JP2006159129A - Fluorine-containing water treatment method - Google Patents

Fluorine-containing water treatment method Download PDF

Info

Publication number
JP2006159129A
JP2006159129A JP2004356745A JP2004356745A JP2006159129A JP 2006159129 A JP2006159129 A JP 2006159129A JP 2004356745 A JP2004356745 A JP 2004356745A JP 2004356745 A JP2004356745 A JP 2004356745A JP 2006159129 A JP2006159129 A JP 2006159129A
Authority
JP
Japan
Prior art keywords
fluorine
added
water
flocculant
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004356745A
Other languages
Japanese (ja)
Other versions
JP4631420B2 (en
Inventor
Hajime Nakano
肇 中野
Takahiro Kawakatsu
孝博 川勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2004356745A priority Critical patent/JP4631420B2/en
Publication of JP2006159129A publication Critical patent/JP2006159129A/en
Application granted granted Critical
Publication of JP4631420B2 publication Critical patent/JP4631420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorine-containing water treatment method using a calcium fluoride method which achieves a reduction in chemical consumption, reduction in the amount of generated sludge, and an improvement in quality of treated water. <P>SOLUTION: In the fluorine-containing water treatment method, after adding slaked lime to raw water, an aluminum chloride-based coagulant with high acidity is added, and the mixture is subjected to solid-liquid separation after neutralization. The addition of the aluminum chloride-based coagulant with high acidity can return water to be treated, alkalified by the addition of slaked lime, to the vicinity of neutral, which enables the reduction in the amount of used neutralizing agent, such as sulfuric acid. When an acidic AC-based coagulant is used, ionic fluorine is coprecipitated with its aluminum component and removed to improve the quality of treated water. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はフッ素含有水の処理方法に係り、特にフッ化カルシウム法によるフッ素含有水の処理において、少ない薬品使用量で効率的な処理を行って高水質の処理水を得る方法に関する。   The present invention relates to a method for treating fluorine-containing water, and more particularly to a method for obtaining high-quality treated water by performing efficient treatment with a small amount of chemical use in treatment of fluorine-containing water by the calcium fluoride method.

半導体部品製造におけるシリコンウェハ製造工程から排出されるフッ素含有排水、ステンレス鋼板製造工程から排出される酸洗排水、アルミニウム表面処理排水、フッ酸製造排水、肥料製造排水、ゴミ焼却排水等のフッ素含有排水は、排水基準を満たすようにフッ素の除去処理を行った後排出する必要がある。フッ素含有排水については、その排水基準が平成13年度にフッ素濃度15mg/Lから8mg/Lに強化されたことに伴い、処理水のフッ素濃度をより一層低減することができる処理技術の開発が望まれている。   Fluorine-containing wastewater discharged from silicon wafer manufacturing process in semiconductor parts manufacturing, pickling wastewater discharged from stainless steel plate manufacturing process, aluminum surface treatment wastewater, hydrofluoric acid manufacturing wastewater, fertilizer manufacturing wastewater, waste incineration wastewater, etc. Needs to be discharged after fluorine removal treatment to meet the drainage standards. Regarding fluorine-containing wastewater, the development of treatment technology that can further reduce the fluorine concentration of treated water is expected as the wastewater standard was strengthened from 15 mg / L to 8 mg / L in 2001. It is rare.

従来、フッ素含有水の処理方法として、フッ化カルシウム法と高度処理としての水酸化物共沈法とが知られており、図4に示す如く、一段目にフッ化カルシウム法で処理を行った後、二段目に水酸化物共沈法で高度処理を行う二段処理法も知られている(非特許文献1)。即ち、フッ化カルシウム法では、フッ化カルシウムの溶解度以下に処理水のフッ素濃度を低減することができず、排水基準を満たすことはできないため、このような二段処理が採用されている。   Conventionally, calcium fluoride method and hydroxide coprecipitation method as advanced treatment are known as treatment methods for fluorine-containing water, and as shown in FIG. Thereafter, a two-stage treatment method is also known in which advanced treatment is performed by the hydroxide coprecipitation method in the second stage (Non-Patent Document 1). That is, in the calcium fluoride method, the fluorine concentration of the treated water cannot be reduced below the solubility of calcium fluoride, and the waste water standard cannot be satisfied, so such a two-stage treatment is adopted.

フッ化カルシウム法は、原水槽11からの原水(フッ素含有水)にカルシウム化合物を添加した後(第1反応槽12)、中和剤を添加してpH中性付近に調整し(第2反応槽13)、フッ素とカルシウムとの反応によりフッ化カルシウムの不溶性塩を生成させ、高分子凝集剤を添加して凝集処理し(凝集槽14)、その後固液分離する(沈殿槽15)方法である。この方法において、カルシウム化合物としては一般に消石灰が用いられており、中和剤としては、通常、安価な硫酸が用いられているが、塩酸が用いられる場合もある。   In the calcium fluoride method, after adding a calcium compound to the raw water (fluorine-containing water) from the raw water tank 11 (first reaction tank 12), a neutralizer is added to adjust the pH to around neutral (second reaction) In the tank 13), an insoluble salt of calcium fluoride is produced by the reaction between fluorine and calcium, and a polymer flocculant is added to perform a coagulation treatment (coagulation tank 14), followed by solid-liquid separation (precipitation tank 15). is there. In this method, slaked lime is generally used as the calcium compound, and inexpensive sulfuric acid is usually used as the neutralizing agent, but hydrochloric acid may also be used.

水酸化物共沈法は、アルミニウムが水酸化アルミニウムとして沈殿する際の共沈作用を利用するものであり、一般的には、高度処理に用いられている。この方法では、原水(図4では一段目の処理水)にポリ塩化アルミニウム(PAC)を添加した後(第1反応槽16)、中和剤で中和し(第2反応槽17)、高分子凝集剤を添加して凝集処理し(凝集槽18)、その後固液分離する(沈殿槽19)。この方法では、PACを添加することによって処理水pHは酸性になるが、中性付近での処理が最も効率良く行えるため、中和のためのアルカリ剤として苛性ソーダなどを添加している。
「公害防止の技術と法規」第288頁〜第289頁
The hydroxide coprecipitation method uses a coprecipitation action when aluminum is precipitated as aluminum hydroxide, and is generally used for advanced treatment. In this method, after adding polyaluminum chloride (PAC) to the raw water (the first-stage treated water in FIG. 4) (first reaction tank 16), it is neutralized with a neutralizing agent (second reaction tank 17). A molecular flocculant is added for agglomeration treatment (aggregation tank 18) and then solid-liquid separation (precipitation tank 19). In this method, the pH of the treated water becomes acidic by adding PAC, but caustic soda or the like is added as an alkali agent for neutralization because treatment near neutrality can be most efficiently performed.
“Pollution Prevention Technology and Regulations” pp. 288-289

フッ素含有水に消石灰を添加した後、硫酸、塩酸などの中和剤を用いてpH中性に調整するフッ化カルシウム法では、フッ素の除去性を高めて処理水質を向上させるために、消石灰を多量に添加すると、中和に必要な中和剤量も多くなり、薬品コストが高くつく。また、中和剤として特に硫酸を用いた場合には、消石灰と硫酸との反応で石膏を生成し、フッ素含有水に添加された消石灰がフッ素除去に有効に使用されなくなり、また、石膏の生成で発生汚泥量が増大するといった問題もあった。   After adding slaked lime to fluorine-containing water, the calcium fluoride method, which uses a neutralizing agent such as sulfuric acid or hydrochloric acid to adjust the pH to neutral, increases the removability of fluorine and improves the quality of treated water. If a large amount is added, the amount of neutralizing agent necessary for neutralization increases, and the chemical cost is high. In addition, when sulfuric acid is used as the neutralizing agent, gypsum is produced by the reaction of slaked lime and sulfuric acid, and the slaked lime added to the fluorine-containing water is not effectively used for fluorine removal. There was also a problem that the amount of generated sludge increased.

また、フッ化カルシウム法と水酸化物共沈法との二段処理により処理水質の向上を図ることができるが、この場合には、装置設備が大型化し、特に設置面積の大きい沈殿槽を二槽必要とし、好ましくない。   In addition, the quality of the treated water can be improved by two-stage treatment of the calcium fluoride method and the hydroxide coprecipitation method. In this case, however, the equipment becomes larger and two precipitation tanks with particularly large installation areas are required. It requires a tank and is not preferred.

本発明は上記従来の問題点を解決し、フッ化カルシウム法によるフッ素含有水の処理において、薬品使用量の低減、発生汚泥量の低減、処理水質の向上を図るフッ素含有水の処理方法を提供することを目的とする。   The present invention solves the above-mentioned conventional problems and provides a method for treating fluorine-containing water that reduces the amount of chemical used, reduces the amount of generated sludge, and improves the quality of treated water in the treatment of fluorine-containing water by the calcium fluoride method. The purpose is to do.

本発明(請求項1)のフッ素含有水の処理方法は、フッ素含有水を処理する方法において、原水に消石灰を添加した後、酸性度が高い塩化アルミニウム系凝集剤を添加し、中和後、固液分離することを特徴とする。   In the method for treating fluorine-containing water of the present invention (Claim 1), in the method for treating fluorine-containing water, after adding slaked lime to raw water, an aluminum chloride flocculant having high acidity is added, and after neutralization, It is characterized by solid-liquid separation.

請求項2のフッ素含有水の処理方法は、請求項1において、酸性度が高い塩化アルミニウム系凝集剤が、pH4以下であることを特徴とする。   The method for treating fluorine-containing water according to claim 2 is characterized in that, in claim 1, the aluminum chloride flocculant having a high acidity has a pH of 4 or less.

請求項3のフッ素含有水の処理方法は、請求項2において、酸性度が高い塩化アルミニウム系凝集剤が、LACであることを特徴とする。   The fluorine-containing water treatment method according to claim 3 is characterized in that, in claim 2, the aluminum chloride-based flocculant having high acidity is LAC.

請求項4のフッ素含有水の処理方法は、請求項1ないし3のいずれか1項において、酸性度が高い塩化アルミニウム系凝集剤を、フッ素濃度15mg/l以下の希薄排水で稀釈した後、消石灰を添加した原水に添加することを特徴とする。   The method for treating fluorine-containing water according to claim 4 is the method according to any one of claims 1 to 3, wherein the aluminum chloride flocculant having high acidity is diluted with dilute waste water having a fluorine concentration of 15 mg / l or less, and then slaked lime. It is characterized by being added to the raw water to which is added.

請求項5のフッ素含有水の処理方法は、請求項1ないし4のいずれか1項において、固液分離により得られた分離汚泥を前記消石灰と混合して原水に添加することを特徴とする。   The method for treating fluorine-containing water according to claim 5 is characterized in that in any one of claims 1 to 4, the separated sludge obtained by solid-liquid separation is mixed with the slaked lime and added to the raw water.

本発明では、酸性度が高い塩化アルミニウム系凝集剤(以下「酸性AC系凝集剤」と称す場合がある。)を添加することにより、消石灰の添加によってアルカリ性になった被処理水を中性〜弱アルカリ性に戻すことができ、このことにより、硫酸などの中和剤の使用量を削減することができる。また、中和剤として硫酸を用いた場合には、前述の如く、石膏生成による消石灰の消費や汚泥量の増大の問題があったが、本発明では酸性AC系凝集剤の添加により中和剤使用量を低減できることから、このような問題を起こすことのない硫酸添加量で、十分にpH中性に調整することが可能となり、石膏生成による消石灰の消費や汚泥量の増大の問題が防止される。   In the present invention, by adding an aluminum chloride-based flocculant having high acidity (hereinafter sometimes referred to as “acidic AC-based flocculant”), the water to be treated that has become alkaline by the addition of slaked lime is neutral to It can return to weak alkalinity, and this can reduce the usage-amount of neutralizing agents, such as a sulfuric acid. In addition, when sulfuric acid is used as the neutralizing agent, as described above, there are problems of consumption of slaked lime due to the formation of gypsum and an increase in the amount of sludge. In the present invention, the neutralizing agent is added by adding an acidic AC flocculant. Since the amount used can be reduced, the amount of sulfuric acid added without causing such problems can be adjusted to a sufficient pH neutrality, and the problems of consumption of slaked lime due to gypsum formation and increase in the amount of sludge are prevented. The

しかも、酸性AC系凝集剤であれば、そのアルミニウム成分により、イオン状のフッ素を共沈させて除去することにより、処理水質を高めることもできる。従って、従来の水酸化物共沈法による高度処理を不要とすることができ、この場合には、処理効率を向上させると共に高度処理のための沈殿槽等を削減して装置設置面積を大幅に低減することができる。   And if it is an acidic AC type coagulant | flocculant, the water quality can also be improved by coprecipitating and removing ionic fluorine with the aluminum component. Therefore, it is possible to eliminate the need for advanced treatment by the conventional hydroxide coprecipitation method. In this case, the processing efficiency is improved and the settling tank for advanced treatment is reduced to greatly increase the equipment installation area. Can be reduced.

従って、本発明によれば、少ない薬品使用量でフッ素含有水を効率的に処理し、発生汚泥量を低減した上で、フッ素を高度に除去し、高水質の処理水を得ることができる。   Therefore, according to the present invention, it is possible to efficiently treat fluorine-containing water with a small amount of chemical use, reduce the amount of generated sludge, and to remove fluorine to a high degree to obtain high-quality treated water.

本発明において、酸性AC系凝集剤は、pH4以下の凝集剤であることが好ましく(請求項2)、とりわけ、電解アルミニウムの廃棄物から生産されるLAC:Liquid Aluminium Chlorideが好ましい(請求項3)。   In the present invention, the acidic AC flocculant is preferably a flocculant having a pH of 4 or less (Claim 2), and in particular, LAC: Liquid Aluminum Chloride produced from electrolytic aluminum waste is preferred (Claim 3). .

このような酸性AC系凝集剤は、フッ素濃度15mg/l以下の希薄排水で稀釈した後、消石灰を添加した原水に添加しても良く、この場合には、他の希薄排水の同時処理を行った上で、良好な処理効果を得ることができる(請求項4)。   Such an acidic AC flocculant may be diluted with diluted wastewater having a fluorine concentration of 15 mg / l or less and then added to raw water to which slaked lime has been added. In this case, other diluted wastewater is simultaneously treated. In addition, a good treatment effect can be obtained (claim 4).

また、消石灰は、固液分離により得られた分離汚泥の一部と混合して原水に添加しても良く、この場合には、汚泥の結晶性の向上、沈降性の向上、含水率の低下を図ることができ、より一層処理水質を良好なものとすると共に、発生汚泥量を低減することができる(請求項5)。   In addition, slaked lime may be mixed with a part of the separated sludge obtained by solid-liquid separation and added to the raw water. In this case, the crystallinity of the sludge is improved, the sedimentation is improved, and the water content is reduced. As a result, the quality of treated water can be further improved, and the amount of generated sludge can be reduced (claim 5).

以下に本発明のフッ素含有水の処理方法の実施の形態を詳細に説明する。   Hereinafter, embodiments of the method for treating fluorine-containing water of the present invention will be described in detail.

まず、本発明で用いる酸性AC系凝集剤について説明する。   First, the acidic AC flocculant used in the present invention will be described.

本発明で用いる酸性AC系凝集剤は、pH4以下、特にpH2.5以下、とりわけpH1.5以下、好ましくはアルミニウム濃度が8重量%以下の条件において、pH4以下、特にpH2.5以下、とりわけpH1.5以下の強酸性の塩化アルミニウム系凝集剤であることが好ましい。このpH値が4を超えるものであると、これを添加することによる中和作用を十分に得ることができず、消石灰添加後の中和剤としての酸添加量の低減効果を十分に得ることができない。また、pHが4を超えるときは、アルミニウムイオンが高分子様の形態をとるのに対し、pHが4以下のときにはアルミニウムイオンが分散するようになる。分散状のアルミニウムイオンは添加時に網目状に凝集するため、処理効率が向上する。なお、ここで酸性AC系凝集剤のpHとは、酸性AC系凝集剤を原水に添加する直前において測定した値であり、本発明では、このときにおいて、アルミニウム濃度8重量%以下でpH4以下を示すものであることが好ましい。   The acidic AC flocculant used in the present invention has a pH of 4 or less, particularly 2.5 or less, particularly 1.5 or less, and preferably pH 4 or less, particularly 2.5 or less, especially pH 1 under the condition that the aluminum concentration is 8% by weight or less. It is preferably a strongly acidic aluminum chloride-based flocculant of .5 or less. If this pH value exceeds 4, the neutralization effect due to the addition of this cannot be sufficiently obtained, and the effect of reducing the acid addition amount as a neutralizing agent after the addition of slaked lime is sufficiently obtained. I can't. Further, when the pH exceeds 4, the aluminum ions take a polymer-like form, whereas when the pH is 4 or less, the aluminum ions are dispersed. Dispersed aluminum ions aggregate in a network at the time of addition, so that the processing efficiency is improved. Here, the pH of the acidic AC-based flocculant is a value measured immediately before the acidic AC-based flocculant is added to the raw water. In the present invention, the pH is 4 or less at an aluminum concentration of 8% by weight or less. It is preferable that it is shown.

本発明で用いる酸性AC系凝集剤はまた、カルシウムと不溶性塩を形成するアニオンを多く含まないものであることが好ましく、特に硫酸を多く含まず、硫酸含有量2000mg/L以下であって、水以外の成分中の硫酸の割合が50重量%以下であるものが好ましい。これは、消石灰と酸性AC系凝集剤中の硫酸との反応で、消石灰が石膏の生成に消費されることにより、消石灰とフッ素との反応が阻害され、また石膏の生成で発生汚泥量が増大することを防止するためである。なお、本発明において「塩化アルミニウム系」とは、水以外の成分中の塩化アルミニウムの割合が50重量%以上であるものをさす。   The acidic AC flocculant used in the present invention is also preferably one that does not contain a large amount of anions that form insoluble salts with calcium, and particularly contains no sulfuric acid and has a sulfuric acid content of 2000 mg / L or less, What the ratio of the sulfuric acid in components other than is 50 weight% or less is preferable. This is a reaction between slaked lime and sulfuric acid in an acidic AC flocculant. As slaked lime is consumed for the production of gypsum, the reaction between slaked lime and fluorine is inhibited, and the amount of generated sludge increases due to the production of gypsum. This is to prevent this. In the present invention, “aluminum chloride-based” means that the proportion of aluminum chloride in components other than water is 50% by weight or more.

本発明で用いる酸性AC系凝集剤としては、塩化アルミニウムを10%程度含み、かつ、酸性度の高いLACが好ましい。   The acidic AC flocculant used in the present invention is preferably LAC containing about 10% aluminum chloride and having high acidity.

なお、無機凝集剤として一般に用いられているポリ塩化アルミニウム(PAC)も、本発明に係る酸性AC系凝集剤に該当するが、PACはアルミニウム濃度8重量%の条件でpH4〜5を示す。これに対して、LACは、PACよりも水酸化アルミニウムの割合が少なく、ほぼ100%が塩化アルミニウムであり、水等で希釈してアルミニウム濃度8重量%としたときのpHは約0.5と強酸性であるため、本発明に有効である。ただし、PACであっても、塩酸、硫酸等の鉱酸を加えてアルミニウム濃度が8重量%以下の条件においてpH4以下、特にpH2.5以下、とりわけpH1.5以下となるように調整することにより、本発明に好適に用いることができるようになる。また、LACとPACとを混合して酸性AC系凝集剤としても良い。   Polyaluminum chloride (PAC) generally used as an inorganic flocculant also corresponds to the acidic AC flocculant according to the present invention, but PAC exhibits a pH of 4 to 5 under the condition of an aluminum concentration of 8% by weight. On the other hand, LAC has a lower proportion of aluminum hydroxide than PAC, almost 100% is aluminum chloride, and the pH when diluted with water to an aluminum concentration of 8% by weight is about 0.5. Since it is strongly acidic, it is effective in the present invention. However, even in the case of PAC, by adding mineral acids such as hydrochloric acid and sulfuric acid, and adjusting the aluminum concentration to 8 pH or less, pH 4 or less, particularly pH 2.5 or less, especially pH 1.5 or less. Thus, it can be suitably used in the present invention. Alternatively, LAC and PAC may be mixed to form an acidic AC-based flocculant.

このような酸性AC系凝集剤は、その取り扱い上、希釈して添加しても良い。ここで水溶液の調製に用いる水は、市水、工水、或いは本発明による処理で得られる処理水のいずれであっても良く、後述の如く、他の排水であっても良いが、pH4以下の水溶液として添加することが、高い中和作用を得る上で好ましい。   Such an acidic AC flocculant may be diluted and added for handling. Here, the water used for the preparation of the aqueous solution may be city water, industrial water, or treated water obtained by the treatment according to the present invention, and may be other waste water as described later. It is preferable to add as an aqueous solution in order to obtain a high neutralizing action.

本発明においては、フッ素含有水に消石灰を添加した後、このような酸性AC系凝集剤を添加し、必要に応じて中和剤(酸)を添加して中和し、その後好ましくは高分子凝集剤を添加して凝集処理した後固液分離する。   In the present invention, after adding slaked lime to fluorine-containing water, such an acidic AC flocculant is added, and neutralized by adding a neutralizing agent (acid) as necessary, and then preferably a polymer After the coagulant is added and coagulated, solid-liquid separation is performed.

消石灰の添加量は、原水(フッ素含有水)中のフッ素濃度によって決定され、原水のフッ素濃度に対して反応当量の1〜10倍、特に1.1〜3倍程度とすることが好ましい。消石灰の添加量が少な過ぎると原水中のフッ素を十分に除去し得ず、多過ぎると消石灰のみならず、その後の中和のための酸添加量も増大し、好ましくない。本発明では、前述の如く、酸性AC系凝集剤の添加により中和剤としての酸の添加量を低減することができる。このため、中和剤として硫酸を用いる場合の石膏生成による消石灰の無駄な消費の問題がないため、消石灰の添加量を反応当量よりも大過剰に添加することなく、フッ素含有水中のフッ素を効率的に除去することができる。   The amount of slaked lime added is determined by the fluorine concentration in the raw water (fluorine-containing water), and is preferably 1 to 10 times the reaction equivalent to the fluorine concentration of the raw water, particularly about 1.1 to 3 times. If the amount of slaked lime added is too small, the fluorine in the raw water cannot be removed sufficiently, and if it is too large, not only slaked lime but also the amount of acid added for subsequent neutralization will increase. In the present invention, as described above, the addition amount of the acid as the neutralizing agent can be reduced by the addition of the acidic AC flocculant. For this reason, there is no problem of wasteful consumption of slaked lime due to the formation of gypsum when sulfuric acid is used as a neutralizing agent, so that the amount of slaked lime added is not excessively larger than the reaction equivalent, and fluorine in fluorine-containing water is efficiently used. Can be removed.

原水に消石灰を添加した後の液は通常pH10.0〜13.0程度のアルカリ性となるため、次いで、この液に酸性AC系凝集剤と中和剤としての酸を添加してpH6.0〜7.5、好ましくはpH約7.0の中性にpH調整する。   Since the liquid after adding slaked lime to the raw water is usually alkaline with a pH of about 10.0 to 13.0, an acidic AC flocculant and an acid as a neutralizing agent are then added to this liquid to a pH of 6.0 to 6.0. The pH is adjusted to a neutral value of 7.5, preferably about 7.0.

ここで、酸性AC系凝集剤の添加量が少な過ぎると、酸性AC系凝集剤を添加することによる本発明の効果を十分に得ることができず、多過ぎると汚泥量が増大し、また、処理水のpHが下がりすぎることから、酸性AC系凝集剤の添加量は、酸性AC系凝集剤添加前のフッ素濃度(mg/L)に対して5〜100倍、特に5〜20倍程度とすることが好ましい。   Here, if the addition amount of the acidic AC flocculant is too small, the effect of the present invention by adding the acidic AC flocculant cannot be sufficiently obtained, and if it is too much, the amount of sludge increases, Since the pH of the treated water is too low, the addition amount of the acidic AC flocculant is 5 to 100 times, particularly about 5 to 20 times the fluorine concentration (mg / L) before the addition of the acidic AC flocculant. It is preferable to do.

中和剤としての酸としては、従来と同様、塩酸、硫酸等の鉱酸、好ましくは硫酸が用いられ、酸は液pHが中性となるような量添加される。   As the acid as the neutralizing agent, mineral acids such as hydrochloric acid and sulfuric acid, preferably sulfuric acid are used, and the acid is added in such an amount that the liquid pH becomes neutral.

なお、酸性AC系凝集剤と酸とは同時に添加しても良く、別々に添加しても良い。また、酸性AC系凝集剤と酸とを予め混合して添加することもできる。別々に添加する場合、酸性AC系凝集剤添加後に酸を添加してpH調整することが好ましい。   Note that the acidic AC-based flocculant and the acid may be added simultaneously or separately. Moreover, an acidic AC type flocculant and an acid can be mixed and added in advance. When added separately, it is preferable to adjust the pH by adding an acid after the addition of the acidic AC flocculant.

酸性AC系凝集剤添加後は、所定時間、例えば5〜20分程度攪拌して凝集処理することが好ましい。   After the addition of the acidic AC type flocculant, it is preferable to agglomerate by stirring for a predetermined time, for example, about 5 to 20 minutes.

酸性AC系凝集剤と酸を添加してpH中性に調整し、所定時間凝集処理した後は、好ましくは、更に高分子凝集剤を添加して凝集処理する。この高分子凝集剤としては、ポリアクリルアミド部分加水分解物、ポリアクリル酸ナトリウム、ポリビニルアミジン等の1種又は2種以上を用いることができ、その添加量は、処理対象原水の水質や用いる高分子凝集剤によっても異なるが、通常0.1〜5mg/L程度である。   After adjusting to pH neutrality by adding an acidic AC-based flocculant and an acid, and aggregating for a predetermined time, preferably, a polymer flocculant is further added for aggregating. As the polymer flocculant, one or more of polyacrylamide partial hydrolyzate, sodium polyacrylate, polyvinylamidine and the like can be used, and the amount added is the quality of raw water to be treated and the polymer used. Although it varies depending on the flocculant, it is usually about 0.1 to 5 mg / L.

凝集処理液は次いで固液分離して処理水を得る。この固液分離には沈殿槽、膜分離装置等を用いることができる。   The coagulation treatment liquid is then subjected to solid-liquid separation to obtain treated water. For this solid-liquid separation, a precipitation tank, a membrane separation device, or the like can be used.

本発明において、酸性AC系凝集剤は、前述の如く、希釈したのち添加することができるが、この水は必ずしもpH中性のものである必要はなく、他系統の排水であっても良い。ただし、この希釈水は、酸性AC系凝集剤を溶解した状態で、酸性AC系凝集剤による中和効果を損なうことがないようなpH及び量であることが必要であり、用いる排水量にもよるが、pH10以下の排水であることが好ましく、このような排水で溶解した酸性AC系凝集剤液のpHが6以下、好ましくはpH4程度であることが好ましい。また、この排水は、フッ素を含むものであっても良いが、その含有量は15mg/L以下の希薄排水であることが好ましい。このような希薄排水に酸性AC系凝集剤を混合して用いることにより、酸性AC系凝集剤の凝集作用をこの希薄排水に作用させることもでき、フッ素含有水と希薄排水とを同時に効率的に処理することができる。   In the present invention, the acidic AC flocculant can be added after dilution as described above, but this water does not necessarily have to be neutral in pH, and may be drainage from other systems. However, this diluted water needs to have a pH and an amount so as not to impair the neutralization effect by the acidic AC flocculant in a state in which the acidic AC flocculant is dissolved, and depends on the amount of wastewater used. However, it is preferable that the wastewater has a pH of 10 or less, and the pH of the acidic AC flocculant solution dissolved in such wastewater is preferably 6 or less, and preferably about pH 4. Moreover, although this waste water may contain a fluorine, it is preferable that the content is a diluted waste water of 15 mg / L or less. By mixing an acidic AC flocculant with such a diluted wastewater, the aggregating action of the acidic AC flocculant can be applied to the diluted wastewater. Can be processed.

また、固液分離により得られた汚泥の一部を原水側に返送し、返送汚泥の種晶効果で汚泥の結晶性の向上、含水率の低下、沈降性の向上を図ることもできる。この場合、返送汚泥を消石灰と混合し、混合物(以下「改質汚泥」と称す場合がある。)を原水に添加するようにすることもでき、これにより、より一層の処理水質の向上と発生汚泥量の低減を図ることができる。   In addition, a part of the sludge obtained by solid-liquid separation can be returned to the raw water side, and the crystallinity of the sludge can be improved, the water content can be reduced, and the sedimentation can be improved by the seed crystal effect of the returned sludge. In this case, the returned sludge can be mixed with slaked lime, and the mixture (hereinafter sometimes referred to as “modified sludge”) can be added to the raw water, thereby further improving the quality and generation of treated water. The amount of sludge can be reduced.

なお、この場合の返送汚泥量は、少な過ぎると汚泥返送を行うことによる上記効果を十分に得ることができず、多過ぎると沈殿槽の負荷が増大するため、生成する汚泥量に対して5〜30倍程度とし、特に消石灰と返送汚泥とを混合する場合、改質汚泥のpHが10以上であるような量とすることが好ましい。   In addition, if the amount of returned sludge in this case is too small, the above-described effect by performing sludge return cannot be sufficiently obtained. If the amount is too large, the load on the settling tank increases. About 30 times, especially when slaked lime and return sludge are mixed, it is preferable to set the amount so that the pH of the modified sludge is 10 or more.

このような本発明の方法によれば、酸性AC系凝集剤により、中和作用のみならず、凝集作用をも得ることができ、また、前述の如く、共沈作用によるフッ素除去効果も得ることができる。このため、上記固液分離により得られる処理水は高度にフッ素が除去されたものであり、従来法のように水酸化物共沈法による高度処理を行うことなく、一段の処理で図4に示す従来の二段処理による処理水と同等、あるいはそれ以上の水質の処理水を得ることができる。   According to such a method of the present invention, the acidic AC flocculant can provide not only a neutralizing action but also an aggregating action, and as described above, a fluorine removing effect by a coprecipitation action can also be obtained. Can do. For this reason, the treated water obtained by the above-mentioned solid-liquid separation is one from which fluorine has been removed to a high degree, and without performing the advanced treatment by the hydroxide coprecipitation method as in the conventional method, FIG. It is possible to obtain treated water having a water quality equivalent to or higher than the treated water by the conventional two-stage treatment shown.

本発明の方法では、従来のフッ化カルシウム法と比べて硫酸等の酸添加量は大幅に低減できるものの、酸性AC系凝集剤が必要となるが、このように二段処理を必要とせず、従って二段目の処理で用いるPAC等の凝集剤を必要とせず、また、二段目で添加するPACよりも少ない酸性AC系凝集剤量で良く、この結果、全体の薬品使用量を大幅に低減し、発生汚泥量を低減した上で良好な処理水を得ることができる。   In the method of the present invention, although the amount of acid such as sulfuric acid can be greatly reduced as compared with the conventional calcium fluoride method, an acidic AC-based flocculant is required, but thus two-stage treatment is not required. Therefore, a flocculating agent such as PAC used in the second stage treatment is not required, and the amount of acidic AC type flocculant is smaller than that of the PAC added in the second stage. As a result, the total chemical use amount is greatly increased. It is possible to obtain good treated water after reducing the amount of generated sludge.

次に、このような酸性AC系凝集剤を用いる本発明のフッ素含有水の処理方法の具体的な処理法を、図面を参照して説明する。図1〜3は本発明のフッ素含有水の処理方法の実施の形態を示す系統図である。   Next, a specific treatment method of the fluorine-containing water treatment method of the present invention using such an acidic AC flocculant will be described with reference to the drawings. 1 to 3 are system diagrams showing an embodiment of the method for treating fluorine-containing water of the present invention.

図1の方法では、原水槽1の原水を第1反応槽2に導入して消石灰を添加して反応させてた後、第2反応槽3に導入して酸性AC系凝集剤と中和剤(酸)を添加して所定時間凝集処理する。次いで、凝集槽4で高分子凝集剤を添加して凝集処理し、凝集処理液を沈殿槽5で固液分離し、上澄液を処理水として系外に排出すると共に、分離汚泥を排出する。   In the method of FIG. 1, the raw water in the raw water tank 1 is introduced into the first reaction tank 2, slaked lime is added and reacted, and then introduced into the second reaction tank 3 to introduce an acidic AC flocculant and a neutralizing agent. (Acid) is added and coagulation treatment is performed for a predetermined time. Next, a polymer flocculant is added in the flocculation tank 4 for flocculation treatment, and the flocculation treatment liquid is solid-liquid separated in the precipitation tank 5, and the supernatant is discharged out of the system as treated water and the separated sludge is discharged. .

図2の方法は、酸性AC系凝集剤を他系統の希薄排水と混合して用いるものであり、この混合液を第1反応槽2に添加すること以外は、図1に示す方法と同様に処理が行われる。   The method of FIG. 2 uses an acidic AC-based flocculant mixed with dilute waste water of another system, and is the same as the method shown in FIG. 1 except that this mixed solution is added to the first reaction tank 2. Processing is performed.

図3の方法は、沈殿槽5の分離汚泥の一部を消石灰と混合し、改質汚泥を原水に添加する方法であり、調整槽6を設け、この調整槽6に分離汚泥の一部を導入すると共に消石灰を添加混合して改質し、改質汚泥を第1反応槽2への原水導入配管に注入すること以外は図1の方法と同様に処理が行われる。なお、調整槽6からの改質汚泥は第1反応槽2に直接添加しても良い。   The method of FIG. 3 is a method in which a part of the separated sludge in the settling tank 5 is mixed with slaked lime, and the modified sludge is added to the raw water. The adjusting tank 6 is provided, and a part of the separated sludge is added to the adjusting tank 6. The treatment is performed in the same manner as in the method of FIG. 1 except that the slaked lime is added and mixed and reformed, and the modified sludge is injected into the raw water introduction pipe to the first reaction tank 2. The modified sludge from the adjustment tank 6 may be added directly to the first reaction tank 2.

図1〜3に示す方法は、本発明の実施の形態の一例であって、本発明はその要旨を超えない限り、何ら図示の方法に限定されるものではない。例えば、酸性AC系凝集剤と中和剤(酸)とは別々の反応槽で添加しても良く、そのための反応槽を個別に設けるようにしても良い。   The method shown in FIGS. 1-3 is an example of embodiment of this invention, Comprising: This invention is not limited to the method of illustration at all unless the summary is exceeded. For example, the acidic AC type flocculant and the neutralizing agent (acid) may be added in separate reaction tanks, and reaction tanks therefor may be provided separately.

このような本発明のフッ素含有水の処理方法は、半導体部品製造におけるシリコンウェハ製造工程から排出されるフッ素含有排水、ステンレス鋼板製造工程から排出される酸洗排水、アルミニウム表面処理排水、フッ酸製造排水、肥料製造排水、ゴミ焼却排水等の各種フッ素含有水の処理に有効である。   Such a method for treating fluorine-containing water of the present invention includes fluorine-containing wastewater discharged from a silicon wafer manufacturing process in semiconductor component manufacturing, pickling wastewater discharged from a stainless steel plate manufacturing process, aluminum surface treatment wastewater, and hydrofluoric acid manufacturing. It is effective for the treatment of various fluorine-containing water such as wastewater, fertilizer manufacturing wastewater, and waste incineration wastewater.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。なお、以下において、フッ素濃度の測定はJIS K0102 34.1に従って行った。また、高分子凝集剤としてはポリアクリルアミド部分加水分解物を用いた。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. In the following, the measurement of the fluorine concentration was performed according to JIS K0102 34.1. A polyacrylamide partial hydrolyzate was used as the polymer flocculant.

実施例1
フッ素130mg/Lを含有する電子産業排水を原水として図1に示す方法で処理を行った。
Example 1
The processing was carried out by the method shown in FIG. 1 using the waste water from the electronic industry containing 130 mg / L of fluorine as raw water.

まず、原水に消石灰550mg/Lを添加し、その後、LAC(pH1.5)300mg/Lを添加すると共に硫酸を添加してpH7に調整した。30分撹拌して凝集処理した後、高分子凝集剤を1mg/L添加して凝集処理し、次いで沈殿槽で固液分離した。   First, slaked lime 550 mg / L was added to raw water, and then LAC (pH 1.5) 300 mg / L was added and sulfuric acid was added to adjust to pH 7. After stirring for 30 minutes for aggregation treatment, 1 mg / L of a polymer flocculant was added for aggregation treatment, followed by solid-liquid separation in a precipitation tank.

得られた処理水(上澄水)中のフッ素濃度と硫酸濃度を測定すると共に、発生汚泥量を調べ、結果を表1に示した。なお、表1には、高分子凝集剤以外の薬品使用量を併記した。   While measuring the fluorine concentration and sulfuric acid concentration in the obtained treated water (supernatant water), the amount of generated sludge was examined, and the results are shown in Table 1. In Table 1, the amount of chemicals other than the polymer flocculant is also shown.

実施例2
実施例1において、LACの代りに、塩酸を用いてpH3に調整したPACを300mg/L添加したこと以外は同様にして処理を行い、処理水のフッ素及び硫酸濃度と汚泥発生量を調べ、その結果を薬品使用量と共に表1に示した。
Example 2
In Example 1, instead of LAC, treatment was performed in the same manner except that 300 mg / L of PAC adjusted to pH 3 using hydrochloric acid was added, and the fluorine and sulfuric acid concentrations of the treated water and the amount of sludge were examined. The results are shown in Table 1 together with the chemical usage.

実施例3
実施例1において、LACの代りに、硫酸を用いてpH3に調整したPACを300mg/L添加したこと以外は同様にして処理を行い、処理水のフッ素及び硫酸濃度と汚泥発生量を調べ、その結果を薬品使用量と共に表1に示した。
Example 3
In Example 1, instead of LAC, treatment was performed in the same manner except that 300 mg / L of PAC adjusted to pH 3 using sulfuric acid was added, and the fluorine and sulfuric acid concentrations of the treated water and the amount of sludge were examined. The results are shown in Table 1 together with the chemical usage.

比較例1
実施例1において、消石灰添加後、LACを添加せず、硫酸のみでpHを7に調整したこと以外は同様にして処理を行い、処理水のフッ素及び硫酸濃度と汚泥発生量を調べ、その結果を薬品使用量と共に表1に示した。
Comparative Example 1
In Example 1, after adding slaked lime, LAC was not added, and the treatment was performed in the same manner except that the pH was adjusted to 7 only with sulfuric acid, and the fluorine and sulfuric acid concentrations of the treated water and the amount of sludge generated were examined. Is shown in Table 1 together with the amount of chemical used.

比較例2
実施例1において、消石灰添加後、LACを添加せず、硫酸のみでpHを7に調整し、30分撹拌して凝集処理した後、10重量%PACを450mg/L添加し、次いで水酸化ナトリウムを添加してpH7に調整した後、高分子凝集剤による凝集処理に供したこと以外は同様にして処理を行い、処理水のフッ素及び硫酸濃度と汚泥発生量を調べ、その結果を薬品使用量と共に表1に示した。
Comparative Example 2
In Example 1, slaked lime was added, LAC was not added, the pH was adjusted to 7 only with sulfuric acid, the mixture was stirred for 30 minutes and agglomerated, then 450 mg / L of 10 wt% PAC was added, and then sodium hydroxide After adjusting the pH to 7, the same treatment was performed except that it was subjected to a flocculation treatment with a polymer flocculant, and the fluorine and sulfuric acid concentrations of the treated water and the amount of sludge generated were examined. The results are shown in Table 1.

比較例3
実施例1において、LACの代りに10重量%塩化第二鉄水溶液を300mg/L(FeCl換算)添加したこと以外は同様にして処理を行い、処理水のフッ素及び硫酸濃度と汚泥発生量を調べ、その結果を薬品使用量と共に表1に示した。
Comparative Example 3
In Example 1, treatment was performed in the same manner except that 300 mg / L (converted to FeCl 3 ) of 10 wt% aqueous ferric chloride solution was added instead of LAC, and the fluorine and sulfuric acid concentrations of the treated water and the amount of sludge generated were determined. The results are shown in Table 1 together with the amount of chemical used.

比較例4
実施例1において、LACの代りに10重量%塩化マグネシウム水溶液を300mg/L(MgCl換算)添加したこと以外は同様にして処理を行い、処理水のフッ素及び硫酸濃度と汚泥発生量を調べ、その結果を薬品使用量と共に表1に示した。
Comparative Example 4
In Example 1, the treatment was performed in the same manner except that 300 mg / L (converted to MgCl 2 ) of a 10 wt% magnesium chloride aqueous solution was added instead of LAC, and the fluorine and sulfuric acid concentrations of the treated water and the amount of sludge generated were examined. The results are shown in Table 1 together with the amount of chemical used.

Figure 2006159129
Figure 2006159129

表1より、酸性AC系凝集剤を添加することにより、薬品使用量の低減、処理水質の向上、発生汚泥量の低減を図ることができることが分かる。   From Table 1, it can be seen that the addition of an acidic AC flocculant can reduce the amount of chemical used, improve the quality of treated water, and reduce the amount of generated sludge.

即ち、消石灰と硫酸で処理した比較例1では、発生汚泥量は少ないが、処理水質が悪い。また、比較例2では、この比較例1に対して、PACを添加する高度処理を行って、処理水質を高めているが、この場合には発生汚泥量が著しく増大する。また、比較例3,4のように、鉄系又はマグネシウム系凝集剤を添加しても効果は得られない。   That is, in Comparative Example 1 treated with slaked lime and sulfuric acid, the amount of generated sludge is small, but the quality of the treated water is poor. Moreover, in the comparative example 2, although the advanced process which adds PAC with respect to this comparative example 1 is performed and the quality of treated water is improved, the amount of generated sludge increases remarkably in this case. In addition, as in Comparative Examples 3 and 4, the effect is not obtained even if an iron-based or magnesium-based flocculant is added.

これに対して、LACを用いた実施例1では、高度処理を行うことなく、一段の処理で、処理水質8mg−F/L以下を達成し、比較例1,2の場合の硫酸使用量は約1/5で良く、薬品使用量も汚泥発生量も少ない。実施例2,3のように、LACではなく、酸でpHを下げたPACを用いても同様の効果が得られる。   On the other hand, in Example 1 using LAC, the treated water quality of 8 mg-F / L or less was achieved by one-stage treatment without performing advanced treatment, and the amount of sulfuric acid used in Comparative Examples 1 and 2 was About 1/5 is sufficient, and chemical usage and sludge generation are small. As in Examples 2 and 3, the same effect can be obtained by using PAC whose pH is lowered with an acid instead of LAC.

実施例4
フッ素300mg/Lを含有する排水(以下「フッ酸排水」と称す。)と、リン酸100mg/Lを含有するpH4の排水(以下「リン酸排水」と称す。)の二系統の排水を有する電子産業排水に対し、図2に示す方法で処理を行った。
Example 4
There are two types of wastewater: wastewater containing 300 mg / L of fluorine (hereinafter referred to as “hydrofluoric acid wastewater”) and wastewater of pH 4 containing phosphoric acid 100 mg / L (hereinafter referred to as “phosphoric acid wastewater”). The electronic industrial wastewater was treated by the method shown in FIG.

フッ酸排水2Lに2200mg(全排水に対する消石灰添加量733mg/L)の消石灰を添加した後、これにLAC900mgを添加したリン酸排水(LAC添加後のpHは3.5)1Lを添加して混合し(全排水に対するLAC添加量300mg/L)、次いで硫酸を添加してpH7に調整した。30min撹拌して凝集処理した後、高分子凝集剤1mg/Lを添加して凝集処理し、次いで沈殿槽で固液分離した。   After adding 2200 mg of slaked lime (addition amount of 733 mg / L of slaked lime to the total wastewater) to 2 L of hydrofluoric acid wastewater, add 1 L of phosphoric acid wastewater to which 900 mg of LAC was added (pH after addition of LAC is 3.5) (LAC addition amount of 300 mg / L with respect to the total waste water), and then sulfuric acid was added to adjust the pH to 7. After stirring for 30 minutes for aggregation treatment, 1 mg / L of polymer flocculant was added for aggregation treatment, followed by solid-liquid separation in a precipitation tank.

得られた処理水(上澄水)のフッ素及び硫酸濃度と汚泥発生量を調べ、その結果を高分子凝集剤以外の薬品使用量と共に表2に示した。   Fluorine and sulfuric acid concentrations of the treated water (supernatant water) and the amount of sludge generated were examined, and the results are shown in Table 2 together with the amount of chemicals other than the polymer flocculant.

比較例5
実施例4と同様の電子産業排水の処理を行った。
Comparative Example 5
The same electronic industrial wastewater treatment as in Example 4 was performed.

フッ酸排水2Lにリン酸排水1Lを混合し、これに2200mg(733mg/L)の消石灰を添加した後、硫酸を添加してpH7に調整した。30min撹拌して凝集処理後、PAC900mg(300mg/L)を添加し、水酸化ナトリウムを添加してpH7に調整し、その後、高分子凝集剤1mg/Lを添加して凝集処理し、次いで沈殿槽で固液分離した。   1 L of phosphoric acid waste water was mixed with 2 L of hydrofluoric acid waste water, 2200 mg (733 mg / L) of slaked lime was added thereto, and then sulfuric acid was added to adjust to pH 7. After flocculation treatment with stirring for 30 min, PAC 900 mg (300 mg / L) is added, sodium hydroxide is added to adjust to pH 7, and then the polymer flocculant 1 mg / L is added for flocculation treatment, and then the precipitation tank And solid-liquid separation.

得られた処理水(上澄水)のフッ素及び硫酸濃度と汚泥発生量を調べ、その結果を高分子凝集剤以外の薬品使用量と共に表2に示した。   Fluorine and sulfuric acid concentrations of the treated water (supernatant water) and the amount of sludge generated were examined, and the results are shown in Table 2 together with the amount of chemicals other than the polymer flocculant.

Figure 2006159129
Figure 2006159129

表2より、希薄排水にLACを添加して用いた場合でも、著しく良好な処理水質の向上効果が認められ、また、発生汚泥量はほぼ同等ではあるが、薬品使用量を低減できることが分かる。   From Table 2, it can be seen that even when LAC is added to dilute wastewater, a remarkably good treatment water quality improving effect is recognized, and the amount of generated sludge is almost the same, but the amount of chemicals used can be reduced.

実施例5
実施例1で処理したものと同様の電子産業排水を図3に示す方法で処理した。
Example 5
Electronic industrial wastewater similar to that treated in Example 1 was treated by the method shown in FIG.

沈殿槽の分離汚泥(原水に対して1重量%)と、消石灰(原水に対して550mg/L)とを混合し、改質汚泥(pH12.2)を原水に添加した後、硫酸でpH3.0に調整した10重量%塩化アルミニウム水溶液を300mg/L(Al換算)添加すると共に硫酸を添加してpH7に調整した。30分撹拌して凝集処理した後、高分子凝集剤1mg/Lを添加して凝集処理し、次いで沈殿槽で固液分離した。 Separation sludge (1% by weight with respect to the raw water) of the settling tank and slaked lime (550 mg / L with respect to the raw water) are mixed, and the modified sludge (pH 12.2) is added to the raw water, and then pH 3. 300 mg / L (converted to Al 2 O 3 ) of 10 wt% aluminum chloride aqueous solution adjusted to 0 was added, and sulfuric acid was added to adjust to pH 7. After stirring for 30 minutes for aggregation treatment, 1 mg / L of a polymer flocculant was added for aggregation treatment, followed by solid-liquid separation in a precipitation tank.

得られた処理水(上澄水)のフッ素及び硫酸濃度と汚泥発生量を調べ、その結果を高分子凝集剤以外の薬品使用量と共に表3に示した。   Fluorine and sulfuric acid concentrations of the treated water (supernatant water) and the amount of sludge generated were examined, and the results are shown in Table 3 together with the amount of chemicals other than the polymer flocculant.

なお、表3には、実施例1の結果を併記した。   In Table 3, the results of Example 1 are also shown.

Figure 2006159129
Figure 2006159129

表3より、分離汚泥を返送して原水に添加することにより、より一層の処理水質の向上及び発生汚泥量の低減が図れることが分かる。   From Table 3, it can be seen that the quality of treated water can be further improved and the amount of generated sludge can be reduced by returning the separated sludge and adding it to the raw water.

本発明のフッ素含有水の処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method of the fluorine-containing water of this invention. 本発明の他のフッ素含有水の処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method of the other fluorine-containing water of this invention. 本発明の別のフッ素含有水の処理方法の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment of the processing method of another fluorine-containing water of this invention. 従来法を示す系統図である。It is a systematic diagram showing a conventional method.

符号の説明Explanation of symbols

1 原水槽
2 第1反応槽
3 第2反応槽
4 凝集槽
5 沈殿槽
1 Raw water tank 2 First reaction tank 3 Second reaction tank 4 Coagulation tank 5 Precipitation tank

Claims (5)

フッ素含有水を処理する方法において、原水に消石灰を添加した後、酸性度が高い塩化アルミニウム系凝集剤を添加し、中和後、固液分離することを特徴とするフッ素含有水の処理方法。   A method for treating fluorine-containing water, comprising adding slaked lime to raw water, then adding an aluminum chloride-based flocculant having high acidity, neutralizing, and solid-liquid separation. 請求項1において、酸性度が高い塩化アルミニウム系凝集剤が、pH4以下であることを特徴とするフッ素含有水の処理方法。   The method for treating fluorine-containing water according to claim 1, wherein the aluminum chloride flocculant having a high acidity has a pH of 4 or less. 請求項2において、酸性度が高い塩化アルミニウム系凝集剤が、LACであることを特徴とするフッ素含有水の処理方法。   The method for treating fluorine-containing water according to claim 2, wherein the aluminum chloride-based flocculant having a high acidity is LAC. 請求項1ないし3のいずれか1項において、酸性度が高い塩化アルミニウム系凝集剤を、フッ素濃度15mg/l以下の希薄排水で稀釈した後、消石灰を添加した原水に添加することを特徴とするフッ素含有水の処理方法。   The aluminum chloride flocculant having high acidity according to any one of claims 1 to 3, wherein the aluminum chloride flocculant is diluted with dilute waste water having a fluorine concentration of 15 mg / l or less, and then added to the raw water to which slaked lime is added. Treatment method for fluorine-containing water. 請求項1ないし4のいずれか1項において、固液分離により得られた分離汚泥を前記消石灰と混合して原水に添加することを特徴とするフッ素含有水の処理方法。   The method for treating fluorine-containing water according to any one of claims 1 to 4, wherein the separated sludge obtained by solid-liquid separation is mixed with the slaked lime and added to the raw water.
JP2004356745A 2004-12-09 2004-12-09 Fluorine-containing water treatment method Active JP4631420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004356745A JP4631420B2 (en) 2004-12-09 2004-12-09 Fluorine-containing water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004356745A JP4631420B2 (en) 2004-12-09 2004-12-09 Fluorine-containing water treatment method

Publications (2)

Publication Number Publication Date
JP2006159129A true JP2006159129A (en) 2006-06-22
JP4631420B2 JP4631420B2 (en) 2011-02-16

Family

ID=36661712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004356745A Active JP4631420B2 (en) 2004-12-09 2004-12-09 Fluorine-containing water treatment method

Country Status (1)

Country Link
JP (1) JP4631420B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237947A (en) * 2007-03-23 2008-10-09 Nippon Rensui Co Ltd Ion-containing wastewater treatment apparatus and method
CN102795700A (en) * 2011-05-24 2012-11-28 中国科学院地理科学与资源研究所 Defluorinating agent for naturally treating high-fluorine hot spring drinking water and application method thereof
WO2013099304A1 (en) * 2011-12-28 2013-07-04 三菱重工メカトロシステムズ株式会社 Wastewater treatment device
WO2024017129A1 (en) * 2022-07-21 2024-01-25 上海市政工程设计研究总院(集团)有限公司 Method for treating waste residues from glass etching

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258253A (en) * 1975-11-08 1977-05-13 Hashimoto Kasei Kougiyou Kk Method of treating water solution containing borofluoric acid ion
JPS59373A (en) * 1982-06-25 1984-01-05 Hitachi Plant Eng & Constr Co Ltd Treatment of fluorine-contg. waste water
JPS63141613A (en) * 1986-12-03 1988-06-14 Asada Kagaku Kogyo Kk Treatment of water
JPH0852479A (en) * 1995-01-09 1996-02-27 Chiyoda Corp Treatment of fluorine-containing waste water
JPH08197070A (en) * 1995-01-24 1996-08-06 Kurita Water Ind Ltd Treatment of fluorine-containing water
JPH105769A (en) * 1996-06-27 1998-01-13 Nec Environment Eng Ltd Treatment of fluorine-containing discharge water
JPH1057969A (en) * 1996-08-19 1998-03-03 Japan Organo Co Ltd Fluorine-containing waste water treating device and its treatment
JPH10137769A (en) * 1996-11-11 1998-05-26 Nec Corp Treatment of fluorine-containing waste water
JP2000084570A (en) * 1998-07-17 2000-03-28 Nec Corp Treatment of fluorine-containing waste water and treating apparatus
JP2003154375A (en) * 2001-11-21 2003-05-27 Asahi Kagaku Kogyo Co Ltd Method for removing phosphorus in wastewater from beer factory

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5258253A (en) * 1975-11-08 1977-05-13 Hashimoto Kasei Kougiyou Kk Method of treating water solution containing borofluoric acid ion
JPS59373A (en) * 1982-06-25 1984-01-05 Hitachi Plant Eng & Constr Co Ltd Treatment of fluorine-contg. waste water
JPS63141613A (en) * 1986-12-03 1988-06-14 Asada Kagaku Kogyo Kk Treatment of water
JPH0852479A (en) * 1995-01-09 1996-02-27 Chiyoda Corp Treatment of fluorine-containing waste water
JPH08197070A (en) * 1995-01-24 1996-08-06 Kurita Water Ind Ltd Treatment of fluorine-containing water
JPH105769A (en) * 1996-06-27 1998-01-13 Nec Environment Eng Ltd Treatment of fluorine-containing discharge water
JPH1057969A (en) * 1996-08-19 1998-03-03 Japan Organo Co Ltd Fluorine-containing waste water treating device and its treatment
JPH10137769A (en) * 1996-11-11 1998-05-26 Nec Corp Treatment of fluorine-containing waste water
JP2000084570A (en) * 1998-07-17 2000-03-28 Nec Corp Treatment of fluorine-containing waste water and treating apparatus
JP2003154375A (en) * 2001-11-21 2003-05-27 Asahi Kagaku Kogyo Co Ltd Method for removing phosphorus in wastewater from beer factory

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008237947A (en) * 2007-03-23 2008-10-09 Nippon Rensui Co Ltd Ion-containing wastewater treatment apparatus and method
CN102795700A (en) * 2011-05-24 2012-11-28 中国科学院地理科学与资源研究所 Defluorinating agent for naturally treating high-fluorine hot spring drinking water and application method thereof
WO2013099304A1 (en) * 2011-12-28 2013-07-04 三菱重工メカトロシステムズ株式会社 Wastewater treatment device
JP2013138977A (en) * 2011-12-28 2013-07-18 Mitsubishi Heavy Industries Mechatronics Systems Ltd Waste water treatment device
CN103930380A (en) * 2011-12-28 2014-07-16 三菱重工机电系统株式会社 Wastewater treatment device
US9868656B2 (en) 2011-12-28 2018-01-16 Mitsubishi Heavy Industries Mechatronics Systems Wastewater treatment device
WO2024017129A1 (en) * 2022-07-21 2024-01-25 上海市政工程设计研究总院(集团)有限公司 Method for treating waste residues from glass etching

Also Published As

Publication number Publication date
JP4631420B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
JP4863694B2 (en) Method and apparatus for fluorinating chelating agent-containing water
JP4572812B2 (en) Fluorine-containing water treatment method
JP4905397B2 (en) Method and apparatus for treating fluorine-containing water
JP4631420B2 (en) Fluorine-containing water treatment method
JP4822168B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP2005296838A (en) Method for treating water containing fluorine and phosphorus, and apparatus therefor
JP2009254959A (en) Method and apparatus for treating wastewater
JP2006055728A (en) Method and apparatus for treating fluorine-containing wastewater
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
JP5720722B2 (en) Method and apparatus for treating water containing hardly biodegradable organic matter
JP2005125153A (en) Method and apparatus for treating fluorine-containing waste water
JP4752351B2 (en) Method and apparatus for treating fluorine-containing water
JP5848119B2 (en) Treatment method for fluorine-containing wastewater
JP2007260556A (en) Phosphoric acid-containing wastewater treatment method and apparatus
JP4035347B2 (en) Method for treating selenate-containing wastewater and treating agent used therefor
JP4555330B2 (en) Rice sharpening treatment method
JP4232019B2 (en) Treatment method for fluorine-containing wastewater
WO2015155866A1 (en) Copper-containing wastewater treatment method and treatment device
JP4617637B2 (en) Method for neutralizing acidic waste liquid containing metal ions
JP4003832B2 (en) Flocculant and method for producing the same
JP2003260475A (en) Method for removing and recovering copper by treating wastewater and chemical agent used therein
JP4525602B2 (en) Treatment method for fluorine-containing wastewater
JP2006305457A (en) Wastewater treatment method
JP2003033774A (en) Agents for treatment of fluorine-containing wastewater and method for treatment of fluorine-containing wastewater
JP2023010383A (en) Exudation water treatment system and exudation water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101101

R150 Certificate of patent or registration of utility model

Ref document number: 4631420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250