JP2006153454A - Supercritical refrigerating device - Google Patents

Supercritical refrigerating device Download PDF

Info

Publication number
JP2006153454A
JP2006153454A JP2006069484A JP2006069484A JP2006153454A JP 2006153454 A JP2006153454 A JP 2006153454A JP 2006069484 A JP2006069484 A JP 2006069484A JP 2006069484 A JP2006069484 A JP 2006069484A JP 2006153454 A JP2006153454 A JP 2006153454A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
outside air
compressor
air temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006069484A
Other languages
Japanese (ja)
Inventor
Sadahiro Takizawa
禎大 滝澤
Kiyoshi Koyama
清 小山
Shigeo Tsukue
重男 机
Satoshi Hoshino
聡 星野
Kazuaki Shikichi
千明 式地
Shigeya Ishigaki
茂弥 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006069484A priority Critical patent/JP2006153454A/en
Publication of JP2006153454A publication Critical patent/JP2006153454A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supercritical refrigerating device having improved durability while preventing the output degradation of a compressor in the state that an outside air temperature is low. <P>SOLUTION: The supercritical refrigerating device comprises a branch part X via which refrigerant flowing out of a high pressure side heat exchanger 12 for cooling compressed refrigerant branches, a first depressurizer 13 for depressurizing one branching refrigerant, an evaporator 14 for evaporating the refrigerant depressurized by the first depressurizer, the compressor 11 for compressing the refrigerant flowing out of the evaporator into supercritical pressure and discharging it to the high pressure side heat exchanger, a bypass circuit 16 for guiding the other branching refrigerant to an intermediate pressure part 11d of the compressor, an opening/closing valve 17 for opening/closing the bypass circuit, a second depressurizer 18 for depressurizing the refrigerant flowing in the bypass circuit, an outside air temperature detector 32 for detecting an outside air temperature, and a control means 3 for controlling the opening/closing operation of the opening/closing valve so that the opening/closing valve is opened for carrying the other refrigerant into the bypass circuit and guiding it to the intermediate pressure part of the compressor when the temperature detected by the outside air temperature detector is a preset temperature or lower. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、超臨界冷凍装置に関し、特に、外気を蒸発器の熱源流体とした超臨界冷凍装置に関する。   The present invention relates to a supercritical refrigeration apparatus, and more particularly to a supercritical refrigeration apparatus using outside air as a heat source fluid of an evaporator.

外気を蒸発器の熱源流体とし、圧縮装置として2段圧縮機を用いた超臨界冷凍装置では、一般的に、外気温度が低下した場合、蒸発圧力、つまり低圧側圧力が低下する。また、この低圧側圧力の低下に伴い低段側圧縮機の吐出側圧力、つまり中間圧力が低下する。これに対し高段側圧縮機の吐出圧力、つまり高圧側圧力は、高段側圧縮機の吐出側ガスが水や空気などの利用側熱交換媒体を加熱する熱源に使用されることから、高段側圧縮機の吐出側ガスの温度を高く維持することが必要となる場合、つまり、高圧側圧力を高く維持することが必要となる場合(例えば、高圧圧力が低下しないようにする場合)がある。この場合、前記2段圧縮機を用いた冷凍装置では、高圧側圧力と中間圧力との圧力差が外気温の低下とともに大きくなっていた。
特に無し
In a supercritical refrigerating apparatus using outside air as a heat source fluid of an evaporator and using a two-stage compressor as a compression apparatus, generally, when the outside air temperature decreases, the evaporation pressure, that is, the low pressure side pressure decreases. Further, the discharge side pressure of the low stage compressor, that is, the intermediate pressure is reduced with the reduction of the low pressure side pressure. On the other hand, the discharge pressure of the high-stage compressor, that is, the high-pressure side pressure is high because the discharge-side gas of the high-stage compressor is used as a heat source for heating the use-side heat exchange medium such as water or air. When it is necessary to keep the temperature of the discharge side gas of the stage side compressor high, that is, when the high pressure side pressure needs to be kept high (for example, when the high pressure pressure is not lowered). is there. In this case, in the refrigeration apparatus using the two-stage compressor, the pressure difference between the high-pressure side pressure and the intermediate pressure increases as the outside air temperature decreases.
None

ところが、このように高圧側圧力と中間圧力との圧力差が外気温の低下とともに大きくなると、高段側圧縮機の高低圧力差が大きくなるため、圧縮効率が悪くなる。即ち、寒冷地において、外気温が0℃以下の低温状態では、圧縮装置の出力を維持することが困難であるばかりでなく、各部材に作用する力が大きくなり、耐久性が低下するという問題が発生する心配があった。例えば、高低圧力差が大きくなると、例えば、高段側圧縮機におけるベーンバルブや吐出弁の破損などにつながる恐れがあった。   However, when the pressure difference between the high-pressure side pressure and the intermediate pressure increases as the outside air temperature decreases in this way, the high-low pressure difference of the high-stage compressor increases, and the compression efficiency deteriorates. That is, in a cold region, in a low temperature state where the outside air temperature is 0 ° C. or lower, not only is it difficult to maintain the output of the compression device, but also the force acting on each member increases and the durability decreases. I was worried that it would occur. For example, when the high / low pressure difference becomes large, for example, the vane valve or the discharge valve in the high stage compressor may be damaged.

本発明は、このような従来の技術に存在する問題点に着目してなされたものである。その目的とするところは、外気温が低温状態での運転時における圧縮装置の出力低下を防止し得ると共に、耐久性を高めることが可能な超臨界冷凍装置を提供できるようにすることにある。   The present invention has been made paying attention to such problems existing in the prior art. The object is to provide a supercritical refrigeration apparatus capable of preventing a reduction in the output of the compression apparatus during operation when the outside air temperature is low and improving the durability.

請求項1に記載の本発明では、圧力が超臨界となるように圧縮された冷媒を冷却する高圧側熱交換器(12)と、この高圧側熱交換器(12)から流出した冷媒を分岐させる分岐部(X)と、この分岐部(X)で分岐された一方の冷媒を減圧させる第1の減圧装置(13)と、この第1の減圧装置(13)で減圧された冷媒を蒸発させる蒸発器(14)と、この蒸発器(14)から流出した冷媒を圧力が超臨界となるように圧縮して前記高圧側熱交換器(12)へ吐出する圧縮装置(11)と、前記分岐部(X)で分岐された他方の冷媒を前記圧縮装置(11)の中間圧力部(11d)へ導くためのバイパス回路(16)と、このバイパス回路(16)を開閉する開閉弁(17)と、前記パイパス路(16)を流れる冷媒を減圧する第2の減圧装置(18)と、外気温度を検出する外気温度検出器(32)と、この外気温度検出器(32)により検出された温度が所定温度以下の時に、前記開閉弁(17)を開放して前記分岐部(X)で分岐された他方の冷媒をバイパス回路(16)に流し前記圧縮装置11の中間圧力部(11d)へ導くように開閉弁(17)を開閉制御する制御手段(3)とを備えたことを特徴とする。   In the first aspect of the present invention, the high-pressure side heat exchanger (12) for cooling the refrigerant compressed so that the pressure becomes supercritical, and the refrigerant flowing out from the high-pressure side heat exchanger (12) are branched. A branching section (X) to be discharged, a first pressure reducing device (13) for depressurizing one refrigerant branched by the branching section (X), and evaporating the refrigerant depressurized by the first pressure reducing apparatus (13) The evaporator (14) to be discharged, the compressor (11) for compressing the refrigerant flowing out of the evaporator (14) so that the pressure becomes supercritical, and discharging the compressed refrigerant to the high-pressure side heat exchanger (12), A bypass circuit (16) for guiding the other refrigerant branched at the branch section (X) to the intermediate pressure section (11d) of the compressor (11), and an on-off valve (17) for opening and closing the bypass circuit (16) ), And a second reduction for reducing the pressure of the refrigerant flowing through the bypass passage (16). A device (18), an outside temperature detector (32) for detecting the outside temperature, and when the temperature detected by the outside temperature detector (32) is below a predetermined temperature, the on-off valve (17) is opened. Control means (3) for controlling the opening and closing of the on-off valve (17) so that the other refrigerant branched at the branch (X) flows into the bypass circuit (16) and is led to the intermediate pressure part (11d) of the compressor 11. It is characterized by comprising.

請求項2に記載の本発明では、請求項1に記載の超臨界冷凍装置において、前記制御手段(3)は、外気温度検出器(32)により検出された温度が0℃以下の時に、前記開閉弁(17)を開放して前記分岐部(X)で分岐された他方の冷媒をバイパス回路(16)に流し前記圧縮装置11の中間圧力部(11d)へ導く構成としたことを特徴とする。   According to a second aspect of the present invention, in the supercritical refrigeration apparatus according to the first aspect, when the temperature detected by the outside air temperature detector (32) is 0 ° C. or less, the control means (3) The on-off valve (17) is opened and the other refrigerant branched at the branch portion (X) flows into the bypass circuit (16) and is guided to the intermediate pressure portion (11d) of the compressor 11. To do.

請求項3に記載の本発明では、請求項1に記載の超臨界冷凍装置において、前記冷媒が二酸化炭素であることを特徴とする。   According to a third aspect of the present invention, in the supercritical refrigeration apparatus according to the first aspect, the refrigerant is carbon dioxide.

本発明は以上のように構成されているので、外気温度低下時に、高圧側圧力を高く維持し、圧縮装置の吐出ガスの温度を高く維持することができるため、外気温が低温状態での運転時における圧縮装置の出力低下を防止し得ると共に、圧縮装置の耐久性を高めることが可能で、寒冷地での使用に好適な超臨界冷凍装置と成せる。   Since the present invention is configured as described above, when the outside air temperature is lowered, the high pressure side pressure can be maintained high, and the temperature of the discharge gas of the compressor can be maintained high. It is possible to prevent a decrease in output of the compression device at the time, and it is possible to increase the durability of the compression device, so that a supercritical refrigeration device suitable for use in a cold region can be obtained.

外気温が低温状態での運転時における圧縮装置の出力低下を防止し得ると共に、耐久性を高めることが可能な超臨界冷凍装置を提供できるようにすることを目的として、圧力が超臨界となるように圧縮された冷媒を冷却する高圧側熱交換器と、この高圧側熱交換器から流出した冷媒を分岐させる分岐部と、この分岐部で分岐された一方の冷媒を減圧させる第1の減圧装置と、この第1の減圧装置で減圧された冷媒を蒸発させる蒸発器と、この蒸発器から流出した冷媒を圧力が超臨界となるように圧縮して前記高圧側熱交換器へ吐出する圧縮装置と、前記分岐部で分岐された他方の冷媒を前記圧縮装置の中間圧力部へ導くためのバイパス回路と、このバイパス回路を開閉する開閉弁と、前記パイパス回路を流れる冷媒を減圧する第2の減圧装置と、外気温度を検出する外気温度検出器と、この外気温度検出器により検出された温度が所定温度以下の時に、前記開閉弁を開放して前記分岐部で分岐された他方の冷媒をバイパス回路に流し前記圧縮装置11の中間圧力部へ導くように開閉弁を開閉制御する制御手段とを備える構成とすることで実現している。   The pressure becomes supercritical for the purpose of providing a supercritical refrigeration system capable of preventing a decrease in output of the compressor during operation at a low outside temperature and enhancing durability. A high-pressure side heat exchanger that cools the compressed refrigerant, a branch part that branches the refrigerant that has flowed out of the high-pressure side heat exchanger, and a first pressure reduction that decompresses one of the refrigerants branched at the branch part An apparatus for evaporating the refrigerant depressurized by the first depressurizing apparatus, and a compression for compressing the refrigerant flowing out from the evaporator so that the pressure becomes supercritical and discharging it to the high-pressure side heat exchanger A bypass circuit for guiding the other refrigerant branched at the branching portion to the intermediate pressure portion of the compression device, an on-off valve for opening and closing the bypass circuit, and a second pressure reducing the refrigerant flowing through the bypass circuit Pressure reducing device An outside air temperature detector for detecting the outside air temperature, and when the temperature detected by the outside air temperature detector is equal to or lower than a predetermined temperature, the on-off valve is opened and the other refrigerant branched at the branch portion is used as a bypass circuit. This is realized by comprising a control means for controlling the opening and closing of the on-off valve so as to guide it to the intermediate pressure portion of the flow compressor 11.

以下、本発明をヒートポンプ式給湯装置に具体化した実施の形態を、図面を参照しながら詳細に説明する。図1は本発明の実施の形態に係る給湯装置の回路図であり、図2は本発明の実施の形態に係る圧力制御の説明図である。   Hereinafter, an embodiment in which the present invention is embodied in a heat pump type hot water supply apparatus will be described in detail with reference to the drawings. FIG. 1 is a circuit diagram of a hot water supply apparatus according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram of pressure control according to the embodiment of the present invention.

図1に示すように、ヒートポンプ式給湯装置Aは、超臨界冷凍サイクル装置1、給湯ユニット2及び制御装置3とを備えたものである。なお、この実施の形態においては、制御装置3は超臨界冷凍サイクル装置1内に設置されている。また、超臨界冷凍サイクル装置1と給湯ユニット2とは連絡水用配管5、6により接続されている。   As shown in FIG. 1, the heat pump hot water supply apparatus A includes a supercritical refrigeration cycle apparatus 1, a hot water supply unit 2, and a control device 3. In this embodiment, the control device 3 is installed in the supercritical refrigeration cycle apparatus 1. The supercritical refrigeration cycle apparatus 1 and the hot water supply unit 2 are connected by connecting water pipes 5 and 6.

前記超臨界冷凍サイクル装置1は、インバータ駆動式2段圧縮機(圧縮装置)11、高圧側熱交換器12、電動膨張弁(第1の減圧装置)13、蒸発器14、アキュムレータ15を冷媒配管で順次接続した冷媒回路を備えている。また、この冷媒回路における冷媒の流れは、定常運転時は図1の実線矢印のようになっている。   The supercritical refrigeration cycle apparatus 1 includes an inverter-driven two-stage compressor (compressor) 11, a high-pressure side heat exchanger 12, an electric expansion valve (first decompressor) 13, an evaporator 14, and an accumulator 15. The refrigerant circuit is connected sequentially. Further, the flow of the refrigerant in the refrigerant circuit is as indicated by solid line arrows in FIG.

前記インバータ駆動式2段圧縮機11は、共通の密閉ハウジング11H内に低段側圧縮機(低段側圧縮部)11a、高段側圧縮機(高段側圧縮部)11b、これら高段側圧縮機11a及び低段側圧縮機11bを駆動する共用の電動機11cを内蔵したものであり、低段側圧縮機11aの吐出側と高段側圧縮機11bの吸入側とを中間圧力となる連絡配管(中間圧力部)11dにより連結している。また、密閉ハウジング11H内の空間は、中間圧力ガス、つまり低段側圧縮機11aの吐出ガスにより満たされている。   The inverter-driven two-stage compressor 11 includes a low-stage compressor (low-stage compression section) 11a, a high-stage compressor (high-stage compression section) 11b, and a high-stage side in a common sealed housing 11H. A common electric motor 11c that drives the compressor 11a and the low-stage compressor 11b is built in, and the discharge side of the low-stage compressor 11a and the suction side of the high-stage compressor 11b communicate with each other as an intermediate pressure. It is connected by a pipe (intermediate pressure part) 11d. Further, the space in the sealed housing 11H is filled with the intermediate pressure gas, that is, the discharge gas of the low-stage compressor 11a.

また、前記インバータ駆動式2段圧縮機11は、超臨界冷凍サイクル運転中、後述する制御装置3により運転周波数が制御され、回転数が可変制御される。なお、高段側圧縮機11bの吐出配管には、高段側圧縮機11bから吐出される吐出ガス温度を検出するための吐出ガス温度検出器31が設けられている。   Further, during the supercritical refrigeration cycle operation, the inverter-driven two-stage compressor 11 is controlled in operating frequency by the control device 3 described later, and the rotational speed is variably controlled. A discharge gas temperature detector 31 for detecting the temperature of the discharge gas discharged from the high-stage compressor 11b is provided in the discharge pipe of the high-stage compressor 11b.

前記高圧側熱交換器12は、高段側圧縮機11bから吐出された高圧冷媒を導入する冷媒用熱交換チューブ12aと、給湯ユニット2内に配置されている貯湯タンク21から送水される給湯水を導入する水用熱交換チューブ12bとからなり、両者が熱交換関係に形成されたものである。したがって、高段側圧縮機11bから吐出された高温高圧の冷媒ガスは貯湯タンク21から送水される給湯水により冷却され、この給湯水は高段側圧縮機11bの吐出ガスが有する熱により加熱される。   The high-pressure side heat exchanger 12 includes a refrigerant heat exchange tube 12 a for introducing the high-pressure refrigerant discharged from the high-stage compressor 11 b and hot water supplied from a hot water storage tank 21 disposed in the hot water supply unit 2. The water heat exchange tube 12b for introducing water is formed in a heat exchange relationship. Therefore, the high-temperature and high-pressure refrigerant gas discharged from the high stage compressor 11b is cooled by the hot water supplied from the hot water storage tank 21, and this hot water is heated by the heat of the discharge gas of the high stage compressor 11b. The

前記電動膨張弁13は、高圧側熱交換器12で冷却された高圧ガス冷媒を減圧するもので、パルスモータにより駆動され、また、超臨界冷凍サイクル運転中では後述する制御装置3により開度制御されている。   The electric expansion valve 13 depressurizes the high-pressure gas refrigerant cooled by the high-pressure side heat exchanger 12, is driven by a pulse motor, and controls the opening degree by the control device 3 described later during supercritical refrigeration cycle operation. Has been.

前記蒸発器14は、電動膨張弁13により減圧された低圧の気液混合冷媒を、熱源媒体としての外気と熱交換させ、この冷媒を気化させるものである。なお、この蒸発器14には外気温度を検出するための外気温度検出器32が付設され、この外気温度検出器32で検出された外気温度検出信号は、制御装置3に送信される。   The evaporator 14 heat-exchanges the low-pressure gas-liquid mixed refrigerant decompressed by the electric expansion valve 13 with the outside air as a heat source medium, and vaporizes the refrigerant. The evaporator 14 is provided with an outside air temperature detector 32 for detecting the outside air temperature, and an outside air temperature detection signal detected by the outside air temperature detector 32 is transmitted to the control device 3.

そして、上記のように構成され、上記のような構成機器を備えた冷媒回路には、高圧側熱交換器12の出口側配管途中の分岐部Xで一端側が分岐され、他端側が合流部Yにおいて低段側圧縮機11aと高段側圧縮機11bとを接続する連絡配管11dに繋がれたバイパス回路16が設けられており、このバイパス回路16の途中には、電磁開閉弁(開閉弁)17及びキャピラリーチューブ(第2の減圧装置)18が設けられている。   In the refrigerant circuit configured as described above and having the above-described components, one end side is branched at the branching portion X in the middle of the outlet side piping of the high-pressure side heat exchanger 12, and the other end side is joined at the joining portion Y. , A bypass circuit 16 connected to a connecting pipe 11d that connects the low-stage compressor 11a and the high-stage compressor 11b is provided, and an electromagnetic open / close valve (open / close valve) is provided in the middle of the bypass circuit 16. 17 and a capillary tube (second decompression device) 18 are provided.

また、上記冷媒回路の内部には、代替冷媒としての二酸化炭素(CO2)が充填されている。冷凍・空調用の代表的な自然冷媒としては、ハイドロカーボン(HC:プロパンやイソブタンなど)、アンモニア、空気そしてCO2等が挙げられる。しかしながら、冷媒特性として、ハイドロカーボンとアンモニアはエネルギー効率が良いという反面、可燃性や毒性の問題があり、空気は超低温域以外でエネルギー効率が劣るなどといった問題がある。これに対し二酸化炭素は、可燃性や毒性がなく安全である。   The refrigerant circuit is filled with carbon dioxide (CO2) as an alternative refrigerant. Typical natural refrigerants for refrigeration and air conditioning include hydrocarbons (HC: propane, isobutane, etc.), ammonia, air, and CO2. However, as a refrigerant characteristic, while hydrocarbon and ammonia have good energy efficiency, there are problems such as flammability and toxicity, and air has problems such as inferior energy efficiency outside the ultra-low temperature range. In contrast, carbon dioxide is safe without flammability and toxicity.

次に、給湯ユニット2は、貯湯タンク21、温水循環ポンプ22、給湯配管23、給水配管24を備えて構成されている。そして、貯湯タンク21の上部及び下部は、前記水用熱交換チューブ12bに対し、連絡水用配管5、6を含む温水循環回路Pにより接続されている。   Next, the hot water supply unit 2 includes a hot water storage tank 21, a hot water circulation pump 22, a hot water supply pipe 23, and a water supply pipe 24. The upper and lower portions of the hot water storage tank 21 are connected to the water heat exchange tube 12b by a hot water circulation circuit P including communication water pipes 5 and 6.

前記温水循環回路Pは、貯湯タンク21下部の温度の低い水を水用熱交換チューブ12bに送水し、水用熱交換チューブ12bで加熱された温度の高い水を貯湯タンク21の上部に導くように形成されている。また、温水循環回路P中に温水循環ポンプ22が取り付けられている。なお、貯湯タンク21内では、比重力の差により上部では温度の高い温水が貯留され、下部では温度の低い水が貯留されている。また、貯湯タンク21内上部の温水温度、すなわち焚き上げ温度は、貯湯タンク21上部に設けられた焚き上げ温度検出器33により測定されている。   The hot water circulation circuit P feeds the low temperature water at the bottom of the hot water storage tank 21 to the water heat exchange tube 12b, and guides the high temperature water heated by the water heat exchange tube 12b to the top of the hot water storage tank 21. Is formed. A hot water circulation pump 22 is attached in the hot water circulation circuit P. In the hot water storage tank 21, hot water having a high temperature is stored in the upper part and water having a low temperature is stored in the lower part due to a difference in specific gravity. Further, the hot water temperature in the upper part of the hot water storage tank 21, that is, the raising temperature is measured by a raising temperature detector 33 provided in the upper part of the hot water storage tank 21.

前記給湯配管23は、温水蛇口、浴槽などに温水を供給するためのものであり、貯湯タンク21中の高い温度の温水を供給できるように、貯湯タンク21の上部に接続されている。なお、この給湯回路には給湯用の開閉弁25が取り付けられている。給水配管24は、貯湯タンク21内に常時水道水を供給可能とするものであり、逆止弁26、減圧弁27を介し貯湯タンク21の底部に接続されている。   The hot water supply pipe 23 is for supplying hot water to a hot water faucet, a bathtub, or the like, and is connected to the upper part of the hot water storage tank 21 so that hot water at a high temperature in the hot water storage tank 21 can be supplied. The hot water supply circuit is provided with an on-off valve 25 for hot water supply. The water supply pipe 24 is capable of constantly supplying tap water into the hot water storage tank 21, and is connected to the bottom of the hot water storage tank 21 via a check valve 26 and a pressure reducing valve 27.

前記制御装置3は、定常運転中所定の手順に従いインバータ駆動式2段圧縮機の運転周波数及び電動膨張弁13の開度を制御するものであるが、外気温度が低下したときは次のような制御をする。すなわち、外気温度検出器32が検出する外気温度が所定温度、例えば0℃以下においては、外気温度の低下に対し、高圧側圧力の低下を抑制するように電動膨張弁13の開度を絞り制御するとともに、圧縮機能力をほぼ一定とするようにインバータ駆動式2段圧縮機11の回転数(運転周波数)を大きくするように制御している。   The control device 3 controls the operating frequency of the inverter-driven two-stage compressor and the opening of the electric expansion valve 13 according to a predetermined procedure during steady operation. When the outside air temperature decreases, the control device 3 is as follows. Take control. That is, when the outside air temperature detected by the outside air temperature detector 32 is a predetermined temperature, for example, 0 ° C. or less, the opening degree of the electric expansion valve 13 is controlled so as to suppress the decrease in the high-pressure side pressure against the decrease in the outside air temperature. At the same time, the rotation speed (operation frequency) of the inverter-driven two-stage compressor 11 is controlled so as to make the compression function force substantially constant.

また、前記制御装置3は、上記外気温度が上記所定温度(0℃)まで低下したときに、電磁開閉弁17を開放している。電磁開閉弁17が開放されることにより、図1において破線矢印で示すように高圧ガス冷媒が中間圧力の連絡配管(中間圧力部)11dにバイパスされる。   Further, the control device 3 opens the electromagnetic on-off valve 17 when the outside air temperature decreases to the predetermined temperature (0 ° C.). When the electromagnetic on-off valve 17 is opened, the high-pressure gas refrigerant is bypassed to the intermediate pressure communication pipe (intermediate pressure portion) 11d as indicated by the broken line arrow in FIG.

以上のように制御されることにより、図2に示すように、高圧側圧力は、外気温度の低下に対し略一定の圧力を保持するように制御される。また、中間圧力は、従来のようにバイパス回路16が無いときには、図2の破線のように低下するのに対し、この実施の形態の場合には、同図の実線のようにその圧力低下が抑制されている。したがって、高段側圧縮機11bの高低圧力差の増大が抑制される。また、このときバイパスされる高圧側冷媒ガスが高圧側熱交換器12で冷却されているため、高段側圧縮機11bに吸入される冷媒ガスの過熱度が小さくなる。   By controlling as described above, as shown in FIG. 2, the high-pressure side pressure is controlled so as to maintain a substantially constant pressure against a decrease in the outside air temperature. Further, the intermediate pressure decreases as shown by the broken line in FIG. 2 when there is no bypass circuit 16 as in the prior art, whereas in this embodiment, the pressure drop decreases as shown by the solid line in FIG. It is suppressed. Therefore, an increase in the high / low pressure difference of the high stage compressor 11b is suppressed. Further, since the high-pressure side refrigerant gas bypassed at this time is cooled by the high-pressure side heat exchanger 12, the degree of superheat of the refrigerant gas sucked into the high stage compressor 11b is reduced.

なお、中間圧力ついて、本発明のものと従来のものとでは、外気温度の低下に対し従来のものとの圧力差が拡大しているが、これはキャピラリーチューブ18の作用によるものである。また、図2において、圧力線図を外気温度−10℃までのみ示しているが、これは、偶々この給湯装置の運転許容範囲を−10℃と定めていることによるものである。   As for the intermediate pressure, the pressure difference between the present invention and the conventional one is increased with respect to the decrease in the outside air temperature, but this is due to the action of the capillary tube 18. Further, in FIG. 2, the pressure diagram is shown only up to the outside air temperature of −10 ° C., but this is due to the fact that the allowable operating range of the hot water supply device is determined to be −10 ° C. by chance.

以上のように構成された実施の形態によれば、外気温度が低下したとき、高段側圧縮機11bにおいては、高低圧力差が小さくなることにより、吐出弁やベーンバルブの破損の恐れがなくなり、圧縮装置の耐久性が向上する。また、高段側圧縮機11bの圧縮比が小さくなることと、吸入ガスの過熱度小さくなることから、その運転効率が向上する。そのため、外気温度が0℃以下になる寒冷地などの冬季の運転でも、圧縮装置の出力低下が防止される。   According to the embodiment configured as described above, when the outside air temperature is lowered, in the high-stage compressor 11b, the high-low pressure difference is reduced, thereby eliminating the possibility of breakage of the discharge valve and the vane valve. The durability of the compression device is improved. Further, since the compression ratio of the high stage compressor 11b is reduced and the degree of superheat of the intake gas is reduced, the operation efficiency is improved. As a result, the output of the compressor is prevented from being lowered even in winter operations such as in cold regions where the outside air temperature is 0 ° C. or lower.

また、外気温度が低下したとき、高圧側圧力が高く維持されるため、高段側圧縮機11bの吐出側ガス温度が高く維持される。特に図2のように、高圧側圧力が一定に維持されるような場合は、給湯用温水を所定値、この場合略一定値に維持することが可能となる。   Moreover, since the high pressure side pressure is kept high when the outside air temperature is lowered, the discharge side gas temperature of the high stage compressor 11b is kept high. In particular, as shown in FIG. 2, when the high-pressure side pressure is kept constant, the hot water supply hot water can be kept at a predetermined value, in this case, at a substantially constant value.

また、この実施の形態においては、冷媒として二酸化炭素を使用しているので、冷媒ガスについて可燃性や毒性の問題が無く、取り扱いが容易となる。   In this embodiment, since carbon dioxide is used as the refrigerant, there is no problem of flammability and toxicity with respect to the refrigerant gas, and the handling becomes easy.

また、インバータ駆動式2段圧縮機(圧縮装置)11は、低段側圧縮機11aの吐出ガスを導入した密閉ハウジング11H内に、低段側圧縮機11a、高段側圧縮機11b及び駆動用電動機11cを内蔵しているので、圧縮装置のハウジング11H内が中間圧力となる。したがって、シリンダー内外及び圧縮機ハウジング内外の圧力差が半減され、各部に作用する力が小さくなる。この結果、バイパス回路16による高低圧力差の増大防止効果と相俟って、インバータ駆動式2段圧縮機(圧縮装置)11の耐久性能をより一層向上させることができる。   The inverter-driven two-stage compressor (compressor) 11 includes a low-stage compressor 11a, a high-stage compressor 11b, and a driving unit in a sealed housing 11H into which discharge gas from the low-stage compressor 11a is introduced. Since the electric motor 11c is built in, the inside of the housing 11H of the compression device becomes an intermediate pressure. Accordingly, the pressure difference between the inside and outside of the cylinder and the inside and outside of the compressor housing is halved, and the force acting on each part is reduced. As a result, the durability performance of the inverter-driven two-stage compressor (compressor) 11 can be further improved in combination with the effect of preventing the increase in the high / low pressure difference by the bypass circuit 16.

なお、本発明は、次のように変形して具体化することも可能である。   The present invention can be modified and embodied as follows.

(1) 上記実施の形態においては、バイパス回路16を0℃にて開放するようにしているが、この温度は冷凍装置の設計により適宜変更することが可能である。   (1) In the above embodiment, the bypass circuit 16 is opened at 0 ° C., but this temperature can be appropriately changed depending on the design of the refrigeration apparatus.

(2) また、バイパス回路16における電磁開閉弁(開閉弁)17とキャピラリーチューブ(第2の減圧装置)18との接続順序を逆にしても良い。すなわち、バイパスされる冷媒ガスがキャピラリーチューブ18を通過した後に電磁開閉弁17を通過するようにすることも可能である。   (2) In addition, the connection order of the electromagnetic open / close valve (open / close valve) 17 and the capillary tube (second decompression device) 18 in the bypass circuit 16 may be reversed. In other words, the bypassed refrigerant gas can pass through the capillary tube 18 and then pass through the electromagnetic on-off valve 17.

(3) 上記実施の形態においては、圧縮装置はインバータ駆動式2段圧縮機11を用いているが、他の形式の容量可変2段圧縮機を用いても良い。   (3) In the above embodiment, the inverter uses the inverter-driven two-stage compressor 11, but another type of variable capacity two-stage compressor may be used.

(4) また、上記実施の形態は、本発明に係る超臨界冷凍装置をヒートポンプ式給湯装置に具体化したものであるが、この超臨界冷凍装置を他の加熱装置、例えば、室内空気を加熱する暖房機に具体化することも可能である。   (4) In the above embodiment, the supercritical refrigeration apparatus according to the present invention is embodied in a heat pump hot water supply apparatus. The supercritical refrigeration apparatus is heated by another heating apparatus, for example, indoor air. It can also be embodied in a heating machine.

本発明の実施の形態に係る給湯装置の回路図である。It is a circuit diagram of the hot-water supply apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る圧力制御の説明図である。It is explanatory drawing of the pressure control which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 超臨界冷凍サイクル装置
2 給湯ユニット
3 制御装置(制御手段)
11 インバータ駆動式2段圧縮機(圧縮装置)
11H 密閉ハウジング
11a 低段側圧縮機(低段側圧縮部)
11b 高段側圧縮機(高段側圧縮部)
11c 電動機
11d 連絡配管(中間圧力部)
12 高圧側熱交換器
13 電動膨張弁(第1の減圧装置)
14 蒸発器
15 アキュムレータ
16 バイパス回路
17 電磁開閉弁(開閉弁)
18 キャピラリーチューブ(第2の減圧装置)
X 分岐部
Y 合流部
1 Supercritical refrigeration cycle device 2 Hot water supply unit 3 Control device (control means)
11 Inverter-driven two-stage compressor (compressor)
11H Sealed housing 11a Low stage compressor (Low stage compressor)
11b High stage compressor (High stage compressor)
11c Electric motor 11d Connecting pipe (intermediate pressure part)
12 High-pressure side heat exchanger 13 Electric expansion valve (first decompression device)
14 Evaporator 15 Accumulator 16 Bypass Circuit 17 Electromagnetic On / Off Valve (On / Off Valve)
18 Capillary tube (second decompression device)
X junction Y junction

Claims (3)

圧力が超臨界となるように圧縮された冷媒を冷却する高圧側熱交換器(12)と、この高圧側熱交換器(12)から流出した冷媒を分岐させる分岐部(X)と、この分岐部(X)で分岐された一方の冷媒を減圧させる第1の減圧装置(13)と、この第1の減圧装置(13)で減圧された冷媒を蒸発させる蒸発器(14)と、この蒸発器(14)から流出した冷媒を圧力が超臨界となるように圧縮して前記高圧側熱交換器(12)へ吐出する圧縮装置(11)と、前記分岐部(X)で分岐された他方の冷媒を前記圧縮装置(11)の中間圧力部(11d)へ導くためのバイパス回路(16)と、このバイパス回路(16)を開閉する開閉弁(17)と、前記パイパス路(16)を流れる冷媒を減圧する第2の減圧装置(18)と、外気温度を検出する外気温度検出器(32)と、この外気温度検出器(32)により検出された温度が所定温度以下の時に、前記開閉弁(17)を開放して前記分岐部(X)で分岐された他方の冷媒をバイパス回路(16)に流し前記圧縮装置11の中間圧力部(11d)へ導くように開閉弁(17)を開閉制御する制御手段(3)とを備えたことを特徴とする超臨界冷凍装置。   A high pressure side heat exchanger (12) that cools the refrigerant compressed so that the pressure becomes supercritical, a branch portion (X) that branches the refrigerant that has flowed out of the high pressure side heat exchanger (12), and this branch A first pressure reducing device (13) for depressurizing one of the refrigerants branched in the section (X), an evaporator (14) for evaporating the refrigerant depressurized by the first pressure reducing device (13), and the evaporation A compressor (11) that compresses the refrigerant flowing out from the vessel (14) so that the pressure becomes supercritical and discharges the refrigerant to the high-pressure side heat exchanger (12), and the other branched by the branch portion (X) A bypass circuit (16) for guiding the refrigerant to the intermediate pressure part (11d) of the compressor (11), an on-off valve (17) for opening and closing the bypass circuit (16), and the bypass path (16) A second decompression device (18) for decompressing the flowing refrigerant; When the temperature detected by the outside air temperature detector (32) to be discharged and the temperature detected by the outside air temperature detector (32) is equal to or lower than a predetermined temperature, the on-off valve (17) is opened to branch at the branch portion (X). And a control means (3) for controlling the opening and closing of the on-off valve (17) so that the other refrigerant flows into the bypass circuit (16) and is led to the intermediate pressure portion (11d) of the compression device 11. Supercritical refrigeration equipment. 前記制御手段(3)は、外気温度検出器(32)により検出された温度が0℃以下の時に、前記開閉弁(17)を開放して前記分岐部(X)で分岐された他方の冷媒をバイパス回路(16)に流し前記圧縮装置11の中間圧力部(11d)へ導く構成としたことを特徴とする請求項1に記載の超臨界冷凍装置。   When the temperature detected by the outside air temperature detector (32) is 0 ° C. or lower, the control means (3) opens the on-off valve (17) and branches the other refrigerant at the branch portion (X). The supercritical refrigeration apparatus according to claim 1, wherein the refrigerant is introduced into the bypass circuit (16) and led to the intermediate pressure part (11 d) of the compression device 11. 前記冷媒が二酸化炭素であることを特徴とする請求項1に記載の超臨界冷凍装置。   The supercritical refrigeration apparatus according to claim 1, wherein the refrigerant is carbon dioxide.
JP2006069484A 2006-03-14 2006-03-14 Supercritical refrigerating device Pending JP2006153454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006069484A JP2006153454A (en) 2006-03-14 2006-03-14 Supercritical refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006069484A JP2006153454A (en) 2006-03-14 2006-03-14 Supercritical refrigerating device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001267605A Division JP2003074997A (en) 2001-09-04 2001-09-04 Supercritical refrigeration unit

Publications (1)

Publication Number Publication Date
JP2006153454A true JP2006153454A (en) 2006-06-15

Family

ID=36631962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006069484A Pending JP2006153454A (en) 2006-03-14 2006-03-14 Supercritical refrigerating device

Country Status (1)

Country Link
JP (1) JP2006153454A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106642777A (en) * 2017-01-22 2017-05-10 广东美的制冷设备有限公司 Double-cylinder compressor air conditioner and refrigeration method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210568A (en) * 1987-02-27 1988-09-01 株式会社東芝 Air conditioner
JPS6470653A (en) * 1987-09-10 1989-03-16 Toshiba Corp Air conditioner
JPH11304269A (en) * 1998-04-23 1999-11-05 Nippon Soken Inc Refrigerating cycle
JP2001012786A (en) * 1999-06-30 2001-01-19 Hitachi Ltd Heat pump type air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210568A (en) * 1987-02-27 1988-09-01 株式会社東芝 Air conditioner
JPS6470653A (en) * 1987-09-10 1989-03-16 Toshiba Corp Air conditioner
JPH11304269A (en) * 1998-04-23 1999-11-05 Nippon Soken Inc Refrigerating cycle
JP2001012786A (en) * 1999-06-30 2001-01-19 Hitachi Ltd Heat pump type air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106642777A (en) * 2017-01-22 2017-05-10 广东美的制冷设备有限公司 Double-cylinder compressor air conditioner and refrigeration method thereof

Similar Documents

Publication Publication Date Title
KR101213257B1 (en) refrigeration unit
JP4613916B2 (en) Heat pump water heater
JP6292480B2 (en) Refrigeration equipment
KR101201062B1 (en) Refrigeration device
EP2309204B1 (en) Refrigeration device
US9453668B2 (en) Refrigeration cycle apparatus and refrigerant circulating method
EP2492612A1 (en) Heat pump device
KR100500617B1 (en) Supercritical refrigerating apparatus
CN103328909A (en) Air-conditioning device
JP5205079B2 (en) Heat pump water heater / heater
JP5419901B2 (en) Refrigeration cycle apparatus, flow path switching apparatus, and flow path switching method
JP2011133209A (en) Refrigerating apparatus
JP2007187407A (en) Refrigeration cycle device and operation method for refrigeration cycle device
JP5496645B2 (en) Refrigeration equipment
KR100500618B1 (en) Heat Pump Type Hot Water Supply Apparatus
JP4641683B2 (en) Refrigeration cycle equipment
JP4622193B2 (en) Refrigeration equipment
JP2011133206A (en) Refrigerating apparatus
JP2005214575A (en) Refrigerator
JP2011133210A (en) Refrigerating apparatus
JP2010084975A (en) Heating device
JP2011137557A (en) Refrigerating apparatus
JP2006153455A (en) Supercritical refrigerating device
JP2006194582A (en) Supercritical refrigerating apparatus
JP2010060181A (en) Refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608