JP5519328B2 - High-frequency transmission line substrate - Google Patents

High-frequency transmission line substrate Download PDF

Info

Publication number
JP5519328B2
JP5519328B2 JP2010041911A JP2010041911A JP5519328B2 JP 5519328 B2 JP5519328 B2 JP 5519328B2 JP 2010041911 A JP2010041911 A JP 2010041911A JP 2010041911 A JP2010041911 A JP 2010041911A JP 5519328 B2 JP5519328 B2 JP 5519328B2
Authority
JP
Japan
Prior art keywords
line
conductor
ground
substrate
frequency transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010041911A
Other languages
Japanese (ja)
Other versions
JP2011182039A (en
Inventor
正人 石▲崎▼
Original Assignee
日鉄住金エレクトロデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄住金エレクトロデバイス株式会社 filed Critical 日鉄住金エレクトロデバイス株式会社
Priority to JP2010041911A priority Critical patent/JP5519328B2/en
Publication of JP2011182039A publication Critical patent/JP2011182039A/en
Application granted granted Critical
Publication of JP5519328B2 publication Critical patent/JP5519328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、数十GHzの周波数帯域で使用される高周波用伝送線路基板に係り、特に、マイクロストリップ線路とグランデッドコプレナ線路の変換部において伝送特性の低下を抑えることが可能な高周波用伝送線路基板に関する。   The present invention relates to a high-frequency transmission line substrate used in a frequency band of several tens of GHz, and in particular, high-frequency transmission capable of suppressing deterioration in transmission characteristics in a conversion portion between a microstrip line and a grounded coplanar line. It relates to a line substrate.

数十GHzの高周波信号を伝送するための線路として、マイクロストリップ線路やグランデッドコプレナ線路が知られている。これらの伝送線路を絶縁基板上に形成する際に、いずれを選択するかは、絶縁基板の外部条件によって左右される。例えば、絶縁基板の外部が同軸コネクタである場合にはマイクロストリップ線路が選択され、絶縁基板の外部がICである場合にはグランデッドコプレナ線路が選択される場合が多い。   As a line for transmitting a high frequency signal of several tens of GHz, a microstrip line or a grounded coplanar line is known. Which one to select when forming these transmission lines on an insulating substrate depends on the external conditions of the insulating substrate. For example, when the outside of the insulating substrate is a coaxial connector, a microstrip line is selected, and when the outside of the insulating substrate is an IC, a grounded coplanar line is often selected.

マイクロストリップ線路は、誘電体基材の表面と裏面に導体箔等が被着された構造となっており、表面の導体箔が信号線導体を構成し、裏面の導体箔がグランド層を構成している。なお、信号線導体の幅が広いほど、マイクロストリップ線路の特性インピーダンスは小さい。また、マイクロストリップ線路を前述の同軸コネクタに接続する場合、信号線導体とグランド層がそれぞれ同軸の芯線とグランドに対して接続される。   The microstrip line has a structure in which a conductive foil or the like is deposited on the front and back surfaces of a dielectric substrate. The front surface conductive foil forms a signal line conductor, and the back surface conductive foil forms a ground layer. ing. Note that the wider the width of the signal line conductor, the smaller the characteristic impedance of the microstrip line. When the microstrip line is connected to the coaxial connector, the signal line conductor and the ground layer are connected to the coaxial core line and the ground, respectively.

これに対し、信号線導体と、この信号線導体の両側に配置される接地導体が誘電体基材の表面に導体箔等を用いて形成されたものをコプレナ線路という。さらに、誘電体基材の裏面にグランド層が形成されているものを、特に、グランデッドコプレナ線路という。なお、前述の絶縁基板の外部がICである場合、IC上面の接地パッドと基板の接地導体をワイヤボンディング等で接続する必要があるため、接地導体が信号線導体と同一面に形成されているグランデッドコプレナ線路が伝送線路として使用される場合が多い。   On the other hand, a signal line conductor and ground conductors arranged on both sides of the signal line conductor are formed on the surface of a dielectric base material using a conductor foil or the like, which is called a coplanar line. Furthermore, the one in which the ground layer is formed on the back surface of the dielectric substrate is particularly called a grounded coplanar line. When the outside of the insulating substrate is an IC, the grounding conductor is formed on the same plane as the signal line conductor because the grounding pad on the top surface of the IC and the grounding conductor of the substrate must be connected by wire bonding or the like. In many cases, a grounded coplanar line is used as a transmission line.

マイクロストリップ線路とグランデッドコプレナ線路を接続する場合、伝送損失を低減させるために、両者の間に変換部を設け、変換部で滑らかに構造を変化させる手法がとられる。しかし、幅広い周波数帯で伝送損失を低減させることは非常に困難で、この目的のために様々な発明や考案が提案されてきた。   When connecting a microstrip line and a grounded coplanar line, in order to reduce transmission loss, a method of providing a conversion unit between the two and smoothly changing the structure at the conversion unit is used. However, it is very difficult to reduce transmission loss in a wide frequency band, and various inventions and devices have been proposed for this purpose.

例えば、特許文献1には、「変換線路」という名称で、ミリ波領域で用いられるグランデッドコプレナ線路あるいはコプレナ線路形式の端子を有する部品とマイクロストリップ線路形式の端子を有する部品とを接続するための変換線路の改良に関する発明が開示されている。
特許文献1に開示された発明は、マイクロストリップ線路のストリップ導体の線幅をグランデッドコプレナ線路の中心導体よりも大きくし、中心導体とストリップ導体とを線幅が徐々に変化するようなテーパ状の導体部を介して接続するとともに、テーパ状の導体部の両側のグランド層(前述の接地導体に相当)との間隔も同様に変化させ、このテーパ状のグランド層の拡がり起点が、テーパ状の導体部の拡がり起点よりもグランデッドコプレナ線路側にずれた構造となっている。
このような構造によれば、テーパ状の導体部における特性インピーダンスの変化を小さく抑えながらコプレナ線路としての性質を徐々に小さくすることができるため、ミリ波の高周波領域でも信号の反射及び挿入損失を小さくすることができる。
For example, in Patent Document 1, a component having a grounded coplanar line or a coplanar line type terminal used in the millimeter wave region and a component having a microstrip line type terminal are connected under the name “conversion line”. The invention regarding the improvement of the conversion line for this purpose is disclosed.
In the invention disclosed in Patent Document 1, the line width of the strip conductor of the microstrip line is made larger than that of the center conductor of the grounded coplanar line, and the taper is such that the line width gradually changes between the center conductor and the strip conductor. In addition, the distance from the ground layer on both sides of the tapered conductor portion (corresponding to the above-mentioned ground conductor) is changed in the same way. The structure is shifted to the grounded coplanar line side from the spreading starting point of the conductor.
According to such a structure, since the characteristic as a coplanar line can be gradually reduced while suppressing a change in characteristic impedance in the tapered conductor portion, signal reflection and insertion loss can be reduced even in a high frequency region of millimeter waves. Can be small.

特許文献2には、高周波特性の悪化を防止して高周波信号を通過させることができる「高周波信号伝送基板」に関する発明が開示されている。
特許文献2に開示された発明は、グランドデッドコプレナ線路とマイクロストリップ線路を有する高周波信号伝送基板において、ビアの複数個を信号導体線路から遠ざかる方向に配列するとともに、基板の稜線部から延設する第1のグランド導体膜の信号導体線路の近接部、ビアを含むビア周辺部及びこれと近接部を接続する繋ぎ部を残して第1のグランド導体膜に稜線部から延設する切り欠き部を形成した構造となっている。
このような構造の高周波信号伝送基板においては、第1のグランド導体膜のうち基板の稜線部近傍においてスタブが発生するおそれのある箇所に切り欠き部が設けられていることから、透過係数S21の特性の低下やエネルギー放射の割合の増加等の特性の悪化を防止することが可能である。
Patent Document 2 discloses an invention relating to a “high-frequency signal transmission board” that can prevent high-frequency characteristics from deteriorating and allow a high-frequency signal to pass therethrough.
The invention disclosed in Patent Document 2 is a high-frequency signal transmission board having a ground dead coplanar line and a microstrip line, in which a plurality of vias are arranged in a direction away from the signal conductor line and extended from a ridge line part of the board. A notch portion extending from the ridge line portion to the first ground conductor film, leaving a proximity portion of the signal conductor line of the first ground conductor film, a via peripheral portion including the via, and a connecting portion connecting this and the proximity portion. The structure is formed.
In the high-frequency signal transmission substrate having such a structure, a notch portion is provided in a portion of the first ground conductor film where a stub may be generated in the vicinity of the ridge line portion of the substrate. It is possible to prevent the deterioration of characteristics such as a decrease in characteristics and an increase in the ratio of energy radiation.

特許第3580667号公報Japanese Patent No. 3580667 特開2008−147757号公報JP 2008-147757 A

しかしながら、上述の従来技術である特許文献1に開示された発明では、グランド層(前述の接地導体に相当)に電流が流れにくい領域のスタブが存在するため、高周波の領域において、このスタブが後述する透過係数S21の特性の低下や、エネルギー放射の割合を増加させるという課題があった。   However, in the invention disclosed in Patent Document 1 which is the above-described prior art, a stub in a region where current does not easily flow is present in the ground layer (corresponding to the above-described ground conductor). There was a problem that the characteristic of the transmission coefficient S21 to be reduced and the ratio of energy radiation were increased.

また、特許文献2に開示された発明においては、マイクロストリップ線路とグランデッドコプレナ線路の変換部近傍のビアを介して、リターン電流が接地導体とグランド層の間を移動する際に発生する伝送損失を、十分に低下させることができないという課題があった。   Further, in the invention disclosed in Patent Document 2, transmission that occurs when a return current moves between the ground conductor and the ground layer through a via in the vicinity of the conversion portion of the microstrip line and the grounded coplanar line. There was a problem that the loss could not be reduced sufficiently.

本発明は、このような従来の事情に対処してなされたものであり、マイクロストリップ線路とグランデッドコプレナ線路の変換部近傍のビアを介して、接地導体とグランド層の間をリターン電流が移動する際に発生する伝送損失を抑え、伝送特性の低下を防ぐことが可能な高周波用伝送線路基板を提供することを目的とする。   The present invention has been made in response to such a conventional situation, and a return current is generated between a ground conductor and a ground layer via a via in the vicinity of a conversion portion of a microstrip line and a grounded coplanar line. An object of the present invention is to provide a high-frequency transmission line substrate capable of suppressing transmission loss that occurs when moving and preventing deterioration of transmission characteristics.

上記目的を達成するため、請求項1記載の発明は、誘電体からなる基材の一方の面に形成される第1の信号線導体と,この第1の信号線導体を挟んで対称に設けられる1対の第1の接地導体と,第1の信号線導体から離れる向きに1対の第1の接地導体からそれぞれ延設される第2の接地導体と、基材の他方の面に形成されるグランド層と、このグランド層と第1の接地導体及び第2の接地導体をそれぞれ導通させる複数の第1のビア及び第2のビアとを有するグランデッドコプレナ線路と、第1の信号線導体に変換部を介して接続される第2の信号線導体と、グランド層とを有するマイクロストリップ線路と、を備え、第1の接地導体は、第1の信号線導体に沿って設けられ、第2の接地導体は、外郭線が円弧状をなし,変換部に最も近い第1のビア,及び第2のビアの開口部を所定の幅で囲むように形成されるビアランドと、このビアランド同士を導通させる接続線路とからなり、この接続線路は,ビアランドの外郭線の直径よりも幅が狭くなるように形成されることを特徴とするものである。
このような構造の高周波用伝送線路基板においては、ビアランドや接続線路の縁部に沿って流れるリターン電流と、第2のビアとの距離が短いため、リターン電流が第2のビアへ流れ易いという作用を有する。この場合、リターン電流のエネルギーの一部が空間へ放射されるという現象が発生し難い。また、基材の稜線部近傍に第1の接地導体が設けられていないため、スタブが発生するおそれがない。
In order to achieve the above-mentioned object, the invention according to claim 1 is provided symmetrically with a first signal line conductor formed on one surface of a dielectric substrate and sandwiching the first signal line conductor. A pair of first grounding conductors, a second grounding conductor extending from the pair of first grounding conductors in a direction away from the first signal line conductor, and the other surface of the substrate And a grounded coplanar line having a plurality of first vias and second vias that respectively connect the ground layer to the first ground conductor and the second ground conductor; and a first signal A microstrip line having a second signal line conductor connected to the line conductor via the conversion unit and a ground layer, and the first ground conductor is provided along the first signal line conductor. The second ground conductor has an arcuate outline and is closest to the converter The via land is formed so as to surround the opening of the first via and the second via with a predetermined width, and a connection line for connecting the via lands. The connection line is determined by the diameter of the outline of the via land. Is formed so as to have a narrow width.
In the high-frequency transmission line substrate having such a structure, since the distance between the return current flowing along the edge of the via land or the connection line and the second via is short, the return current can easily flow to the second via. Has an effect. In this case, a phenomenon that a part of the energy of the return current is radiated to the space hardly occurs. Moreover, since the 1st grounding conductor is not provided in the ridgeline part vicinity of a base material, there is no possibility that a stub will generate | occur | produce.

また、請求項2記載の発明は、請求項1記載の高周波用伝送線路基板において、接続線路の幅が、ビアランドの幅の2倍であることを特徴とするものである。なお、本願明細書において、「接続線路の幅がビアランドの幅の2倍」という場合には、「略2倍」の場合も含まれるものとする。
このような構造の高周波用伝送線路基板においては、ビアランド間を導通させるという接続線路の機能を維持しつつ、請求項1記載の発明よりもさらに、第2の接地導体を流れるリターン電流のエネルギーの一部が空間へ放射され難いという作用を有する。
According to a second aspect of the present invention, in the high-frequency transmission line substrate according to the first aspect, the width of the connection line is twice the width of the via land. In the specification of the present application, “the width of the connection line is twice the width of the via land” includes the case of “substantially twice”.
In the high-frequency transmission line substrate having such a structure, the energy of the return current flowing through the second ground conductor is further maintained as compared with the invention according to claim 1 while maintaining the function of the connection line for conducting between the via lands. It has an effect that a part of it is not easily radiated into the space.

本発明の請求項1記載の高周波用伝送線路基板によれば、マイクロストリップ線路とグランデッドコプレナ線路の変換部における伝送損失を小さくして、伝送特性の低下を抑えることが可能である。   According to the high-frequency transmission line substrate of the first aspect of the present invention, it is possible to reduce the transmission loss in the conversion part of the microstrip line and the grounded coplanar line, and to suppress the deterioration of the transmission characteristics.

また、本発明の請求項2記載の高周波用伝送線路基板によれば、請求項1記載の発明の効果がより一層発揮される。   Moreover, according to the high-frequency transmission line substrate of claim 2 of the present invention, the effect of the invention of claim 1 is further exhibited.

(a)は本発明の実施の形態に係る高周波用伝送線路基板の実施例の主要部の平面図であり、(b)は同図(a)のX−X線矢視断面図である。(A) is a top view of the principal part of the Example of the high-frequency transmission line board | substrate which concerns on embodiment of this invention, (b) is XX arrow sectional drawing of the figure (a). (a)及び(b)は図1(a)の部分拡大図である。(A) And (b) is the elements on larger scale of Drawing 1 (a). (a)及び(b)は本実施例の変形例を示す図である。(A) And (b) is a figure which shows the modification of a present Example. (a)及び(b)はそれぞれ従来技術及び本実施例の高周波用伝送線路基板におけるリターン電流の挙動を模式的に示した図である。(A) And (b) is the figure which showed typically the behavior of the return current in the transmission line board | substrate for high frequencies of a prior art and a present Example, respectively. (a)及び(b)は従来技術に係る高周波用伝送線路基板の主要部の平面図である。(A) And (b) is a top view of the principal part of the transmission line board for high frequencies concerning a prior art. (a)及び(b)は従来技術の高周波用伝送線路基板について透過係数S21を数値解析により求めた結果である。(A) And (b) is the result of having calculated | required transmission coefficient S21 about the transmission line board | substrate for high frequency of a prior art by numerical analysis. (a)及び(b)は本実施例の高周波用伝送線路基板について透過係数S21を数値解析により求めた結果である。(A) And (b) is the result of having calculated | required transmission coefficient S21 by the numerical analysis about the transmission line board | substrate for high frequencies of a present Example.

本発明の実施の形態に係る高周波用伝送線路基板の実施例について従来技術と比較しながら具体的に説明する。   An example of the high-frequency transmission line substrate according to the embodiment of the present invention will be specifically described in comparison with the prior art.

本発明及び従来技術に係る高周波用伝送線路基板の構造について図1及び図2を用いて説明する。
図1(a)は本発明の実施の形態に係る高周波用伝送線路基板の実施例の主要部の平面図であり、図1(b)は図1(a)のX−X線矢視断面図である。なお、図1(b)にはGNDビア9aのみが示され、GNDビア9bは示されていないが、GNDビア9bはGNDビア9aと同一の断面構造を有している。また、図2(a)及び図2(b)は図1(a)の部分拡大図であり、図3(a)及び図3(b)は本実施例の変形例を示す図である。
The structure of the high-frequency transmission line substrate according to the present invention and the prior art will be described with reference to FIGS.
Fig.1 (a) is a top view of the principal part of the Example of the high-frequency transmission line board | substrate based on Embodiment of this invention, FIG.1 (b) is a XX arrow directional cross section of Fig.1 (a). FIG. In FIG. 1B, only the GND via 9a is shown and the GND via 9b is not shown, but the GND via 9b has the same cross-sectional structure as the GND via 9a. 2 (a) and 2 (b) are partial enlarged views of FIG. 1 (a), and FIGS. 3 (a) and 3 (b) are diagrams showing modifications of the present embodiment.

図1(a)及び図1(b)に示すように、本実施例の高周波用伝送線路基板1aでは、セラミックやプラスチック等の誘電体を一枚又は複数枚積層して形成される基材2の表面2aに、変換部8を介して接続されるストリップ導体3aと中心導体3bとからなる信号線導体3と、接地導体4a,4bが形成され、基材2の裏面2bに、グランド層5が島状あるいは略全面にべたパターンとして形成されている。すなわち、高周波用伝送線路基板1は、中心導体3bと,この中心導体3bを挟んで対称にそれぞれ形成される接地導体4a,4a及び接地導体4b,4bと,グランド層5によって構成されるグランデッドコプレナ線路7と、ストリップ導体3aと,グランド層5によって構成されるマイクロストリップ線路6とを有している。   As shown in FIGS. 1A and 1B, in the high-frequency transmission line substrate 1a of the present embodiment, a base material 2 formed by laminating one or more dielectrics such as ceramics and plastics. A signal line conductor 3 composed of a strip conductor 3a and a center conductor 3b and ground conductors 4a and 4b connected to each other through the conversion portion 8 are formed on the surface 2a of the substrate 2 and a ground layer 5 is formed on the back surface 2b of the substrate 2. Is formed as an island shape or a solid pattern on almost the entire surface. That is, the high-frequency transmission line substrate 1 is composed of a center conductor 3b, ground conductors 4a and 4a and ground conductors 4b and 4b that are symmetrically formed with the center conductor 3b interposed therebetween, and a grounded layer 5. The coplanar line 7, the strip conductor 3 a, and the microstrip line 6 constituted by the ground layer 5 are provided.

基材2には、接地導体4a,4a及び接地導体4b,4bからグランド層5に向かって複数の貫通孔2cが穿設されており、貫通孔2cの内壁面には金属導体10が接合されてGNDビア9a,9bが形成されている。すなわち、接地導体4a,4a及び接地導体4b,4bとグランド層5はそれぞれGNDビア9a,9bを介して電気的に接続されている。
また、接地導体4b,4bは、変換部8の近傍において中心導体3bから離れる向きに接地導体4a,4aから延設されており、GNDビア9aは中心導体3bに沿って略等間隔に配列されている。
A plurality of through holes 2c are formed in the base material 2 from the ground conductors 4a and 4a and the ground conductors 4b and 4b toward the ground layer 5, and a metal conductor 10 is bonded to the inner wall surface of the through hole 2c. Thus, GND vias 9a and 9b are formed. That is, the ground conductors 4a and 4a and the ground conductors 4b and 4b and the ground layer 5 are electrically connected via the GND vias 9a and 9b, respectively.
The ground conductors 4b and 4b are extended from the ground conductors 4a and 4a in the direction away from the center conductor 3b in the vicinity of the converter 8, and the GND vias 9a are arranged at substantially equal intervals along the center conductor 3b. ing.

図2(a)に示すように、ストリップ導体3aは中心導体3bよりも幅が広く、変換部8は中心導体3bからストリップ導体3aに向かって拡幅するように形成されている。また、接地導体4a,4aは、変換部8に対する間隔Wが中心導体3bに対する間隔Wと略等しくなるように形成されている。一方、接地導体4b,4bは、外郭線が円弧状をなし,変換部8に最も近いGNDビア9a(以下、必要に応じてGNDビア14という。)及びGNDビア9bの開口部を幅Dで囲むように形成されるビアランド12と、隣接するビアランド12同士を互いに導通させる接続線路13とからなり、ビアランド12の幅Dは接地導体4aの幅Dと略等しく、接続線路13の幅Dはビアランド12の幅Dの略2倍となっている。また、図2(b)に示すように、基材2を平面視してGNDビア9a,9bの中心軸を通る直線(以下、配列線11a,11bという。)のなす角度αは90度となっている。なお、本発明の高周波用伝送線路基板は、図1又は図2に示す構造に限定されるものではなく、例えば、図3に示す高周波用伝送線路基板1bのように、GNDビア9bが4個設置された構造とすることもできる。なお、図3(a)及び図3(b)はそれぞれ図1(a)及び図2(a)に対応するものであるため、その詳細な説明は省略する。また、GNDビア9bは、6個以上設置されていても良く、また、1列に限らず、2列以上設置されていても良い。 As shown in FIG. 2A, the strip conductor 3a is wider than the center conductor 3b, and the conversion portion 8 is formed so as to widen from the center conductor 3b toward the strip conductor 3a. The ground conductor 4a, 4a are formed so that the distance W 2 is substantially equal to the distance W 1 to the center conductor 3b for converting unit 8. On the other hand, the ground conductor 4b, 4b are outline is an arc shape, the closest GND vias 9a to the converter 8 (hereinafter, referred to as GND vias 14 as required.) And a width D 2 of the opening of the GND vias 9b The via land 12 is formed so as to surround the via land 12 and the connection line 13 that connects the adjacent via lands 12 to each other. The width D 2 of the via land 12 is substantially equal to the width D 1 of the ground conductor 4a. D 3 is approximately twice the width D 2 of the via land 12. Further, as shown in FIG. 2B, an angle α formed by a straight line (hereinafter referred to as array lines 11a and 11b) passing through the central axes of the GND vias 9a and 9b in a plan view of the substrate 2 is 90 degrees. It has become. The high-frequency transmission line substrate of the present invention is not limited to the structure shown in FIG. 1 or FIG. 2, and includes, for example, four GND vias 9b like the high-frequency transmission line substrate 1b shown in FIG. It can also be an installed structure. 3 (a) and 3 (b) correspond to FIGS. 1 (a) and 2 (a), respectively, and detailed description thereof is omitted. In addition, six or more GND vias 9b may be installed, and the number of GND vias 9b is not limited to one, and may be two or more.

次に、高周波用伝送線路基板1aの作用について図4を用いて説明する。
図4(a)及び図4(b)はそれぞれ従来技術及び本実施例の高周波用伝送線路基板におけるリターン電流の挙動を模式的に示した図である。なお、図2に示した構成要素については同一の符号を付して、その説明を省略する。また、図4(a)に示した従来技術の高周波用伝送線路基板51aは本実施例の高周波用伝送線路基板1a(図2(a))において接続線路13の幅Dがビアランド12の円弧状の外郭線の直径D(図2(a))と等しく、GNDビア9bのビアランド12の外郭線が矩形状をなすように形成された構造となっている。
図4(a)に示すように、高周波用伝送線路基板51aにおいては、矢印Aで示すように接地導体4aの縁部に沿って接地導体4bへ流れたリターン電流の一部は矢印Bで示すようにGNDビア14,9bへ流れる。ところが、GNDビア14とGNDビア9bの間では、接地導体4bの縁部に沿って流れるリターン電流とGNDビア14,9bとの距離が長くなり、リターン電流がGNDビア14,9bのいずれにも流れ難くなる。そのため、リターン電流のエネルギーの一部が矢印Cで示すように空間へ放射されてしまう。その結果、変換部8における伝送損失が増加する。
Next, the operation of the high-frequency transmission line substrate 1a will be described with reference to FIG.
FIGS. 4A and 4B are diagrams schematically showing the behavior of the return current in the high-frequency transmission line substrate of the prior art and this example, respectively. In addition, the same code | symbol is attached | subjected about the component shown in FIG. 2, and the description is abbreviate | omitted. Further, the circle of FIG. 4 the high-frequency transmission line of the prior art shown in (a) the substrate 51a has a width D 3 is via land 12 of the connection line 13 in the high-frequency transmission line substrate 1a of the present embodiment (FIG. 2 (a)) It is equal to the diameter D 4 of the arc-shaped outline (FIG. 2A), and the outline of the via land 12 of the GND via 9b is formed in a rectangular shape.
As shown in FIG. 4A, in the high-frequency transmission line substrate 51a, a part of the return current flowing to the ground conductor 4b along the edge of the ground conductor 4a as indicated by the arrow A is indicated by the arrow B. So as to flow to GND vias 14 and 9b. However, between the GND via 14 and the GND via 9b, the distance between the return current flowing along the edge of the ground conductor 4b and the GND vias 14 and 9b becomes long, and the return current is in any of the GND vias 14 and 9b. It becomes difficult to flow. Therefore, a part of the energy of the return current is radiated to the space as indicated by the arrow C. As a result, transmission loss in the converter 8 increases.

一方、本実施例の高周波用伝送線路基板1aでは、接続線路13の幅Dがビアランド12の円弧状の外郭線の直径D(図2(a))よりも狭く、GNDビア9bのビアランド12の外郭線が円弧状をなすように形成されているため、図4(b)に矢印Eで示すように、GNDビア14とGNDビア9bの間でも、ビアランド12や接続線路13の縁部に沿って流れるリターン電流とGNDビア14,9bとの距離が短く、リターン電流がGNDビア14,9bに流れ易くなる。従って、リターン電流のエネルギーの一部が空間へ放射されるという現象が発生し難い。また、特許文献1に記載された発明とは異なり、基材2の稜線部2d(図2(a))の近傍にスタブが発生するおそれがない。
従って、このような構造の高周波用伝送線路基板1aによれば、マイクロストリップ線路6とグランデッドコプレナ線路7の変換部8における伝送損失を小さくすることができる。
On the other hand, the high frequency transmission line substrate 1a of the present embodiment, narrower than the width D 3 is the diameter D 4 of the arcuate outline of the via land 12 of the connection line 13 (FIG. 2 (a)), the GND vias 9b via land Since the outer contour line of 12 is formed in an arc shape, as shown by an arrow E in FIG. 4B, the edge of the via land 12 or the connection line 13 is also between the GND via 14 and the GND via 9b. The distance between the return current flowing along the GND vias 14 and 9b is short, and the return current easily flows through the GND vias 14 and 9b. Therefore, a phenomenon in which a part of the energy of the return current is radiated to the space hardly occurs. Further, unlike the invention described in Patent Document 1, there is no possibility that a stub is generated in the vicinity of the ridge line portion 2d (FIG. 2A) of the base material 2.
Therefore, according to the high-frequency transmission line substrate 1a having such a structure, it is possible to reduce transmission loss in the conversion unit 8 of the microstrip line 6 and the grounded coplanar line 7.

本発明の高周波用伝送線路基板の変換部における伝送特性について、散乱行列(S行列)の要素(Sパラメータ)の一つである透過係数S21の数値解析結果を用いて従来技術と比較しながら説明する。
図5(a)及び図5(b)は従来技術に係る高周波用伝送線路基板の主要部の平面図である。また、図6及び図7はそれぞれ従来技術及び本実施例の高周波用伝送線路基板の伝送特性(透過係数S21)を数値解析によって求めた結果を示している。なお、図1乃至図4に示した構成要素については同一の符号を付して、その説明を省略する。
The transmission characteristic in the conversion part of the high-frequency transmission line substrate of the present invention will be described using a numerical analysis result of the transmission coefficient S21, which is one of the elements (S parameters) of the scattering matrix (S matrix), in comparison with the prior art. To do.
5 (a) and 5 (b) are plan views of the main part of the high-frequency transmission line substrate according to the prior art. FIGS. 6 and 7 show the results obtained by numerical analysis of the transmission characteristics (transmission coefficient S21) of the high-frequency transmission line substrate of the prior art and this example, respectively. The components shown in FIGS. 1 to 4 are denoted by the same reference numerals, and the description thereof is omitted.

図5(a)及び図5(b)に示すように、従来技術の高周波用伝送線路基板50は本実施例の高周波用伝送線路基板1a(図2(a))においてGNDビア9b,ビアランド12及び接続線路13が無く、接地導体4aの外郭線が変換部8の近傍を除いて略矩形状に形成された構造となっており、従来技術の高周波用伝送線路基板51bは本実施例の変形例である高周波用伝送線路基板1b(図3(b))において接続線路13の幅Dがビアランド12の円弧状の外郭線の直径D(図2(a))と等しく、GNDビア9bのビアランド12の外郭線が矩形状をなすように形成された構造となっている。なお、以下の数値解析において、高周波用伝送線路基板50,51a,51bにおけるストリップ線路3a及び中心導体3bの幅をそれぞれ0.25mm及び0.1mmとし、長さをそれぞれ1.3mm及び1.5mmとした。また、接地導体4aと中心導体3bとの間隔Wを0.055mmとし、接地導体4aの幅Dとビアランド12の幅Dをそれぞれ0.125mm及び0.1mmとした。そして、ストリップ線路3a,中心導体3b,接地導体4a及びビアランド12の厚さを55μmとするとともに、基材2を比誘電率が9.0のアルミナ基板(縦3mm×横6mm×厚さ0.3mm)とした。なお、GNDビア9a,9bについては、径を0.2mmとし、3次元形状のモデル化を行って解析条件の中に盛り込んだ。 As shown in FIGS. 5A and 5B, the high-frequency transmission line substrate 50 of the prior art is the same as the GND via 9b, via land 12 in the high-frequency transmission line substrate 1a (FIG. 2A) of the present embodiment. In addition, there is no connection line 13 and the outline of the ground conductor 4a is formed in a substantially rectangular shape except for the vicinity of the conversion portion 8, and the conventional high-frequency transmission line substrate 51b is a modification of the present embodiment. equally a high-frequency transmission line substrate 1b (FIG. 3 (b)) connecting lines 13 width D 3 is the diameter D 4 of the arcuate outline of the via land 12 in the (FIG. 2 (a)) is an example, GND vias 9b The outer land line of the via land 12 is formed in a rectangular shape. In the following numerical analysis, the widths of the strip line 3a and the central conductor 3b in the high-frequency transmission line substrates 50, 51a, 51b are 0.25 mm and 0.1 mm, respectively, and the lengths are 1.3 mm and 1.5 mm, respectively. It was. Further, the distance W 1 between the ground conductor 4a and the center conductor 3b and 0.055 mm, and respectively 0.125mm and 0.1mm width D 2 of the width D 1 and via land 12 of the ground conductor 4a. The thickness of the strip line 3a, the central conductor 3b, the ground conductor 4a and the via land 12 is 55 μm, and the base material 2 is an alumina substrate having a relative dielectric constant of 9.0 (length 3 mm × width 6 mm × thickness 0. 3 mm). In addition, about the GND via | veer 9a, 9b, the diameter was set to 0.2 mm and the three-dimensional shape was modeled and included in the analysis conditions.

図6及び図7において、縦軸は透過係数S21の計算値であり、横軸は伝送される信号の周波数(GHz)である。なお、図6(a)の実線及び破線はそれぞれ高周波用伝送線路基板50,51aの透過係数S21(計算値)を表し、図6(b)の実線及び破線はそれぞれ高周波用伝送線路基板50,51bの透過係数S21(計算値)を表している。また、図7(a)の実線及び破線はそれぞれ高周波用伝送線路基板51a,1aの透過係数S21(計算値)を表し、図7(b)の実線及び破線はそれぞれ高周波用伝送線路基板51b,1bの透過係数S21(計算値)を表している。   6 and 7, the vertical axis represents the calculated value of the transmission coefficient S21, and the horizontal axis represents the frequency (GHz) of the transmitted signal. The solid line and the broken line in FIG. 6A represent the transmission coefficient S21 (calculated value) of the high-frequency transmission line substrate 50, 51a, respectively. The solid line and the broken line in FIG. The transmission coefficient S21 (calculated value) of 51b is represented. Further, the solid line and the broken line in FIG. 7A represent the transmission coefficient S21 (calculated value) of the high-frequency transmission line substrate 51a and 1a, respectively, and the solid line and the broken line in FIG. It represents the transmission coefficient S21 (calculated value) of 1b.

図6に示すように、ほぼ全周波数帯域にわたって高周波用伝送線路基板51a,51bの透過係数S21が高周波用伝送線路基板50の透過係数S21を上回っている。これは、高周波用伝送線路基板51a,51bではGNDビア14へ流れなかったリターン電流の一部が接地導体4bを経由してGNDビア9bへ流れることで、変換部8における伝送損失が高周波用伝送線路基板50に比べて抑制されたことを示している。
一方、図7では、45GHz以上の周波数帯域において、高周波用伝送線路基板1a,1bの透過係数S21がそれぞれ高周波用伝送線路基板51a,51bの透過係数S21を上回っている。これは、高周波用伝送線路基板1a,1bにおいては、GNDビア14とGNDビア9bの間でもビアランド12や接続線路13の縁部に沿って流れるリターン電流とGNDビア14,9bとの距離が短く、高周波用伝送線路基板51a,51bの場合に比べて、リターン電流がGNDビア14,9bに流れ易いため、リターン電流のエネルギーの一部が空間へ放射されるという現象が発生し難く、変換部8における伝送損失が小さいことを示している。
As shown in FIG. 6, the transmission coefficient S21 of the high-frequency transmission line substrates 51a and 51b exceeds the transmission coefficient S21 of the high-frequency transmission line substrate 50 over almost the entire frequency band. This is because part of the return current that did not flow to the GND via 14 in the high-frequency transmission line substrates 51a and 51b flows to the GND via 9b via the ground conductor 4b, so that the transmission loss in the conversion unit 8 is high-frequency transmission. It is shown that it is suppressed as compared with the line substrate 50.
On the other hand, in FIG. 7, the transmission coefficient S21 of the high-frequency transmission line substrates 1a and 1b exceeds the transmission coefficient S21 of the high-frequency transmission line substrates 51a and 51b in the frequency band of 45 GHz or higher. This is because, in the high-frequency transmission line substrates 1a and 1b, the distance between the return current flowing along the via land 12 and the edge of the connection line 13 and the GND vias 14 and 9b is short even between the GND via 14 and the GND via 9b. Compared with the case of the high-frequency transmission line substrates 51a and 51b, since the return current easily flows to the GND vias 14 and 9b, the phenomenon that part of the energy of the return current is radiated to the space is less likely to occur. 8 shows that the transmission loss is small.

本実施例では配列線11a,11bが直交するようにGNDビア9a,9bが配列されているが、配列線11a,11bのなす角度αは必ずしも90度でなくとも良い。ただし、GNDビア9a,9bは角度αが90度±30度の範囲内となるように配列されることが望ましい。さらに、接続線路13の幅Dは本実施例に示した場合に限定されるものではなく、適宜変更可能である。なお、前述のビアランド12の作用が発揮されるためには、接続線路13の幅Dがビアランド12の円弧状の外郭線の直径Dに比べて狭いほど良いが、接続線路13の幅Dがあまり狭すぎると、ビアランド12同士を導通させるという接続線路13の本来の機能が発揮されない。従って、接続線路13の幅Dはビアランド12の幅Dの2倍程度とすることが望ましい。
また、マイクロストリップ線路6、グランデッドコプレナ線路7及び接地導体4a,4bの寸法や基材2の材質は、本実施例に示すものに限定されるものではなく、適宜変更可能である。
In the present embodiment, the GND vias 9a and 9b are arranged so that the arrangement lines 11a and 11b are orthogonal to each other, but the angle α formed by the arrangement lines 11a and 11b is not necessarily 90 degrees. However, the GND vias 9a and 9b are preferably arranged so that the angle α is within a range of 90 ° ± 30 °. Further, the width D 3 of the connection line 13 is not limited to the case shown in this embodiment can be appropriately changed. In order to effect the above-described via lands 12 are exerted, the width D 3 of the connection line 13 is narrower the better as compared to the diameter D 4 of the arcuate outline of the via land 12, the width D of the connection lines 13 If 3 is too narrow, the original function of the connection line 13 for conducting the via lands 12 to each other is not exhibited. Therefore, it is desirable that the width D 3 of the connection line 13 is about twice the width D 2 of the via land 12.
Further, the dimensions of the microstrip line 6, the grounded coplanar line 7, and the ground conductors 4a and 4b and the material of the substrate 2 are not limited to those shown in the present embodiment, and can be changed as appropriate.

請求項1及び請求項2に記載された発明は、マイクロストリップ線路とグランデッドコプレナ線路を有する各種の伝送線路基板に対して適用可能である。   The invention described in claim 1 and claim 2 can be applied to various transmission line substrates having a microstrip line and a grounded coplanar line.

1a,1b…高周波用伝送線路基板 2…基材 2a…表面 2b…裏面 2c…貫通孔 2d…稜線部 3…信号線導体 3a…ストリップ導体 3b…中心導体 4a,4b…接地導体 5…グランド層 6…マイクロストリップ線路 7…グランデッドコプレナ線路 8…変換部 9a,9b…GNDビア 10…金属導体 11a,11b…配列線 12…ビアランド 13…接続線路 14…GNDビア 50…高周波用伝送線路基板 51a,51b…高周波用伝送線路基板   DESCRIPTION OF SYMBOLS 1a, 1b ... High-frequency transmission line board | substrate 2 ... Base material 2a ... Front surface 2b ... Back surface 2c ... Through-hole 2d ... Edge line part 3 ... Signal line conductor 3a ... Strip conductor 3b ... Center conductor 4a, 4b ... Ground conductor 5 ... Ground layer DESCRIPTION OF SYMBOLS 6 ... Microstrip line 7 ... Grounded coplanar line 8 ... Conversion part 9a, 9b ... GND via 10 ... Metal conductor 11a, 11b ... Arrangement line 12 ... Via land 13 ... Connection line 14 ... GND via 50 ... Transmission line substrate for high frequency 51a, 51b ... high-frequency transmission line substrate

Claims (2)

誘電体からなる基材の一方の面に形成される第1の信号線導体と,この第1の信号線導体を挟んで対称に設けられる1対の第1の接地導体と,前記第1の信号線導体から離れる向きに前記1対の第1の接地導体からそれぞれ延設される第2の接地導体と、前記基材の他方の面に形成されるグランド層と、このグランド層と前記第1の接地導体及び前記第2の接地導体をそれぞれ導通させる複数の第1のビア及び第2のビアとを有するグランデッドコプレナ線路と、
前記第1の信号線導体に変換部を介して接続される第2の信号線導体と、前記グランド層とを有するマイクロストリップ線路と、
を備え、
前記第1の接地導体は、前記第1の信号線導体に沿って設けられ、
前記第2の接地導体は、外郭線が円弧状をなし,前記変換部に最も近い前記第1のビア,及び前記第2のビアの開口部を所定の幅で囲むように形成されるビアランドと、このビアランド同士を導通させる接続線路とからなり、
この接続線路は,前記ビアランドの前記外郭線の直径よりも幅が狭くなるように形成されることを特徴とする高周波用伝送線路基板。
A first signal line conductor formed on one surface of a base material made of a dielectric, a pair of first ground conductors provided symmetrically across the first signal line conductor, and the first A second ground conductor extending from the pair of first ground conductors in a direction away from the signal line conductor, a ground layer formed on the other surface of the substrate, and the ground layer and the first A grounded coplanar line having a plurality of first vias and second vias that respectively conduct one ground conductor and the second ground conductor;
A microstrip line having a second signal line conductor connected to the first signal line conductor via a converter, and the ground layer;
With
The first ground conductor is provided along the first signal line conductor,
The second ground conductor has an arcuate outline and a via land formed so as to surround the first via closest to the conversion unit and the opening of the second via with a predetermined width. , Consisting of a connection line that makes this via land conductive,
The connection line is formed to have a width narrower than the diameter of the outer line of the via land.
前記接続線路の幅は、前記ビアランドの幅の2倍であることを特徴とする請求項1記載の高周波用伝送線路基板。   2. The high-frequency transmission line substrate according to claim 1, wherein the width of the connection line is twice the width of the via land.
JP2010041911A 2010-02-26 2010-02-26 High-frequency transmission line substrate Active JP5519328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010041911A JP5519328B2 (en) 2010-02-26 2010-02-26 High-frequency transmission line substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010041911A JP5519328B2 (en) 2010-02-26 2010-02-26 High-frequency transmission line substrate

Publications (2)

Publication Number Publication Date
JP2011182039A JP2011182039A (en) 2011-09-15
JP5519328B2 true JP5519328B2 (en) 2014-06-11

Family

ID=44693125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010041911A Active JP5519328B2 (en) 2010-02-26 2010-02-26 High-frequency transmission line substrate

Country Status (1)

Country Link
JP (1) JP5519328B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6229607B2 (en) 2014-07-11 2017-11-15 富士通オプティカルコンポーネンツ株式会社 Optical module and transmitter
CN109390649B (en) * 2018-10-25 2023-10-17 深圳市信维通信股份有限公司 Microwave transmission line
CN109830790B (en) * 2019-03-11 2020-09-08 南京理工大学 Totally-enclosed coplanar integrated waveguide-to-strip line transition device
CN114641151B (en) * 2022-05-19 2022-08-02 广东省新一代通信与网络创新研究院 Manufacturing method of base station radio frequency circuit based on PCB castle plate

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4221884B2 (en) * 2000-07-26 2009-02-12 株式会社デンソー Millimeter-wave high-frequency equipment
JP2004135227A (en) * 2002-10-15 2004-04-30 Sumitomo Metal Electronics Devices Inc High-frequency transmission line substrate
JP5207065B2 (en) * 2006-09-01 2013-06-12 日本電気株式会社 High frequency transmission line
JP2008147757A (en) * 2006-12-06 2008-06-26 Sumitomo Metal Electronics Devices Inc High-frequency signal transmission substrate

Also Published As

Publication number Publication date
JP2011182039A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP5431433B2 (en) High frequency line-waveguide converter
JP5822012B2 (en) High frequency signal line
JP4365852B2 (en) Waveguide structure
JP2006024618A (en) Wiring board
JP5842850B2 (en) Flat cable and electronics
JP5393675B2 (en) Slow wave transmission line
JP6233473B2 (en) High frequency signal transmission line and electronic equipment
JP6907918B2 (en) Connector and connector flat line connection structure
TW201830771A (en) Split ring resonator (srr) antenna
JP5519328B2 (en) High-frequency transmission line substrate
JP2006173239A (en) Wiring substrate, its manufacturing method, and electronic equipment using the same
US6717494B2 (en) Printed-circuit board, coaxial cable, and electronic device
JP5527493B1 (en) Flat cable and electronics
JP5922604B2 (en) Multilayer wiring board
US7688164B2 (en) High frequency circuit board converting a transmission mode of high frequency signals
JP5361024B2 (en) Wiring board
JP2008205099A (en) Multilayer wiring board
JP6013296B2 (en) High frequency transmission line
JP5674076B2 (en) Transmission line
JP2004247980A (en) Connection structure and method of transmission line
JP3008939B1 (en) High frequency circuit board
JP4080981B2 (en) Conversion circuit
JP2008193161A (en) Microstrip line-waveguide converter
JP2002043810A (en) Microstrip line
JP2009130453A (en) Transmission line with filter function

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140403

R150 Certificate of patent or registration of utility model

Ref document number: 5519328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250