JP2006155979A - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP2006155979A
JP2006155979A JP2004341596A JP2004341596A JP2006155979A JP 2006155979 A JP2006155979 A JP 2006155979A JP 2004341596 A JP2004341596 A JP 2004341596A JP 2004341596 A JP2004341596 A JP 2004341596A JP 2006155979 A JP2006155979 A JP 2006155979A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
inorganic oxide
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004341596A
Other languages
Japanese (ja)
Other versions
JP4827222B2 (en
Inventor
Shiro Seki
志朗 関
Hajime Miyashiro
一 宮代
Akira Kobayashi
陽 小林
Toru Iwabori
徹 岩堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2004341596A priority Critical patent/JP4827222B2/en
Publication of JP2006155979A publication Critical patent/JP2006155979A/en
Application granted granted Critical
Publication of JP4827222B2 publication Critical patent/JP4827222B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide an all-solid battery which is superior in cycle characteristics by suppressing oxidation decomposition of a polymer solid electrolyte under a high voltage, and can realize a high energy density. <P>SOLUTION: In the all-solid battery 10 in which a polymer solid electrolyte is interposed between a positive electrode material 2 and a negative electrode material 4, an inorganic oxide 14 which is hardly oxidized even if oxygen is supplied from the positive electrode active material is adhered to at least a part of the surface of the positive electrode active material particle 8 constituting the positive electrode. The inorganic oxide is constituted only of a metal element and oxygen, and is preferably Al<SB>2</SB>O<SB>3</SB>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、正極材と負極材との間に高分子固体電解質を介在させた全固体型電池関し、より詳細には、サイクル特性や保存特性を改善し、高エネルギー密度化を達成した全固体型電池に関する。   The present invention relates to an all solid state battery in which a polymer solid electrolyte is interposed between a positive electrode material and a negative electrode material, and more specifically, an all solid material that has improved cycle characteristics and storage characteristics and achieved high energy density. Type battery.

電力貯蔵用や移動体機器の電源用に使用される二次電池は、一回の充電による長時間使用(高エネルギー密度化)と充放電繰り返し可能回数の増加(長寿命化)と、故障および発火に対する高い信頼性とが求められる。従来の全固体型電池では、単電池あたりの放電時、電圧の平坦部は最も高いもので4.1Vであったが、この電圧においてもそのサイクル特性や保存特性は充分とは言い難かった。また、更なる高エネルギー密度化には、単電池あたりの電圧上昇が有効であるが、このような高電圧で充分に安定に動作する全固体型電池は現在報告されていない。   Rechargeable batteries used for power storage and power supply of mobile devices are used for a long time (high energy density) by one charge, increase the number of charge / discharge repetitions (long life), failure and High reliability against ignition is required. In the conventional all-solid-state battery, the flat portion of the voltage was the highest at the time of discharging per unit cell, which was 4.1 V. However, even at this voltage, the cycle characteristics and the storage characteristics were not sufficient. In order to further increase the energy density, an increase in voltage per unit cell is effective, but no all-solid-state battery that operates sufficiently stably at such a high voltage has been reported.

放電電圧を更に上げる手法としては、以下のものが提案されている。すなわち、スピネル型と称される結晶形態をもつ正極活物質の化合物、例えば、LiMxMn(2−x)Oにおいて、金属MにNi、Co、Fe等を用い、構成比x=0.5とした材料については、充放電時の電圧平坦部が4.7V以上を示す正極材料が合成されることが知られている。これは、金属Mイオンの価数が合成時の状態により他の価数に変化することにより高い電圧が発現するからであると考えられている。 As methods for further increasing the discharge voltage, the following has been proposed. That is, in a compound of a positive electrode active material having a crystal form called a spinel type, for example, LiMxMn (2-x) O 4 , Ni, Co, Fe or the like is used for the metal M, and the composition ratio x = 0.5. It is known that a positive electrode material having a voltage flat portion at the time of charge / discharge of 4.7 V or higher is synthesized. This is considered to be because a high voltage appears when the valence of the metal M ion changes to another valence depending on the state at the time of synthesis.

しかしながら従来の全固体型電池では、4V程度以上の高電圧下においては、有機物の酸化分解が不可避とされており、充放電を繰り返し行うに従い、電解質に用いられる有機物の酸化分解により正極/電解質界面に副生成物が堆積し、結果として電池性能を低下させることが懸念されていた。
また一方、正極自体が高電圧下では、本来反応すべき金属イオンの価数変化のほかに、酸素の脱離による不可逆な電荷補償が懸念されており、これらを抑制することが高電圧正極を有効に機能させるために必要とされていた。
However, in the conventional all-solid-state battery, oxidative decomposition of the organic matter is inevitable under a high voltage of about 4 V or more. As the charge / discharge is repeated, the oxidative decomposition of the organic matter used in the electrolyte causes the positive electrode / electrolyte interface. There was a concern that by-products would accumulate on the surface, resulting in a decrease in battery performance.
On the other hand, when the positive electrode itself is under a high voltage, there is a concern about irreversible charge compensation due to the desorption of oxygen in addition to the valence change of the metal ions that should be reacted. It was needed to function effectively.

そこで本願出願人は、高分子固体電解質の酸化分解を抑制すると共に、正極活物質からの酸素の脱離を抑制できる二次電池を提供することを目的として、特許文献1の「二次電池」で、正極材と負極材との間に高分子固体電解質を介在させた二次電池において、正極材と高分子固体電解質との間にあらかじめ無機固体電解質の膜を形成したことを特徴とする二次電池を発案している。
かかる発明によれば、充電時に酸化剤となる二次電池の正極材による高分子固体電解質の酸化分解を、正極材と高分子固体電解質との間に形成した無機固体電解質の膜によって抑制すると共に、正極材からの酸素の離脱を抑制することができる。そのため、高分子固体電解質の劣化反応を抑えることができ、放充電を繰り返しても放電時の高電圧を長時間にわたり維持することが可能となった。
Therefore, the applicant of the present application aims to provide a secondary battery that can suppress the oxidative decomposition of the solid polymer electrolyte and suppress the desorption of oxygen from the positive electrode active material. In the secondary battery in which the polymer solid electrolyte is interposed between the positive electrode material and the negative electrode material, an inorganic solid electrolyte film is previously formed between the positive electrode material and the polymer solid electrolyte. The next battery is invented.
According to this invention, the oxidative decomposition of the solid polymer electrolyte by the positive electrode material of the secondary battery that becomes an oxidant during charging is suppressed by the inorganic solid electrolyte film formed between the positive electrode material and the solid polymer electrolyte. The release of oxygen from the positive electrode material can be suppressed. Therefore, it is possible to suppress the deterioration reaction of the polymer solid electrolyte, and it is possible to maintain a high voltage during discharging for a long time even when discharging and charging are repeated.

参考として特許文献1に記載の二次電池の製造手順を図9に概略的に示した。
この二次電池の正極シートは、正極活物質バインダを静電噴霧析出装置を使用して静電噴霧析出(ESD)法により金属電極基板上に塗布した後に、金属電極基板を加熱して溶媒を揮発させることによって製造される。そして、この正極シート上に10nm程度の無機固体電解質の膜と、高分子固体電解質の膜を形成し、負極材と圧着することによって、二次電池が組み上げられる。
特開2003−338321号公報
For reference, the manufacturing procedure of the secondary battery described in Patent Document 1 is schematically shown in FIG.
The positive electrode sheet of the secondary battery is formed by applying a positive electrode active material binder onto a metal electrode substrate by an electrostatic spray deposition (ESD) method using an electrostatic spray deposition apparatus, and then heating the metal electrode substrate to remove a solvent. Manufactured by volatilization. Then, an inorganic solid electrolyte film of about 10 nm and a polymer solid electrolyte film are formed on the positive electrode sheet, and a secondary battery is assembled by pressure bonding with the negative electrode material.
JP 2003-338321 A

しかしながら上記の特許文献1に記載の二次電池の場合、正極において金属電極基板から正極活物質に電子を移動させるために、正極活物質は電極基板上に非常に薄い膜で形成される必要があり、そのため容量の大きな高エネルギー密度の二次電池を作成することが困難であるといった問題があった。   However, in the case of the secondary battery described in Patent Document 1, in order to move electrons from the metal electrode substrate to the positive electrode active material in the positive electrode, the positive electrode active material needs to be formed as a very thin film on the electrode substrate. Therefore, there is a problem that it is difficult to produce a secondary battery having a large capacity and a high energy density.

本発明はこのような問題点を解決するためになされたもので、高電圧下での高分子固体電解質の酸化分解を抑制してサイクル特性を飛躍的に向上させるとともに、高エネルギー密度化を達成することができる全固体型電池を提供することを目的とする。   The present invention has been made to solve such problems, and suppresses oxidative decomposition of the polymer solid electrolyte under high voltage to dramatically improve cycle characteristics and achieve high energy density. An object of the present invention is to provide an all-solid-state battery that can be used.

上記目的を達成するため請求項1に記載の発明は、正極材と負極材との間に高分子固体電解質を介在させた全固体型電池において、正極を構成する正極活物質粒子の表面の少なくとも一部に、該正極活物質より酸素を供給されても容易に酸化することのない無機酸化物を付着させた、ことを特徴とするものである。   In order to achieve the above object, an invention according to claim 1 is an all-solid-state battery in which a polymer solid electrolyte is interposed between a positive electrode material and a negative electrode material, and at least the surface of positive electrode active material particles constituting the positive electrode. In part, an inorganic oxide that does not easily oxidize even when oxygen is supplied from the positive electrode active material is adhered.

本発明によれば、エネルギー密度を高めるために正極に正極活物質の粒子を使用した場合にも、充電時に酸化剤となる正極活物質粒子の表面の全部または一部と接触する無機酸化物からなる付着物が、高分子固体電解質の酸化分解を抑制すると共に、正極活物質粒子からの酸素の離脱を抑制するため、高分子固体電解質の劣化反応を抑えることができ、これにより放充電を繰り返しても放電時の電圧を長時間にわたり一定に維持できる全固体型電池が提供される。
なお、正極活物質粒子の表面は無機酸化物と少なくともその一部が接触していればよい。これは耐酸化性を有する無機酸化物が部分的に存在することにより、正極活物質と高分子固体電解質とが直接接触する割合を低減させ、この部分での高分子固体電解質の酸化分解を抑制できる一方、無機酸化物が付着していない正極活物質粒子の表面部分は金属イオンが高分子固体電解質に抜け出るためのゲートウェイとならないため、この部分の正極活物質粒子/高分子固体電解質界面に副生成物が堆積したとしても電池性能を大きく低下させる要因にはならないからであると考えられる。
According to the present invention, even when positive electrode active material particles are used for the positive electrode in order to increase the energy density, the inorganic oxide comes into contact with all or part of the surface of the positive electrode active material particles that become an oxidant during charging. The resulting deposit suppresses the oxidative decomposition of the polymer solid electrolyte and suppresses the release of oxygen from the positive electrode active material particles, so that the deterioration reaction of the polymer solid electrolyte can be suppressed. However, an all-solid-state battery that can maintain a constant voltage during discharge for a long time is provided.
The surface of the positive electrode active material particles only needs to be in contact with at least a part of the inorganic oxide. This is due to the partial presence of oxidation-resistant inorganic oxide, which reduces the rate of direct contact between the positive electrode active material and the solid polymer electrolyte, and suppresses the oxidative decomposition of the solid polymer electrolyte in this region. On the other hand, the surface portion of the positive electrode active material particles to which no inorganic oxide is attached does not serve as a gateway for metal ions to escape to the polymer solid electrolyte. It is considered that even if the product is deposited, it does not cause a significant decrease in battery performance.

ここで全固体型電池の正極シートは、請求項2の記載のように、粒子性の無機酸化物を正極活物質に機械的に混合することによりその表面に付着させ、これを電子伝導性を有する導電材の微粒子とともにシート化したものとするか、請求項3の記載のように、前駆体を溶液状態で正極材に噴霧したのち、焼成することにより無機酸化物を正極活物質粒子の表面に付着させ、これを電子伝導性を有する導電材の微粒子とともにシート化したものとする。   Here, the positive electrode sheet of the all-solid-state battery is attached to the surface of the positive electrode sheet by mechanically mixing a particulate inorganic oxide with the positive electrode active material, as described in claim 2, and has an electronic conductivity. The conductive oxide material is formed into a sheet with the fine particles of the conductive material, or the precursor is sprayed on the positive electrode material in a solution state and then baked to form the inorganic oxide on the surface of the positive electrode active material particles. It is made to be a sheet together with fine particles of a conductive material having electron conductivity.

この場合、前記無機酸化物は、請求項4に記載のように、金属元素および酸素のみから構成され、具体的には、請求項5に記載したように、Alであることが好ましい。
また前記導電材の微粒子は、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ等の電子電導性炭素素材や、金属微粒子、金属ファイバー等の金属素材、電子電導性セラミック素材のいずれか、又はこれらの混合物が用いられる、ものとする。
In this case, as described in claim 4, the inorganic oxide is composed of only a metal element and oxygen. Specifically, as described in claim 5, the inorganic oxide is preferably Al 2 O 3. .
The fine particles of the conductive material may be any one of electron conductive carbon materials such as acetylene black, ketjen black, and carbon nanotubes, metal materials such as metal fine particles and metal fibers, and electron conductive ceramic materials, or a mixture thereof. Shall be used.

なお請求項6に記載したように、前記正極活物質に対して混合される無機酸化物の重量パーセント濃度が0.1%〜20%、前記正極活物質に対して混合される導電材の重量パーセント濃度が0.05%〜10%である、ことが好ましい。   In addition, as described in claim 6, the weight percent concentration of the inorganic oxide mixed with the positive electrode active material is 0.1% to 20%, and the weight of the conductive material mixed with the positive electrode active material. It is preferred that the percent concentration is 0.05% to 10%.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1に、本発明を適用した全固体型電池の実施形態の一例を概念的に示す。全固体型電池10は、正極材2と負極材4との間に高分子固体電解質6を介在させたものであって、正極を構成する正極活物質粒子8の表面には、無機酸化物14および電子電導性を有する導電材16の微粒子が付着している。
本実施形態の全固体型電池は、例えばコンポジット全固体型二次電池である。
FIG. 1 conceptually shows an example of an embodiment of an all solid state battery to which the present invention is applied. The all solid state battery 10 has a solid polymer electrolyte 6 interposed between a positive electrode material 2 and a negative electrode material 4, and an inorganic oxide 14 is formed on the surface of the positive electrode active material particles 8 constituting the positive electrode. In addition, fine particles of the conductive material 16 having electronic conductivity are attached.
The all solid state battery of this embodiment is a composite all solid state secondary battery, for example.

正極材2は、例えば電極材料基板としての金属電極基板18と、金属電極基板上に無機酸化物14および電子電導性を有する導電材16の微粒子を付着させた正極活物質粒子8、および高分子固体電解質層6と良好なイオンの授受を行い、かつ正極活物質粒子8を金属電極基板に固定するための高分子固体電解質兼バインダより構成されている。正極活物質粒子8は、ドクターブレード法、シルクスクリーン法等により金属電極基板上に塗布されている。
金属電極基板18には、例えばアルミニウムが用いられるが、これに限るものではなく、ニッケル、ステンレス、金、白金、チタン等でも良い。
The positive electrode material 2 includes, for example, a metal electrode substrate 18 as an electrode material substrate, positive electrode active material particles 8 in which fine particles of an inorganic oxide 14 and a conductive material 16 having electronic conductivity are attached on the metal electrode substrate, and a polymer It comprises a solid polymer electrolyte / binder for exchanging good ions with the solid electrolyte layer 6 and fixing the positive electrode active material particles 8 to the metal electrode substrate. The positive electrode active material particles 8 are applied on the metal electrode substrate by a doctor blade method, a silk screen method, or the like.
For example, aluminum is used for the metal electrode substrate 18, but is not limited thereto, and may be nickel, stainless steel, gold, platinum, titanium, or the like.

正極活物質粒子8としては、例えばLiMnやLiCoO、LiNiO、およびこれらの混合物、固溶体からなる組成のものが用いられるが、これに限定されるものではない。原料としては、例えばリチウム化合物塩と遷移金属酸化物、具体的には、例えば炭酸リチウム(LiCO)と酸化コバルト(Co)等の組み合わせである。正極活物質粒子の粒径は、好ましくは50ミクロン以下、より好ましくは20ミクロン以下のものを用いる。 As the positive electrode active material particles 8, for example, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , a mixture thereof, or a composition composed of a solid solution is used, but is not limited thereto. As a raw material, for example, a lithium compound salt and a transition metal oxide, specifically, for example, a combination of lithium carbonate (Li 2 CO 3 ) and cobalt oxide (Co 3 O 4 ) or the like. The positive electrode active material particles preferably have a particle size of 50 microns or less, more preferably 20 microns or less.

無機酸化物14は、正極活物質粒子より酸素供給をされても容易に酸化しない材料、例えばAlである。無機酸化物は薄膜、あるいは微粒子であることが望ましい。ここで薄膜の場合の膜厚は好ましくは1μm以下、より好ましくは0.2μm以下である。また微粒子の場合、その粒径は、正極活物質粒子の粒径の3分の1程度以下のものを用いることが好ましい。ここで正極活物質に対して混合する無機酸化物の重量パーセント濃度は0.1%〜20%とすることができるが、好ましくは0.1%〜5%程度である。 The inorganic oxide 14 is a material that is not easily oxidized even when oxygen is supplied from the positive electrode active material particles, for example, Al 2 O 3 . The inorganic oxide is preferably a thin film or fine particles. Here, the film thickness in the case of a thin film is preferably 1 μm or less, more preferably 0.2 μm or less. In the case of fine particles, it is preferable to use particles having a particle size of about one-third or less of the particle size of the positive electrode active material particles. Here, the weight percent concentration of the inorganic oxide mixed with the positive electrode active material can be 0.1% to 20%, preferably about 0.1% to 5%.

導電材16の微粒子としては、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ等の電子電導性炭素素材や、金属微粒子、金属ファイバー等の金属素材、電子電導性セラミック素材のいずれか、又はこれらの混合物を用いるものとする。導電材の微粒子の粒径は、正極活物質粒子の粒径の100分の1程度以下のものを用いることが好ましい。ここで正極活物質に対して混合される導電材の重量パーセント濃度は一般に0.05%〜10%とすることができるが、好ましくは0.5%〜5%程度である。 The fine particles of the conductive material 16 may be any one of electron conductive carbon materials such as acetylene black, ketjen black, and carbon nanotubes, metal materials such as metal fine particles and metal fibers, and electron conductive ceramic materials, or a mixture thereof. Shall be used. It is preferable to use a conductive material having a particle size of about 1/100 or less of the particle size of the positive electrode active material particle. Here, the weight percent concentration of the conductive material mixed with the positive electrode active material can be generally 0.05% to 10%, preferably about 0.5% to 5%.

正極を構成する正極活物質粒子8の表面への無機酸化物14及び電子電導性を有する導電材16の付着状態には、
(a)正極活物質粒子の表面に無機酸化物の粒子及び導電材の粒子を付着させたもの
(b)正極活物質粒子の表面に無機酸化物層を被覆したのち、導電材の粒子を付着させたもの
の2つがある。
In the adhesion state of the inorganic oxide 14 and the conductive material 16 having electronic conductivity to the surface of the positive electrode active material particles 8 constituting the positive electrode,
(A) Inorganic oxide particles and conductive material particles attached to the surface of the positive electrode active material particles (b) After covering the surface of the positive electrode active material particles with the inorganic oxide layer, the conductive material particles are attached. There are two of them.

これらの正極活物質への無機酸化物等の付着状態(の正極シート)は以下の手順で作られる。
上記(a)のものでは、正極活物質粒子に、無機酸化物の粒子を混合して乾式で圧縮・せん断エネルギーを加えることにより粒子表面をコーティングする表面被覆装置で軽く攪拌(2000rpmで10分間攪拌)してから、導電材の粒子を加えてさらに、表面被覆装置で攪拌(2000rpmで80分間攪拌)した混合物を、バインダを兼ねる高分子固体電解質及び溶剤と混練して正極集電体に塗布した後にプレス成型する(図2参照)か、正極活物質粒子、無機酸化物、導電材、バインダを兼ねる高分子固体電解質及び溶剤を同時にホモジナイザー等により混合したのち、正極集電体に塗布した後にプレス成型する(図3参照)。
上記(b)のものでは、転動流動状態に保持された正極活物質粒子に、アルミナの前駆体となり得るゾル溶液を30℃以上の温風送風下で噴霧することにより、正極活物質粒子表面にアルミナ前駆体皮膜を形成したのち、焼成処理(550℃、10時間以上)により得たアルミナ被覆した混合物と、導電材の粒子、バインダを兼ねる高分子固体電解質及び溶剤と混練して正極集電体に塗布した後にプレス成型する(図4参照)。
The adhesion state (positive electrode sheet) of the inorganic oxide or the like to these positive electrode active materials is prepared by the following procedure.
In the case of the above (a), lightly agitation is performed with a surface coating apparatus that coats the surface of the particles by mixing the positive electrode active material particles with inorganic oxide particles and applying compression and shear energy in a dry manner (stirring at 2000 rpm for 10 minutes) After that, the conductive material particles were added, and the mixture that had been stirred with a surface coating device (stirred at 2000 rpm for 80 minutes) was kneaded with a polymer solid electrolyte that also serves as a binder and a solvent, and applied to the positive electrode current collector. After press molding (see FIG. 2), or after mixing positive electrode active material particles, inorganic oxide, conductive material, polymer solid electrolyte that also serves as a binder, and a solvent simultaneously with a homogenizer, etc., the mixture is applied to the positive electrode current collector and then pressed. Mold (see FIG. 3).
In the case of (b) above, the surface of the positive electrode active material particles is sprayed onto the positive electrode active material particles held in a rolling fluid state with a sol solution that can be a precursor of alumina under hot air blowing at 30 ° C. or higher. After forming an alumina precursor film, the alumina-coated mixture obtained by firing (550 ° C., 10 hours or longer), a conductive polymer particle, a polymer solid electrolyte that also serves as a binder, and a solvent are kneaded to obtain a positive electrode current collector After being applied to the body, it is press-molded (see FIG. 4).

図5は、用いた正極活物質粒子の無機酸化物等による被覆前の表面状態を表した電子顕微鏡写真である。
図6は、上記(a)の正極活物質粒子への無機酸化物の付着状態を表した電子顕微鏡写真である。写真から分かるように無機酸化物は正極活物質粒子表面に部分的に付着している。
図7は、上記(b)の正極活物質粒子への無機酸化物の付着状態を表した電子顕微鏡写真である。写真から分かるように、無機酸化物は正極活物質粒子のほぼ全面にべったりと付着している。この付着物により正極活物質粒子の表面に耐酸化性を有する層が形成される。
FIG. 5 is an electron micrograph showing the surface state of the positive electrode active material particles used before being coated with an inorganic oxide or the like.
FIG. 6 is an electron micrograph showing the adhesion state of the inorganic oxide to the positive electrode active material particles of (a). As can be seen from the photograph, the inorganic oxide is partially attached to the surface of the positive electrode active material particles.
FIG. 7 is an electron micrograph showing the state of adhesion of the inorganic oxide to the positive electrode active material particles of (b) above. As can be seen from the photograph, the inorganic oxide is adhered to almost the entire surface of the positive electrode active material particles. This deposit forms a layer having oxidation resistance on the surface of the positive electrode active material particles.

正極活物質等の金属電極基板への形成は、例えばドクターブレード法により行われる。
ドクターブレード法では、正極活物質粒子等を有機溶剤に分散してスラリー状にし、金属電極基板に塗布した後、所定のスリット幅を有するブレードにより適切な厚さで均一化する。電極は塗布後、余分な有機溶剤を除去するため、例えば80℃真空状態で乾燥する。乾燥後の電極はこれを図示しないプレス装置によってプレス成型することで正極シートが製造される。
Formation of the positive electrode active material or the like on the metal electrode substrate is performed, for example, by a doctor blade method.
In the doctor blade method, positive electrode active material particles and the like are dispersed in an organic solvent to form a slurry, which is applied to a metal electrode substrate, and then uniformized with an appropriate thickness using a blade having a predetermined slit width. After the application, the electrode is dried in a vacuum state at 80 ° C., for example, in order to remove excess organic solvent. The electrode after drying is press-molded by a pressing device (not shown) to produce a positive electrode sheet.

その後、正極活物質等を含まない高分子固体電解質を貼り付け、更に例えばリチウム等の負極シートを重ね合わせ、全固体型電池が製造される。   Thereafter, a polymer solid electrolyte that does not contain a positive electrode active material or the like is attached, and a negative electrode sheet such as lithium, for example, is overlaid to produce an all solid state battery.

高エネルギー密度と高安全性を兼備し、かつ組電池個数を低減できる高電圧正極を適用したコンポジット全固体型電池の実現可能性を確認するために、以下のように全固体型リチウム二次電池(リチウムポリマー電池、LPB(lithium polymer battery))を試作した。   To confirm the feasibility of a composite all-solid-state battery that uses a high-voltage positive electrode that combines high energy density and high safety and can reduce the number of assembled batteries, the following is an all-solid-state lithium secondary battery. (Lithium polymer battery, LPB (lithium polymer battery)) was prototyped.

[実験](上記(b)の表面状態の正極活物質を用いた正極材の作成)
高分子固体電解質(有機電解質、SPE(solid polymer electrolyte)に用いられるマトリックスポリマーには、ダイソー(株)のP(EO/MEEGE/AGE)=82/18/1.7を用いた。電解質塩として用いられるポリマー中のLiTFSI(LiN(SOCF)2)の割合は、[Li]/[either oxygen]=0.06とした。
[Experiment] (Creation of a positive electrode material using the positive electrode active material in the surface state of (b) above)
Daiso Co., Ltd. P (EO / MEEGE / AGE) = 82/18 / 1.7 was used as the matrix polymer used in the polymer solid electrolyte (organic electrolyte, SPE (solid polymer electrolyte). The ratio of LiTFSI (LiN (SO 2 CF 3 ) 2 ) in the polymer used was [Li] / [either oxygen] = 0.06.

試料調製は市販のLiCoO(平均粒径10.3μm,比表面積0.6m2/g)を原料とし,転動流動層装置を用いて以下のように行った。LiCoO1kgを秤取り,転動流動層装置を吸気量18m3/h,吸気温度80℃,ローター回転数300rpmの条件で運転し,流動層を形成させた後、5wt%アルミナゾル溶液を5g/minの速度で噴霧しLiCoO粒子にコーティングを行った。噴霧終了後、十分乾燥させコーティング粒子を取り出し,酸素気流中550℃15時間焼成を行った。
正極シートには処理後のLiCoO2、導電助材のアセチレンブラック、導電性バインダのP(EO/MEEGE)-LiBETI(LiN(SO2CF2CF3)2)([Li]/[O]=0.06)を用いた。重量比を正極活物質/導電助剤/バインダ=82/5/13とし、これらの正極材料をアセトニトリル中に導入、ホモジナイザーにより攪拌した後、オートマチックアプリケーター・ドクターブレードを用いてアルミニウム集電体上に塗布した。アセトニトリルを乾燥させた後、プレス機により電極を圧着しこれを用いた。作製した正極シートを80℃にて一晩以上真空乾燥を行った後、アルゴン雰囲気下のグローブボックス中で常に保存した。
電池化時には、アルゴン雰囲気下のグローブボックス中にて正極シート、SPEシート、Li負極をそれぞれ所定の半径にポンチで打ち抜きこれらを貼り合わせた後、2032タイプのコインセルに封入して電池を試作した。
Sample preparation was performed using commercially available LiCoO 2 (average particle size 10.3 μm, specific surface area 0.6 m 2 / g) as a raw material using a rolling fluidized bed apparatus as follows. 1 kg of LiCoO 2 was weighed, and the rolling fluidized bed apparatus was operated under the conditions of an intake air amount of 18 m 3 / h, an intake air temperature of 80 ° C., and a rotor rotation speed of 300 rpm to form a fluidized bed. Spraying was performed at a rate of min to coat LiCoO 2 particles. After spraying, the coating particles were sufficiently dried and the coating particles were taken out and baked in an oxygen stream at 550 ° C. for 15 hours.
The positive electrode sheet has LiCoO 2 after treatment, acetylene black as a conductive additive, P (EO / MEEGE) -LiBETI (LiN (SO 2 CF 2 CF 3 ) 2 ) ([Li] / [O] = 0.06) was used. The weight ratio was positive electrode active material / conductive aid / binder = 82/5/13. These positive electrode materials were introduced into acetonitrile, stirred with a homogenizer, and then placed on an aluminum current collector using an automatic applicator / doctor blade. Applied. After the acetonitrile was dried, the electrode was pressure-bonded with a press and used. The produced positive electrode sheet was vacuum-dried at 80 ° C. or more overnight, and was always stored in a glove box under an argon atmosphere.
At the time of battery formation, a positive electrode sheet, an SPE sheet, and a Li negative electrode were punched out to a predetermined radius in a glove box under an argon atmosphere and bonded together, and then sealed in a 2032 type coin cell to produce a battery.

[実験結果]
上記電池について、3.0−4.4V、電流密度0.05mAcm−2、60℃の条件下で充放電試験を行った。図8に充放電繰り返しサイクル経過時における放電容量の変化を示す。Alをコートした電池(実施例1;Al被覆)は初期容量約170mAhg-1が得られ、その後も良好な充放電可逆性を示し、25サイクル経過時にも約150mAhg-1の放電容量を維持した。
一方、コート処理を行っていない電池(比較例;未被覆)は、初期容量はコート電池とほぼ同等の170mAhg-1を示したが、サイクル経過時の容量低下が著しく、10サイクル経過時には約100mAhg-1にまで劣化した。
[Experimental result]
About the said battery, the charge / discharge test was done on 3.0-4.4V, current density 0.05mAcm <-2 >, 60 degreeC conditions. FIG. 8 shows the change in discharge capacity during the repeated charge / discharge cycles. The battery coated with Al 2 O 3 (Example 1; Al 2 O 3 coating) had an initial capacity of about 170 mAhg −1 , and then showed good charge / discharge reversibility, and about 150 mAhg −1 even after 25 cycles. The discharge capacity was maintained.
On the other hand, the battery not subjected to the coating treatment (comparative example; uncoated) showed an initial capacity of 170 mAhg -1 which was almost equivalent to the coated battery, but the capacity decreased significantly after the cycle, and about 100 mAhg after the 10th cycle. Degraded to -1 .

以上説明したように本発明の全固体型電池によれば、正極に正極活物質の粒子を使用した場合にも、充電時に酸化剤となる正極活物質粒子の表面の全部または一部を被覆し又はこれに付着する耐酸化性に優れた無機酸化物および電子電導性を有する付着物が、高分子固体電解質の酸化分解を抑制すると共に、正極材からの酸素の離脱を抑制する。
このため、本発明によれば高分子固体電解質の劣化反応を抑えることができると同時に高エネルギー密度化が図られ、放電時の高電圧を長時間にわたり維持することができる良好なサイクル特性の全固体型電池が提供される。
また、高分子固体電解質は大面積化、大型化が容易な材料系であり、かつ高安全性を兼備するものであることから、高電圧全固体型二次電池を大型化、大容量化することができる。
As described above, according to the all-solid-state battery of the present invention, even when positive electrode active material particles are used for the positive electrode, all or part of the surface of the positive electrode active material particles that become an oxidizing agent during charging is covered. Alternatively, the inorganic oxide excellent in oxidation resistance and the deposit having electronic conductivity attached thereto suppress the oxidative decomposition of the polymer solid electrolyte and suppress the release of oxygen from the positive electrode material.
Therefore, according to the present invention, the deterioration reaction of the polymer solid electrolyte can be suppressed, and at the same time, the energy density is increased, and all of the good cycle characteristics that can maintain the high voltage during discharge for a long time. A solid state battery is provided.
In addition, the solid polymer electrolyte is a material system that is easy to increase in area and size, and also has high safety, so the high voltage all solid state secondary battery is increased in size and capacity. be able to.

なお、上述した実施形態は本発明の好適な形態の一例ではあるが本発明はこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能であることは勿論である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited to this, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

以上説明したように本発明によれば、高エネルギー密度のサイクル特性に優れた有機電解質電池が提供される。
なお上述の説明では二次電池としてポリマーリチウム電池を例にしていたが、ポリマーリチウム電池以外にも本発明を適用することができるのは勿論である。つまり、例えばポリマーナトリウム二次電池にも本発明を適用することができる。
As described above, according to the present invention, an organic electrolyte battery excellent in high energy density cycle characteristics is provided.
In the above description, the polymer lithium battery is taken as an example of the secondary battery, but it is needless to say that the present invention can be applied to other than the polymer lithium battery. That is, for example, the present invention can be applied to a polymer sodium secondary battery.

本発明を適用した全固体型電池の断面構成図である。It is a cross-sectional block diagram of the all-solid-state battery to which this invention is applied. 正極活物質と無機酸化物、及び導電材を順次混合して電極を作製する電極製造フロー図である。It is an electrode manufacturing flowchart which mixes a positive electrode active material, an inorganic oxide, and a electrically conductive material sequentially, and produces an electrode. 正極活物質に溶液前駆体を噴霧・焼成することにより得られた無機酸化物被覆し、これを用いて電極を作製する電極製造フロー図である。It is an electrode manufacturing flowchart which coats the inorganic oxide obtained by spraying and baking a solution precursor to a positive electrode active material, and produces an electrode using this. 正極活物質、無機固体電解質、導電材、バインダおよび溶剤を同時に混練して電極を作製する電極製造フロー図である。It is an electrode manufacturing flowchart which kneads a positive electrode active material, an inorganic solid electrolyte, a conductive material, a binder and a solvent at the same time to produce an electrode. 被覆処理を行っていない正極活物質(LiCoO2)の走査電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the positive electrode active material (LiCoO 2 ) not subjected to the coating treatment. 溶液前駆体を噴霧・焼成することにより無機酸化物(Al2O3)で表面を被覆した正極活物質(LiCoO2)の走査電子顕微鏡(SEM)写真である。It is a scanning electron micrograph (SEM) of an inorganic oxide (Al 2 O 3) coating the surface with a a cathode active material (LiCoO 2) by the solution precursor is sprayed and baked. 正極活物質、無機酸化物(Al2O3)粉末を混合して正極活物質上にAl2O3粉末を付着させた正極活物質(LiCoO2)の走査電子顕微鏡(SEM)写真である。The positive electrode active material, an inorganic oxide (Al 2 O 3) is a scanning electron micrograph (SEM) of a powder by mixing a positive electrode active material on the Al 2 O 3 powder the deposited cathode active material (LiCoO 2). 溶液前駆体を噴霧・焼成することにより無機酸化物(Al2O3)で表面を被覆した正極活物質(LiCoO2)、および被覆していないLiCoO2を用いた全固体型電池の充放電サイクル特性である。Charge / discharge cycle of an all-solid-state battery using a positive electrode active material (LiCoO 2 ) whose surface is coated with an inorganic oxide (Al 2 O 3 ) by spraying and firing a solution precursor and uncoated LiCoO 2 It is a characteristic. 特許文献1に記載の二次電池の製造手順である。This is a manufacturing procedure of the secondary battery described in Patent Document 1.

符号の説明Explanation of symbols

2 正極材
3 正極活物質の膜
4 負極材
5 高分子固体電解質の膜
6 高分子固体電解質
7 無機酸化物の膜
8 正極活物質粒子
10 全固体型電池
14 無機酸化物
16 導電材
18 正極集電体(金属電極基板)
2 Positive electrode material 3 Positive electrode active material film 4 Negative electrode material 5 Polymer solid electrolyte film 6 Polymer solid electrolyte 7 Inorganic oxide film 8 Positive electrode active material particle 10 All solid state battery 14 Inorganic oxide 16 Conductive material 18 Positive electrode collection Electrical body (metal electrode substrate)

Claims (6)

正極材と負極材との間に高分子固体電解質を介在させた全固体型電池において、
正極を構成する正極活物質粒子の表面の少なくとも一部に、該正極活物質より酸素を供給されても容易に酸化することのない無機酸化物を付着させた、ことを特徴とする全固体型電池。
In an all solid state battery in which a polymer solid electrolyte is interposed between a positive electrode material and a negative electrode material,
An all-solid type characterized in that an inorganic oxide that does not easily oxidize even when oxygen is supplied from the positive electrode active material is attached to at least a part of the surface of the positive electrode active material particles constituting the positive electrode battery.
粒子性の無機酸化物を正極活物質に機械的に混合することによりその表面に付着させ、これを電子伝導性を有する導電材の微粒子とともにシート化した正極シートを用いた、ことを特徴とする請求項1に記載の全固体型電池。   It is characterized by using a positive electrode sheet in which a particulate inorganic oxide is mechanically mixed with a positive electrode active material and adhered to the surface thereof, and is formed into a sheet together with fine particles of a conductive material having electronic conductivity. The all solid state battery according to claim 1. 前駆体を溶液状態で正極材に噴霧したのち、焼成することにより無機酸化物を正極活物質粒子の表面に付着させ、これを電子伝導性を有する導電材の微粒子とともにシート化した正極シートを用いた、ことを特徴とする請求項1に記載の全固体型電池。   After spraying the precursor on the positive electrode material in a solution state, the inorganic oxide is adhered to the surface of the positive electrode active material particles by firing, and this is used as a positive electrode sheet formed into a sheet together with fine particles of a conductive material having electron conductivity. The all-solid-state battery according to claim 1, wherein 前記無機酸化物は、金属元素および酸素のみから構成される、ことを特徴とする請求項1乃至3のいずれか一項に記載の全固体型電池。   The all-solid-state battery according to any one of claims 1 to 3, wherein the inorganic oxide includes only a metal element and oxygen. 前記無機酸化物はAlであり、
前記導電材の微粒子は、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ等の電子電導性炭素素材や、金属微粒子、金属ファイバー等の金属素材、電子電導性セラミック素材のいずれか、又はこれらの混合物である、ことを特徴とする請求項2乃至4のいずれか一項に記載の全固体型電池。
The inorganic oxide is Al 2 O 3 ;
The fine particles of the conductive material are any one of electron conductive carbon materials such as acetylene black, ketjen black, and carbon nanotubes, metal materials such as metal fine particles and metal fibers, and electron conductive ceramic materials, or a mixture thereof. The all-solid-state battery as described in any one of Claims 2 thru | or 4 characterized by the above-mentioned.
前記正極活物質に対して混合される無機酸化物の重量パーセント濃度が0.1%〜20%、前記正極活物質に対して混合される導電材の重量パーセント濃度が0.05%〜10%である、ことを特徴とする請求項2乃至5のいずれか一項に記載の全固体型電池。   The weight percent concentration of the inorganic oxide mixed with the positive electrode active material is 0.1% to 20%, and the weight percent concentration of the conductive material mixed with the positive electrode active material is 0.05% to 10%. The all-solid-state battery according to any one of claims 2 to 5, wherein
JP2004341596A 2004-11-26 2004-11-26 Manufacturing method of all-solid-state battery Active JP4827222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004341596A JP4827222B2 (en) 2004-11-26 2004-11-26 Manufacturing method of all-solid-state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004341596A JP4827222B2 (en) 2004-11-26 2004-11-26 Manufacturing method of all-solid-state battery

Publications (2)

Publication Number Publication Date
JP2006155979A true JP2006155979A (en) 2006-06-15
JP4827222B2 JP4827222B2 (en) 2011-11-30

Family

ID=36634025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004341596A Active JP4827222B2 (en) 2004-11-26 2004-11-26 Manufacturing method of all-solid-state battery

Country Status (1)

Country Link
JP (1) JP4827222B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008130229A (en) * 2006-11-16 2008-06-05 National Institute Of Advanced Industrial & Technology Lithium secondary battery
JP2008135379A (en) * 2006-10-25 2008-06-12 Sumitomo Chemical Co Ltd Lithium secondary battery
JP2010192373A (en) * 2009-02-20 2010-09-02 Samsung Electronics Co Ltd All-solid secondary battery
WO2012073874A1 (en) * 2010-11-30 2012-06-07 三洋電機株式会社 Conductive agent for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2012176903A1 (en) * 2011-06-24 2012-12-27 旭硝子株式会社 Method for producing positive electrode active material for lithium ion secondary batteries
CN108258296A (en) * 2016-12-28 2018-07-06 现代自动车株式会社 The all-solid-state battery and its manufacturing method that energy density improves
WO2022259820A1 (en) * 2021-06-11 2022-12-15 パナソニックIpマネジメント株式会社 Coated positive electrode active substance, positive electrode material, and battery
WO2023008089A1 (en) * 2021-07-29 2023-02-02 パナソニックIpマネジメント株式会社 Positive electrode for secondary batteries, method for producing same, and secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102380022B1 (en) 2014-12-29 2022-03-29 삼성에스디아이 주식회사 Positive active material and manufacturing method thereof, positive electrode and lithium battery containing the material
KR102463422B1 (en) 2017-10-13 2022-11-03 현대자동차주식회사 Anode for all solid cell and the fabrication method of the same

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195220A (en) * 1995-01-18 1996-07-30 Japan Storage Battery Co Ltd Manufacture of nonaqueous polymer battery and of polymer film for use in same
JPH08222235A (en) * 1995-02-16 1996-08-30 Sony Corp Solid battery
JPH0922732A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JPH09129246A (en) * 1995-11-01 1997-05-16 Sanyo Electric Co Ltd Solid electrolyte battery
JPH1173991A (en) * 1997-08-29 1999-03-16 Ricoh Co Ltd Nonaqueous electrolyte secondary battery
JPH11329503A (en) * 1998-05-06 1999-11-30 Sony Corp Nonaqueous secondary battery
JP2001015115A (en) * 1999-06-29 2001-01-19 Kyocera Corp Lithium secondary battery
JP2002093463A (en) * 2000-09-11 2002-03-29 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2002216744A (en) * 2001-01-17 2002-08-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2002324581A (en) * 2001-04-26 2002-11-08 Sony Corp Solid electrolyte battery
JP2003173770A (en) * 2001-12-04 2003-06-20 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and manufacturing method of nonaqueous electrolyte battery
JP2003197192A (en) * 2001-12-27 2003-07-11 Japan Storage Battery Co Ltd Nonaqueous secondary battery
JP2004319129A (en) * 2003-04-11 2004-11-11 Sony Corp Anode active material and nonaqueous electrolyte secondary battery using it
JP2005228706A (en) * 2004-02-16 2005-08-25 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery
JP2005276454A (en) * 2004-03-23 2005-10-06 Sumitomo Metal Mining Co Ltd Positive electrode active material for lithium-ion secondary battery and its manufacturing method
JP2005332779A (en) * 2004-05-21 2005-12-02 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195220A (en) * 1995-01-18 1996-07-30 Japan Storage Battery Co Ltd Manufacture of nonaqueous polymer battery and of polymer film for use in same
JPH08222235A (en) * 1995-02-16 1996-08-30 Sony Corp Solid battery
JPH0922732A (en) * 1995-07-06 1997-01-21 Toshiba Battery Co Ltd Polymer electrolyte secondary battery
JPH09129246A (en) * 1995-11-01 1997-05-16 Sanyo Electric Co Ltd Solid electrolyte battery
JPH1173991A (en) * 1997-08-29 1999-03-16 Ricoh Co Ltd Nonaqueous electrolyte secondary battery
JPH11329503A (en) * 1998-05-06 1999-11-30 Sony Corp Nonaqueous secondary battery
JP2001015115A (en) * 1999-06-29 2001-01-19 Kyocera Corp Lithium secondary battery
JP2002093463A (en) * 2000-09-11 2002-03-29 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2002216744A (en) * 2001-01-17 2002-08-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2002324581A (en) * 2001-04-26 2002-11-08 Sony Corp Solid electrolyte battery
JP2003173770A (en) * 2001-12-04 2003-06-20 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and manufacturing method of nonaqueous electrolyte battery
JP2003197192A (en) * 2001-12-27 2003-07-11 Japan Storage Battery Co Ltd Nonaqueous secondary battery
JP2004319129A (en) * 2003-04-11 2004-11-11 Sony Corp Anode active material and nonaqueous electrolyte secondary battery using it
JP2005228706A (en) * 2004-02-16 2005-08-25 Sony Corp Positive electrode active material and nonaqueous electrolyte secondary battery
JP2005276454A (en) * 2004-03-23 2005-10-06 Sumitomo Metal Mining Co Ltd Positive electrode active material for lithium-ion secondary battery and its manufacturing method
JP2005332779A (en) * 2004-05-21 2005-12-02 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135379A (en) * 2006-10-25 2008-06-12 Sumitomo Chemical Co Ltd Lithium secondary battery
JP2008130229A (en) * 2006-11-16 2008-06-05 National Institute Of Advanced Industrial & Technology Lithium secondary battery
JP2010192373A (en) * 2009-02-20 2010-09-02 Samsung Electronics Co Ltd All-solid secondary battery
JPWO2012073874A1 (en) * 2010-11-30 2014-05-19 三洋電機株式会社 Conductive agent for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN103238242A (en) * 2010-11-30 2013-08-07 三洋电机株式会社 Conductive agent for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
WO2012073874A1 (en) * 2010-11-30 2012-06-07 三洋電機株式会社 Conductive agent for non-aqueous electrolyte secondary batteries, positive electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary battery
CN103238242B (en) * 2010-11-30 2016-04-13 三洋电机株式会社 Rechargeable nonaqueous electrolytic battery conductive agent, positive electrode for nonaqueous electrolyte secondary battery and rechargeable nonaqueous electrolytic battery
JP6022357B2 (en) * 2010-11-30 2016-11-09 三洋電機株式会社 Conductive agent for non-aqueous electrolyte secondary battery, positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2012176903A1 (en) * 2011-06-24 2012-12-27 旭硝子株式会社 Method for producing positive electrode active material for lithium ion secondary batteries
CN108258296A (en) * 2016-12-28 2018-07-06 现代自动车株式会社 The all-solid-state battery and its manufacturing method that energy density improves
CN108258296B (en) * 2016-12-28 2022-08-12 现代自动车株式会社 All-solid-state battery with improved energy density and method for manufacturing same
WO2022259820A1 (en) * 2021-06-11 2022-12-15 パナソニックIpマネジメント株式会社 Coated positive electrode active substance, positive electrode material, and battery
WO2023008089A1 (en) * 2021-07-29 2023-02-02 パナソニックIpマネジメント株式会社 Positive electrode for secondary batteries, method for producing same, and secondary battery

Also Published As

Publication number Publication date
JP4827222B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP4997400B2 (en) Polymer solid electrolyte battery and method for producing positive electrode sheet used therefor
EP3361530B1 (en) Positive electrode for lithium ion secondary battery, graphene/positive electrode active material composite particles, and manufacturing methods for same, and positive electrode paste for lithium ion secondary battery
JP5196621B2 (en) Lithium ion secondary battery using room temperature molten salt and method for producing the same
JP5262143B2 (en) Positive electrode body and method for producing the same
JP6202106B2 (en) Electrical device
JP2007059409A (en) All-solid battery
JP2012155994A (en) Electrode for solid-state battery
US11901558B2 (en) Lithium niobate and method for producing the same
KR20160150118A (en) Composite active material, solid-state battery and method for producing composite active material
JP2009193940A (en) Electrode and method of manufacturing the same, and lithium ion secondary battery
TW200421652A (en) Electrode material for lithium secondary battery, electrode structure comprising the electrode material and secondary battery comprising the electrode structure
EP3576190B1 (en) Cathode, all-solid-state battery and methods for producing them
WO2013132592A1 (en) Solid sulfide battery system and method for controlling solid sulfide battery
JP4827222B2 (en) Manufacturing method of all-solid-state battery
JP5775444B2 (en) Nonaqueous electrolyte battery electrode and nonaqueous electrolyte battery
EP3576209A1 (en) Cathode, all-solid-state battery and methods for producing them
JP7010177B2 (en) Manufacturing method of positive electrode layer
JP7265023B2 (en) Method for manufacturing positive electrode for all-solid-state battery and positive electrode for all-solid-state battery manufactured by the method
JP2023521005A (en) All-solid-state battery containing oxide-based solid electrolyte for low-temperature sintering process and method for manufacturing the same
JP6252604B2 (en) Electrical device
JP7100158B2 (en) Functional separation membrane, its manufacturing method and lithium secondary battery containing it
JP2022512494A (en) Manufacturing method of positive electrode mixture for all-solid-state battery and positive electrode mixture for all-solid-state battery produced by this method.
JP2003331823A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the battery
JP6965850B2 (en) Manufacturing method of positive electrode active material
JP3839590B2 (en) Nonaqueous electrolyte secondary battery electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110912

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4827222

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250