JP2006153926A - Compound sound absorbing structure body - Google Patents

Compound sound absorbing structure body Download PDF

Info

Publication number
JP2006153926A
JP2006153926A JP2004340170A JP2004340170A JP2006153926A JP 2006153926 A JP2006153926 A JP 2006153926A JP 2004340170 A JP2004340170 A JP 2004340170A JP 2004340170 A JP2004340170 A JP 2004340170A JP 2006153926 A JP2006153926 A JP 2006153926A
Authority
JP
Japan
Prior art keywords
sound
sound absorbing
structure body
absorbing structure
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004340170A
Other languages
Japanese (ja)
Inventor
Seiji Tamata
青滋 霊田
Kiyoshi Shimizu
潔 清水
Koji Ikeda
浩二 池田
Kazuyoshi Iida
一嘉 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone KBG Co Ltd
Original Assignee
Bridgestone KBG Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone KBG Co Ltd filed Critical Bridgestone KBG Co Ltd
Priority to JP2004340170A priority Critical patent/JP2006153926A/en
Publication of JP2006153926A publication Critical patent/JP2006153926A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for improving a sound absorbing coefficient in a sound range of 500Hz to 1kHz without increasing thickness and air layer of a porous material, and to provide a compound sound absorbing structure body for practical use. <P>SOLUTION: The compound sound absorbing structure body is obtained by holding a film-like or a thin plate-like material C between a mesh structure body A transmitting acoustic waves and a mesh structure body B to obtain a double layer structure body by partly fixing D them to each other, and further, closely compounding the mesh structure body B of a compound structure body and the porous sound absorbing material E. Thus, it the compound sound absorbing structure body which can be increased in a sound absorbing coefficient in a not only middle and high sound range but also low sound range without increasing the thickness of the sound absorbing structure body can be obtained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、騒音低減や音場調整に用いられる吸音技術に関するものである。   The present invention relates to a sound absorption technique used for noise reduction and sound field adjustment.

多孔質材料にはグラスウールやロックウール等の無機繊維系のもの、ポリエステル等の高分子繊維系のもの、発泡軟質ウレタン等の樹脂発泡系のもの等がある。これら多孔質材料は中・高音域用吸音材として優れた吸音材料であるが、中・高音域に加え、低音域の吸音率を大きくするためには、多孔質材料を厚くするか或いは空気層を取る等しなければならない。しかしながら、施工する個所のスペースの関係で複合吸音構造体の厚さがとれない場合には中音域では吸音率が不足する場合が良くある問題である。即ち、諸事情により吸音特性面、構造設計面、重量面、費用面等で適用が難しいケースがよく見られた。   Examples of the porous material include inorganic fiber materials such as glass wool and rock wool, polymer fiber materials such as polyester, and resin foam materials such as foamed soft urethane. These porous materials are excellent sound absorbing materials as sound absorbing materials for middle and high sounds, but in order to increase the sound absorption coefficient in the low sound region in addition to the medium and high sound regions, the porous material is made thicker or the air layer. You have to take. However, when the composite sound absorbing structure cannot be made thick due to the space of the construction site, the sound absorption coefficient is often insufficient in the middle sound range. That is, there are many cases where the application is difficult in terms of sound absorption characteristics, structural design, weight, and cost due to various circumstances.

騒音でよく問題になる周波数帯域は500〜2KHzであるが、例えば、ポリエステル繊維系(密度35kg/m3 )の吸音特性(垂直入射法)は厚さ35mmでは、500Hzで20%、1KHzで40%程度の吸音率しかない。これを改善するために、表面保護を兼ねて大抵の場合不織布を表面に貼り付けるが、これによっても、1KHzでは70%位までに改善されるものの、500Hzでは40%位にしか改善されないということが判明している。   The frequency band that is often a problem with noise is 500 to 2 KHz. For example, the sound absorption characteristic (normal incidence method) of a polyester fiber system (density 35 kg / m3) is 20% at 500 Hz and 40% at 1 KHz at a thickness of 35 mm. There is only about the sound absorption coefficient. In order to improve this, non-woven fabric is usually applied to the surface also for surface protection, but this also improves to about 70% at 1 KHz, but only to about 40% at 500 Hz. Is known.

更に、吸音性能を改善するためには、前記したように多孔質材料であるポリエステル繊維を厚くするか空気層を吸音材料の後ろに設けることが従来行われていることであるが、例えばトータルの吸音構造体の厚さが50mm以上になり、スペースに制限がある場合には適用できないという事態も生じる。こうしたことは、他の多孔質材料であるグラスウールや軟質ウレタンフォーム等も同様な事態を生じる。   Furthermore, in order to improve the sound absorbing performance, as described above, it is conventional to increase the thickness of the polyester fiber, which is a porous material, or to provide an air layer behind the sound absorbing material. When the thickness of the sound absorbing structure is 50 mm or more and the space is limited, there is a situation in which it cannot be applied. This also causes the same situation for other porous materials such as glass wool and flexible urethane foam.

多孔質材料の厚さや空気層を増やさないで、500〜1KHzの音域の吸音率を改善する方法を提供するもので、具体的な複合吸音構造体を提供しようとするものである。   The object is to provide a method for improving the sound absorption coefficient in the sound range of 500 to 1 KHz without increasing the thickness of the porous material or the air layer, and to provide a specific composite sound absorbing structure.

本発明の要旨は、音波を透過する網目構造体Aと網目構造体Bの間に、膜状或いは薄板状材料Cを挟み、これらを部分的に相互に固定Dして複層構造体を得、更に、当該複合構造体の網目構造体Bと多孔質吸音材Eとを密着複合化した複合吸音構造体に係るものである。   The gist of the present invention is that a film-like or thin plate-like material C is sandwiched between a mesh structure A and a mesh structure B that transmit sound waves, and these are partially fixed to each other to obtain a multilayer structure. Furthermore, the present invention relates to a composite sound absorbing structure in which the network structure B of the composite structure and the porous sound absorbing material E are closely combined.

本発明は、上記のような構成を有しており、従来の中・高音域は勿論ではあるが、吸音構造体の厚みを増すことなく、低音域の吸音率を大きくすることができた複合吸音構造体が提供可能となったものである。   The present invention has the above-described configuration, and is a composite that can increase the sound absorption coefficient in the low sound range without increasing the thickness of the sound absorbing structure, as well as the conventional middle and high sound ranges. A sound absorbing structure can be provided.

複合吸音構造体として特許文献1が公知である。しかるに、かかる技術は透光性吸音材と透光性遮音材とを空間を隔てて、枠材に組み込み配置したもので、透光性吸音材は音源側に配置され、空間を隔てた透光性遮音材とともにその周囲を枠材で固定し、かつ、透光性防音板の内部には内部吸音材を配置している。従って、透光性を前提としているため、網目はできるだけ大きく(3〜50mm)し、膜が網目構造間でできるだけ自由に動けるような構造である。つまり音圧で励振した場合、膜が振動し、その一部が網目構造体の一部と接触し、その部分で熱エネルギ−に変換し、吸音性を出すものである。   Patent Document 1 is known as a composite sound absorbing structure. However, in this technology, a translucent sound absorbing material and a translucent sound insulating material are arranged in a frame member with a space therebetween, and the translucent sound absorbing material is disposed on the sound source side, and the translucent light transmitting material is separated from the space. The sound-insulating material and its surroundings are fixed by a frame material, and an internal sound-absorbing material is arranged inside the translucent soundproofing plate. Therefore, since translucency is assumed, the mesh is as large as possible (3 to 50 mm), and the film can move as freely as possible between the mesh structures. In other words, when excited by sound pressure, the membrane vibrates, a part of which comes into contact with a part of the network structure, is converted into thermal energy at that part, and produces sound absorption.

特開2002−317408号公報JP 2002-317408 A

本発明は、網目構造体A、膜或いは薄板状材料C、網目構造体Bを積層し、これらを部分的に相互に固定Dして複合構造体を得、これに多孔質吸音材Eを密着複合化した複合吸音構造体で、多孔質材料とを一体複合化することによって構造的ロスを増大させたものである。   In the present invention, a network structure A, a film or thin plate material C, and a network structure B are laminated, and these are partially fixed to each other to obtain a composite structure, and a porous sound absorbing material E is adhered thereto. This is a composite sound-absorbing structure that has been combined, and the structural loss is increased by integrally combining the porous material.

即ち、音響入射エネルギーによって構造全体が励振されることにより、屈曲振動することで、各層間でのフリクションによる熱エネルギー変換、膜或いは薄板の部分的な共振、多孔質材料の繊維(グラスウール、ポリエステル繊維等)或いは膜(軟質ウレタンフォーム等)の振動による熱エネルギー変換により、多孔質材料の厚さを増したり空気層を設けずに、即ち、複合構造体の厚さを殆ど変えることなく、中低音域の吸音性能を大幅に向上させることができたものである。   That is, when the entire structure is excited by the acoustic incident energy, bending vibrations cause thermal energy conversion by friction between each layer, partial resonance of the film or thin plate, fiber of porous material (glass wool, polyester fiber) Etc.) or thermal energy conversion by vibration of membranes (soft urethane foam etc.), without increasing the thickness of the porous material or providing an air layer, that is, without changing the thickness of the composite structure. The sound absorption performance in the range can be greatly improved.

上記特許文献1との違いについて特に言えば、膜或いは薄板を網目構造体でサンドイッチし、できるだけ相互を密着させて、一体に振動させ、層間でのフリクションを高めると同時に、膜だけでなく複合体として多質点系の動きをさせ、熱エネルギ−の変換効率を高め、広帯域で高い吸音特性を得ようとするものであり、基本的な技術思想が異なるものである。   In particular, the difference from the above-mentioned Patent Document 1 is that a film or a thin plate is sandwiched by a network structure, and they are brought into close contact with each other as much as possible to vibrate together to increase the friction between the layers. As described above, the movement of a multi-mass point system is performed, the conversion efficiency of heat energy is increased, and high sound absorption characteristics are obtained in a wide band, and the basic technical idea is different.

尚、比較的剛性感のある骨格のみのウレタンフォームや高分子系不織布、金属系の繊維を固めたもの等を組み合わせて本発明の複合吸音構造体を構成する場合には、それ自体の膜に接触する面と膜面とが十分に摩擦するために、複層構造体の後者に接触する網目構造は外すことも可能である。   In the case where the composite sound absorbing structure of the present invention is configured by combining urethane foam having only a relatively rigid skeleton, polymer nonwoven fabric, solidified metal fibers, etc., the film itself The network structure contacting the latter of the multilayer structure can be removed so that the contacting surface and the film surface are sufficiently rubbed.

前記網目構造体A、Bにおける金属系材料の例は、アルミ、鉄、ステンレス、高分子材料の例は各種樹脂、木質系材料の例は紙等が挙げられる。この構造体A、Bの開口の大きさは0.5〜5mm以下が好ましい。   Examples of metal materials in the mesh structures A and B include aluminum, iron, stainless steel, examples of polymer materials include various resins, and examples of wood materials include paper. The size of the openings of the structures A and B is preferably 0.5 to 5 mm.

前記膜状或いは薄板状材料Cは、上記の網目構造体A、Bにおける金属系材料、高分子系材料、木質系材料が適用可能である。その厚さも10〜100μ程度が好ましい。   As the film-like or thin plate-like material C, a metal material, a polymer material, or a wood material in the mesh structures A and B can be applied. The thickness is preferably about 10 to 100 μm.

網目構造体A、膜或いは薄板状材料C、網目構造体Bを積層し、これらを部分的に相互に固定Dする具体例としては、ホッチキス、リベット、溶着、縫製等が挙げられる。固定数は、通常は10cm×10cmに1〜10個程度である。   Specific examples of laminating the network structure A, the film or thin plate material C, and the network structure B and partially fixing these to each other include stapler, rivet, welding, sewing, and the like. The fixed number is usually about 1 to 10 in 10 cm × 10 cm.

多孔質材料Eは、グラスウール、ロックウール、ポリエステル繊維等や軟質ウレタンフォーム等が例示され、比較的柔軟性のある材料或いは不撒布、金属製繊維等を固めたもの等、ある程度弾性があり剛性感のあるものからなるものである。これらの多孔質材料は、音の入射エネルギーが材料内に入り、振動させること或いは材料の中を空気が出入りすることで入射する音響エネルギーを熱エネルギ−に変換することで、吸音性能を発揮するものである。その密度は20〜100kg/m3 が好ましい。   Examples of the porous material E include glass wool, rock wool, polyester fiber, and flexible urethane foam. The material is relatively flexible, such as a relatively flexible material, a non-woven fabric, or a solidified metal fiber. It consists of something with. These porous materials exhibit sound absorbing performance by converting the incident acoustic energy into thermal energy when the incident energy of sound enters the material and vibrates or air enters and exits the material. Is. The density is preferably 20 to 100 kg / m 3.

以下、実施例をもって本発明を更に詳細に説明する。尚、吸音率の測定には、音響管による2マイクロフォン法垂直入射吸音率測定装置を用いた。   Hereinafter, the present invention will be described in more detail with reference to examples. For measuring the sound absorption coefficient, a 2-microphone method normal incidence sound absorption coefficient measuring apparatus using an acoustic tube was used.

(比較例1)
ポリエステル繊維(密度35kg/m3 、厚さ35mm)を単体とした多孔質材料のみの吸音構造体の例である。この例では、音の入射エネルギーが材料内に入り、繊維を振動させ、材料の中を空気が出入りすることで入射する音響エネルギーを熱エネルギ−に変換させ、吸音性能を発揮させるものである。
(Comparative Example 1)
This is an example of a sound-absorbing structure made only of a porous material in which polyester fibers (density 35 kg / m 3, thickness 35 mm) are used alone. In this example, incident energy of sound enters the material, vibrates the fiber, and air enters and exits the material to convert incident acoustic energy into thermal energy, thereby exhibiting sound absorbing performance.

(実施例1)
本発明の複合吸音構造体は、図1に示すようにアルミ網目構造体(メッシュ16)A十アルミ箔(厚さ:3μ)C+アルミ網目構造体(メッシュ16)BをリベットDで固定(5点/100mmφ)Dしたものを、ポリエステル繊維吸音体(密度:35kg/m3 、厚さ:35mm)Eに密着させて複合吸音構造体としたものである。
Example 1
As shown in FIG. 1, the composite sound absorbing structure of the present invention has an aluminum mesh structure (mesh 16) A + aluminum foil (thickness: 3 μ) C + aluminum mesh structure (mesh 16) B fixed with rivets D (5 A composite sound-absorbing structure is obtained by adhering a D / 100 mmφ) D to a polyester fiber sound absorber (density: 35 kg / m 3, thickness: 35 mm) E.

この例では、網目構造体、膜材料、網目構造体、多孔質材料とを一体複合化することによって構造的ロスを増大させ、音響入射エネルギーによって構造全体が励振されることにより、屈曲振動することで、各層間でのフリクションによる熱エネルギー変換、膜の部分的な共振、多孔質材料の繊維或いは膜の振動による熱エネルギー変換によって、中低音域の吸音性能を改良せんとしたものである。   In this example, the structural loss is increased by combining the network structure, membrane material, network structure, and porous material together, and the entire structure is excited by the incident acoustic energy, resulting in bending vibration. Therefore, the sound absorption performance in the mid-low range is improved by heat energy conversion by friction between layers, partial resonance of the film, and heat energy conversion by vibration of the fiber or film of the porous material.

図2は上記各例を上記の垂直入射法吸音率測定装置で、各試験サンプルの吸音率の測定した結果を示す。この結果、本発明によれば、多孔質材料のみの場合では実現できない中低音域で優れた吸音性能を発揮できたものであり、吸音特性が大幅に改善されており、その有効性が証明されたものである。   FIG. 2 shows the result of measuring the sound absorption coefficient of each test sample with the above-mentioned normal incidence method sound absorption coefficient measuring apparatus. As a result, according to the present invention, it was possible to demonstrate excellent sound absorption performance in the mid-low range that could not be realized only with porous materials, the sound absorption characteristics were greatly improved, and its effectiveness was proved. It is a thing.

以上のように、本発明で構成される複合吸音構造体は、これを構成する各材料を要求される吸音率、許容スペース等使用面での制約条件に対して適切な材料種別、網目等のメッシュの大きさ(凡そ10メッシュ以下)、膜状或いは薄板状材料の厚さ(凡そ0.1mm以下)、多孔質材料の密度、厚さ等を選ぶことにより、要求された周波数帯域の吸音特性に適合した複合吸音構造を実現できるものである。   As described above, the composite sound-absorbing structure constituted by the present invention has an appropriate material type, mesh, etc. with respect to restrictions on usage such as sound absorption coefficient and allowable space required for each material constituting the structure. By selecting the size of the mesh (approximately 10 mesh or less), the thickness of the membrane or thin plate material (approximately 0.1 mm or less), the density and thickness of the porous material, etc., the sound absorption characteristics in the required frequency band It is possible to realize a composite sound absorbing structure suitable for the above.

本発明の複合吸音構造体は、鉄道・道路分野の遮音壁或いはトンネル内に使われる吸音構造部分、建築分野の騒音低減に用いられる吸音構造部分、自動車、建機、農機等のエンジン周りや車室、キャビン内の騒音低減のための吸音構造部分、家電製品やAV機器の騒音低減のための吸音構造部分、音楽室、ホール、オーディオルーム等の音場特性調整のための吸音構造部分等幅広く適用できるものである。   The composite sound-absorbing structure of the present invention includes a sound-absorbing structure part used in a sound insulation wall or tunnel in the railway / road field, a sound-absorbing structure part used for noise reduction in the building field, an engine area and a vehicle compartment for automobiles, construction machines, agricultural machines, etc. Widely applicable, such as sound absorbing structure part for reducing noise in cabin, sound absorbing structure part for reducing noise of household appliances and AV equipment, sound absorbing structure part for adjusting sound field characteristics of music room, hall, audio room, etc. It can be done.

図1は複合吸音構造体を示す図である。FIG. 1 is a view showing a composite sound absorbing structure. 図2は垂直入射吸音率を示す図である。FIG. 2 is a diagram showing the normal incidence sound absorption coefficient.

符号の説明Explanation of symbols

A、B‥アルミ網目構造体、
C‥アルミ箔、
D‥リベット固定部、
E‥ポリエステル繊維吸音体。

A, B ... Aluminum mesh structure,
C. Aluminum foil,
D: Rivet fixing part,
E: Polyester fiber sound absorber.

Claims (5)

音波を透過する網目構造体Aと網目構造体Bの間に、膜状或いは薄板状材料Cを挟み、これらを部分的に相互に固定Dして複層構造体を得、更に、当該複合構造体の網目構造体Bと多孔質吸音材Eとを密着複合化したことを特徴とする複合吸音構造体。   A film-like or thin plate-like material C is sandwiched between a mesh structure A and a mesh structure B that transmit sound waves, and these are partially fixed D to each other to obtain a multilayer structure. A composite sound-absorbing structure characterized in that the network structure B of the body and the porous sound-absorbing material E are combined in close contact. 前記複合構造体の裏面に、孔明板或いはルーバーを設けた請求項1記載の複合吸音構造体。   The composite sound absorbing structure according to claim 1, wherein a perforated plate or a louver is provided on a back surface of the composite structure. 前記網目構造体A及びBは、金属系材料或いは高分子系材料である請求項1記載の複合吸音構造体。   2. The composite sound absorbing structure according to claim 1, wherein the mesh structures A and B are a metal material or a polymer material. 前記膜状或いは薄板状材料は、金属系材料、高分子系材料、木質系材料である請求項1記載の複合吸音構造体。   The composite sound absorbing structure according to claim 1, wherein the film-like or thin plate-like material is a metal material, a polymer material, or a wood material. 前記網目構造体A、膜状或いは薄板状材料、網目構造体Bは、ホッチキス、リベット、溶着、縫製等によって、部分的に相互に固定Dされた請求項1記載の複合吸音構造体。





The composite sound absorbing structure according to claim 1, wherein the mesh structure A, film-like or thin plate material, and mesh structure B are partially fixed D to each other by staples, rivets, welding, sewing, or the like.





JP2004340170A 2004-11-25 2004-11-25 Compound sound absorbing structure body Pending JP2006153926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004340170A JP2006153926A (en) 2004-11-25 2004-11-25 Compound sound absorbing structure body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004340170A JP2006153926A (en) 2004-11-25 2004-11-25 Compound sound absorbing structure body

Publications (1)

Publication Number Publication Date
JP2006153926A true JP2006153926A (en) 2006-06-15

Family

ID=36632356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004340170A Pending JP2006153926A (en) 2004-11-25 2004-11-25 Compound sound absorbing structure body

Country Status (1)

Country Link
JP (1) JP2006153926A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007447A1 (en) * 2006-07-13 2008-01-17 Unix Corporation Ltd. Translucent perforated laminate acoustical board and translucent acoustical panel
JP2009215725A (en) * 2008-03-07 2009-09-24 Okumura Corp Sound insulation board for steel girder, and sound insulation structure using the same
US8371419B2 (en) 2008-04-22 2013-02-12 3M Innovative Properties Company Hybrid sound absorbing sheet
US8469145B2 (en) 2008-04-14 2013-06-25 3M Innovative Properties Company Multilayer sound absorbing sheet
US8573358B2 (en) 2008-05-22 2013-11-05 3M Innovative Properties Company Multilayer sound absorbing structure comprising mesh layer
CN105057676A (en) * 2015-08-12 2015-11-18 广州橙行智动汽车科技有限公司 Metal fiber porous material with surface reticular sintering film structure and manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03147838A (en) * 1989-11-06 1991-06-24 Yunitsukusu:Kk Sound absorbing material, manufacture thereof and sound absorbing body
JPH0683365A (en) * 1992-03-13 1994-03-25 Yunitsukusu:Kk Film vibrating sound absorber
JPH0657912U (en) * 1993-01-20 1994-08-12 日本板硝子株式会社 Soundproof panel
JPH08198660A (en) * 1995-01-19 1996-08-06 Ibiden Co Ltd Acoustical and heat insulating plate mounted on car
JP2000250561A (en) * 1999-02-26 2000-09-14 Yunikkusu:Kk Sound absorbing structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03147838A (en) * 1989-11-06 1991-06-24 Yunitsukusu:Kk Sound absorbing material, manufacture thereof and sound absorbing body
JPH0683365A (en) * 1992-03-13 1994-03-25 Yunitsukusu:Kk Film vibrating sound absorber
JPH0657912U (en) * 1993-01-20 1994-08-12 日本板硝子株式会社 Soundproof panel
JPH08198660A (en) * 1995-01-19 1996-08-06 Ibiden Co Ltd Acoustical and heat insulating plate mounted on car
JP2000250561A (en) * 1999-02-26 2000-09-14 Yunikkusu:Kk Sound absorbing structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008007447A1 (en) * 2006-07-13 2008-01-17 Unix Corporation Ltd. Translucent perforated laminate acoustical board and translucent acoustical panel
JP4975744B2 (en) * 2006-07-13 2012-07-11 株式会社ユニックス Translucent perforated laminated sound absorbing plate and translucent sound absorbing panel
JP2009215725A (en) * 2008-03-07 2009-09-24 Okumura Corp Sound insulation board for steel girder, and sound insulation structure using the same
US8469145B2 (en) 2008-04-14 2013-06-25 3M Innovative Properties Company Multilayer sound absorbing sheet
US8371419B2 (en) 2008-04-22 2013-02-12 3M Innovative Properties Company Hybrid sound absorbing sheet
US8573358B2 (en) 2008-05-22 2013-11-05 3M Innovative Properties Company Multilayer sound absorbing structure comprising mesh layer
CN105057676A (en) * 2015-08-12 2015-11-18 广州橙行智动汽车科技有限公司 Metal fiber porous material with surface reticular sintering film structure and manufacturing method

Similar Documents

Publication Publication Date Title
US9369805B2 (en) Acoustic absorber, acoustic transducer, and method for producing an acoustic absorber or an acoustic transducer
EP2311028B1 (en) Multilayer sound absorbing sheet and method of absorbing sound
JP4975744B2 (en) Translucent perforated laminated sound absorbing plate and translucent sound absorbing panel
JP4691388B2 (en) Ultralight soundproof material
JP6510653B2 (en) Soundproof structure
JP2008008997A (en) Composite sound absorbing structural body
WO2006068028A1 (en) Sound absorbing structure
WO2004086354A1 (en) Ultralight soundproof material
JP2012168415A (en) Sound absorption panel
WO2007029697A1 (en) Double wall structure
JP3930506B2 (en) Ultralight soundproof material
JP5446134B2 (en) Sound absorbing structure
JP2006323204A (en) Double sound absorption structure
JP2007334285A (en) Sound absorbing structure and rail vehicle
JP6791620B2 (en) Sound absorption structure
JP2006153926A (en) Compound sound absorbing structure body
JP5286949B2 (en) Sound absorption structure
JP2006098966A (en) Sound insulation cover
JP5238324B2 (en) Soundproofing method for railcar panels and railcar soundproofing panel structure used therefor
JP2010097137A (en) Sound absorbing structure
JP3930484B2 (en) Ultralight soundproof material
JPH1037619A (en) Sound-proof door
JP2005121994A (en) Ultralightweight sound isolation material
JP2009198901A (en) Sound absorption structure, sound absorption structure group, acoustic chamber, method of adjusting sound absorption structure and noise reduction method
JP6929532B2 (en) Soundproof panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100831