JP2006152747A - Fire resistant concrete member and fire resistant segment member - Google Patents

Fire resistant concrete member and fire resistant segment member Download PDF

Info

Publication number
JP2006152747A
JP2006152747A JP2004348411A JP2004348411A JP2006152747A JP 2006152747 A JP2006152747 A JP 2006152747A JP 2004348411 A JP2004348411 A JP 2004348411A JP 2004348411 A JP2004348411 A JP 2004348411A JP 2006152747 A JP2006152747 A JP 2006152747A
Authority
JP
Japan
Prior art keywords
concrete
concrete member
refractory
explosion
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004348411A
Other languages
Japanese (ja)
Other versions
JP4830291B2 (en
Inventor
Makoto Kanai
誠 金井
Tomoko Urano
知子 浦野
Seitaku Hayashi
成卓 林
Aki Fujii
亜紀 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2004348411A priority Critical patent/JP4830291B2/en
Publication of JP2006152747A publication Critical patent/JP2006152747A/en
Application granted granted Critical
Publication of JP4830291B2 publication Critical patent/JP4830291B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Lining And Supports For Tunnels (AREA)
  • Building Environments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a concrete member superior in explosion resistance for constructing a tunnel or an underground space. <P>SOLUTION: A reinforcement 121 constituted in a grating shape is arranged in a position of the predetermined cover thickness from one side surface of the concrete member 100. Steel fiber is mixed in concrete 112 for constituting the concrete member 100. A segment member is constituted by forming such a concrete member 100 in a curved shape in response to a wall surface shape of the tunnel and the underground space. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、鉄筋コンクリート造等の構造体の耐火構造に係り、特にトンネル等の壁面を形成するセグメント部材等として好適な耐火コンクリート部材に関するものである。   The present invention relates to a fireproof structure of a structure such as a reinforced concrete structure, and more particularly to a fireproof concrete member suitable as a segment member or the like that forms a wall surface of a tunnel or the like.

コンクリートは火災時などに急加熱されると、表面の急激な膨張やコンクリート内部に含まれている水分の急激な気化・膨張により、コンクリート部材の表面で爆裂がおこり、表層が剥離してしまうことがある。また、構造部材である鉄筋は約300℃、コンクリートは約350℃を越えると、その物理的特性を保つことができなくなり、構造上の耐力が低下してしまう。   When concrete is heated suddenly in the event of a fire, the surface of the concrete member may explode due to rapid expansion of the surface or rapid vaporization / expansion of moisture contained in the concrete, causing the surface layer to peel off. There is. Further, if the reinforcing member, which is a structural member, exceeds about 300 ° C. and the concrete exceeds about 350 ° C., the physical characteristics cannot be maintained, and the structural strength is reduced.

そのため、コンクリート構造物の構築後に耐火パネルの設置や、耐火被覆材の吹き付け等の耐火工事を行う必要がある。しかし、これらの方法ではコンクリート打設もしくはプレキャストコンクリート設置後に別途耐火工事を行うため、工期及びコストが余計に必要となってしまう上に、コンクリート構造物の表面を覆い隠してしまうため、クラック、漏水状況等の確認が困難である。   Therefore, after construction of the concrete structure, it is necessary to perform fireproofing work such as installation of fireproof panels and spraying of fireproof coating materials. However, these methods require additional fireproofing work after concrete placement or precast concrete installation, which requires an extra work period and cost, and covers the surface of the concrete structure. It is difficult to check the situation.

そこで、上記のような問題を招くことなく、爆裂を防止するための耐火方法として、特許文献1には、超高強度コンクリート構造体の柱や梁等の外周に鋼材で形成した格子体を介在させ、外周コンクリート被覆させた耐火コンクリート被覆層を形成する耐火構造を用いる方法が記載されている。
特許第2860369号公報
Therefore, as a fireproofing method for preventing explosion without incurring the above-mentioned problems, Patent Document 1 includes a grid formed of steel on the outer periphery of columns, beams, etc. of an ultrahigh strength concrete structure. And a method using a refractory structure for forming a refractory concrete coating layer coated with outer peripheral concrete is described.
Japanese Patent No. 2860369

しかし、上記の技術は柱や梁等が超高強度コンクリートで形成された建築物の柱や梁に係る耐火工法であり、トンネル等のセグメント材として利用することは適当ではない。   However, the above technique is a fireproofing method related to pillars and beams of buildings in which pillars and beams are made of ultra-high-strength concrete, and it is not appropriate to use them as segment materials for tunnels and the like.

上記の問題に鑑みてなされたものであり、本発明は特に火災時に高温になり易い、トンネルあるいは地下空間等の壁面の耐火構造として適用し得る、耐爆裂性に優れたコンクリート部材を提供することを目的とする。   The present invention has been made in view of the above problems, and the present invention provides a concrete member excellent in explosion resistance, which can be applied as a fireproof structure of a wall surface of a tunnel or underground space, which is likely to become a high temperature particularly in a fire. With the goal.

上記の目的を達成するため、請求項1の発明は、平面もしくは湾曲した板状の鉄筋コンクリート部材であって、片側表面から所定のかぶり厚さの位置に格子状に構成された鉄筋が設けられていることを特徴とする板状鉄筋コンクリート部材である。   In order to achieve the above object, the invention of claim 1 is a flat or curved plate-shaped reinforced concrete member provided with reinforcing bars configured in a lattice form at a predetermined cover thickness from one side surface. It is a plate-shaped reinforced concrete member characterized by having.

請求項2の発明は、請求項1記載の鉄筋コンクリート部材において、前記鉄筋コンクリートを構成するコンクリートに鋼繊維が混入されていることを特徴とする板状鉄筋コンクリート部材である。   A second aspect of the present invention is the reinforced concrete member according to the first aspect, wherein steel fibers are mixed in the concrete constituting the reinforced concrete.

請求項3の発明は、請求項1または2記載の鉄筋コンクリート部材が、トンネルあるいは地下空間の壁面形状に沿った湾曲形状に形成されてなることを特徴とするセグメント部材である。   A third aspect of the present invention is a segment member in which the reinforced concrete member according to the first or second aspect is formed in a curved shape along a wall shape of a tunnel or underground space.

コンクリート部材が高温に曝された場合、コンクリート中の水分が気化することで内部に発生する水蒸気圧が、表層コンクリートの耐力を超えた時に爆裂が起こる。これに対して、本発明の耐火コンクリート部材によれば、前記格子状鉄筋がコンクリート表層部を拘束し、内部の水分の気化・膨張により生じる内部圧を負担する。また、コンクリートと鉄筋の界面を介してコンクリート内部で生じた水蒸気が逸散できる。このためコンクリートの爆裂を抑制することが可能になる。   When the concrete member is exposed to a high temperature, explosion occurs when the water vapor pressure generated in the interior of the concrete vaporizes and exceeds the yield strength of the surface concrete. On the other hand, according to the refractory concrete member of the present invention, the grid-like reinforcing bars restrain the concrete surface layer portion and bear the internal pressure generated by the vaporization and expansion of moisture inside. In addition, water vapor generated inside the concrete can be dissipated through the interface between the concrete and the reinforcing bar. For this reason, it becomes possible to suppress the explosion of concrete.

また、コンクリートに鋼繊維を混入することで、コンクリート構造体の拘束力が向上するとともに、コンクリートと鋼繊維との界面を介して内部の水蒸気が逸散して、内部水蒸気圧を減少させることができるので、より効果的に爆裂を抑制することが可能になる。   In addition, by mixing steel fiber into concrete, the binding force of the concrete structure is improved, and the internal water vapor diffuses through the interface between the concrete and the steel fiber, thereby reducing the internal water vapor pressure. As a result, explosion can be suppressed more effectively.

また、本発明の耐火コンクリート部材は板状コンクリート部材の一面に格子状鉄筋を埋設している構造であり、その一面のみが耐火性を持つ。このため、火災時に構造用コンクリートの表面が高温に曝されるトンネルや地下空間などの内部壁面への適用が容易である。   In addition, the refractory concrete member of the present invention has a structure in which lattice reinforcing bars are embedded in one surface of a plate-like concrete member, and only one surface thereof has fire resistance. For this reason, it can be easily applied to internal walls such as tunnels and underground spaces where the surface of structural concrete is exposed to high temperatures in the event of a fire.

上記の発明のコンクリート部材の一実施形態について図面に基づき説明する。図1(a)は本発明の一実施形態である耐火コンクリート部材100の断面図、図1(b)は格子状鉄筋を含む高さの水平断面図を示す。   One embodiment of the concrete member of the above invention will be described with reference to the drawings. Fig.1 (a) shows sectional drawing of the refractory concrete member 100 which is one Embodiment of this invention, FIG.1 (b) shows the horizontal sectional view of the height containing a grid | lattice reinforcement.

本実施形態の耐火コンクリート部材100は、構造部材用の鉄筋111およびコンクリート112からなる板状の鉄筋コンクリート部材110に、その片側表面130から所定のかぶり厚さの位置に格子状の鉄筋121を設けた構成である。そして、この格子状鉄筋121が設けられた側の表面層が耐火層120として機能する。本実施形態では耐火コンクリート部材100が平板形状である場合について示しているが、トンネル壁面のように湾曲した壁面に設置されるセグメント部材である場合は、耐火コンクリート部材100はその壁面形状に応じて湾曲した板状に形成される。   In the refractory concrete member 100 of the present embodiment, a plate-shaped reinforced concrete member 110 composed of a reinforcing bar 111 and a concrete 112 for a structural member is provided with a grid-like reinforcing bar 121 at a predetermined cover thickness position from one side surface 130 thereof. It is a configuration. The surface layer on the side where the lattice reinforcing bars 121 are provided functions as the refractory layer 120. In the present embodiment, the case where the refractory concrete member 100 has a flat plate shape is shown. However, when the refractory concrete member 100 is a segment member installed on a curved wall surface such as a tunnel wall surface, the refractory concrete member 100 corresponds to the wall surface shape. It is formed in a curved plate shape.

なお、本実施形態では鉄筋コンクリート部材110の表面から所定のかぶり厚さの位置に格子状鉄筋121を設ける構成としたが、鉄骨コンクリート部材あるいは鉄骨鉄筋コンクリート部材の表面からかぶり厚さの位置に格子状鉄筋を設ける構成としてもよい。   In the present embodiment, the grid-like reinforcing bar 121 is provided at a predetermined cover thickness position from the surface of the reinforced concrete member 110. However, the grid-like reinforcing bar is positioned at the cover thickness position from the surface of the steel concrete member or the steel reinforced concrete member. It is good also as a structure which provides.

以上の構成によれば、耐火コンクリート部材100の耐火層120が高温にさらされた場合にも、所定のかぶり厚さの位置に格子状の鉄筋121が埋設されているため、コンクリート中の水分が水蒸気となってコンクリート内に大きな圧力を生じさせても、その圧力による荷重を格子状鉄筋121が負担する。また、コンクリート122と格子状鉄筋121との界面より上記の水蒸気が逸散し内部圧を低下させるという効果もある。このように、格子状鉄筋121が埋設されているので、コンクリート部材の爆裂を抑制することが可能になる。   According to the above configuration, even when the refractory layer 120 of the refractory concrete member 100 is exposed to a high temperature, the lattice-shaped reinforcing bars 121 are embedded at the position of the predetermined cover thickness, so that the moisture in the concrete is reduced. Even if it becomes water vapor and causes a large pressure in the concrete, the lattice rebar 121 bears the load due to the pressure. In addition, there is an effect that the water vapor is dissipated from the interface between the concrete 122 and the grid-like reinforcing bars 121 and the internal pressure is reduced. Thus, since the grid | lattice-like reinforcement 121 is embed | buried, it becomes possible to suppress the explosion of a concrete member.

また、加熱面から爆裂が発生した場合でも、爆裂の進行が耐火層120の格子状鉄筋121で止まるため、構造部材の断面欠損を防止することができ、構造部材の耐力低下を防ぐことができる。また、爆裂せずに残ったコンクリート122が断熱層として機能をすることで、内部温度の上昇を抑制して爆裂の進展を抑制できる。   Further, even when a blasting occurs from the heating surface, the progress of the blasting stops at the grid-like reinforcing bars 121 of the refractory layer 120, so that a cross-sectional defect of the structural member can be prevented and a decrease in the proof stress of the structural member can be prevented. . Moreover, since the concrete 122 which remained without exploding functions as a heat insulation layer, the rise of internal temperature can be suppressed and progress of explosion can be suppressed.

ここで、本発明の耐火コンクリート部材の耐爆裂性能に関する実験について説明する。本実験では、表1に示すように格子状鉄筋121に鉄筋径6mmを用いて、格子ピッチを100mm、鉄筋のかぶり厚さを25mmにした場合(実施例I)、実施例Iと直径及びかぶり厚は変えずに格子のピッチを50mmにした場合(実施例II)、実施例IIと格子のピッチと鉄筋のかぶり厚は変えずに鉄筋の直径を13mmにした場合(実施例III)、実施例IIIと鉄筋の直径と格子のピッチは変えずにかぶり厚を50mmにした場合(実施例IV)、前記の耐火層120における格子状鉄筋121が無い場合(比較例)について比較を行った。   Here, the experiment regarding the explosion-proof performance of the refractory concrete member of the present invention will be described. In this experiment, as shown in Table 1, when a reinforcing bar diameter of 6 mm was used for the grid-like reinforcing bar 121, the pitch of the reinforcing bar was 100 mm, and the cover thickness of the reinforcing bar was 25 mm (Example I), Example I, diameter and cover When the pitch of the grid is 50 mm without changing the thickness (Example II), when the diameter of the reinforcing bar is 13 mm without changing the pitch of the grid and the reinforcing bar cover thickness of Example II (Example III) A comparison was made between Example III and the case where the cover thickness was 50 mm without changing the diameter of the reinforcing bar and the pitch of the grid (Example IV), and the case where there was no grid-like reinforcing bar 121 in the refractory layer 120 (Comparative Example).

[表1]
[Table 1]

実験に用いたシステムについて図2に基づき説明する。試験炉200に本発明のコンクリート部材の供試体210を取り付け、バーナー220により加熱し、加熱面から50mm、100mm、150mm、200mmの点の温度を熱電対を用いて計測することで耐火性能を比較した。加熱条件としてはトンネル内の気温上昇を模擬したRABT曲線を用い、格子状鉄筋121を実施例I〜IV、比較例として形成した供試体210についてそれぞれ測定を行った。   The system used for the experiment will be described with reference to FIG. The concrete specimen 210 of the present invention is attached to the test furnace 200, heated by the burner 220, and the temperature at points of 50 mm, 100 mm, 150 mm, and 200 mm is measured using a thermocouple from the heating surface, and the fire resistance is compared. did. As heating conditions, a RABT curve simulating the rise in temperature in the tunnel was used, and measurements were performed on each of the specimens 210 in which the grid reinforcing bars 121 were formed as Examples I to IV and Comparative Example.

表2には各条件における、爆裂により削り取られてしまったコンクリート部材の深さ(以下爆裂深さという)を示す。格子状鉄筋を設けない比較例と各条件を比較すると、実施例I〜IVの爆裂深さの平均値は比較例よりも小さくなっている。   Table 2 shows the depth of the concrete member that has been scraped off by the explosion (hereinafter referred to as the explosion depth) under each condition. When comparing each condition with a comparative example in which no grid reinforcing bars are provided, the average value of the explosion depths of Examples I to IV is smaller than that of the comparative example.

[表2]
[Table 2]

格子状鉄筋121を加熱面130より所定の深さの位置に設けることで、爆裂を抑えることができることが確認できる。   It can be confirmed that the explosion can be suppressed by providing the grid-like reinforcing bars 121 at a predetermined depth from the heating surface 130.

また、図3は各条件についての上記の測定点における最高温度を示す。格子状鉄筋121を設けていない比較例と比較して、その他の実施例I〜IVは全ての深さにおいて最高温度が低い。これは、比較例では爆裂により表面が削られコンクリートの断熱効果が低減し、実施例I〜IVよりも温度が伝達してしまうためであり、このことからも格子状鉄筋121を設けることで、耐火性を向上し爆裂を防止することが可能になることを確認できる。   FIG. 3 shows the maximum temperature at the measurement point for each condition. Compared with the comparative example in which the grid-like reinforcing bars 121 are not provided, the other Examples I to IV have a lower maximum temperature at all depths. This is because in the comparative example, the surface is scraped by explosion and the heat insulating effect of the concrete is reduced, and the temperature is transmitted more than in Examples I to IV. Also from this, by providing the lattice reinforcing bars 121, It can be confirmed that it becomes possible to improve fire resistance and prevent explosion.

さらに、実施例Iと実施例II、実施例Iと実施例III、実施例IIIと実施例IVを比較すると、以下のことが確認できる。実施例Iと実施例IIのように、他の条件は同一で格子状鉄筋121の格子幅のみを変化させる場合、格子幅を狭める方が耐火性は強くなる。また、実施例Iと実施例IIIのように、鉄筋の径を比較すると鉄筋の径が大きい方が耐火性は強くなる。   Furthermore, when Example I and Example II, Example I and Example III, Example III and Example IV are compared, the following can be confirmed. As in Example I and Example II, when other conditions are the same and only the lattice width of the lattice reinforcing bar 121 is changed, the fire resistance becomes stronger when the lattice width is reduced. Moreover, when the diameter of a reinforcing bar is compared like Example I and Example III, the one where the diameter of the reinforcing bar is larger becomes stronger in fire resistance.

鉄筋の本数を増やしたり、鉄筋の径を大きくしたりすることにより、鉄筋の断面積の合計値が増加する。鉄筋の拘束力は鉄筋の断面積に比例するため、コンクリートに対する拘束力が強くなる。また、鉄筋とコンクリートの界面の面積も増加するため、コンクリート内部の水蒸気の逸散量が増加し、内部圧を低減することができる。このように、鉄筋の径を大きくしたり、格子幅を狭めたりすると、耐爆裂性が向上することを上記の結果により確認できる。   Increasing the number of reinforcing bars or increasing the diameter of the reinforcing bars increases the total cross-sectional area of the reinforcing bars. Since the binding force of the reinforcing bar is proportional to the cross-sectional area of the reinforcing bar, the binding force on the concrete is increased. Moreover, since the area of the interface between a reinforcing bar and concrete also increases, the amount of water vapor escaped inside the concrete increases and the internal pressure can be reduced. As described above, it can be confirmed from the above results that the explosion resistance is improved when the diameter of the reinforcing bar is increased or the lattice width is reduced.

さらに、実施例IIIと実施例IVを比較すると、かぶり厚は小さいほうが耐火性は強くなることが確認できる。これは、格子状鉄筋により爆裂の進行が止められるため、かぶり厚の大きいほうが、爆裂により表層部が削り取られるため、断熱効果が低下しコンクリート内部まで熱が伝達してしまうためである。   Furthermore, when Example III and Example IV are compared, it can be confirmed that the fire resistance becomes stronger as the cover thickness is smaller. This is because the progress of the explosion is stopped by the grid-like reinforcing bars, and when the cover thickness is larger, the surface layer portion is scraped off by the explosion, so that the heat insulation effect is reduced and heat is transferred to the inside of the concrete.

次に、コンクリート部材へ鋼繊維を混入することの効果に関する実験について説明する。鋼繊維を含まないコンクリートを用いた耐火コンクリート部材(条件A)と鋼繊維を含むコンクリートを用いた本発明の耐火コンクリート部材(条件B)とについて前記の試験と同じシステムを用いて加熱試験を行った。なお、条件A、条件Bともに表面付近に格子状鉄筋は埋設していない。   Next, an experiment relating to the effect of mixing steel fibers into a concrete member will be described. A refractory concrete member (Condition A) using concrete not containing steel fibers and a refractory concrete member (Condition B) of the present invention using concrete containing steel fibers were subjected to a heating test using the same system as described above. It was. In both conditions A and B, no grid reinforcing bars are embedded near the surface.

[表3]
[Table 3]

表3は爆裂深さの測定結果を示す。爆裂深さを比較すると、最大値、平均値ともに鋼繊維を含むコンクリート部材のほうが小さい。これにより、鋼繊維を混入することで、コンクリート剥離に対する抵抗性が強化されたこと及び耐爆裂性が向上していることを確認できる。   Table 3 shows the measurement results of the explosion depth. Comparing the explosion depth, the maximum value and the average value of the concrete member containing steel fibers are smaller. Thereby, it can confirm that the resistance with respect to concrete peeling was strengthened and the explosion resistance improved by mixing steel fiber.

次に、本発明の一実施形態である耐火セグメント部材について、図4及び図5に基づき説明する。図4は本実施形態の耐火セグメント部材400の断面図であり、図5はこの耐火セグメント部材400を用いて形成したトンネルの内壁の模式図である。図5に示すように耐火セグメント部材400は、接するセグメント部材間を相互に連結して円筒体を組み立て、掘削の進行とともにトンネル軸方向に沿って連結して、トンネルの内壁面を形成していくものである。   Next, the fireproof segment member which is one Embodiment of this invention is demonstrated based on FIG.4 and FIG.5. FIG. 4 is a cross-sectional view of the refractory segment member 400 of the present embodiment, and FIG. 5 is a schematic view of the inner wall of a tunnel formed using the refractory segment member 400. As shown in FIG. 5, the refractory segment member 400 assembles a cylindrical body by mutually connecting the segment members that are in contact with each other, and is connected along the tunnel axial direction as the excavation progresses to form the inner wall surface of the tunnel. Is.

このような耐火セグメント部材400は、円筒形のリング体を周方向に沿って複数に分割された曲面形状に形成されている。本発明の耐火セグメント部材400は、セグメント部材を組み立てた際にトンネル内壁面となる側に、表面から所定のかぶり厚さの位置に格子状に構成された鉄筋421を埋設することで表面付近が耐火層420として機能する。   Such a refractory segment member 400 is formed in a curved surface shape in which a cylindrical ring body is divided into a plurality along the circumferential direction. The refractory segment member 400 of the present invention has a surface vicinity by embedding a reinforcing bar 421 configured in a lattice shape at a predetermined cover thickness from the surface on the side that becomes the inner wall surface of the tunnel when the segment member is assembled. It functions as a refractory layer 420.

このように構成した耐火セグメント部材400によれば、セグメント部材の内壁側430に格子鉄筋421を設けることにより、火災により急激な温度上昇が起こった時に、内部水蒸気圧に対し格子状鉄筋421が抵抗し、セグメント部材400の爆裂を抑止することができる。   According to the refractory segment member 400 configured as described above, by providing the lattice reinforcing bars 421 on the inner wall side 430 of the segment member, when the temperature rises suddenly due to a fire, the lattice reinforcing bars 421 resist the internal water vapor pressure. And the explosion of the segment member 400 can be suppressed.

鉄筋411は約300℃、コンクリート412は約350℃を超えると、その物理的特性を保つことができなくなり、構造上の耐力が低下する。これに対して、本実施形態によれば、格子状鉄筋421を用いることで耐火被覆層420の破損を防止し、コンクリート412及び鉄筋411の温度上昇を抑えることができ、構造上の耐力が保たれトンネルの崩壊等を防ぐことができる。   If the reinforcing bar 411 exceeds about 300 ° C. and the concrete 412 exceeds about 350 ° C., the physical properties cannot be maintained, and the structural strength is reduced. On the other hand, according to the present embodiment, the use of the grid-like reinforcing bars 421 can prevent the fireproof covering layer 420 from being damaged, suppress the temperature rise of the concrete 412 and the reinforcing bars 411, and maintain the structural strength. It is possible to prevent the collapse of the sagging tunnel.

この耐火セグメント部材400を構成するコンクリート412及び422は、通常配合のものを用いることができるが、鋼繊維を混入したコンクリートであることが望ましい。鋼繊維コンクリートを用いることで、鋼繊維界面から水蒸気が逸散し、内部水蒸気圧を低下させることができるため、爆裂を防止することが可能になる。   The concrete 412 and 422 constituting the refractory segment member 400 can be of a normal composition, but is preferably concrete mixed with steel fibers. By using steel fiber concrete, water vapor is diffused from the steel fiber interface and the internal water vapor pressure can be reduced, so that explosion can be prevented.

さらに、鋼繊維をコンクリートに混入することで、表層部に存在する鋼繊維が腐食し、外部より侵入した塩素イオンや酸素のコンクリート内部への侵入を防ぐことができ、構造部材の鉄筋の腐食を防止する防食効果も有する。   Furthermore, mixing steel fibers into concrete corrodes the steel fibers existing in the surface layer, preventing the entry of chlorine ions and oxygen from the outside into the concrete, and corrosion of the reinforcing bars of structural members. Also has anti-corrosion effect to prevent.

通常のコンクリート構造物においては、耐火性能が十分ではないため、コンクリート打設後もしくはプレキャストコンクリートの設置後に、耐火パネルの取り付けや耐火被覆の吹き付け等の耐火工事が別途必要である。しかし、本発明のコンクリート部材を用いることで、耐火工事を行う必要がなくなるため工期の短縮やコストの低減が可能になる。   In ordinary concrete structures, fire resistance is not sufficient, and therefore, after the concrete is placed or after the precast concrete is installed, a fireproof work such as attaching a fireproof panel or spraying a fireproof coating is necessary. However, by using the concrete member of the present invention, it is not necessary to perform fireproofing work, so the construction period can be shortened and the cost can be reduced.

また、本発明のコンクリート部材は別途に耐火被覆を必要としないため、コンクリート表面が露出する。このため、目視によるクラックや漏水状況の確認が可能となる。   Moreover, since the concrete member of the present invention does not require a separate fireproof coating, the concrete surface is exposed. For this reason, it becomes possible to confirm the crack and water leakage status by visual inspection.

図1(a)は本発明のコンクリート部材の断面図であり、図1(b)は本発明のコンクリート部材の格子状鉄筋の介在する面における水平断面図である。Fig.1 (a) is sectional drawing of the concrete member of this invention, FIG.1 (b) is a horizontal sectional view in the surface where the grid | lattice-like reinforcing bar of the concrete member of this invention exists. 本発明のコンクリート部材について耐火実験を行う設備の概略図である。It is the schematic of the installation which performs a fireproof experiment about the concrete member of this invention. 本発明のコンクリート部材を用いて、各種条件における耐火試験の最高温度について比較したグラフである。It is the graph which compared about the maximum temperature of the fireproof test in various conditions using the concrete member of this invention. 本発明のセグメント部材の断面図である。It is sectional drawing of the segment member of this invention. 本発明のセグメント部材を用いて形成したトンネル内壁面の模式図である。It is a schematic diagram of the tunnel inner wall surface formed using the segment member of this invention.

符号の説明Explanation of symbols

100 本発明の耐火コンクリート部材 110 鉄筋コンクリート
111 鉄筋 112 構造用コンクリート
120 耐火層 121 格子状鉄筋
122 耐火被覆用コンクリート 130 加熱面
200 試験炉 210 供試体
220 バーナー 400 耐火セグメント部材
410 構造部材 411 構造用鉄筋
412 構造用コンクリート 420 耐火層
421 格子状鉄筋 422 耐火被覆用コンクリート
430 加熱面(トンネル内壁面)
DESCRIPTION OF SYMBOLS 100 Refractory concrete member of the present invention 110 Reinforced concrete 111 Reinforcement 112 Structural concrete 120 Refractory layer 121 Lattice rebar 122 Fireproof covering concrete 130 Heating surface 200 Test furnace 210 Specimen 220 Burner 400 Refractory segment member 410 Structural member 411 Structural reinforcing bar 412 Structural concrete 420 Refractory layer 421 Lattice rebar 422 Refractory covering concrete 430 Heating surface (wall surface in the tunnel)

Claims (3)

平面もしくは湾曲した板状の耐火コンクリート部材であって、片側表面から所定のかぶり厚さの位置に格子状に構成された鉄筋が設けられていることを特徴とする耐火コンクリート部材。   A flat or curved plate-like refractory concrete member, comprising reinforcing bars arranged in a lattice shape at a predetermined cover thickness from one surface. コンクリートに鋼繊維が混入されていることを特徴とする請求項1記載の耐火コンクリート部材。   The refractory concrete member according to claim 1, wherein steel fibers are mixed in the concrete. 請求項1または2の耐火コンクリート部材が、トンネルあるいは地下空間の壁面形状に沿った湾曲形状に形成されてなることを特徴とするセグメント部材。

A segment member, wherein the refractory concrete member according to claim 1 or 2 is formed in a curved shape along a wall shape of a tunnel or underground space.

JP2004348411A 2004-12-01 2004-12-01 Refractory concrete members and refractory segment members Expired - Fee Related JP4830291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004348411A JP4830291B2 (en) 2004-12-01 2004-12-01 Refractory concrete members and refractory segment members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348411A JP4830291B2 (en) 2004-12-01 2004-12-01 Refractory concrete members and refractory segment members

Publications (2)

Publication Number Publication Date
JP2006152747A true JP2006152747A (en) 2006-06-15
JP4830291B2 JP4830291B2 (en) 2011-12-07

Family

ID=36631354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348411A Expired - Fee Related JP4830291B2 (en) 2004-12-01 2004-12-01 Refractory concrete members and refractory segment members

Country Status (1)

Country Link
JP (1) JP4830291B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013594A (en) * 2007-06-29 2009-01-22 Takenaka Komuten Co Ltd Reinforced concrete (rc) slab
JP2009024341A (en) * 2007-07-17 2009-02-05 Ohbayashi Corp Fireproof segment and its manufacturing method
JP2011149144A (en) * 2010-01-19 2011-08-04 Kfc Ltd Fire resistive segment and fire resistive tunnel structure
JP2012167539A (en) * 2012-04-19 2012-09-06 Shimizu Corp Concrete segment
JP2014114553A (en) * 2012-12-06 2014-06-26 Ohbayashi Corp Concrete member and method of manufacturing the same
US20180036910A1 (en) * 2015-04-01 2018-02-08 Sumitomo (Sei) Steel Wire Corp. Concrete-reinforcing shaped body, method of manufacturing the same, structure of packaging concrete-reinforcing shaped body, and method of mixing fiber-reinforced concrete
CN111101631A (en) * 2019-12-27 2020-05-05 甬港现代工程有限公司 Building roof temperature control device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318298A (en) * 1989-06-15 1991-01-25 Nec Corp Reference position stopping system
JP2000096995A (en) * 1998-09-25 2000-04-04 Kurosaki Refract Co Ltd Refractory structure with heat insulating member of concrete segment for tunnel
JP2002194996A (en) * 2000-12-25 2002-07-10 Penta Ocean Constr Co Ltd Fire-resistant segment for shield tunnel
JP2003089561A (en) * 2001-09-14 2003-03-28 Taiheiyo Cement Corp Method for producing bursting resistant high strength cement hardened body
JP2003247287A (en) * 2002-02-22 2003-09-05 Teijin Ltd Explosion preventing structure for concrete member
JP2003300275A (en) * 2002-04-10 2003-10-21 Shimizu Corp Fire-resistant precast concrete member and manufacturing method therefor
JP2003306366A (en) * 2002-04-10 2003-10-28 Takenaka Komuten Co Ltd Explosion-resistant concrete
JP2004011312A (en) * 2002-06-07 2004-01-15 Toshinori Toyoda Fiber-mixed concrete segment and method of manufacturing it

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0318298A (en) * 1989-06-15 1991-01-25 Nec Corp Reference position stopping system
JP2000096995A (en) * 1998-09-25 2000-04-04 Kurosaki Refract Co Ltd Refractory structure with heat insulating member of concrete segment for tunnel
JP2002194996A (en) * 2000-12-25 2002-07-10 Penta Ocean Constr Co Ltd Fire-resistant segment for shield tunnel
JP2003089561A (en) * 2001-09-14 2003-03-28 Taiheiyo Cement Corp Method for producing bursting resistant high strength cement hardened body
JP2003247287A (en) * 2002-02-22 2003-09-05 Teijin Ltd Explosion preventing structure for concrete member
JP2003300275A (en) * 2002-04-10 2003-10-21 Shimizu Corp Fire-resistant precast concrete member and manufacturing method therefor
JP2003306366A (en) * 2002-04-10 2003-10-28 Takenaka Komuten Co Ltd Explosion-resistant concrete
JP2004011312A (en) * 2002-06-07 2004-01-15 Toshinori Toyoda Fiber-mixed concrete segment and method of manufacturing it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009013594A (en) * 2007-06-29 2009-01-22 Takenaka Komuten Co Ltd Reinforced concrete (rc) slab
JP2009024341A (en) * 2007-07-17 2009-02-05 Ohbayashi Corp Fireproof segment and its manufacturing method
JP2011149144A (en) * 2010-01-19 2011-08-04 Kfc Ltd Fire resistive segment and fire resistive tunnel structure
JP2012167539A (en) * 2012-04-19 2012-09-06 Shimizu Corp Concrete segment
JP2014114553A (en) * 2012-12-06 2014-06-26 Ohbayashi Corp Concrete member and method of manufacturing the same
US20180036910A1 (en) * 2015-04-01 2018-02-08 Sumitomo (Sei) Steel Wire Corp. Concrete-reinforcing shaped body, method of manufacturing the same, structure of packaging concrete-reinforcing shaped body, and method of mixing fiber-reinforced concrete
US10357897B2 (en) * 2015-04-01 2019-07-23 Sumitomo Electric Industries, Ltd. Concrete-reinforcing shaped body, method of manufacturing the same, structure of packaging concrete-reinforcing shaped body, and method of mixing fiber-reinforced concrete
CN111101631A (en) * 2019-12-27 2020-05-05 甬港现代工程有限公司 Building roof temperature control device
CN111101631B (en) * 2019-12-27 2022-01-04 甬港现代工程有限公司 Building roof temperature control device

Also Published As

Publication number Publication date
JP4830291B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
Ahmed et al. The experimental behavior of FRP-strengthened RC beams subjected to design fire exposure
Xu et al. Concrete filled steel tube reinforced concrete (CFSTRC) columns subjected to ISO-834 standard fire: experiment
JP4830291B2 (en) Refractory concrete members and refractory segment members
Choe et al. Experimental study on fire resistance of a full-scale composite floor assembly in a two-story steel framed building
Bolina et al. Experimental analysis on the structural continuity effect in steel decking concrete slabs subjected to fire
Wang et al. Repair of fire-exposed preloaded rectangular concrete columns by postcompressed steel plates
JP6163984B2 (en) Concrete structure repair method, repair structure and shield method segment
JP6758137B2 (en) Fireproof bulkhead
JP2018003556A (en) Fire-resisting structure
Kodur Solutions for enhancing the fire endurance of HSS columns filled with high strength concrete
Dong et al. Fire endurance tests of CFRP-strengthened RC beams with different insulation schemes
JP2009114791A (en) Fire-resistant segment and tunnel
JP5378673B2 (en) Segment connection structure and tunnel
Khalaf Development of non-linear bond stress-slip models for reinforced concrete structures in fire
US11897820B2 (en) Glass fiber reinforced polymer liner for reinforced concrete molten sulfur storage tank
JP2007177548A (en) Fire-resistant structure
JP6721380B2 (en) Fireproof structure of the penetration part in a hollow structure compartment
JP2023167162A (en) Design method for concrete-filled steel-pipe column
JP2023027657A (en) Fireproof design method of floor slab
Loganathan et al. Corrosion protection lining (CPL) for the deep tunnel sewer system in Singapore—A case history
JP2019100093A (en) Floor slab and device for forming/reinforcing opening therein
JP2016056855A (en) Piping module and penetration part structure
Warren Refractory for Combustion Systems
JP5568589B2 (en) Mortar board
Sweeney et al. Evaluation of Corrosion-Resistant Reactive Vitreous Steel Fixtures for Masonry Walls

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees