JP2006152334A - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP2006152334A
JP2006152334A JP2004341628A JP2004341628A JP2006152334A JP 2006152334 A JP2006152334 A JP 2006152334A JP 2004341628 A JP2004341628 A JP 2004341628A JP 2004341628 A JP2004341628 A JP 2004341628A JP 2006152334 A JP2006152334 A JP 2006152334A
Authority
JP
Japan
Prior art keywords
ore
particle size
mass
limestone
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004341628A
Other languages
Japanese (ja)
Inventor
Hideaki Sato
秀明 佐藤
Nobuyuki Oyama
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004341628A priority Critical patent/JP2006152334A/en
Publication of JP2006152334A publication Critical patent/JP2006152334A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high-quality sintered ore with high strength at a high yield even if ore containing much phosphorus is blended in a raw material to be sintered, and even if ore containing much Al<SB>2</SB>O<SB>3</SB>like the ore containing much phosphorus is used as the raw material. <P>SOLUTION: The method for producing the sintered ore uses a mixture of iron ore and lime stone as a raw material, wherein the iron ore contains 2.0 mass% or more Al<SB>2</SB>O<SB>3</SB>at least as one part and has an average particle diameter of 2.0 mm or smaller, and the limestone has an average particle diameter of 2.0 mm or larger, and contains 15 mass% or less fine particles with a particle diameter of 0.25 mm or smaller. The iron ore containing 2.0 mass% or more Al<SB>2</SB>O<SB>3</SB>and having an average particle diameter of 2.0 mm or smaller preferably contains 0.1 mass% or more of P. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高炉等の主原料として用いられる焼結鉱の製造方法に関する。   The present invention relates to a method for producing a sintered ore used as a main raw material for a blast furnace or the like.

高炉製銑法の主原料である焼結鉱は、一般的には、以下のようにして製造される。まず、粒径が8mm以下で質量平均径2.0〜4.0mmの鉄鉱石粉、粒径3.0mmあるいは5.0mm以下に整粒した石灰石、ドロマイトなどの含CaO原料(以下CaO含有副原料と記載する。)、製鉄所内回収粉、焼結鉱篩下粉、生石灰等の造粒助剤、およびコークス粉、無煙炭などの炭材を所定の割合でドラムミキサー等により混合しながら、適量の水を加え調湿した後、ドラムミキサーやディスクペレタイザー等により造粒し、平均径が3.0〜6.0mmの擬似粒子を製造し、この擬似粒子を無端移動式の焼結機パレット上に400〜600mm前後の高さに充填し、この充填ベッドの表層の炭材に点火する。下方に向けて空気を吸引しながら炭材を燃焼させ、そのとき発生する燃焼熱によって原料擬似粒子を焼結させて焼結ケーキとする。得られた焼結ケーキを破砕、整粒して3ないし5mm以上の塊成鉱を成品焼結鉱として、これを高炉に装入して使用する。   Sinter ore, which is the main raw material of the blast furnace ironmaking method, is generally manufactured as follows. First, an iron ore powder having a particle size of 8 mm or less and a mass average diameter of 2.0 to 4.0 mm, limestone adjusted to a particle size of 3.0 mm or 5.0 mm, CaO-containing raw materials (hereinafter referred to as CaO-containing auxiliary materials) ), Granulation aids such as iron mill recovered powder, sintered ore sieving powder, quick lime, and carbonaceous materials such as coke powder and anthracite at a predetermined ratio while mixing with a drum mixer, etc. After adding water and adjusting the humidity, the mixture is granulated with a drum mixer or a disk pelletizer to produce pseudo particles having an average diameter of 3.0 to 6.0 mm. The pseudo particles are placed on an endless moving type sinter pallet. Fill to a height of around 400-600 mm and ignite the charcoal on the surface layer of this packed bed. The carbonaceous material is burned while sucking air downward, and the raw material pseudo particles are sintered by the combustion heat generated at that time to obtain a sintered cake. The obtained sintered cake is crushed and sized, and agglomerated 3 to 5 mm or more is used as a product sintered ore, which is charged into a blast furnace and used.

焼結機に於いて粉鉄鉱石等の含Fe原料が塊成されるのは、主に鉄鉱石に接触した生石灰、石灰石中のCaOが酸化鉄と反応して低融点のCaO−Fe23系融体を作り、この融体を介して塊成化が行われると同時に焼結鉱を構成する種々の組織が晶出形成されることによるものである。 In a sintering machine, Fe-containing raw materials such as fine iron ore are agglomerated mainly because quick lime in contact with iron ore, CaO in limestone reacts with iron oxide and has a low melting point CaO-Fe 2 O. This is because a three-system melt is formed, and agglomeration is performed through this melt, and at the same time, various structures constituting the sintered ore are crystallized and formed.

焼結反応に於いて重要な役割を担っているこの融液は、鉄鉱石と生石灰、石灰石の微粒子接触点が発生の基点になることも知られている。更に、この初期発生融液にAl23が溶け込むと粘性が高くなり流動性が悪化し鉱石同士の焼結反応が充分に進まない為、焼結鉱の歩留り、強度が悪化するとされている(例えば、非特許文献1、非特許文献2参照。)。
井上、池田ら「鉄と鋼」68、1982年、p.2190 川口、笠間、稲角「鉄と鋼」78、1992年、p.1053
It is also known that this melt, which plays an important role in the sintering reaction, is the starting point of fine particle contact between iron ore, quicklime and limestone. Furthermore, when Al 2 O 3 is dissolved in this initially generated melt, the viscosity becomes high, the fluidity is deteriorated, and the sintering reaction between the ores does not proceed sufficiently, so that the yield and strength of the sintered ore are deteriorated. (For example, refer nonpatent literature 1 and nonpatent literature 2.).
Inoue, Ikeda et al. “Iron and Steel” 68, 1982, p. 2190 Kawaguchi, Kasama, Inatsumi “Iron and Steel” 78, 1992, p. 1053

焼結鉱の原料鉄鉱石としては、従来、主としてヘマタイト鉱石(赤鉄鉱)やマグネタイト鉱石(磁鉄鉱)が用いられてきたが、最近このような良質の鉄鉱石の供給量が減少しつつあり、結晶水の含有量が高い鉄鉱石や、P(リン)の含有量が高い鉄鉱石を用いる必要に迫られている。   Conventionally, hematite ore (hematite) and magnetite ore (magnetite) have been mainly used as raw iron ore for sintered ore, but recently the supply of such high-quality iron ore is decreasing, There is a pressing need to use iron ore with a high water content or iron ore with a high P (phosphorus) content.

高リン鉱石は、焼結原料として利用される通常の粉鉄鉱石と比べてPの含有量が高く、一般にPを0.1mass%以上含有するような鉄鉱石である。このようなP含有量の高い鉄鉱石を高炉原料として使用することは、製造される溶銑のP濃度を高め、脱燐処理の負荷を増大させることになるため、従来ではほとんど使用されていなかった。しかし、上述したように良質な鉄鉱石の供給量が減少しつつあることから、この高リン鉱石についても、焼結原料として相当量配合することが検討されつつある。しかし、本発明者らが検討したところ、高リン鉱石を焼結原料として用いた場合、焼結鉱の強度、歩留りが悪化するという問題があることが判明した。これは、高リン鉱石のAl23含有量が高いためと考えられる。 High phosphorus ore has a higher P content than ordinary powdered iron ore used as a sintering raw material, and is generally an iron ore containing 0.1 mass% or more of P. Using such iron ore with a high P content as a blast furnace raw material increases the P concentration of the hot metal to be produced and increases the load of dephosphorization treatment. . However, since the supply amount of high-quality iron ore is decreasing as described above, it is being studied to add a considerable amount of this high phosphorus ore as a sintering raw material. However, as a result of studies by the present inventors, it has been found that when high phosphorus ore is used as a sintering raw material, there is a problem that the strength and yield of the sintered ore deteriorate. This is probably because the high phosphorus ore has a high Al 2 O 3 content.

したがって本発明の目的は、このような従来技術の課題を解決し、高リン鉱石を焼結原料に配合する場合にも強度、歩留りの高い高品質の焼結鉱を製造できる、焼結鉱の製造方法を提供することにある。   Therefore, the object of the present invention is to solve such problems of the prior art and to produce a high-quality sintered ore with high strength and yield even when blending high phosphorus ore into a sintering raw material. It is to provide a manufacturing method.

また本発明の他の目的は、高リン鉱石のようにAl23含有量が高い原料鉱石を用いた場合にも強度、歩留りの高い高品質の焼結鉱を製造できる、焼結鉱の製造方法を提供することにある。 Another object of the present invention is to produce a high-quality sintered ore with high strength and yield even when a raw ore having a high Al 2 O 3 content such as a high phosphorus ore is used. It is to provide a manufacturing method.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)鉄鉱石と石灰石とを配合した焼結原料から焼結鉱を製造する方法であって、前記鉄鉱石が少なくとも一部としてAl23を2.0mass%以上含有し、かつ平均粒径が2.0mm以下の鉄鉱石を含み、前記石灰石が平均粒径2.0mm以上、かつ粒径0.25mm以下の微粒子の含有量が15mass%以下であることを特徴とする焼結鉱の製造方法。
(2)Al23を2.0mass%以上含有し、かつ平均粒径が2.0mm以下の鉄鉱石がPを0.1mass%以上含有するものであることを特徴とする(1)に記載の焼結鉱の製造方法。
The features of the present invention for solving such problems are as follows.
(1) A method for producing a sintered ore from a sintering raw material in which iron ore and limestone are blended, wherein the iron ore contains at least part of Al 2 O 3 in an amount of 2.0 mass% or more and an average grain A sintered ore comprising iron ore having a diameter of 2.0 mm or less, wherein the limestone has an average particle size of 2.0 mm or more and a content of fine particles having a particle size of 0.25 mm or less is 15 mass% or less. Production method.
(2) The iron ore containing Al 2 O 3 in an amount of 2.0 mass% or more and having an average particle size of 2.0 mm or less contains P in an amount of 0.1 mass% or more in (1) The manufacturing method of the sintered ore as described.

本発明によれば、Al23含有量が高い原料鉱石を用いた場合にも強度、歩留りの高い高品質の焼結鉱を製造できる。特に高リン鉱石を焼結鉱原料として有効に使用して、強度、歩留りの高い高品質の焼結鉱の製造が可能となる。 According to the present invention, a high-quality sintered ore with high strength and yield can be produced even when a raw ore having a high Al 2 O 3 content is used. In particular, high-phosphorus ore can be effectively used as a raw material for sintered ore to produce a high-quality sintered ore with high strength and yield.

表1に、主な鉄鉱石資源の種類とその組成を示す。   Table 1 shows the types of main iron ore resources and their compositions.

Figure 2006152334
Figure 2006152334

表1によれば、高リン鉱石は、焼結原料として利用される通常の粉鉄鉱石と比べ、平均粒径が小さくAl23含有量が高いことが分かる。また本発明者らが検討したところ、高リン鉱石においては、特に細粒においてAl23含有量が高いことが判明した。例えば、粒径0.063mm以下の高リン鉱石のAl23含有量は、通常使用されるような複数種類の鉄鉱石を混合した場合の2倍程度になる場合がある。このため、通常の鉱石よりも石灰石との接触頻度(割合)が増加して、焼成時に形成される初期融液の多くがAl23を多量に固溶し、高リン鉱石の周りから流動しにくくなり、焼結ベット充填層全体での生成融液を介した焼結反応は充分に進まず焼結鉱の強度、歩留りを悪化させると考えられる。 According to Table 1, it can be seen that the high-phosphorus ore has a smaller average particle size and a higher Al 2 O 3 content as compared with a normal fine iron ore used as a sintering raw material. Further, as a result of investigations by the present inventors, it has been found that the high phosphorus ore has a high Al 2 O 3 content particularly in fine grains. For example, the Al 2 O 3 content of high-phosphorus ores having a particle size of 0.063 mm or less may be about twice that when a plurality of types of iron ores that are normally used are mixed. For this reason, the contact frequency (ratio) with limestone increases compared with normal ore, and most of the initial melt formed at the time of firing dissolves a large amount of Al 2 O 3 and flows from around the high phosphorus ore. It is considered that the sintering reaction through the generated melt in the entire bed of the sintered bed does not proceed sufficiently and deteriorates the strength and yield of the sintered ore.

そこで本発明では、上記問題を解決し、焼結原料として、高リン鉱石を有効に使用するために、Al23と石灰石との接触割合を低下させ、融液に固溶するAl23の量を少なくする方法を検討し、石灰石の粒度を従来使用しているものよりも高くすることが効果のあることを見出した。そのためには石灰石を、粒径0.25mm以下の微粉の割合が15mass%以下となる粒度分布とする必要があり、そのような粒度分布を得るためには、石灰石の平均粒径が2.0mm以上となる粒度分布とすることが効果的であることを見出した。 Therefore, in the present invention, in order to solve the above problems and to effectively use high-phosphorus ore as a sintering raw material, the contact ratio between Al 2 O 3 and limestone is reduced and Al 2 O dissolved in the melt is dissolved. A method of reducing the amount of 3 was examined, and it was found that it was effective to increase the particle size of limestone than that conventionally used. For this purpose, the limestone needs to have a particle size distribution in which the proportion of fine powder having a particle size of 0.25 mm or less is 15 mass% or less. In order to obtain such a particle size distribution, the average particle size of limestone is 2.0 mm. It has been found that it is effective to obtain the above particle size distribution.

尚、石灰石同様にCaOを含有する生石灰については、焼結鉱製造時に水、あるいは温水と反応して水酸化カルシウムの超微細粒が生成されるため、粒度を調整しても効果がない。   In addition, about the quicklime containing CaO similarly to limestone, since it reacts with water or warm water at the time of sinter ore production and the ultrafine particle of calcium hydroxide is produced, adjusting the particle size has no effect.

石灰石の粒度を上記のように調整すれば、石灰石と高リン鉱石との接触割合は相対的に低下する。また、接触する石灰石の粒度が相対的に大きくなれば、反応が起こっても、固溶するAl23の濃度はCaOの量が多いため従来粒度の石灰石を使用した場合に比べ上がらない。従って、融液の流動性は確保でき焼結反応を充分に進めることができる。 If the particle size of limestone is adjusted as described above, the contact ratio between limestone and high phosphorus ore is relatively lowered. Further, if the particle size of the limestone that comes into contact is relatively large, even if a reaction occurs, the concentration of the Al 2 O 3 that dissolves is large compared to the case of using limestone of the conventional particle size because the amount of CaO is large. Therefore, the fluidity of the melt can be secured and the sintering reaction can be sufficiently advanced.

以上の原理は高リン鉱石と同様にAl23含有量が高く平均粒径が比較的小さい鉱石全般に適用可能であり、原料鉱石の少なくとも一部としてAl23を2.0mass%以上含有し、かつ平均粒径が2.0mm以下の鉄鉱石を焼結鉱原料として用いる場合には効果があるが、特に細粒中にAl23含有量が高い、P含有量が0.1mass%以上、Al23含有量が2.0mass%以上の高リン鉱石を用いると焼結鉱の強度、歩留りが非常に向上する。配合する原料鉱石の少なくとも一部がAl23を2.0mass%以上含有し、かつ平均粒径が2.0mm以下の鉄鉱石であれば本発明の効果があるが、Al23を2.0mass%以上含有し、かつ平均粒径が2.0mm以下の鉄鉱石が焼結鉱の配合原料全体の5mass%以上配合されている場合に、焼結鉱の強度、歩留り向上の効果が明らかである。 The above principle can be applied to all ores having a high Al 2 O 3 content and a relatively small average particle size as in the case of high phosphorus ores, and at least a portion of the raw material ore contains Al 2 O 3 of 2.0 mass% or more. This is effective when iron ore having an average particle diameter of 2.0 mm or less is used as a raw material for sintered ore, but the Al 2 O 3 content is particularly high in the fine granules, and the P content is 0.00. When high phosphorus ore having 1 mass% or more and Al 2 O 3 content of 2.0 mass% or more is used, the strength and yield of the sintered ore are greatly improved. At least a portion of the ore to be blended is containing Al 2 O 3 or 2.0 mass%, and the average particle size is the effect of the present invention as long as the following iron ore 2.0 mm, the Al 2 O 3 When iron ore containing 2.0 mass% or more and having an average particle size of 2.0 mm or less is blended in an amount of 5 mass% or more of the total blended raw materials of sintered ore, the effect of improving the strength and yield of the sintered ore is obtained. it is obvious.

石灰石の粒度を高くするための粒度調整法としては、例えば微粉を除去することが有効であるが、通常、野外に貯蔵される石灰石は、少なくとも3mass%、多い場合には5mass%程度の水分を含有しているため、篩い等の簡便な方法で微粉を除去することは困難である。したがって、0.25mm以下の粒径の微粉を除去することで粒径0.25mm以下の微粉の割合を15mass%以下とすることはあまり現実的な方法ではない。より簡便な他の手段として、例えば、使用している石灰石の粒度の管理スペックを見直し、粒度の上限管理値を緩和し相対的に微粉の比率を下げる方法が、コストの上昇も伴わず有効な手段である。表2に、通常焼結鉱原料として用いる石灰石の粒度の上限管理値を変化させた場合の粒度分布の一例を示す。   As a particle size adjustment method for increasing the particle size of limestone, it is effective to remove fine powder, for example. Usually, limestone stored outdoors has a water content of at least 3 mass%, and if it is large, about 5 mass%. Since it contains, it is difficult to remove a fine powder by simple methods, such as a sieve. Therefore, it is not a practical method to reduce the proportion of fine powder having a particle size of 0.25 mm or less to 15 mass% or less by removing fine powder having a particle size of 0.25 mm or less. As another simpler means, for example, reviewing the management specification of the particle size of the limestone used, relaxing the upper limit control value of the particle size and lowering the proportion of fine powder is effective without increasing costs. Means. Table 2 shows an example of the particle size distribution when the upper limit control value of the particle size of limestone used as a normal sintered ore raw material is changed.

Figure 2006152334
Figure 2006152334

表2に示すように、石灰石の粒径の上限を5mmに管理する場合(−5mm)の平均粒径は1.74mmであるが、石灰石の粒径の上限を7mmに管理する場合(−7mm)の平均粒径は2.11mmとなる。このように石灰石の粒径の上限値を管理することで平均粒径を制御することが可能である。粒径0.25mm以下の微粉の割合も石灰石の上限を7mmに管理することで15mass%以下とすることができる。   As shown in Table 2, when the upper limit of the particle size of limestone is controlled to 5 mm (−5 mm), the average particle size is 1.74 mm, but when the upper limit of the particle size of limestone is managed to 7 mm (−7 mm). ) Has an average particle diameter of 2.11 mm. Thus, it is possible to control the average particle size by managing the upper limit value of the particle size of limestone. The proportion of fine powder having a particle size of 0.25 mm or less can also be made 15 mass% or less by managing the upper limit of limestone to 7 mm.

表3に示すように配合した焼結原料(比較例1、比較例2、本発明例1、本発明例2)に、外数で4.0mass%の粉コークスを炭材として加え、混合した後調湿・造粒して、直径26cmの鍋に層厚が400mmになるよう造粒粒子を装入し、バーナーで表面に点火後―10kPa一定の吸引圧力で焼成試験を実施した。比較例1、比較例2では、粒径の上限を5mmとした石灰石(表2の−5mm)を用いた。一方、本発明例1、本発明例2では、粒径の上限を7mmとした石灰石(表2の−7mm)を使用した。   As shown in Table 3, to the sintered raw materials (Comparative Example 1, Comparative Example 2, Invention Example 1, Invention Example 2), 4.0 mass% of powder coke was added as a carbon material and mixed. Post-humidification and granulation were carried out, and the granulated particles were introduced into a pan having a diameter of 26 cm so as to have a layer thickness of 400 mm. After the surface was ignited with a burner, a firing test was performed at a constant suction pressure of −10 kPa. In Comparative Example 1 and Comparative Example 2, limestone (-5 mm in Table 2) with an upper limit of the particle size of 5 mm was used. On the other hand, in Inventive Example 1 and Inventive Example 2, limestone (-7 mm in Table 2) with an upper limit of particle size of 7 mm was used.

Figure 2006152334
Figure 2006152334

焼成試験で製造した焼結鉱の生産性、タンブラー強度、歩留、RDI、RIを測定した。結果を表4に示す。   The productivity, tumbler strength, yield, RDI, and RI of the sintered ore produced in the firing test were measured. The results are shown in Table 4.

Figure 2006152334
Figure 2006152334

原料の配合量が同じである比較例2と本発明例1とを比較すると、石灰石の粒度を粗くすることで生産性、強度、歩留りが改善されていることが分かる。   Comparing Comparative Example 2 and Invention Example 1 where the blending amounts of the raw materials are the same, it can be seen that productivity, strength, and yield are improved by making the particle size of limestone coarse.

また、本発明例2では、高リン鉱石の配合率が8mass%と高いことにもかかわらず、焼結鉱の生産性、強度が維持されていることが分かる。   Moreover, in Example 2 of this invention, it turns out that productivity and intensity | strength of a sintered ore are maintained, although the compounding rate of a high phosphorus ore is as high as 8 mass%.

Claims (2)

鉄鉱石と石灰石とを配合した焼結原料から焼結鉱を製造する方法であって、前記鉄鉱石が少なくとも一部としてAl23を2.0mass%以上含有し、かつ平均粒径が2.0mm以下の鉄鉱石を含み、前記石灰石が平均粒径2.0mm以上、かつ粒径0.25mm以下の微粒子の含有量が15mass%以下であることを特徴とする焼結鉱の製造方法。 A method for producing sintered ore from a sintered raw material containing iron ore and limestone, wherein the iron ore contains at least a portion of Al 2 O 3 of 2.0 mass% or more and an average particle size of 2 A method for producing a sintered ore comprising iron ore of 0.0 mm or less, wherein the limestone has an average particle size of 2.0 mm or more and a content of fine particles having a particle size of 0.25 mm or less is 15 mass% or less. Al23を2.0mass%以上含有し、かつ平均粒径が2.0mm以下の鉄鉱石がPを0.1mass%以上含有するものであることを特徴とする請求項1に記載の焼結鉱の製造方法。 The iron ore containing Al 2 O 3 in an amount of 2.0 mass% or more and an average particle size of 2.0 mm or less contains P in an amount of 0.1 mass% or more. Production method of ore.
JP2004341628A 2004-11-26 2004-11-26 Method for producing sintered ore Pending JP2006152334A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004341628A JP2006152334A (en) 2004-11-26 2004-11-26 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004341628A JP2006152334A (en) 2004-11-26 2004-11-26 Method for producing sintered ore

Publications (1)

Publication Number Publication Date
JP2006152334A true JP2006152334A (en) 2006-06-15

Family

ID=36630972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004341628A Pending JP2006152334A (en) 2004-11-26 2004-11-26 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP2006152334A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196547A (en) * 2013-03-29 2014-10-16 株式会社神戸製鋼所 Method for producing sintered ore for iron manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196547A (en) * 2013-03-29 2014-10-16 株式会社神戸製鋼所 Method for producing sintered ore for iron manufacture

Similar Documents

Publication Publication Date Title
JP5846049B2 (en) Method for producing sintered ore
JP5375742B2 (en) Granulation method of sintering raw material
TWI473882B (en) Sintering raw materials for the adjustment of raw materials and sintering raw materials for powder
JP2009097027A (en) Method for producing sintered ore
JP4935133B2 (en) Ferro-coke and method for producing sintered ore
JP6369113B2 (en) Method for producing sintered ore
JP2007327096A (en) Method for manufacturing sintered ore using brucite
JP2007169603A (en) Method for producing ferrocoke and sintered ore
JP4725230B2 (en) Method for producing sintered ore
JP6477167B2 (en) Method for producing sintered ore
JP2003096521A (en) Sintered ore blended with high alumina iron ore, and production method therefor
JP2006152334A (en) Method for producing sintered ore
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JP5004421B2 (en) Method for producing sintered ore
JP4982986B2 (en) Method for producing sintered ore
JP3888981B2 (en) Method for producing sintered ore
JP6885164B2 (en) Sintered ore manufacturing method
JP2009242829A (en) Method for producing sintered ore
JP4501656B2 (en) Method for producing sintered ore
JPH05339653A (en) Pretreatment of sintered ore raw material and sintered ore raw material for iron making
JP6028554B2 (en) Method for producing sintered ore
JP4946007B2 (en) Manufacturing method of ferro-coke for metallurgy
JP4661077B2 (en) Method for producing sintered ore
JP2009041093A (en) Method for manufacturing sintered ore
JP2008088533A (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921