JP2006157646A - Wiring board - Google Patents

Wiring board Download PDF

Info

Publication number
JP2006157646A
JP2006157646A JP2004346888A JP2004346888A JP2006157646A JP 2006157646 A JP2006157646 A JP 2006157646A JP 2004346888 A JP2004346888 A JP 2004346888A JP 2004346888 A JP2004346888 A JP 2004346888A JP 2006157646 A JP2006157646 A JP 2006157646A
Authority
JP
Japan
Prior art keywords
layer
slit
line
signal line
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004346888A
Other languages
Japanese (ja)
Inventor
Teru Muto
輝 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004346888A priority Critical patent/JP2006157646A/en
Publication of JP2006157646A publication Critical patent/JP2006157646A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0253Impedance adaptations of transmission lines by special lay-out of power planes, e.g. providing openings

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)
  • Waveguides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wiring board in which a desired characteristic impedance can be obtained even when it is formed thinly and electromagnetic field radiation is little as well. <P>SOLUTION: A wiring layer 12 is provided on one of the surfaces of an insulation layer and a grounding layer 13 is provided on the other surface. A slit 21 is formed on the grounding layer 13 facing a signal line 12a formed on the wiring layer 12. The slit 21 is provided with a connection line 13c connecting the grounding layers 13a and 13b on both sides of the slit 21 at an interval shorter than 1/4 of a wavelength at the maximum frequency of signals transmitted by using the signal line 12a. Even when the insulation layer and the wiring layer 12 are thinned, by adjusting the width of the slit 21, the desired characteristic impedance is obtained without reducing the line width of the signal line 12a. The resonance of a feedback current is prevented, an electromagnetic field radiated from the slit 21 is suppressed, and a shielding effect is obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は配線基板に関する。詳しくは、絶縁層の一方の面に配線層を設け、他方の面に接地層を設けるものとし、配線層に形成した信号線路と対向させて接地層にスリットを形成し、スリットには、信号線路を用いて伝送する信号の最大周波数における波長の1/4より短い間隔で、スリットの両側の接地層を接続する接続線路を設けることにより、配線基板を薄くしても所望の特性インピーダンスを得られ電磁界放射も少なくするものである。   The present invention relates to a wiring board. Specifically, a wiring layer is provided on one surface of the insulating layer, and a ground layer is provided on the other surface. A slit is formed in the ground layer so as to face the signal line formed in the wiring layer. By providing connection lines that connect the ground layers on both sides of the slit at intervals shorter than ¼ of the wavelength at the maximum frequency of the signal transmitted using the line, the desired characteristic impedance can be obtained even if the wiring board is thinned. Electromagnetic field radiation is also reduced.

従来、絶縁層と導体層を積層した配線基板では、絶縁層の一方の面に設けられた導体層を配線層として信号線路を形成し、他方の面に設けられた導体層を接地層として用い、信号線路の幅や厚さ、絶縁層の誘電率や厚さを調整して、所望の特性インピーダンスを有したマイクロストリップ線路を形成することが行われている。また、信号線路の両面に絶縁層を介して接地層を設けたストリップ線路を形成することも行われている。   Conventionally, in a wiring board in which an insulating layer and a conductor layer are laminated, a signal line is formed by using a conductor layer provided on one surface of the insulating layer as a wiring layer, and a conductor layer provided on the other surface is used as a ground layer. A microstrip line having a desired characteristic impedance is formed by adjusting the width and thickness of a signal line and the dielectric constant and thickness of an insulating layer. In addition, a strip line in which a ground layer is provided on both surfaces of a signal line via an insulating layer is also formed.

また、機器の小型・軽量化のために、配線基板としてフレキシブル基板が多く用いられている。フレキシブル基板は、柔軟性を確保するため絶縁層や導体層が薄くされている。ここで、絶縁層を薄いものとした場合には、等価的にキャパシタンスが大きくなり特性インピーダンスが低下してしまう。このため、信号線路の線路幅を狭くしてキャパシタンスを減らしインダクタンスを大きくすることで、所望の特性インピーダンスを確保することが行われる。しかし、信号線路の線路幅が狭くなるに伴い、精度良く信号線路を形成することが困難となってしまう。そこで、特許文献1の発明では、接地層を円状やメッシュ状に切り抜いて特性インピーダンスを制御することが行われている。また、特許文献2の発明では、信号線路と対向させて接地層にスリットを形成し、スリットの幅を調整することで、特性インピーダンスを制御することが行われている。   In addition, in order to reduce the size and weight of equipment, flexible boards are often used as wiring boards. In the flexible substrate, the insulating layer and the conductor layer are thinned to ensure flexibility. Here, when the insulating layer is thin, the capacitance is equivalently increased and the characteristic impedance is lowered. For this reason, a desired characteristic impedance is ensured by reducing the line width of the signal line to reduce the capacitance and increase the inductance. However, as the line width of the signal line becomes narrower, it becomes difficult to form the signal line with high accuracy. Thus, in the invention of Patent Document 1, the characteristic impedance is controlled by cutting out the ground layer into a circular shape or a mesh shape. Further, in the invention of Patent Document 2, the characteristic impedance is controlled by forming a slit in the ground layer facing the signal line and adjusting the width of the slit.

特許第3397707号公報Japanese Patent No. 3397707 特開2004−140308号公報JP 2004-140308 A

ところで、接地層をメッシュ構造や円状に切り抜くものとすると、パターン形状が複雑になり、例えば図12に示すように接地層53をメッシュ構造としたときは、信号線路51aを流れる信号電流に対して接地層53を流れる帰還電流の経路が長くなって、帰還電流の損失が大きくなる。すなわち、信号を伝送する際に損失が大きくなってしまう。また、ノイズの発生が大きくなってしまうおそれもある。   By the way, if the ground layer is cut into a mesh structure or a circle, the pattern shape becomes complicated. For example, when the ground layer 53 has a mesh structure as shown in FIG. 12, the signal current flowing through the signal line 51a is reduced. As a result, the path of the feedback current flowing through the ground layer 53 becomes longer, and the loss of the feedback current increases. That is, the loss increases when transmitting a signal. Moreover, there is a possibility that the generation of noise becomes large.

信号線路と対向させて接地層にスリットを形成する場合、図13Aに示すように、絶縁層62を介して信号線路61aと対向する接地層63に、信号線路61aと対向するスリット71を設け、スリット71の長さLSが信号線路を用いて伝送する信号の最大周波数の1/2波長以上となると、スリット71によって分割された接地層間で共振を生じるおそれがあり、共振を生じてしまうと他の信号線路に影響を与えてしまう。さらに、スリットが形成されていることから共振を生じると図13Bに示すようにスリットからの電磁界放射が大きくなってしまう。   When forming a slit in the ground layer facing the signal line, as shown in FIG. 13A, a slit 71 facing the signal line 61a is provided in the ground layer 63 facing the signal line 61a via the insulating layer 62, If the length LS of the slit 71 is equal to or greater than ½ wavelength of the maximum frequency of the signal transmitted using the signal line, resonance may occur between the ground layers divided by the slit 71. Will affect the signal line. Furthermore, when resonance occurs due to the formation of the slit, electromagnetic field radiation from the slit increases as shown in FIG. 13B.

そこで、この発明では、薄く形成しても所望の特性インピーダンスを得ることができ、電磁界放射も少ない配線基板を提供するものである。   Therefore, the present invention provides a wiring board that can obtain a desired characteristic impedance even when it is thinly formed, and has less electromagnetic field radiation.

この発明に係る配線基板は、絶縁層の一方の面に配線層を設け、他方の面に接地層を設けるものとし、配線層に形成した信号線路と対向させて接地層にスリットを形成し、スリットには、信号線路を用いて伝送する信号の最大周波数における波長の1/4より短い間隔で、スリットの両側の接地層を接続する接続線路を設けたものである。   The wiring board according to the present invention is to provide a wiring layer on one surface of the insulating layer and a ground layer on the other surface, and to form a slit in the ground layer facing the signal line formed in the wiring layer, The slit is provided with a connection line that connects the ground layers on both sides of the slit at an interval shorter than ¼ of the wavelength at the maximum frequency of the signal transmitted using the signal line.

この発明においては、配線層に形成した信号線路と対向させて接地層にスリットが形成されて、このスリットには、信号線路を用いて伝送する信号の最大周波数における波長の1/4より短い間隔で、スリットの両側の接地層を接続する接続線路が例えば信号線路よりも狭い線路幅で設けられる。また、接続線路がメッシュ構造とされて、メッシュ開口部の周囲長が、信号線路を用いて伝送する信号の最大周波数における波長の1/2より短くされる。   In the present invention, a slit is formed in the ground layer so as to face the signal line formed in the wiring layer, and this slit has an interval shorter than ¼ of the wavelength at the maximum frequency of the signal transmitted using the signal line. Thus, the connection line connecting the ground layers on both sides of the slit is provided with a line width narrower than the signal line, for example. Further, the connection line has a mesh structure, and the perimeter of the mesh opening is made shorter than ½ of the wavelength at the maximum frequency of the signal transmitted using the signal line.

この発明によれば、絶縁層の一方の面に配線層を設け、他方の面に接地層が設けられて、配線層に形成した信号線路と対向させて接地層にスリットが形成されて、スリットには、信号線路を用いて伝送する信号の最大周波数における波長の1/4より短い間隔で、スリットの両側の接地層を接続する接続線路が設けられる。このため、絶縁層や配線層が薄くされてもスリットの幅を調整することで、信号線路の線路幅を狭することなく所望の特性インピーダンスを得ることができる。また、接続線路が設けられるので、スリットの両側に位置する接地層を同電位に保つことができる。さらに、接続線路は、信号線路を用いて伝送する信号の最大周波数における波長の1/4より短い間隔で設けられるので、帰還電流の共振が防止されて、スリットから放射される電磁界が抑制されることにより、シールド効果を得ることができる。すなわち、配線基板を薄く形成しても所望の特性インピーダンスを得ることができ、電磁界放射も少なくできる。   According to the present invention, the wiring layer is provided on one surface of the insulating layer, the ground layer is provided on the other surface, and the slit is formed in the ground layer so as to face the signal line formed in the wiring layer. Is provided with a connection line that connects the ground layers on both sides of the slit at intervals shorter than ¼ of the wavelength at the maximum frequency of the signal transmitted using the signal line. For this reason, even if the insulating layer and the wiring layer are made thin, by adjusting the width of the slit, a desired characteristic impedance can be obtained without narrowing the line width of the signal line. Further, since the connection line is provided, the ground layers located on both sides of the slit can be kept at the same potential. Furthermore, since the connection line is provided at an interval shorter than 1/4 of the wavelength at the maximum frequency of the signal transmitted using the signal line, resonance of the feedback current is prevented and the electromagnetic field radiated from the slit is suppressed. Thus, a shielding effect can be obtained. That is, even if the wiring board is formed thin, a desired characteristic impedance can be obtained and electromagnetic field radiation can be reduced.

また、接続線路の線路幅は、信号線路の線路幅よりも狭くされるので、帰還電流の経路差は少なくなり、接続線路を設けたことによるインピーダンスの不連続部分を無視できる程度に抑えることができる。   Also, since the line width of the connection line is narrower than the line width of the signal line, the path difference of the feedback current is reduced, and the impedance discontinuity due to the connection line can be suppressed to a negligible level. it can.

また、接続線路がメッシュ構造とされて、メッシュ開口部の周囲長は、信号線路を用いて伝送する信号の最大周波数における波長の1/2より短くされる。このため、接続線路に帰還電流が流れても各開口部での共振が防止されるので、電磁界放射を少なくできる。   Further, the connection line has a mesh structure, and the perimeter of the mesh opening is made shorter than ½ of the wavelength at the maximum frequency of the signal transmitted using the signal line. For this reason, even if a feedback current flows through the connection line, resonance at each opening is prevented, and electromagnetic field radiation can be reduced.

さらに、配線層上に絶縁層を設け、この絶縁層上に接地層を設けるものとし、この接地層には接続線路を設けたスリットが配線層に形成した信号線路と対向させて形成される。このため、マイクロストリップラインを構成する場合に限らずストリップラインを構成した場合にも適用できる。   Further, an insulating layer is provided on the wiring layer, and a ground layer is provided on the insulating layer. A slit provided with a connection line is formed on the ground layer so as to face a signal line formed in the wiring layer. Therefore, the present invention can be applied not only to the case of configuring a microstrip line but also to the case of configuring a strip line.

以下、図を参照しながら、この発明の実施の一形態について説明する。図1は、配線基板10の平面図、図2は図1におけるI−I’位置の断面図である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. 1 is a plan view of the wiring board 10, and FIG. 2 is a cross-sectional view taken along the line I-I 'in FIG.

配線基板10は、絶縁層11と、絶縁層11の一方の面に形成された配線層12と、絶縁層11の他方の面に形成された接地層13を有している。配線層12には、信号線路12aを形成して、この信号線路12aと絶縁層11および接地層13でマイクロストリップラインを構成する。   The wiring board 10 includes an insulating layer 11, a wiring layer 12 formed on one surface of the insulating layer 11, and a ground layer 13 formed on the other surface of the insulating layer 11. A signal line 12 a is formed in the wiring layer 12, and the signal line 12 a, the insulating layer 11, and the ground layer 13 constitute a microstrip line.

ここで、配線基板10としてフレキシブル基板を構成する場合、例えば絶縁層11としてエポキシ系樹脂を用いるものとし、配線層12や接地層13として絶縁層11の両面にCCL(Copper Clad Laminate)等の金属膜を形成する。さらに、配線層12に設けた信号線路12a等と他の信号線路や部品等を良好に接続するため、接続部分にAuメッキ処理やNi/Auメッキ処理等を必要に応じて施すものとする。   Here, when a flexible substrate is configured as the wiring substrate 10, for example, an epoxy resin is used as the insulating layer 11, and a metal such as CCL (Copper Clad Laminate) is formed on both surfaces of the insulating layer 11 as the wiring layer 12 and the ground layer 13. A film is formed. Furthermore, in order to satisfactorily connect the signal line 12a and the like provided in the wiring layer 12 to other signal lines and components, the connection portion is subjected to Au plating treatment, Ni / Au plating treatment, or the like as necessary.

マイクロストリップラインでは、信号線路12aの幅や厚さ、絶縁層11の誘電率や厚さを調整して特性インピーダンスを調整する。また、接地層13の信号線路12aと対向する位置にスリット21を形成して、スリット21の両側の接地層13a,13bと信号線路12aが同一層にないコプレーナウェーブガイドとすることで、信号線路12aに流れる信号電流に対する帰還電流の経路を同一にして帰還電流の損失を抑える。   In the microstrip line, the characteristic impedance is adjusted by adjusting the width and thickness of the signal line 12 a and the dielectric constant and thickness of the insulating layer 11. Further, a slit 21 is formed at a position of the ground layer 13 facing the signal line 12a, and the ground layers 13a, 13b on both sides of the slit 21 and the signal line 12a are formed as coplanar waveguides that are not in the same layer. The feedback current path for the signal current flowing through 12a is made the same to suppress the loss of the feedback current.

また、絶縁層11や配線層12が薄くされても、信号線路12aの線路幅を狭することなく所望の特性インピーダンスが得られるように、スリット21の幅を制御することで特性インピーダンスの調整を行う。   Further, even if the insulating layer 11 and the wiring layer 12 are thinned, the characteristic impedance is adjusted by controlling the width of the slit 21 so that a desired characteristic impedance can be obtained without narrowing the line width of the signal line 12a. Do.

図3は、絶縁層11の厚さとスリット21の幅の関係を示している。ここで、図3Aに示すように、絶縁層11の厚さを「ta」、スリット21のスリット幅GPを「GPa」として所望の特性インピーダンスとしたとき、図3Bに示すように絶縁層11の厚さが「tb(<ta)」とされたときには、スリット21のスリット幅を「GPb(>GPa)」として、特性インピーダンスを所望のインピーダンスとすることができる。   FIG. 3 shows the relationship between the thickness of the insulating layer 11 and the width of the slit 21. Here, as shown in FIG. 3A, when the thickness of the insulating layer 11 is “ta” and the slit width GP of the slit 21 is “GPa” to obtain a desired characteristic impedance, as shown in FIG. When the thickness is “tb (<ta)”, the slit width of the slit 21 can be set to “GPb (> GPa)”, and the characteristic impedance can be set to a desired impedance.

なお、信号線路12aを流れる信号電流に対して接地層13を流れる帰還電流は、信号線路12aと対向する接地層13a,13bの部分、あるいは信号線路12aの線路幅Wよりもスリット21の幅が広いときには、信号線路12aと平行する接地層13a,13bの信号線路側の端部で電流値が大きくなる。   The feedback current flowing through the ground layer 13 with respect to the signal current flowing through the signal line 12a is such that the width of the slit 21 is larger than the portion of the ground layers 13a and 13b facing the signal line 12a or the line width W of the signal line 12a. When it is wide, the current value increases at the signal line side end of the ground layers 13a and 13b parallel to the signal line 12a.

さらに、スリット21には、スリット21の両側の接地層13a,13bを接続する接続線路13cを設ける。例えば図1に示すように、信号線路12aの線路方向に対して直交する方向に突出した接続線路13cを設けて、接地層13aと接地層13bを接続する。このように接続線路13cを設けることにより、接地層13aと接地層13bを同電位に保つことができる。   Further, the slit 21 is provided with a connection line 13 c that connects the ground layers 13 a and 13 b on both sides of the slit 21. For example, as shown in FIG. 1, a connection line 13c protruding in a direction orthogonal to the line direction of the signal line 12a is provided to connect the ground layer 13a and the ground layer 13b. By providing the connection line 13c in this way, the ground layer 13a and the ground layer 13b can be kept at the same potential.

接続線路13cは、信号線路12aを用いて伝送する信号の最大周波数における波長を「λm」としたとき、このときの波長の1/4より短い間隔Lc(<λm/4)で設けるものとする。このように、接続線路13cを形成すると、接地層13a,13bに流れる帰還電流の共振が防止されるので、スリット21から放射される電磁界が抑制されて、シールド効果を得ることができる。   The connection line 13c is provided at an interval Lc (<λm / 4) shorter than ¼ of the wavelength at this time when the wavelength at the maximum frequency of the signal transmitted using the signal line 12a is “λm”. . Thus, when the connection line 13c is formed, resonance of the feedback current flowing through the ground layers 13a and 13b is prevented, so that the electromagnetic field radiated from the slit 21 is suppressed and a shielding effect can be obtained.

また、スリット21の幅だけでなく接続線路13cの線路幅SWを調整することで、インピーダンスをさらに精度良く調整できる。ところで、接続線路13cの線路幅SWを広くすると、例えば接続線路13c部分での容量が大きくなって特性に影響を与えてしまう。さらに、帰還電流の一部が接続線路13cを流れて経路差を生じると伝送損失が大きくなってしまう。このため、特性に与える影響が少なく接続線路13cに流れる帰還電流も少なくなるように、接続線路13cの線路幅SWを信号線路12aの線路幅W以下に設定する。このように、接続線路13cの線路幅SWを狭く設定すると、接地層13a,13bに流れる帰還電流は経路差が少なくなり、接続線路13cを設けたことによるインピーダンスの不連続部分を無視できる程度に抑えることができる。   Further, by adjusting not only the width of the slit 21 but also the line width SW of the connection line 13c, the impedance can be adjusted with higher accuracy. By the way, if the line width SW of the connection line 13c is increased, for example, the capacitance at the connection line 13c increases and affects the characteristics. Furthermore, if a part of the feedback current flows through the connection line 13c to cause a path difference, transmission loss increases. For this reason, the line width SW of the connection line 13c is set to be equal to or smaller than the line width W of the signal line 12a so that the influence on the characteristics is small and the feedback current flowing through the connection line 13c is also small. Thus, when the line width SW of the connection line 13c is set narrow, the feedback current flowing through the ground layers 13a and 13b has a small path difference, and the discontinuity portion of the impedance due to the provision of the connection line 13c can be ignored. Can be suppressed.

ところで、上述の形態では、信号線路12aの方向に対して直交するように接続線路13cを設ける場合を示したが、メッシュ状の接続線路13dを設けて、接地層13a,13bを接続することもできる。   By the way, although the case where the connection line 13c is provided so as to be orthogonal to the direction of the signal line 12a has been described in the above embodiment, the ground layers 13a and 13b may be connected by providing a mesh-like connection line 13d. it can.

図4は、メッシュ状の接続線路13dを設けた配線基板10bの平面図、図5は図4におけるII−II’位置の断面図である。メッシュ状の接続線路13dは、帰還電流の経路長が等しくなるように形成する。例えば、信号線路12aの破線で示す中心軸CLに対して対象な形状となるように接続線路13dを形成すれば、帰還電流の経路長を等しくできる。   4 is a plan view of the wiring board 10b provided with the mesh-like connection line 13d, and FIG. 5 is a cross-sectional view taken along the line II-II 'in FIG. The mesh-shaped connection line 13d is formed so that the path lengths of the feedback currents are equal. For example, if the connection line 13d is formed so as to have a target shape with respect to the central axis CL indicated by the broken line of the signal line 12a, the path length of the feedback current can be made equal.

また、接続線路13dにおける開口部の接地層13a側の周囲長LPaと接地層13b側の周囲長LPbは、λm/4より短く設定する。また、信号線路12aの破線で示す中心軸CLに対して対象となるように接続線路13dを形成したときには、接続線路13dにおける開口部全体の周囲長LP(=LPa+LPb:LPaは中心軸CLに対して接地層13a側の周囲長、LPbは中心軸CLに対して接地層13b側の周囲長を示す)をλm/2より短く設定すれば、接地層13a側の周囲長LPaと接地層13b側の周囲長LPbは、λm/4より短くなる。   In addition, the peripheral length LPa on the ground layer 13a side and the peripheral length LPb on the ground layer 13b side of the opening of the connection line 13d are set to be shorter than λm / 4. Further, when the connection line 13d is formed so as to be targeted with respect to the central axis CL indicated by the broken line of the signal line 12a, the peripheral length LP (= LPa + LPb: LPa of the entire opening in the connection line 13d is relative to the central axis CL. If the peripheral length on the ground layer 13a side, LPb indicates the peripheral length on the ground layer 13b side with respect to the central axis CL) is set shorter than λm / 2, the peripheral length LPa on the ground layer 13a side and the ground layer 13b side The peripheral length LPb is shorter than λm / 4.

このように、開口部の接地層13a側の周囲長LPaと接地層13b側の周囲長LPbをそれぞれλm/4より短く設定すれば、接続線路13dに帰還電流が流れても各開口部での共振が防止される。また、スリット21において接続線路が占める割合も多くなるので、接続線路13cを設けた場合よりもスリット21から放射される電磁界がさらに抑制されて、シールド効果を高めることができる。   Thus, if the peripheral length LPa on the ground layer 13a side and the peripheral length LPb on the ground layer 13b side of the opening are set to be shorter than λm / 4, respectively, even if a feedback current flows through the connection line 13d, Resonance is prevented. Moreover, since the ratio which a connection line accounts in the slit 21 increases, the electromagnetic field radiated | emitted from the slit 21 is further suppressed rather than the case where the connection line 13c is provided, and a shield effect can be heightened.

ところで、上述の形態では、マイクロストリップラインを構成した場合について説明したが、ストリップラインを構成した場合にも適用できる。図6は、ストリップライン構造の伝送路を構成した配線基板の断面図を示している。   By the way, although the above-mentioned form demonstrated the case where a microstrip line was comprised, it is applicable also when a stripline is comprised. FIG. 6 shows a cross-sectional view of a wiring board constituting a transmission line having a stripline structure.

絶縁層11の一方の面に形成された配線層12上には、エポキシ系樹脂等で絶縁層14を形成する。さらに絶縁層14上にCCL等で接地層15を形成する。接地層15には、接地層13と同様にスリット22を形成して、スリット22に接続線路15cあるいはメッシュ状の接続線路15dを設ける。また、スリット21,22のスリット幅GPを信号線路12aの線路幅Wよりも広くして所望の特性インピーダンスを得るようにすれば、ストリップライン構造を用いても信号線路の線路幅が狭くなって損失が増加してしまうことを防止して、インピーダンスを制御できる。   On the wiring layer 12 formed on one surface of the insulating layer 11, an insulating layer 14 is formed with an epoxy resin or the like. Further, the ground layer 15 is formed on the insulating layer 14 by CCL or the like. A slit 22 is formed in the ground layer 15 similarly to the ground layer 13, and a connection line 15 c or a mesh-like connection line 15 d is provided in the slit 22. Further, if the slit width GP of the slits 21 and 22 is made wider than the line width W of the signal line 12a so as to obtain a desired characteristic impedance, the line width of the signal line is reduced even if the stripline structure is used. Impedance can be controlled by preventing loss from increasing.

図7は実施例1の平面図、図8は図7におけるIII−III’位置の断面図を示している。配線基板30の絶縁層31の一方の面には配線層32を設け、他方の面には接地層33を設ける。配線層32上には、配線層32の保護や配線基板30が所望の強度を有するように絶縁層34を設ける。また接地層33上には、接地層33の保護や配線基板30が所望の強度を有するように絶縁層35を設ける。   FIG. 7 is a plan view of the first embodiment, and FIG. 8 is a cross-sectional view taken along the line III-III 'in FIG. A wiring layer 32 is provided on one surface of the insulating layer 31 of the wiring substrate 30, and a ground layer 33 is provided on the other surface. An insulating layer 34 is provided on the wiring layer 32 so that the wiring layer 32 is protected and the wiring substrate 30 has a desired strength. An insulating layer 35 is provided on the ground layer 33 so that the ground layer 33 is protected and the wiring board 30 has a desired strength.

絶縁層31の層厚t31は25μm、絶縁層34の層厚t34と絶縁層35の層厚t35は20μmとする。また絶縁層31,34,35の比誘電率は3.3、tanδは0.02である。配線層32と接地層33は銅を用いて構成し、配線層32の層厚t32と接地層33層厚t33は18μmとする。   The layer thickness t31 of the insulating layer 31 is 25 μm, and the layer thickness t34 of the insulating layer 34 and the layer thickness t35 of the insulating layer 35 are 20 μm. The dielectric layers 31, 34, and 35 have a relative dielectric constant of 3.3 and tan δ is 0.02. The wiring layer 32 and the ground layer 33 are formed using copper, and the layer thickness t32 and the ground layer 33 layer thickness t33 of the wiring layer 32 are 18 μm.

配線層32に形成した信号線路32aの線路幅Wは100μmとし、信号線路32aと対向するように接地層33に形成したスリット41のスリット幅GPは134μmとする。スリット41には、線路幅SWを70μmとした接続線路33cを、間隔Lc=5mmとして複数形成する。   The line width W of the signal line 32a formed in the wiring layer 32 is 100 μm, and the slit width GP of the slit 41 formed in the ground layer 33 so as to face the signal line 32a is 134 μm. In the slit 41, a plurality of connection lines 33c having a line width SW of 70 μm are formed with an interval Lc = 5 mm.

このように形成した配線基板30は、図9に示す透過特性(実線で示す)と反射特性(破線で示す)となり、損失が少なく反射レベルも小さい特性を有している。図10は、TDR(Time Domain Reflectometry)特性を示しており、時間が経過してもインピーダンスが略一定でインピーダンス不整合部分が現れていないことから、接続線路33cを設けたことによる特性インピーダンスへの影響を無視できる。図11は、スミスチャートを用いてインピーダンスの周波数特性を示したものであり、周波数を50MHzから20.05GHzまで可変してもインピーダンス特性は略50Ωになっている。このため、入力する高周波信号の周波数に応じて特性インピーダンスが大きく変化してしまうことのない高周波信号の伝送に適した配線基板を形成できる。   The wiring board 30 formed in this way has the transmission characteristics (shown by solid lines) and the reflection characteristics (shown by broken lines) shown in FIG. 9, and has the characteristics of low loss and low reflection level. FIG. 10 shows a TDR (Time Domain Reflectometry) characteristic. Since the impedance is substantially constant and no impedance mismatching portion appears even after a lapse of time, the characteristic impedance due to the provision of the connection line 33c is shown. The influence can be ignored. FIG. 11 shows impedance frequency characteristics using a Smith chart. The impedance characteristics are approximately 50Ω even if the frequency is varied from 50 MHz to 20.05 GHz. For this reason, it is possible to form a wiring board suitable for transmission of a high-frequency signal in which the characteristic impedance does not change greatly according to the frequency of the input high-frequency signal.

以上のように、本発明に係る配線基板は、高周波信号を用いる場合に有用であり、配線基板をフレキシブル基板として形成する際に適している。   As described above, the wiring board according to the present invention is useful when a high-frequency signal is used, and is suitable when the wiring board is formed as a flexible board.

配線基板の平面図である。It is a top view of a wiring board. I−I’位置の断面図である。It is sectional drawing of an I-I 'position. 絶縁層の厚さとスリットの幅の関係を示す図である。It is a figure which shows the relationship between the thickness of an insulating layer, and the width | variety of a slit. 接続線路をメッシュ状に構成した場合を示す図である。It is a figure which shows the case where a connection line is comprised in mesh shape. II−II’位置の断面図である。It is sectional drawing of a II-II 'position. ストリップライン構造の伝送路を構成した配線基板の断面図である。It is sectional drawing of the wiring board which comprised the transmission line of the stripline structure. 実施例1の平面図である。1 is a plan view of Example 1. FIG. III−III’位置の断面図である。It is sectional drawing of a III-III 'position. 透過特性と反射特性を示す図である。It is a figure which shows a transmission characteristic and a reflection characteristic. TDR特性を示す図である。It is a figure which shows a TDR characteristic. インピーダンスの周波数特性を示すスミスチャートである。It is a Smith chart which shows the frequency characteristic of an impedance. 接地層をメッシュ構造としたときの帰還電流を示す図である。It is a figure which shows the feedback current when a grounding layer is made into a mesh structure. 接地層にスリットを形成した場合を示す図である。It is a figure which shows the case where a slit is formed in the grounding layer.

符号の説明Explanation of symbols

10,10b,30・・・配線基板、11,14,31,34,35,62・・・絶縁層、12,32・・・配線層、12a,32a,51a,61a・・・信号線路、13,13a,13b,15,33,53,63・・・接地層、13c,13d,15c,15d,33c・・・接続線路、21,22,41,71・・・スリット
10, 10b, 30 ... wiring board, 11, 14, 31, 34, 35, 62 ... insulating layer, 12, 32 ... wiring layer, 12a, 32a, 51a, 61a ... signal line, 13, 13a, 13b, 15, 33, 53, 63 ... ground layer, 13c, 13d, 15c, 15d, 33c ... connection line, 21, 22, 41, 71 ... slit

Claims (4)

絶縁層の一方の面に配線層を設け、他方の面に接地層を設けるものとし、
前記配線層に形成した信号線路と対向させて前記接地層にスリットを形成し、
前記スリットには、前記信号線路を用いて伝送する信号の最大周波数における波長の1/4より短い間隔で、前記スリットの両側の接地層を接続する接続線路を設けた
ことを特徴とする配線基板。
A wiring layer is provided on one surface of the insulating layer, and a ground layer is provided on the other surface.
Form a slit in the ground layer facing the signal line formed in the wiring layer,
The wiring board characterized in that the slit is provided with a connection line that connects the ground layers on both sides of the slit at intervals shorter than ¼ of the wavelength at the maximum frequency of the signal transmitted using the signal line. .
前記接続線路の線路幅は、前記信号線路の線路幅よりも狭くした
ことを特徴とする請求項1記載の配線基板。
The wiring board according to claim 1, wherein a line width of the connection line is narrower than a line width of the signal line.
前記接続線路をメッシュ構造として設けるものとし、メッシュ開口部の周囲長は、前記信号線路を用いて伝送する信号の最大周波数における波長の1/2より短くした
ことを特徴とする請求項1記載の配線基板。
2. The connection line according to claim 1, wherein the connection line is provided as a mesh structure, and the perimeter of the mesh opening is shorter than ½ of the wavelength at the maximum frequency of the signal transmitted using the signal line. Wiring board.
前記配線層上に絶縁層を設け、該絶縁層上に接地層を設けて、該接地層に前記接続線路を設けたスリットを前記配線層に形成した信号線路と対向させて形成する
ことを特徴とする請求項1記載の配線基板。
An insulating layer is provided on the wiring layer, a ground layer is provided on the insulating layer, and a slit in which the connection line is provided in the ground layer is formed to face a signal line formed in the wiring layer. The wiring board according to claim 1.
JP2004346888A 2004-11-30 2004-11-30 Wiring board Pending JP2006157646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004346888A JP2006157646A (en) 2004-11-30 2004-11-30 Wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004346888A JP2006157646A (en) 2004-11-30 2004-11-30 Wiring board

Publications (1)

Publication Number Publication Date
JP2006157646A true JP2006157646A (en) 2006-06-15

Family

ID=36635359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004346888A Pending JP2006157646A (en) 2004-11-30 2004-11-30 Wiring board

Country Status (1)

Country Link
JP (1) JP2006157646A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008141474A (en) * 2006-12-01 2008-06-19 Mitsubishi Electric Corp High-frequency wave transmission line
JP2008198651A (en) * 2007-02-08 2008-08-28 Seiko Instruments Inc Shield flexible printed board and electronic equipment
JP2009176901A (en) * 2008-01-23 2009-08-06 Casio Hitachi Mobile Communications Co Ltd Flexible circuit board and electronic equipment
JP2009206262A (en) * 2008-02-27 2009-09-10 Rohm Co Ltd Semiconductor integrated circuit
JP2010506387A (en) * 2006-10-06 2010-02-25 エプコス アクチエンゲゼルシャフト Substrate with high frequency compatibility line
WO2011007660A1 (en) * 2009-07-13 2011-01-20 株式会社村田製作所 Signal line and circuit board
KR101212094B1 (en) 2006-11-14 2012-12-13 삼성전자주식회사 Flexible printed circuit board and electric apparatus having the same
JP2012253362A (en) * 2010-12-03 2012-12-20 Murata Mfg Co Ltd High frequency signal line
US20130002377A1 (en) * 2010-03-19 2013-01-03 Nec Corporation Structure
JP5310949B2 (en) * 2010-12-03 2013-10-09 株式会社村田製作所 High frequency signal line
JP2015065252A (en) * 2013-09-25 2015-04-09 日本シイエムケイ株式会社 Print circuit board
JPWO2013103129A1 (en) * 2012-01-06 2015-05-11 株式会社村田製作所 High frequency transmission line and electronic equipment
JP2015149645A (en) * 2014-02-07 2015-08-20 日本電信電話株式会社 Strip line
CN105101632A (en) * 2014-05-23 2015-11-25 三星电机株式会社 Printed circuit board and printed circuit board for camera module
JP2016111029A (en) * 2014-12-02 2016-06-20 三菱電機株式会社 Multilayer substrate, flexible substrate, rigid-flexible substrate, printed circuit board, semiconductor package board, semiconductor package, semiconductor device, information processing module, communication module, information processing device, and communication device
JP2016184091A (en) * 2015-03-26 2016-10-20 日本オクラロ株式会社 Optical module
WO2017138744A1 (en) * 2016-02-11 2017-08-17 주식회사 기가레인 Flexible circuit board
WO2017138745A1 (en) * 2016-02-11 2017-08-17 주식회사 기가레인 Flexible circuit board
US10306757B2 (en) 2015-11-27 2019-05-28 Fujitsu Limited Circuit board and electronic device
CN113811068A (en) * 2020-06-11 2021-12-17 英韧科技(上海)有限公司 Embedded microstrip line with slot for high-speed signal routing

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010506387A (en) * 2006-10-06 2010-02-25 エプコス アクチエンゲゼルシャフト Substrate with high frequency compatibility line
KR101212094B1 (en) 2006-11-14 2012-12-13 삼성전자주식회사 Flexible printed circuit board and electric apparatus having the same
JP2008141474A (en) * 2006-12-01 2008-06-19 Mitsubishi Electric Corp High-frequency wave transmission line
JP2008198651A (en) * 2007-02-08 2008-08-28 Seiko Instruments Inc Shield flexible printed board and electronic equipment
JP2009176901A (en) * 2008-01-23 2009-08-06 Casio Hitachi Mobile Communications Co Ltd Flexible circuit board and electronic equipment
JP2009206262A (en) * 2008-02-27 2009-09-10 Rohm Co Ltd Semiconductor integrated circuit
US8592687B2 (en) 2009-07-13 2013-11-26 Murata Manufacturing Co., Ltd. Signal line and circuit substrate
WO2011007660A1 (en) * 2009-07-13 2011-01-20 株式会社村田製作所 Signal line and circuit board
JP4962660B2 (en) * 2009-07-13 2012-06-27 株式会社村田製作所 Signal line and circuit board
KR101378027B1 (en) 2009-07-13 2014-03-25 가부시키가이샤 무라타 세이사쿠쇼 signal line and circuit board
US9385428B2 (en) * 2010-03-19 2016-07-05 Nec Corporation Metamaterial structure
US20130002377A1 (en) * 2010-03-19 2013-01-03 Nec Corporation Structure
CN103781275A (en) * 2010-12-03 2014-05-07 株式会社村田制作所 High-frequency signal transmission line
JP2012253362A (en) * 2010-12-03 2012-12-20 Murata Mfg Co Ltd High frequency signal line
US8624693B2 (en) 2010-12-03 2014-01-07 Murata Manufacturing Co., Ltd. High-frequency signal transmission line
JP5310949B2 (en) * 2010-12-03 2013-10-09 株式会社村田製作所 High frequency signal line
JP2012253342A (en) * 2010-12-03 2012-12-20 Murata Mfg Co Ltd High frequency signal line
CN103781275B (en) * 2010-12-03 2017-01-18 株式会社村田制作所 High-frequency signal transmission line
US8624692B2 (en) 2010-12-03 2014-01-07 Murata Manufacturing Co., Ltd. High-frequency signal transmission line
US9472839B2 (en) 2012-01-06 2016-10-18 Murata Manufacturing Co., Ltd. High-frequency transmission line and electronic device
JPWO2013103129A1 (en) * 2012-01-06 2015-05-11 株式会社村田製作所 High frequency transmission line and electronic equipment
JP2015065252A (en) * 2013-09-25 2015-04-09 日本シイエムケイ株式会社 Print circuit board
JP2015149645A (en) * 2014-02-07 2015-08-20 日本電信電話株式会社 Strip line
CN105101632A (en) * 2014-05-23 2015-11-25 三星电机株式会社 Printed circuit board and printed circuit board for camera module
JP2016111029A (en) * 2014-12-02 2016-06-20 三菱電機株式会社 Multilayer substrate, flexible substrate, rigid-flexible substrate, printed circuit board, semiconductor package board, semiconductor package, semiconductor device, information processing module, communication module, information processing device, and communication device
JP2016184091A (en) * 2015-03-26 2016-10-20 日本オクラロ株式会社 Optical module
US10306757B2 (en) 2015-11-27 2019-05-28 Fujitsu Limited Circuit board and electronic device
WO2017138744A1 (en) * 2016-02-11 2017-08-17 주식회사 기가레인 Flexible circuit board
KR20170094692A (en) * 2016-02-11 2017-08-21 주식회사 기가레인 Flexible printed circuit board
CN108476587A (en) * 2016-02-11 2018-08-31 吉佳蓝科技股份有限公司 Flexible PCB
WO2017138745A1 (en) * 2016-02-11 2017-08-17 주식회사 기가레인 Flexible circuit board
US10477690B2 (en) 2016-02-11 2019-11-12 Gigalane Co., Ltd. Flexible circuit board
CN108476587B (en) * 2016-02-11 2020-10-16 吉佳蓝科技股份有限公司 Flexible circuit board
KR102622767B1 (en) * 2016-02-11 2024-01-09 주식회사 기가레인 Flexible printed circuit board
CN113811068A (en) * 2020-06-11 2021-12-17 英韧科技(上海)有限公司 Embedded microstrip line with slot for high-speed signal routing

Similar Documents

Publication Publication Date Title
JP2006157646A (en) Wiring board
US8633395B2 (en) Multilayer wiring board
US8168891B1 (en) Differential trace profile for printed circuit boards
JP2006024618A (en) Wiring board
CN101772859A (en) Waveguide connection structure
JP2010212617A (en) Flexible wiring board
JP2005539461A (en) Device for bonding between microstrip line and waveguide
WO2006019596A2 (en) High frequency via
US6717494B2 (en) Printed-circuit board, coaxial cable, and electronic device
WO2013161279A1 (en) Connection structure connecting high frequency circuit and waveguide, and manufacturing method for same
JP4404797B2 (en) Wiring board
WO2006019594A2 (en) High frequency via with stripped semi-rigid cable
JP2011165910A (en) Wiring board
JP2007324934A (en) Electronic equipment
KR100764604B1 (en) Non-Radiative Microstrip Line with Ground Pattern
JP5519328B2 (en) High-frequency transmission line substrate
JP5082250B2 (en) High frequency circuit board
JP2010016076A (en) Flexible printed board and rigid flexible printed board provided therewith
JP4557751B2 (en) High frequency circuit board and high frequency module
JP2006140933A (en) Interlayer connector of transmission line
JP4867359B2 (en) Transmission line interlayer connection structure
TWI608769B (en) Flexible print circuit board and method for manufacturing same
US12027743B2 (en) Transmission apparatus, printed circuit board, and information appliance
US11223138B2 (en) Waveguide to stripline feed
JP2005286484A (en) Microstrip antenna

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060614