as to sandwich the whole. The energized metal thin tube generates heat according to the amount of current by Joule heating, and the fluid is heated by exchanging heat with the working fluid flowing through the inner wall. In this case, as the metal thin tube material, for example, stainless steel and nickel alloy are preferable, and nickel alloy, particularly Inconel 625 is more preferable. The energized portion is electrically insulated from the other components of the apparatus, and the current flows only in the preheater portion.

また、本発明の加熱手段としては、金属細管を、電磁誘導コイルの内部に置くことで誘導渦電流を発生させる誘導加熱方式が可能である。その場合は、金属細管の材料として強磁性材料を選択する必要があるが、例えば、鉄、ステンレススチール、ニッケル合金等が好適であり、ニッケル合金、特に、インコネル625がより好適である。   In addition, as the heating means of the present invention, an induction heating method in which an induction eddy current is generated by placing a metal thin tube inside an electromagnetic induction coil is possible. In that case, it is necessary to select a ferromagnetic material as the material of the metal thin tube, but, for example, iron, stainless steel, nickel alloy or the like is preferable, and nickel alloy, particularly Inconel 625 is more preferable.

なお、本発明の金属細管は、内部を高圧にした場合にそれに耐える耐圧性、内部を高温にした場合にそれに耐える耐熱性、及び内部で使用する物質あるいは反応後に生成する物質に対する耐食性を備えていなければならないが、金属細管の加熱手段に応じてその材質が選択される。金属細管を耐圧にするには、例えば、金属細管の材質を強度の優れたものにするか、金属細管を耐圧性の材料で囲繞する。また、金属細管を耐熱性、耐食性にするには、例えば、金属細管の材質を耐熱性かつ耐食性のものとすることが好適であるが、積層あるいは表面処理により耐食性を付与してもよい。   The metal thin tube of the present invention has pressure resistance that can withstand high pressure inside, heat resistance that can withstand high temperature inside, and corrosion resistance to substances used inside or generated after the reaction. Although it must be, the material is selected according to the heating means of the metal thin tube. In order to make the metal thin tube pressure resistant, for example, the material of the metal thin tube is made excellent in strength, or the metal thin tube is surrounded by a pressure resistant material. In order to make the metal thin tube heat resistant and corrosion resistant, for example, it is preferable that the material of the metal thin tube is heat resistant and corrosion resistant, but corrosion resistance may be imparted by lamination or surface treatment.

また、本発明は、金属細管の過度の温度上昇を防ぐため、その表面温度を測定し、投入電力の制御を行う機構を備えている。発熱部分からの熱の放散を防ぐために、金属細管の外部は適当な断熱材もしくは断熱機構によって被覆される。断熱構造体は、金属細管の内部を加熱又は冷却する際にエネルギーの損失を防ぐためのものであって、様々の形態を採用することができる。断熱構造体は、金属細管の外側に、熱媒体(熱媒)を流して金属細管の内部を加熱又は保温するための、ジャケットパイプ等として機能させても良い。断熱構造体の材質は、ジャケットパイプ等として機能させる場合には、熱媒体に対し安定でなければならないものの、熱伝導率が小さい材質であればよく、耐久性からは、セラミックス、例えば、ジルコニアセラミックス、が好適である。更に、断熱構造体を高強度の材料等で覆う構造としてもよい。   Further, the present invention includes a mechanism for measuring the surface temperature and controlling the input power in order to prevent an excessive temperature rise of the metal thin tube. In order to prevent heat dissipation from the heat generating portion, the outside of the metal thin tube is covered with a suitable heat insulating material or heat insulating mechanism. The heat insulating structure is for preventing energy loss when the inside of the metal thin tube is heated or cooled, and various forms can be adopted. The heat insulating structure may function as a jacket pipe or the like for flowing or heating the inside of the metal thin tube by flowing a heat medium (heat medium) outside the metal thin tube. The material of the heat insulating structure must be stable to the heat medium when functioning as a jacket pipe or the like, but may be a material having a low thermal conductivity. From the viewpoint of durability, ceramics such as zirconia ceramics may be used. Are preferred. Further, the heat insulating structure may be covered with a high-strength material or the like.

本発明の反応器としては、所望の耐圧性能を満足するように選定された内径/外径比及び一定の長さを持つ単一の流路からなり、その長さは、流体流量及び目標反応時間に応じて選定されるが、例えば、外径1.5〜6.4mm、内径0.2〜1.0mm、長さ200〜600mmの金属細管からなる。また、流体を所定の反応温度に保つことを目的として、様々な形態の断熱構造もしくは補助的な保温用加熱機構を備えるが、反応管全体にシリカウール等の断熱材を巻くことによって簡便な断熱構造とすることができる。   The reactor of the present invention comprises a single flow path having an inner diameter / outer diameter ratio and a certain length selected so as to satisfy a desired pressure resistance performance, and the length is determined based on the fluid flow rate and the target reaction. Although it is selected according to time, for example, it is composed of a metal thin tube having an outer diameter of 1.5 to 6.4 mm, an inner diameter of 0.2 to 1.0 mm, and a length of 200 to 600 mm. In addition, for the purpose of maintaining the fluid at a predetermined reaction temperature, various forms of heat insulation structures or auxiliary heat-retaining heating mechanisms are provided, but simple heat insulation can be achieved by winding a heat insulating material such as silica wool around the entire reaction tube. It can be a structure.

本発明の冷却器については、所定の耐圧性能を満足するように選定された内径/外径比及び一定の長さを持つ、単一金属細管、又は複数本の金属細管の集合体であり、通常、内径0.2〜1.0mm、長さ200〜2000mmの金属製の細管からなる。金属細管は、単一の細管から構成されていて、十分な冷却能力を有する。一方、多方継手構造により流体を複数の流路に均等に分割させて急速冷却を行い、再び多方継手構造により集合させる構造を持たせてもよい。こうした流路は、例えば、冷媒が流れる冷却ジャケット内に設置されており、全体として向流型熱交換器となっている。多方継手構造を採用すると、例えば、5本の金属細管を用い、その両端を、多方継手構造に嵌入して集合している多方継手は、内部中心軸に1本の微細穴が形成されており、5本の金属細管の内部流路は、この微細穴の一端に集束して内部の流路が流通している。冷却器入口で、5本の金属流路に均等に分割された高温高圧流体は、個々の金属細管内を流れる間に、金属細管の周囲を流れる冷媒(例えば、水等)と熱交換を行って常温程度の温度まで急速に冷却される。その後出口側で再び合流して減圧弁に導かれる。   The cooler of the present invention is a single metal thin tube or an assembly of a plurality of metal thin tubes having an inner diameter / outer diameter ratio and a certain length selected so as to satisfy a predetermined pressure resistance performance, Usually, it consists of a thin metal tube having an inner diameter of 0.2 to 1.0 mm and a length of 200 to 2000 mm. The metal thin tube is composed of a single thin tube and has a sufficient cooling capacity. On the other hand, a structure may be provided in which the fluid is equally divided into a plurality of flow paths by the multi-way joint structure, rapid cooling is performed, and the multi-way joint structure is assembled again. Such a flow path is installed, for example, in a cooling jacket through which a refrigerant flows, and is a countercurrent heat exchanger as a whole. If a multi-way joint structure is adopted, for example, a multi-way joint that uses five metal capillaries and is assembled by fitting both ends into the multi-way joint structure has one fine hole in the inner central axis. The internal flow paths of the five metal thin tubes are converged at one end of the fine holes and the internal flow paths are in circulation. The high-temperature and high-pressure fluid equally divided into five metal flow paths at the inlet of the cooler exchanges heat with the refrigerant (for example, water) flowing around the metal thin tubes while flowing in the individual metal thin tubes. And rapidly cooled to a temperature of about room temperature. Thereafter, they merge again at the outlet side and are led to the pressure reducing valve.

本発明では、作動流体を所定の圧力に加圧し予熱器に送る加圧ポンプ、圧力温度監視装置、加熱電源及びそれらの制御装置としては、通常の超臨界反応技術分野等において使用される機器類が適宜選定して使用される。   In the present invention, as a pressurizing pump, a pressure temperature monitoring device, a heating power source, and their control devices that pressurize a working fluid to a predetermined pressure and send it to a preheater, devices used in a normal supercritical reaction technical field, etc. Is appropriately selected and used.

本発明は、間接熱交換器により、作動流体の急速加熱、及び急速冷却を実現した、高温高圧流体反応装置に関するものであり、従来の直接熱交換方式による、高温高圧流体又は冷却用流体を直接注入する方式と比較して、処理流体の量が最小となり、プロセスがシンプルでマイクロスケールの反応装置を構築することが可能になる。また、本発明の高温高圧流体反応装置は、モジュールとして、並列及び/又は直列に、複数を組み合わせることによりナンバリングアップ構成をした高温高圧流体反応装置を構築することができる。   The present invention relates to a high-temperature and high-pressure fluid reaction apparatus that realizes rapid heating and rapid cooling of a working fluid by an indirect heat exchanger, and directly applies a high-temperature and high-pressure fluid or a cooling fluid by a conventional direct heat exchange method. Compared with the injection method, the amount of processing fluid is minimized, and it becomes possible to construct a micro-scale reaction apparatus with a simple process. Moreover, the high temperature / high pressure fluid reaction apparatus of this invention can construct | assemble the high temperature / high pressure fluid reaction apparatus which carried out the numbering-up structure by combining several in parallel and / or in series as a module.

以上の説明のように、本発明による高温高圧流体反応装置は、(1)高い耐圧性を有する金属細管を直列的に結合させた構造を持ち、間接加熱による急速な熱交換により、流体の高速加熱・冷却を実現できるマイクロスケールの化学反応装置として、簡潔で汎用性の高い構造となっている、(2)内径の小さな金属細管を用いることにより、内部流体の単位体積あたりの表面積を大きくすることができる、(3)短時間の化学反応を行わせることができる、(4)微細な流路構造により、水の熱力学的臨界点を超えた高温高圧条件を迅速に作り、効率よく温度制御と化学反応を行わせることが可能である、(5)円形の金属細管は耐圧性能を実現するための必要最小限の構造体積と、熱の放散面積を持つ構造であることから、装置全体の立ち上げ時間を短縮することができる、(6)被加熱流体のエネルギー増加量と投入電力の比で定義されるエネルギー利用効率を極めて高くすることができる、(7)装置全体をコンパクト化できる、(8)装置の内容積が小さいので安全性について優れている、という格別の効果が奏される。   As described above, the high-temperature and high-pressure fluid reactor according to the present invention has a structure in which (1) metal capillaries having high pressure resistance are connected in series, and high-speed fluid exchange is achieved by rapid heat exchange by indirect heating. As a micro-scale chemical reaction device that can realize heating and cooling, it has a simple and versatile structure. (2) By using a metal thin tube with a small inner diameter, the surface area per unit volume of the internal fluid is increased. (3) The chemical reaction can be performed in a short time. (4) The high temperature and high pressure conditions exceeding the thermodynamic critical point of water can be quickly created and the temperature can be efficiently achieved by the fine channel structure. Control and chemical reaction can be performed. (5) The circular metal capillaries have the minimum structural volume necessary to achieve pressure resistance and a structure with a heat dissipation area. Standing (6) The energy utilization efficiency defined by the ratio of the increase in energy of the fluid to be heated and the input power can be made extremely high. (7) The entire apparatus can be made compact. 8) Since the internal volume of the apparatus is small, a special effect that it is excellent in safety is achieved.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。以下の実施例では、水又は二酸化炭素を作動流体として高温高圧の超臨界状態を実現するための、全体を高温強度と化学的安定性に優れたニッケル合金で製作した一例を示したが、これは、必ずしも、作動流体及び材質を限定するものではなく、これらは、本装置の使用条件・使用目的等により適宜選択されることは言うまでもない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples. In the following examples, an example was shown in which the whole was made of a nickel alloy having excellent high-temperature strength and chemical stability to achieve a high-temperature and high-pressure supercritical state using water or carbon dioxide as a working fluid. However, the working fluid and the material are not necessarily limited, and it is needless to say that these are appropriately selected depending on the use condition and purpose of use of the apparatus.

本実施例では、単一の金属細管及びその両端に通電電極を有する予熱器、断熱材による保温機能を持つ反応器、及び単一の金属細管の外部を冷却ジャケットで覆った冷却器、を有する超臨界水反応装置を構築した。その装置の構成の全体を図2に示す。水タンク内から、高圧ポンプにより、圧力22.1MPa以上に加圧された水溶液(水と反応基質)を、予熱器に輸送し、予熱器内では、直接通電するジュール加熱により、水の臨界温度374℃以上に加熱した。こうして超臨界状態となった水溶液を、反応器内に導入して、超臨界状態を維持し、反応を進行させた。反応を終了した水溶液は、冷却器により間接熱交換され、常温付近に冷却された後、減圧バルブにより常圧に減圧して回収した。本実施例は、この他に、各部分の圧力と温度を計測するためのセンサを適宜配置し、反応装置の作動状態を適宜監視し、各種機器を制御することにより適切な反応条件を維持した。予熱器、反応器、及び冷却器については、次に詳述する。   In this embodiment, a single metal thin tube and a preheater having current-carrying electrodes at both ends thereof, a reactor having a heat insulating function by a heat insulating material, and a cooler in which the outside of the single metal thin tube is covered with a cooling jacket are provided. A supercritical water reactor was constructed. The entire configuration of the apparatus is shown in FIG. An aqueous solution (water and reaction substrate) pressurized to a pressure of 22.1 MPa or more by a high-pressure pump is transported from the water tank to the preheater, and in the preheater, the critical temperature of water by Joule heating that is directly energized Heated to 374 ° C or higher. The aqueous solution thus brought into the supercritical state was introduced into the reactor, the supercritical state was maintained, and the reaction was allowed to proceed. After the reaction, the aqueous solution was indirectly heat-exchanged by a cooler, cooled to near room temperature, and then recovered by reducing the pressure to normal pressure using a pressure reducing valve. In addition to this, in this example, sensors for measuring the pressure and temperature of each part were appropriately disposed, the operation state of the reaction apparatus was appropriately monitored, and appropriate reaction conditions were maintained by controlling various devices. . The preheater, the reactor, and the cooler will be described in detail below.

(予熱器)
本実施例では、外径1.6mm、内径0.25mmのニッケル合金(インコネル625)製の細管で、その長さは210mmの金属細管を有する予熱器を使用した。金属細管の両端には、直径10mm、長さ30mmのニッケル合金(MA718)製の電極端子部分が接合された構造となっており、その中心には、直径0.5mmの微細穴が貫通しており、前述の金属細管内の流路と通じる構造とした。この微細穴の他端は予熱器の上下流の配管と接続した。この1対の電極端子は、電源装置から伸ばされた導電性の良好な金属ブスバーによって電源装置と接続し、通電した。通電された金属細管は、ジュール加熱によって電流量に応じて発熱し、内部を流れる作動流体と、内壁を通じた熱交換により流体の加熱を行った。
(Preheater)
In this example, a preheater having a metal tube having a length of 210 mm and a nickel tube (Inconel 625) having an outer diameter of 1.6 mm and an inner diameter of 0.25 mm was used. It has a structure in which a nickel alloy (MA718) electrode terminal portion having a diameter of 10 mm and a length of 30 mm is joined to both ends of the metal thin tube, and a fine hole having a diameter of 0.5 mm passes through the center. Therefore, a structure communicating with the flow path in the above-described metal thin tube was adopted. The other end of this fine hole was connected to the upstream and downstream piping of the preheater. The pair of electrode terminals were connected to the power supply device by a metal bus bar having good conductivity extended from the power supply device, and were energized. The energized metal thin tube generated heat according to the amount of current by Joule heating, and heated the fluid by exchanging heat with the working fluid flowing through the inner wall.

(反応器)
反応器は、外径3.18mm、内径0.5mmのニッケル合金(インコネル625)製の金属細管からなり、その長さは350mmとした。また、反応器全体にシリカウールの断熱材を巻くことによって簡便な断熱構造として内部の作動流体の温度を維持した。
(Reactor)
The reactor was composed of a metal thin tube made of nickel alloy (Inconel 625) having an outer diameter of 3.18 mm and an inner diameter of 0.5 mm, and its length was 350 mm. Further, the temperature of the internal working fluid was maintained as a simple heat insulating structure by winding a silica wool heat insulating material around the reactor.

(冷却器)
冷却器は、外径1.6mm、内径0.25mm、長さは1000mmのニッケル合金(インコネル625)製の、単一の金属細管よりなり、その周囲を流れる冷媒(例えば、水)と熱交換を行って、常温程度の温度まで急速に冷却した。
(Cooler)
The cooler is composed of a single metal thin tube made of a nickel alloy (Inconel 625) having an outer diameter of 1.6 mm, an inner diameter of 0.25 mm, and a length of 1000 mm, and exchanges heat with a refrigerant (for example, water) flowing around the cooler. And rapidly cooled to a temperature of about room temperature.

本実施例は、加熱手段として、金属細管を電磁誘導コイル内部に置くことで誘導渦電流を発生させる誘導加熱方式を採用した以外は、実施例1と同様に反応装置を構築した。金属細管の材料としては、強磁性材料を選択する必要があり、ニッケル合金を採用した。また、金属細管の過度の温度上昇を防ぐために、その表面温度を測定し、投入電力の制御を行う機構を設置した。発熱部分からの熱の放散を防ぐために、金属細管の外部は適当な断熱材もしくは断熱機構によって被覆した。   In this example, a reaction apparatus was constructed in the same manner as in Example 1 except that an induction heating method in which an induction eddy current was generated by placing a metal thin tube inside the electromagnetic induction coil was employed as the heating means. As a material for the metal thin tube, it is necessary to select a ferromagnetic material, and a nickel alloy was adopted. In addition, in order to prevent an excessive temperature rise of the metal thin tube, a mechanism for measuring the surface temperature and controlling the input power was installed. In order to prevent heat dissipation from the heat generating portion, the outside of the metal thin tube was covered with a suitable heat insulating material or heat insulating mechanism.

本実施例では、複数の流路に作動流体を均等に分割させて急速冷却を行い、再び多方継手構造により集合させる構造とした冷却器を使用した以外は、実施例1と同様にして、反応装置を構築した。この金属細管集合体は、冷媒が流れる冷却ジャケット内に設置されており、全体として向流型熱交換器となり、外径1.6mm、内径0.25mm、長さは210mmのニッケル合金(インコネル625)製の細管を5本用い、両端を、多方継手構造に嵌入して集合した。多方継手は、ニッケル合金(MA718)製で構成した。多方継手構造の内部中心軸には、1本の微細穴加工(内径0.5mm)が形成されており、5本の金属細管の内部流路はこの微細穴の一端に集束して内部の流路が流通している。冷却器入口で5本の金属細管に均等に分割された高温高圧流体は、個々の金属細管内を流れる間に常温付近まで冷却された。   In this example, the reaction was carried out in the same manner as in Example 1 except that a cooling device having a structure in which the working fluid was evenly divided into a plurality of flow paths to perform rapid cooling and to collect again by a multi-way joint structure was used. A device was constructed. This metal thin tube assembly is installed in a cooling jacket through which a refrigerant flows, and becomes a countercurrent heat exchanger as a whole. A nickel alloy (Inconel 625) having an outer diameter of 1.6 mm, an inner diameter of 0.25 mm, and a length of 210 mm. ) Using 5 thin tubes, both ends were fitted into a multi-way joint structure and assembled. The multi-way joint was made of nickel alloy (MA718). The inner central axis of the multi-way joint structure is formed with one fine hole machining (inner diameter 0.5 mm), and the internal flow paths of the five metal capillaries are focused on one end of the fine hole and the internal flow The road is in circulation. The high-temperature and high-pressure fluid equally divided into five metal capillaries at the inlet of the cooler was cooled to near room temperature while flowing through the individual metal capillaries.

本実施例では、予熱器と反応器を一体化した、超臨界水反応装置を構築した。その装置全体の構成は、図3に示す。この反応装置は、上流側の予熱器部分では、高圧で輸送された水を、金属細管に直接通電するジュール熱により臨界点以上の温度に加熱し、次いで、下流部分の反応器部分では、反応温度を維持するための、直接通電による加熱を行った。こうして、予熱器及び反応器をともに加熱することにより、反応器内の反応温度及び圧力を超臨界状態に維持することが容易となった。   In this example, a supercritical water reactor in which a preheater and a reactor were integrated was constructed. The overall configuration of the apparatus is shown in FIG. This reactor heats water transported at a high pressure in the upstream preheater part to a temperature above the critical point by Joule heat that is directly applied to the metal thin tube, and then reacts in the reactor part in the downstream part. Heating by direct energization was performed to maintain the temperature. Thus, it became easy to maintain the reaction temperature and pressure in the reactor in a supercritical state by heating both the preheater and the reactor.

本実施例では、超臨界流体製造装置を構築した。外径1.6mm、内径0.25mmのニッケル合金(インコネル625)製の細管で、その長さは210mmの金属細管を使用した。この金属細管の両端には、直径10mm、長さ30mmのニッケル合金(MA718)製の電極端子部分が接合された構造となっており、その中心には、直径0.5mmの微細穴が貫通しており、前述の金属細管内の流路と通じる構造とした。この1対の電極端子には、電源装置から伸ばされた導電性の良好な金属ブスバーによって電源装置と接続し、通電した。通電された金属細管は、ジュール加熱によって電流量に応じて発熱し、管内部を流れる作動流体と、内壁を通じた熱交換により流体の加熱が行われる構造とした。高圧ポンプで圧力22.1MPa以上に加圧された水を、本装置の細管内に誘導し、金属細管に通電するジュール熱により、金属細管内の水は、温度375℃以上に加熱され、本装置内で、超臨界水に変換され、器外の反応装置に供給された。また、高圧ポンプで圧力7.4MPa以上に加圧された液化二酸化炭素を、本装置の細管内に誘導し、金属細管に通電するジュール熱により、金属細管内の液化二酸化炭素は、温度31℃以上に加熱され、本装置内で、超臨界二酸化炭素に変換され、器外の反応装置に供給された。   In this example, a supercritical fluid production apparatus was constructed. A thin tube made of nickel alloy (Inconel 625) having an outer diameter of 1.6 mm and an inner diameter of 0.25 mm, and a length of 210 mm was used. This metal thin tube has a structure in which an electrode terminal portion made of a nickel alloy (MA718) having a diameter of 10 mm and a length of 30 mm is joined to both ends of the metal thin tube. Therefore, a structure communicating with the flow path in the above-described metal thin tube was adopted. The pair of electrode terminals were connected to the power supply device by a metal bus bar having good conductivity extended from the power supply device and energized. The energized metal thin tube generates heat according to the amount of current by Joule heating, and the fluid is heated by exchanging heat through the inner wall with the working fluid flowing inside the tube. Water that has been pressurized to a pressure of 22.1 MPa or higher by a high-pressure pump is introduced into the thin tube of the apparatus, and the water in the metal thin tube is heated to a temperature of 375 ° C. or higher by Joule heat that is applied to the metal thin tube. In the apparatus, it was converted to supercritical water and supplied to an external reactor. Further, the liquefied carbon dioxide pressurized to 7.4 MPa or more by the high pressure pump is introduced into the thin tube of the apparatus, and the liquefied carbon dioxide in the metal thin tube is heated to 31 ° C. by Joule heat applied to the metal thin tube. It was heated as described above, converted into supercritical carbon dioxide in this apparatus, and supplied to the reaction apparatus outside the apparatus.

本実施例では、本発明に係る高温高圧流体反応装置をモジュールとし、それを並列に組に合わせるために縦に積み重ねて、ナンバリングアップした高温高圧マイクロ反応装置とした。具体的には、実施例1の反応装置を5個、水平にして縦方向に積み重ねて、両端部において金属細管を集合させて、上流側は高圧ポンプに、下流側は単一の減圧弁に接続した。こうすることにより、単一モジュールシステムで、3kg/hの処理量としていた場合、5モジュールの並列化処理により、15kg/hの処理量とすることができた。また、本発明の高温高圧流体反応装置を横に組み合わせることにより、同様のナンバリングアップ構成が可能であった。   In this example, the high-temperature and high-pressure fluid reaction apparatus according to the present invention was used as a module, and a high-temperature and high-pressure micro-reaction apparatus was stacked and numbered up in order to be combined in parallel. Specifically, five reactors of Example 1 were stacked horizontally and vertically, and metal thin tubes were assembled at both ends, and the upstream side was a high pressure pump and the downstream side was a single pressure reducing valve. Connected. As a result, when the processing amount was 3 kg / h in the single module system, the processing amount was 15 kg / h by the parallel processing of five modules. Moreover, the same numbering-up configuration was possible by combining the high-temperature and high-pressure fluid reactor of the present invention sideways.

実施例3における装置構成において、実際に、水の熱力学的臨界点を超える圧力温度条件を設定して実施した装置試験の結果について述べる。作動流体を純水とし、予熱器によって圧力40MPa、室温近傍の純水を400℃まで加熱し、更に冷却器によって常温まで冷却する。高圧ポンプによって圧送される純水の流量を変化させて、装置各部の圧力と温度と消費電力を記録することにより、装置の加熱冷却能力を評価した。表1にその試験結果の例を示す。試験結果は、予熱器に投入される電力のおよそ75%から94%が、内部を通過する流体のエネルギーに効率的に転換されていることを表している。この流体のエネルギー増加分を投入電力で除して求められるエネルギー利用効率はきわめて高く、本装置の省エネルギー性が非常に高いことが示された。表2は、伝熱能力の高低を示す指標である、総括伝熱係数、予熱器の通過時間、流体の昇温速度を概算した結果であり、極めて高い伝熱能力によって0.1秒以下の極めて高速な流体加熱を実現できていることが明らかになった。 同様にして、表3に、冷却器の性能を概算した結果を示す。予熱器と同様に高い伝熱能力と大きな冷却速度が得られ、通過する高温高圧水が、0.5秒以内で常温まで冷却されていることが明らかになった。これらの結果から分かるように、本発明による高温高圧流体反応装置が、装置として望ましい1秒以下の短時間加熱・冷却過程と、並びに、高速な制御を実現していることは明らかである。更に、エネルギー利用効率が高いことから、省エネルギー性の高い高温高圧流体製造装置としての能力を持つことが示された。   In the apparatus configuration in Example 3, the result of the apparatus test actually performed by setting the pressure temperature condition exceeding the thermodynamic critical point of water will be described. The working fluid is pure water, pure water near room temperature is heated to 400 ° C. by a preheater, and further cooled to room temperature by a cooler. The heating / cooling capability of the apparatus was evaluated by changing the flow rate of pure water pumped by the high-pressure pump and recording the pressure, temperature, and power consumption of each part of the apparatus. Table 1 shows an example of the test results. The test results show that approximately 75% to 94% of the power input to the preheater is efficiently converted to fluid energy passing through the interior. The energy utilization efficiency required by dividing the fluid energy increase by the input power is extremely high, indicating that the energy saving performance of this device is very high. Table 2 is a result of estimating the overall heat transfer coefficient, the passage time of the preheater, and the heating rate of the fluid, which are indices indicating the level of the heat transfer capacity, and is 0.1 seconds or less due to the extremely high heat transfer capacity. It became clear that extremely fast fluid heating could be realized. Similarly, Table 3 shows the result of estimating the performance of the cooler. As with the preheater, high heat transfer capacity and a large cooling rate were obtained, and it was revealed that the passing high-temperature and high-pressure water was cooled to room temperature within 0.5 seconds. As can be seen from these results, it is clear that the high-temperature and high-pressure fluid reaction apparatus according to the present invention realizes a short heating / cooling process of 1 second or less, which is desirable for the apparatus, and high-speed control. Furthermore, since the energy utilization efficiency is high, it has been shown that it has the capability as a high-temperature and high-pressure fluid production apparatus with high energy saving performance.

Figure 2006159165
Figure 2006159165

Figure 2006159165
Figure 2006159165

Figure 2006159165
Figure 2006159165

以上述べたように、本発明は、例えば、水、二酸化炭素、アルコール等の熱力学的臨界点を超える高温高圧条件での化学反応を行わせることができる、高温高圧流体反応装置に係るものであり、例えば、直径1.0mm以下の内径を持ち、耐圧性を有する金属細管を、直線的もしくはその一部において並列的に接合して、簡素な構成を持つ汎用性の高い高温高圧流体反応装置に係るものである。本発明の超臨界流体反応装置は、内部を流通させる作動流体を水もしくは水溶液に限定するものでなく、その他の流体を用いた高温高圧反応装置として広く利用することが可能である。また、超臨界流体反応による高温高圧条件下での化学プロセス技術、エネルギー化技術及び廃棄物分解技術等の分野で利用することができ、化学プラントへの適用が可能である。また、本発明の高温高圧流体反応装置の予熱器は、高温高圧の流体製造装置として各種の試験研究等に供することができる。また、本発明の高圧流体反応装置をモジュールとして、並列及び/又は直列に組み合わせることにより、処理量及び/又は機能を増大させた高温高圧マイクロリアクター装置を構成することが可能であるため、超臨界反応装置以外に、汎用の高温高圧マイクロリアクター装置として利用することが可能である。   As described above, the present invention relates to a high-temperature and high-pressure fluid reactor capable of performing a chemical reaction under a high-temperature and high-pressure condition exceeding a thermodynamic critical point such as water, carbon dioxide, and alcohol. Yes, for example, a highly versatile high-temperature high-pressure fluid reaction apparatus having a simple configuration by joining metal capillaries having an inner diameter of 1.0 mm or less in diameter and having pressure resistance in a straight line or in part in parallel. It is related to. The supercritical fluid reactor of the present invention is not limited to water or an aqueous solution as a working fluid flowing through the inside, and can be widely used as a high-temperature and high-pressure reactor using other fluids. Further, it can be used in fields such as chemical process technology under high temperature and high pressure conditions by supercritical fluid reaction, energy conversion technology and waste decomposition technology, and can be applied to chemical plants. Moreover, the preheater of the high-temperature / high-pressure fluid reaction apparatus of the present invention can be used for various test studies as a high-temperature / high-pressure fluid production apparatus. In addition, since the high-pressure fluid reactor of the present invention can be combined as a module in parallel and / or in series, a high-temperature and high-pressure microreactor device with an increased throughput and / or function can be configured. In addition to the reaction apparatus, it can be used as a general-purpose high-temperature high-pressure microreactor apparatus.

予熱器の通電加熱部分流路内を通過する高圧水の高速昇温過程の推算結果を示す。The estimation result of the high-speed temperature rising process of the high-pressure water which passes the inside of the energization heating partial flow path of a preheater is shown. 本発明による、予熱器、反応器、熱交換器(冷却器)から構成される高温高圧流体反応装置を示す。1 shows a high-temperature and high-pressure fluid reactor comprising a preheater, a reactor, and a heat exchanger (cooler) according to the present invention. 本発明による予熱器と反応器を一体化して構成される高温高圧流体反応装置を示す。1 shows a high-temperature and high-pressure fluid reactor constituted by integrating a preheater and a reactor according to the present invention.

Claims (16)

予熱器、反応器、及び冷却器を配設した高温高圧流体反応装置において、金属細管で構成された予熱器、及び該金属細管内の作動流体を、直接通電又は電磁誘導方式により間接加熱する手段、を有することを特徴とする高温高圧流体反応装置。   In a high-temperature and high-pressure fluid reaction apparatus provided with a preheater, a reactor, and a cooler, a preheater composed of a metal thin tube and means for indirectly heating the working fluid in the metal thin tube by direct energization or electromagnetic induction. And a high-temperature and high-pressure fluid reactor. 予熱器と反応器を、別体又は一体に構成した請求項1に記載の高温高圧流体反応装置。   The high-temperature and high-pressure fluid reactor according to claim 1, wherein the preheater and the reactor are configured separately or integrally. 金属細管の内径が、1mm以下である請求項1又は2に記載の高温高圧流体反応装置。   The high-temperature and high-pressure fluid reactor according to claim 1 or 2, wherein the inner diameter of the metal thin tube is 1 mm or less. 予熱器が、単一の金属細管で構成されている請求項1から3のいずれかに記載の高温高圧流体反応装置。   The high-temperature high-pressure fluid reactor according to any one of claims 1 to 3, wherein the preheater is composed of a single metal thin tube. 冷却器が、単一の金属細管、又は多方継手構造により複数の金属細管を集合した構造の金属細管で構成されている請求項1から4のいずれかに記載の高温高圧流体反応装置。   The high-temperature and high-pressure fluid reactor according to any one of claims 1 to 4, wherein the cooler is composed of a single metal thin tube or a metal thin tube having a structure in which a plurality of metal thin tubes are assembled by a multi-way joint structure. 冷却器が、金属細管内の作動流体を冷媒により間接的に冷却する間接熱交換器である請求項5に記載の高温高圧流体反応装置。   The high-temperature and high-pressure fluid reaction apparatus according to claim 5, wherein the cooler is an indirect heat exchanger that indirectly cools the working fluid in the metal thin tube with a refrigerant. 作動流体が、水、二酸化炭素、アルコール類、炭化水素類、又はこれらの2以上からなる混合流体、もしくはこれらに反応基質を加えた混合流体である請求項1から6のいずれかに記載の高温高圧流体反応装置。   The high temperature according to any one of claims 1 to 6, wherein the working fluid is water, carbon dioxide, alcohols, hydrocarbons, a mixed fluid composed of two or more thereof, or a mixed fluid obtained by adding a reaction substrate to these fluids. High pressure fluid reactor. 作動流体が、亜臨界ないし超臨界状態の流体である請求項7に記載の高温高圧流体反応装置。   8. The high-temperature and high-pressure fluid reactor according to claim 7, wherein the working fluid is a fluid in a subcritical or supercritical state. 予熱器が、作動流体を1秒以下で昇温させる機能を有する請求項1から8のいずれかに記載の高温高圧流体反応装置。   The high-temperature and high-pressure fluid reactor according to any one of claims 1 to 8, wherein the preheater has a function of raising the temperature of the working fluid in 1 second or less. 請求項1から9のいずれかに記載の高温高圧流体反応装置を1モジュールとして、複数組み合わせたことを特徴とする高温高圧流体反応装置。   A high-temperature and high-pressure fluid reactor according to any one of claims 1 to 9, wherein a plurality of the high-temperature and high-pressure fluid reactors are combined as one module. 作動流体を加熱して高温高圧流体とする高温高圧流体製造装置において、作動流体を加熱するための金属細管、及び該金属細管内の作動流体を、直接通電又は電磁誘導方式により間接加熱する手段、を有することを特徴とする高温高圧流体製造装置。   In a high-temperature and high-pressure fluid manufacturing apparatus that heats a working fluid to produce a high-temperature and high-pressure fluid, a metal thin tube for heating the working fluid, and means for indirectly heating the working fluid in the metal thin tube by direct energization or electromagnetic induction, A high-temperature and high-pressure fluid manufacturing apparatus characterized by comprising: 金属細管の内径が、1mm以下である請求項11に記載の高温高圧流体製造装置。   The high-temperature and high-pressure fluid manufacturing apparatus according to claim 11, wherein the inner diameter of the metal thin tube is 1 mm or less. 金属細管が、単一である請求項11又は12のいずれかに記載の高温高圧流体製造装置。   The high-temperature and high-pressure fluid manufacturing apparatus according to claim 11, wherein the metal thin tube is a single one. 作動流体が、水、二酸化炭素、アルコール類、炭化水素類、又はこれらの2以上からなる混合流体、もしくはこれらに反応基質を加えた混合流体である請求項11から13のいずれかに記載の高温高圧流体製造装置。   The high temperature according to any one of claims 11 to 13, wherein the working fluid is water, carbon dioxide, alcohols, hydrocarbons, a mixed fluid composed of two or more thereof, or a mixed fluid obtained by adding a reaction substrate to these fluids. High pressure fluid production equipment. 作動流体が、亜臨界ないし超臨界状態の流体である請求項14に記載の高温高圧流体製造装置。   The high-temperature and high-pressure fluid manufacturing apparatus according to claim 14, wherein the working fluid is a fluid in a subcritical or supercritical state. 高温高圧流体製造装置が、作動流体を1秒以下で昇温させる機能を有する請求項11から15に記載の高温高圧流体製造装置。   The high-temperature and high-pressure fluid production apparatus according to claim 11, wherein the high-temperature and high-pressure fluid production apparatus has a function of raising the temperature of the working fluid in 1 second or less.
JP2004358904A 2004-12-10 2004-12-10 High temperature and high pressure fluid reactor and manufacturing equipment Expired - Fee Related JP5137051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004358904A JP5137051B2 (en) 2004-12-10 2004-12-10 High temperature and high pressure fluid reactor and manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004358904A JP5137051B2 (en) 2004-12-10 2004-12-10 High temperature and high pressure fluid reactor and manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2006159165A true JP2006159165A (en) 2006-06-22
JP5137051B2 JP5137051B2 (en) 2013-02-06

Family

ID=36661744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004358904A Expired - Fee Related JP5137051B2 (en) 2004-12-10 2004-12-10 High temperature and high pressure fluid reactor and manufacturing equipment

Country Status (1)

Country Link
JP (1) JP5137051B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1977821A2 (en) 2007-03-29 2008-10-08 Fujifilm Corporation Micro fluid device
KR100897137B1 (en) 2007-11-19 2009-05-14 한국원자력연구원 Autoclave system
JP2012193110A (en) * 2008-03-28 2012-10-11 Hanwha Chemical Corp Carbon nanotube, and continuous surface treating apparatus of the same
KR101328841B1 (en) 2011-05-09 2013-11-13 동국대학교 산학협력단 Preparation Method of Tetraacetylethylenediamine(TEAD) Using Continuous Process
WO2019093130A1 (en) * 2017-11-07 2019-05-16 株式会社神戸製鋼所 Mixing apparatus
WO2019093131A1 (en) * 2017-11-07 2019-05-16 株式会社神戸製鋼所 Mixing apparatus
WO2020203060A1 (en) * 2019-04-01 2020-10-08 株式会社神戸製鋼所 Kneading device and additive supplying method used in same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048198A (en) * 1996-04-26 1998-02-20 Fraunhofer Ges Method and apparatus for continuously measuring gaseous oxide product from process water, drink water and/or waste water
JP2002113475A (en) * 2000-10-11 2002-04-16 Fuji Photo Film Co Ltd Method for decomposing organic compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048198A (en) * 1996-04-26 1998-02-20 Fraunhofer Ges Method and apparatus for continuously measuring gaseous oxide product from process water, drink water and/or waste water
JP2002113475A (en) * 2000-10-11 2002-04-16 Fuji Photo Film Co Ltd Method for decomposing organic compound

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1977821A2 (en) 2007-03-29 2008-10-08 Fujifilm Corporation Micro fluid device
EP1977821A3 (en) * 2007-03-29 2009-09-09 Fujifilm Corporation Micro fluid device
US8381798B2 (en) 2007-03-29 2013-02-26 Fujifilm Corporation Micro fluid device having piping to control fluid temperature
KR100897137B1 (en) 2007-11-19 2009-05-14 한국원자력연구원 Autoclave system
JP2012193110A (en) * 2008-03-28 2012-10-11 Hanwha Chemical Corp Carbon nanotube, and continuous surface treating apparatus of the same
KR101328841B1 (en) 2011-05-09 2013-11-13 동국대학교 산학협력단 Preparation Method of Tetraacetylethylenediamine(TEAD) Using Continuous Process
KR20200057079A (en) * 2017-11-07 2020-05-25 가부시키가이샤 고베 세이코쇼 Mixing device
KR102252669B1 (en) * 2017-11-07 2021-05-20 가부시키가이샤 고베 세이코쇼 Mixing device
JP2019084752A (en) * 2017-11-07 2019-06-06 株式会社神戸製鋼所 Mixing device
JP2019084499A (en) * 2017-11-07 2019-06-06 株式会社神戸製鋼所 Mixing device
WO2019093130A1 (en) * 2017-11-07 2019-05-16 株式会社神戸製鋼所 Mixing apparatus
KR20200057080A (en) * 2017-11-07 2020-05-25 가부시키가이샤 고베 세이코쇼 Mixing device
TWI698275B (en) * 2017-11-07 2020-07-11 日商神戶製鋼所股份有限公司 Mixing device
US11944944B2 (en) 2017-11-07 2024-04-02 Kobe Steel, Ltd. Mixing apparatus
US11931709B2 (en) 2017-11-07 2024-03-19 Kobe Steel, Ltd. Apparatus for mixing materials dissolved in a high-pressure working fluid
TWI712449B (en) * 2017-11-07 2020-12-11 日商神戶製鋼所股份有限公司 Mixing device
WO2019093131A1 (en) * 2017-11-07 2019-05-16 株式会社神戸製鋼所 Mixing apparatus
KR102374416B1 (en) * 2017-11-07 2022-03-16 가부시키가이샤 고베 세이코쇼 mixing device
TWI739366B (en) * 2019-04-01 2021-09-11 日商神戶製鋼所股份有限公司 Kneading device and additive supply method in the kneading device
JP7160743B2 (en) 2019-04-01 2022-10-25 株式会社神戸製鋼所 Kneading device and additive supply method in this
JP2020168755A (en) * 2019-04-01 2020-10-15 株式会社神戸製鋼所 Kneading device and additive supply method in the same
WO2020203060A1 (en) * 2019-04-01 2020-10-08 株式会社神戸製鋼所 Kneading device and additive supplying method used in same

Also Published As

Publication number Publication date
JP5137051B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
JP4963542B2 (en) High temperature high pressure microreactor
KR102389843B1 (en) Outer fin heat exchange tube and its use method
JP5137051B2 (en) High temperature and high pressure fluid reactor and manufacturing equipment
JP2008221093A (en) Direct energization device
CN105964198A (en) Micro reactor with bamboo joint-shaped micro structure
CN105627814A (en) Intermediate medium heat exchanger used for supercritical water oxidation system
CN105170053A (en) Strong-corrosion-resistant type tubular reactor
Ferrouillat et al. Open loop thermal control of exothermal chemical reactions in multifunctional heat exchangers
CN213578759U (en) Heating furnace body with water-cooling jacket sleeve
JP2018085226A (en) Electromagnetic induction heating device
KR101669103B1 (en) Heat exchanger
CN213824722U (en) Continuous flow micro-reactor
CN105817188A (en) Metal small channel reactor
KR101083633B1 (en) Temp-emplifier using mixture of temp-treated water
JP2007232338A (en) Double tube type heat exchanger
CN109520354B (en) Reaction/mixing/heat exchange tube and reactor
CN103464077A (en) Esterification reaction kettle
JP3337438B2 (en) Supercritical fluid generation heating device
JP3040371B2 (en) Heat exchange device and device using the same
CN215187455U (en) Pipeline heater
He et al. Effect of stabilizer EDTA on the thermal hazard of green synthesis process of adipic acid and development of microchannel continuous flow process
CN113230993B (en) Device for preparing dilute acid or mixed acid by utilizing RTB reactor, method and application thereof
CN205308311U (en) Environmental protection electricity heating jacket reation kettle
CN104174345A (en) Oilfield auxiliary chemical production equipment system
US20180274817A1 (en) Inline fluid heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110413

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees