JP2006151925A - Method for treating laver for various alga exterminating and disease control of laver and laver-treating agent - Google Patents

Method for treating laver for various alga exterminating and disease control of laver and laver-treating agent Download PDF

Info

Publication number
JP2006151925A
JP2006151925A JP2004348713A JP2004348713A JP2006151925A JP 2006151925 A JP2006151925 A JP 2006151925A JP 2004348713 A JP2004348713 A JP 2004348713A JP 2004348713 A JP2004348713 A JP 2004348713A JP 2006151925 A JP2006151925 A JP 2006151925A
Authority
JP
Japan
Prior art keywords
laver
acid
solution
electrolysis
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004348713A
Other languages
Japanese (ja)
Other versions
JP4717424B2 (en
Inventor
Toshio Abe
敏男 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Seimo Co Ltd
Original Assignee
Daiichi Seimo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Seimo Co Ltd filed Critical Daiichi Seimo Co Ltd
Priority to JP2004348713A priority Critical patent/JP4717424B2/en
Priority to KR1020050115949A priority patent/KR20060061253A/en
Priority to CNA2005101291005A priority patent/CN1781355A/en
Publication of JP2006151925A publication Critical patent/JP2006151925A/en
Application granted granted Critical
Publication of JP4717424B2 publication Critical patent/JP4717424B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G33/00Cultivation of seaweed or algae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating laver, by which various sea weeds, such as diatoms and green laver, adhered to or mixed with cultured laver can be exterminated and various diseases caused by pathogenic microbes, such as SUMINORISHO (acicular bacteriosis) can effectively be controlled or prevented, and which reduces loads on ocean environments as much as possible, and to provide a laver-treating agent. <P>SOLUTION: This method for treating laver to exterminate various sea weeds on the laver and control various diseases of the laver, comprising using an electrolyzed solution (laver-treating agent) obtained by electrolyzing an organic acid seawater solution, is characterized in that the organic acid is at least one of organic acids having acid dissociation exponents (pKa) of ≥4. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、養殖海苔に着生するリクモフォーラ、タベラリア等の付着ケイ藻をはじめとする雑藻類、及び、海苔葉体表面に着生してスミノリ症の原因とされる針状細菌等の細菌類の駆除、また、海苔葉体細胞に感染し、甚大な被害をもたらす緑班病、擬似しろくされ病、赤腐れ病、壺状菌病等の細菌症を、効率よく効果的に防除でき、健全な養殖海苔の育成を目的とする、海苔の雑藻駆除及び病害防除のための海苔処理方法及び海苔処理剤に関する。   The present invention relates to various algae including attached diatoms such as liquophora and tabellaria that grow on cultured seaweed, and bacteria such as needle-shaped bacteria that grow on the surface of laver leaf bodies and cause smolism In addition, it can effectively and effectively control bacteriomyopathy such as green spot disease, pseudo-scouring disease, red rot disease, and rod-shaped fungal disease that infects nori leaves and causes severe damage. The present invention relates to a laver treatment method and a laver treatment agent for controlling algae and controlling diseases for the purpose of cultivating fresh cultured laver.

従来より、養殖海苔には、ケイ藻類に属するリクモフォーラ(Licmophora flabellate)、タベラリア(Synedra sp.)、緑藻類に属するスジアオノリ(Enteromorupha prolofera)、ヒラアオノリ(E.compressa)等の雑藻類、フハイカビ(Pythium)属菌を病原菌とする、赤腐れ病、フクロカビ(Olpidiopsis)属菌を病原菌とする壺状菌病、及びFlavobacterium属またはVibrio属細菌類を病原菌とする針状細菌症(スミノリ症)、緑斑病、擬似しろぐされ病等の細菌症等多くの雑藻、病害がある。
これらの雑藻、病害の駆除、防除方法として、潮の干満周期を利用して海苔網を空中へ一定時間吊り上げて乾燥を行い、雑藻類及び病原菌と海苔の乾燥に対する抵抗性の差を利用して、雑藻駆除、病害防除が行われている。
2. Description of the Related Art Conventionally, cultured seaweed includes mosquitoes such as licomophora belonging to diatoms (Licomophora flavellate), tabellaria (Synedra sp.), Green algae (Enteromomoropha prolofera), and high-algae genus P. thaliana (E. compressa um). Bacterial fungi, red rot, fungus fungus (Olpidiopsis) genus fungus mold, and flavobacterium or Vibrio spp. Pathogenic fungi (sminori), green spot disease, There are many miscellaneous algae and diseases such as bacteriosis such as pseudo-squeezed diseases.
As a method for extermination and control of these algae and diseases, the tide tidal cycle is used to lift the laver net in the air for a certain period of time to dry, and the difference in resistance to drying of the algae and pathogens and laver is utilized. In addition, weed control and disease control are being carried out.

しかしながら、潮の干満を利用した干出操作のできないベタ流式養殖では、海苔網の乾燥処理による雑藻、病原菌の駆除が困難である。また、潮の干満を利用した干出操作ができる支柱式養殖においても、病害の種類又は程度によっては干出操作だけでは病害防除が完全にできない場合もある。この解決策として酸処理技術が開発され(例えば、特許文献1参照)、広く普及し利用されている。   However, it is difficult to eliminate miscellaneous algae and pathogens by drying the laver net in the solid culture that cannot be dried using tides. In addition, even in the column-type aquaculture that can perform the drying operation using tides, the disease control may not be completely possible only by the drying operation depending on the type or degree of the disease. As a solution to this problem, an acid treatment technique has been developed (see, for example, Patent Document 1) and is widely spread and used.

現在普及利用されている酸処理技術は、有機酸を主成分とし、現場海水でpH2ほどに希釈した溶液として使用する製剤であるが、海洋環境に対する有機物負荷の原因となると問題にされることもある。また、これらの酸処理では、駆除が困難な雑藻、病害も存在する。   The acid treatment technology currently in widespread use is a preparation that uses an organic acid as the main component and is used as a solution diluted to about pH 2 with in-situ seawater. However, it may be a problem if it causes an organic load on the marine environment. is there. In addition, there are miscellaneous algae and diseases that are difficult to control by these acid treatments.

このような現状の問題点を回避、解決するため、環境にやさしく、かつ効果の高い処理技術の開発研究が鋭意続けられている。その方向の一つとして電気分解液を利用する試みがある。いずれも海水又は塩化物水溶液を電気分解して得られる電気分解液を海苔の付着ケイ藻、付着細菌の駆除、洗浄処理に利用するもの等(例えば、特許文献2〜9参照)であるが、未だ完成された実用技術とはなっていないのが現状である。
このため、業界では、海洋環境への負荷ができるだけ少なく、かつ有効性の高い海苔処理技術の実用化が切望されている。
In order to avoid and solve such current problems, research and development of environmentally friendly and highly effective processing technology has continued. There is an attempt to use an electrolysis solution as one of the directions. Both of them use electrolysis solution obtained by electrolyzing seawater or aqueous chloride solution for adhering diatoms of laver, extermination of attached bacteria, cleaning treatment etc. (for example, see Patent Documents 2 to 9), The current situation is that the technology has not yet been completed.
For this reason, there is an urgent need in the industry for practical use of a laver treatment technique that has the least impact on the marine environment and is highly effective.

一方、電解殺菌法という確率された技術が存在しながら、何ゆえ海苔養殖分野ではその技術を応用した雑藻、雑菌処理技術の実用化が成功していないのか、その大きな理由の一つは、その処理対象物が1.8m×18mの海苔網の如く大きく、かつ有機物存在量が大きいこともその一つの原因と考えられている。
電気分解液を利用して殺菌消毒を行う場合、その電気分解液は通常、隔膜式の電解槽を用いて陽極室で生成される強酸性水が使用される。その電解槽に使われる隔膜とは、電気分解によって生じたある種のイオンや電子は透過するが、水をはじめとする多くの分子は自由に通過しにくい微妙な構造の膜である。
On the other hand, while there is a promising technique of electrolytic sterilization, one of the main reasons why we have not succeeded in practical application of miscellaneous algae and miscellaneous bacteria treatment technology applying that technique in the seaweed culture field, It is considered that one of the causes is that the object to be treated is as large as a 1.8 m × 18 m laver net and the amount of organic matter is large.
When sterilizing and disinfecting using an electrolysis solution, the electrolysis solution is usually strongly acidic water generated in an anode chamber using a diaphragm type electrolytic cell. The diaphragm used in the electrolytic cell is a membrane with a delicate structure that allows certain ions and electrons generated by electrolysis to pass therethrough but prevents many molecules such as water from passing freely.

他方、処理対象となる海苔網は、そのボリュームが大きく、かつ有機物存在量が大きいこと、及び駆除したい雑藻類と、傷つけてはならない海苔が共存していて、選択的駆除を行う必要があるため、電解液の塩素濃度等殺菌成分はあまり高濃度にすることはできないという課題がある。
そのため、処理には多量の電解液が必要になることなどから、使用する電解液は一回使用で廃棄するのではなく、繰り返し循環使用することが好ましいが、多量の汚れが付いている海苔網を処理した電解液を循環させた場合、隔膜式電解槽では隔膜の目詰まり、破損が心配され、設備化が困難である。
On the other hand, the seaweed net to be treated is large in volume and has a large amount of organic matter, and the algae to be removed and the seaweed that should not be damaged must coexist and must be selectively removed. There is a problem that sterilizing components such as the chlorine concentration of the electrolytic solution cannot be made too high.
For this reason, since a large amount of electrolyte is required for the treatment, it is preferable to repeatedly use the electrolyte instead of discarding it once. When the electrolytic solution treated with is circulated, in the diaphragm type electrolytic cell, the diaphragm is clogged and damaged, and it is difficult to make equipment.

電気分解の方式には、隔膜のない無隔膜式も知られているが、無隔膜式は、一般に殺菌力が劣るといわれている。殺菌力が低い原因は、電解液のpHにあると考えられる。無隔膜電解液は、遊離有効塩素濃度が高いにもかかわらず、pHが弱酸性〜弱アルカリ性にあるためであると考えられる。この欠点を補うため、塩酸を添加した無隔膜電解水の検討もなされている(例えば、特許文献10〜14参照)。
しかしながら、塩酸を添加した溶液を電気分解した場合、添加された塩酸も電解されるため、電解途中でpHが変動し、その殺菌作用は不安定であるという課題を有するものである。
A non-diaphragm type diaphragm is also known as an electrolysis method, but the non-diaphragm type is generally said to have poor sterilizing power. The reason for the low sterilizing power is considered to be the pH of the electrolyte. The diaphragm electrolyte is considered to be because the pH is weakly acidic to weakly alkaline although the free effective chlorine concentration is high. In order to make up for this drawback, non-diaphragm electrolyzed water added with hydrochloric acid has also been studied (for example, see Patent Documents 10 to 14).
However, when the solution to which hydrochloric acid is added is electrolyzed, the added hydrochloric acid is also electrolyzed, so that the pH fluctuates during the electrolysis and the sterilizing action is unstable.

また、電解液のpHを低下させるために、被電解液に各種有機酸を添加することも知られているが(例えば、特許文献15〜18参照)、酸解離指数(pKa)4未満の酸、例えば、乳酸、リンゴ酸、クエン酸、酒石酸、フマル酸等を使用した場合、電気分解によって生成した塩素等の酸化力の強い物質はこれら電離の大きな酸と反応し、電解液の酸化還元電位及び有効塩素濃度はなかなか上昇せず、また、一旦上昇しても、電解電力の印加を中止すると、酸化還元電位及び遊離有効塩素濃度は速やかに低下し、殺菌力のある電解液を安定して供給することができないという課題がある。
特公昭56−12601号公報 特開平7−313007号公報 特開平8−140512号公報 特開2003−174828号公報 特開2003−235373号公報 特開2004−33195号公報 特開2004−81186号公報 特開2004−97042号公報 特開2004−155706号公報 特公平4−94785号公報 特許第2619756号公報 特許第2627100号公報 特開平10−128336号公報 特開平11−266733号公報 特開平7−313982号公報 特開平8−299961号公報 特開平10−314746号公報 特開2003−170167号公報
It is also known to add various organic acids to the electrolyte solution in order to lower the pH of the electrolyte solution (see, for example, Patent Documents 15 to 18), but an acid having an acid dissociation index (pKa) of less than 4 For example, when lactic acid, malic acid, citric acid, tartaric acid, fumaric acid, etc. are used, substances with strong oxidizing power such as chlorine produced by electrolysis react with these highly ionized acids, and the redox potential of the electrolyte The effective chlorine concentration does not increase easily, and even if it increases once, when the application of electrolysis power is stopped, the redox potential and free effective chlorine concentration decrease rapidly, and the sterilizing electrolyte solution is stabilized. There is a problem that it cannot be supplied.
Japanese Patent Publication No.56-12601 JP 7-313007 A JP-A-8-140512 JP 2003-174828 A JP 2003-235373 A JP 2004-33195 A JP 2004-81186 A JP 200497042 A Japanese Patent Laid-Open No. 2004-155706 Japanese Examined Patent Publication No. 4-94785 Japanese Patent No. 2619756 Japanese Patent No. 2627100 JP-A-10-128336 JP-A-11-266733 JP-A-7-313982 Japanese Patent Application Laid-Open No. 8-299996 JP 10-314746 A JP 2003-170167 A

本発明は、上記従来技術の課題及び現状等に鑑み、これを解消しようとするものであり、養殖海苔に着生するケイ藻類等の雑藻類、スミノリ症等の原因となる細菌症等の各種病害に対し、効果的、効率的に防除若しくは予防でき、かつ、海洋環境に対する負荷のできるだけ少ない海苔の雑藻駆除及び病害防除のための海苔処理方法及び海苔処理剤を提供することを目的とする。   The present invention is to solve this problem in view of the problems and current situation of the prior art described above, and includes various algae such as diatoms that grow on cultured seaweeds, various bacterial diseases such as sminoliosis. An object of the present invention is to provide a laver treatment method and a laver treatment agent that can effectively and efficiently control or prevent diseases, and that eliminate as much of the seaweed as possible and control diseases. .

本発明者は、上記従来の課題等を解決するために、鋭意検討した結果、養殖海苔の雑藻駆除及び病害菌防除を行う手段として、特定の有機酸を添加した海水を電気分解して得られる特定性状の電解液により海苔網を処理することにより、上記目的の海苔処理方法、海苔処理剤が得られることを見い出し、本発明を完成するに至ったのである。   As a result of diligent studies to solve the above-described conventional problems, the present inventor obtained by electrolyzing seawater to which a specific organic acid was added as a means for controlling miscellaneous algae and controlling pests of cultured laver. The present inventors have found that the above-mentioned laver treatment method and laver treatment agent can be obtained by treating a laver net with an electrolyte having a specific property. Thus, the present invention has been completed.

すなわち、本発明は、次の(1)〜(8)に存する。
(1) 有機酸の海水溶液を電気分解して得られる電気分解液を用いて行う海苔の雑藻駆除及び海苔の病害駆除のための海苔処理方法であって、上記有機酸が、酸解離指数(pKa)4以上の有機酸の少なくとも1種からなることを特徴とする海苔処理方法。
(2) 有機酸がプロピオン酸、酢酸、コハク酸から選ばれる少なくとも1種である上記(1)記載の海苔処理方法。
(3) 有機酸の海水溶液のpHが2〜5の範囲である上記(1)又は(2)に記載の海苔処理方法。
(4) 電気分解の方式が、陽極、陰極の間に隔膜を設けない無隔膜式とする上記(1)〜(3)の何れか一つに記載の海苔処理方法。
(5) 電気分解液のpHが3〜5の範囲であり、かつ、酸化還元電位が1140mv以上で、遊離有効塩素濃度が1ppm以上である上記(1)〜(4)の何れか一つに記載の海苔処理方法。
(6) 上記(1)〜(5)の何れか一つに記載の条件で調製した電気分解液を用いて、海苔網を浸漬処理又は散布処理で処理する海苔処理方法。
(7) 電気分解液の調製は、海苔作業船上に設置された電気分解槽で行うと共に、海苔作業船上に設置された処理槽内で海苔網の処理を行い、かつ、電気分解槽と処理槽とはポンプを用いて電気分解液の循環を行い、海苔処理中は上記(5)に記載した処理液の性状を保持すべく電気分解が行われることを特徴とする海苔処理方法。
(8) 上記(1)〜(5)の何れか一つに記載の条件で調製した電気分解液からなることを特徴とする海苔処理剤。
That is, the present invention resides in the following (1) to (8).
(1) A laver treatment method for controlling algal miscellaneous algae and laver diseases using an electrolysis solution obtained by electrolyzing an organic acid seawater solution, wherein the organic acid has an acid dissociation index (PKa) A laver treatment method comprising at least one of four or more organic acids.
(2) The laver treatment method according to (1), wherein the organic acid is at least one selected from propionic acid, acetic acid, and succinic acid.
(3) The seaweed treatment method according to (1) or (2) above, wherein the pH of the organic acid seawater solution is in the range of 2 to 5.
(4) The laver treatment method according to any one of (1) to (3), wherein the electrolysis method is a non-diaphragm type in which no diaphragm is provided between the anode and the cathode.
(5) In any one of the above (1) to (4), the pH of the electrolysis solution is in the range of 3 to 5, the oxidation-reduction potential is 1140 mV or more, and the free effective chlorine concentration is 1 ppm or more. The seaweed processing method as described.
(6) A laver treatment method in which a laver net is treated by dipping or spraying using the electrolysis solution prepared under the conditions described in any one of (1) to (5) above.
(7) The electrolysis solution is prepared in an electrolysis tank installed on the seaweed work boat, and the laver net is treated in the treatment tank installed on the seaweed work boat. And circulate the electrolysis solution using a pump, and electrolysis is performed during the laver treatment to maintain the properties of the treatment solution described in (5) above.
(8) A laver treatment agent comprising an electrolysis solution prepared under the conditions described in any one of (1) to (5) above.

本発明において、「海苔処理」とは、養殖海苔に着生し海苔の生育を阻害したり品質低下の原因となるケイ藻類等の雑藻類駆除、海苔葉体表面に着生または寄生してスミノリ症等の原因となる細菌類、および緑班病、擬似しろぐされ病等病害菌の駆除、または、防除、もしくは予防または海苔活性化を目的として、本発明を用いて、海苔網を処理液に浸漬したり、処理液を散布して施用するこという。
ここで、上記「雑藻類の駆除」とは、海苔に着生または混生するケイ藻類等の雑藻類を選択的に殺藻除去することを意味する。また、「病原細菌類の駆除、防除」とは、スミノリ症の原因となる針状細菌をはじめとして、緑斑病、擬似しろぐされ病等の原因となる細菌類の殺菌除去することを意味する。更に、「病害の防除もしくは予防」とは、海苔病害の治療または海苔が病害に冒されるのを予防することを意味する。また、「海苔の活性化」とは、海苔の生長促進、海苔の色、艶などの品質を向上させることを意味する。
また、本発明において、浸漬(液浸)処理とは、海苔の生育着生している海苔網をローラー等を用いて処理槽内へ手繰りこみ一定時間浸漬、または処理液中を通過させることをいう。また、散布処理とは、推進装置を備えた海苔処理船(潜り船ともいう)、または箱舟で海苔網の下を潜って海苔網を空中に持ち上げ、シャワーまたは散液ノズル等を用いて海苔網の下または上から処理液を散布することをいう。
In the present invention, the term “seaweed treatment” refers to the elimination of moss, such as diatoms, which grow on cultured seaweed and inhibit the growth of seaweed or cause quality degradation. For the purpose of extermination, control, prevention, or nori activation of bacteria causing causative diseases, etc. and green spot disease, pseudo-scouring disease, etc., laver net is used as a treatment solution. It is said to be immersed or sprayed with a treatment solution.
Here, the above-mentioned “extermination of miscellaneous algae” means that algal species such as diatoms growing on or mixed with nori are selectively killed and removed. In addition, the term “control and control of pathogenic bacteria” means the sterilization and removal of bacteria causing causative bacteria that cause sminoliosis, as well as green spots, pseudo-squeezed diseases, etc. . Furthermore, “control or prevention of disease” means treatment of a laver disease or prevention of a laver from being affected by a disease. “Activation of seaweed” means improving the quality of seaweed growth, color of laver, gloss, and the like.
Further, in the present invention, the immersion (immersion) treatment means that the laver net on which the nori grows and grows is hand-rolled into the treatment tank using a roller or the like, or is immersed in the treatment liquid for a certain period of time or passed through the treatment liquid. Say. In addition, the spraying process is a seaweed processing ship (also called a diving ship) equipped with a propulsion device, or a ark that dives under the seaweed net to lift the seaweed net into the air and uses a shower or a spray nozzle etc. This means spraying the treatment liquid from below or above the net.

本発明によれば、従来の処理剤では駆除が困難であった付着ケイ藻のタベラリアが効果的に駆除でき、かつ、スミノリ症等の原因となる有害細菌類もあわせて短時間で、効率的に駆除でき、また、従来の処理剤に比べ海洋環境に対する負荷が少ない海苔処理方法、海苔処理剤が提供される。   According to the present invention, the attached diatom Taberaria, which was difficult to remove with conventional treatment agents, can be effectively eliminated, and harmful bacteria that cause Sminoriosis and the like can be effectively removed in a short time. In addition, a laver treatment method and a laver treatment agent are provided that can be eliminated and have less burden on the marine environment than conventional treatment agents.

以下に、本発明の実施形態を詳しく説明する。
本発明の海苔処理方法は、有機酸の海水溶液を電気分解して得られる電気分解液を用いて行う海苔の雑藻駆除及び海苔の病害駆除のための海苔処理方法であって、上記有機酸が、酸解離指数(pKa)4以上の有機酸の少なくとも1種からなることを特徴とするものである。
Hereinafter, embodiments of the present invention will be described in detail.
The laver treatment method of the present invention is a laver treatment method for controlling laver weeds and nori disease using an electrolysis solution obtained by electrolyzing an aqueous solution of an organic acid, the organic acid Is composed of at least one organic acid having an acid dissociation index (pKa) of 4 or more.

本発明において、電気分解液を調製するための被電解液(原液)は、酸解離指数(pKa)4以上の有機酸の少なくとも1種からなる有機酸の海水溶液からなり、かつ、そのpHが2〜5の範囲にあるものが望ましい。
用いることができる有機酸は、酸解離指数(pKa)4以上の有機酸、例えば、プロピオン酸(pKa4.87)、酢酸(pKa4.76)、コハク酸(pKa4.21)、酪酸(pKa4.8)、吉草酸(pKa4.8)カプロン酸(pKa4.8)などの少なくとも1種(各単独、又は2種以上の混合物)が挙げられる。好ましくは、異臭が少なく使用し易い等の点から、コハク酸、酢酸、プロピオン酸の少なくとも1種望ましい。
なお、酸解離指数(pKa)4未満(電離定数が1×10超過)の酸、例えば、乳酸(pKa3.86)、リンゴ酸(pKa3.40)、クエン酸(pKa3.16)、酒石酸(pKa3.06)、フマル酸(pKa3.02)等を使用した場合には、電気分解によって生成した塩素等の酸化力の強い物質はこれら電離の大きな酸と反応し、電解液の酸化還元電位(ORP)及び遊離有効塩素(ACC)濃度はなかなか上昇せず、また、一旦上昇しても、電解電力の印加を中止すると、酸化還元電位及び遊離有効塩素濃度は速やかに低下し、殺菌力のある電解液を安定して供給することができないという課題が生じ、好ましくない。
本発明では、有機酸として、上記酸解離指数(pKa)4以上の有機酸の少なくとも1種を用いる場合には、電解液との反応性が低く、酸化還元電位及び有効塩素濃度の低下は起こりにくく、従って、安定した電解液が供給されるものとなる。
In the present invention, an electrolyzed solution (stock solution) for preparing an electrolysis solution is composed of a seawater solution of an organic acid composed of at least one organic acid having an acid dissociation index (pKa) of 4 or higher, and has a pH of The thing in the range of 2-5 is desirable.
Organic acids that can be used are organic acids having an acid dissociation index (pKa) of 4 or higher, such as propionic acid (pKa4.87), acetic acid (pKa4.76), succinic acid (pKa4.21), butyric acid (pKa4.8). ), At least one (each alone or a mixture of two or more) such as valeric acid (pKa 4.8) caproic acid (pKa 4.8). Preferably, at least one of succinic acid, acetic acid, and propionic acid is desirable from the standpoint of ease of use with less off-flavors.
Acids having an acid dissociation index (pKa) of less than 4 (ionization constant exceeding 1 × 10 4 ), such as lactic acid (pKa 3.86), malic acid (pKa 3.40), citric acid (pKa 3.16), tartaric acid ( When pKa3.06), fumaric acid (pKa3.02), etc. are used, substances with strong oxidizing power such as chlorine produced by electrolysis react with these highly ionized acids, and the redox potential of the electrolyte ( ORP) and free effective chlorine (ACC) concentrations do not increase easily, and even if they increase once, when the application of electrolytic power is stopped, the redox potential and free effective chlorine concentration decrease rapidly and have bactericidal activity The subject that electrolyte solution cannot be supplied stably arises and is not preferable.
In the present invention, when at least one organic acid having an acid dissociation index (pKa) of 4 or higher is used as the organic acid, the reactivity with the electrolytic solution is low, and the redox potential and the effective chlorine concentration decrease. Therefore, a stable electrolyte is supplied.

また、酸解離指数(pKa)4以上の有機酸、例えば、コハク酸、酢酸、プロピオン酸の中で比較すると、酢酸が若干反応性が高く、コハク酸とプロピオン酸はほぼ同等で電解液との反応性は低い性質を持っているものと推察される。これら二つの有機酸の他の物性を比較すると、コハク酸には常温での揮発性は殆んどないが、酢酸とプロピオン酸には高い揮発性があり、電解液使用現場で臭気を放つため、開放条件で使用する海苔処理剤として多量に使用するには若干使用性に劣ることとなる。一方、コハク酸は電解液の安定性及び常温での不揮発性では好ましい性質を有しているが、水に対する溶解性があまりよくなく、この点、電解補助剤として水溶液の原液を調製する場合少し不便である。
従って、本発明では、更なる使用性等の点から、特に好ましくは、コハク酸を主成分(有機酸中に50重量%以上)とし、更にプロピオン酸及び/又は酢酸を含有せしめることが望ましい。これにより、更により望ましい被電解液が供給できるものとなる。
In addition, when compared with organic acids having an acid dissociation index (pKa) of 4 or more, such as succinic acid, acetic acid, and propionic acid, acetic acid is slightly more reactive, and succinic acid and propionic acid are almost equivalent and It is inferred that the reactivity is low. Comparing the other physical properties of these two organic acids, succinic acid has almost no volatility at room temperature, but acetic acid and propionic acid have high volatility, which causes odors at the site where the electrolyte is used. When used in a large amount as a laver treatment agent used under open conditions, the usability is slightly inferior. On the other hand, succinic acid has desirable properties in terms of stability of the electrolytic solution and non-volatility at room temperature, but its solubility in water is not so good. In this respect, when preparing a stock solution of an aqueous solution as an electrolytic aid, Inconvenient.
Therefore, in the present invention, from the viewpoint of further usability and the like, it is particularly preferable that succinic acid is a main component (50% by weight or more in the organic acid) and propionic acid and / or acetic acid is further contained. Thereby, an even more desirable electrolytic solution can be supplied.

本発明において、被電解液の溶媒は、天然海水をそのまま用いることができ、更に天然海水に食塩、塩化カルシウム等の電解質成分を適宜量(1〜10重量%)添加してもよく、また塩濃度が海水と同様の食塩水からなる人工海水も用いることができる。   In the present invention, natural seawater can be used as a solvent for the electrolyte solution, and an appropriate amount (1 to 10% by weight) of an electrolyte component such as sodium chloride and calcium chloride may be added to the natural seawater. Artificial seawater composed of saline similar to seawater can also be used.

また、上記被電解液(原液)のpHは、2〜5の範囲に調整されているものが好ましい。このpHの調整は、用いる有機酸種、使用量などにより調整され、上記有機酸等の酸の濃度は通常、海水溶液全量に対して、0.01〜0.5重量%(0.00001〜0.1モル)程度である。
このpHが2未満であると、電解液中に分子状塩素(Cl)の含有比率が高くなり、塩素ガス発生の危険性が高くなり、一方、pHが5を越えると、殺藻殺菌効果の低下が見られ、好ましくない。
The pH of the electrolyte solution (stock solution) is preferably adjusted to a range of 2 to 5. The pH is adjusted depending on the type of organic acid used, the amount used, and the like. The concentration of the acid such as the organic acid is usually 0.01 to 0.5% by weight (0.00001 to 0.1 mol).
If the pH is less than 2 , the content ratio of molecular chlorine (Cl 2 ) in the electrolyte solution is increased, and the risk of chlorine gas generation is increased. Is not preferable.

本発明において、電気分解液(電解液)は、上記酸解離指数(pKa)4以上の有機酸の少なくとも1種からなる有機酸が溶解され、かつpHが2〜5の範囲にある海水溶液(被電解液)に、陽極及び陰極からなる電極により直流電流を通電して得られるものである。また、電気分解の方式としては、装置の保守管理の容易性の点から、陰陽両極の間に隔膜を設けない無隔膜式とすることが好ましい。
本発明の効果が更に有効に作用するためには、得られる電気分解液は、pHが酸性であればよいが、pH3〜5であることが好ましい。この電気分解液のpHが3未満であると、電解液中に塩素化合物は分子状塩素(Cl)の含有比率が高くなり、塩素ガス発生の危険性が高くなり、一方、pHが5を越えると、殺菌力に劣る次亜塩素酸イオン(OCl)の比率が高くなり、殺藻殺菌効果の低下が見られ、好ましくない。従って、有害ガスの発生が防げ、かつ、殺菌、殺藻効果の高い次亜塩素酸(HOCl)の比率が高くなるpH3〜5の範囲にすることが好ましい。
また、海苔処理に使用する電解液の酸化還元電位(ORP)は、水素電極換算値で1140mv以上の酸化状態で、1ppm以上の遊離有効塩素濃度(ACC)の発生がある性状を示すものであればよいが、好ましくは、酸化還元電位(ORP)は。1150mv以上とすることが望ましく、更に好ましくは、1150〜1220mvとすることが望ましく、有効塩素濃度(ACC)は3ppm以上、更に好ましくは3〜15ppmとすることが更に望ましい。
In the present invention, the electrolysis solution (electrolytic solution) is an aqueous seawater solution in which an organic acid composed of at least one organic acid having an acid dissociation index (pKa) of 4 or higher is dissolved and the pH is in the range of 2 to 5. It is obtained by passing a direct current through an electrode (electrolyte) to an electrode comprising an anode and a cathode. The electrolysis method is preferably a non-diaphragm type in which no diaphragm is provided between the positive and negative electrodes from the viewpoint of ease of maintenance and management of the apparatus.
In order for the effect of the present invention to work more effectively, the obtained electrolysis solution may be acidic, but is preferably pH 3-5. When the pH of the electrolysis solution is less than 3, the chlorine compound in the electrolyte solution has a high molecular chlorine (Cl 2 ) content ratio, which increases the risk of chlorine gas generation. If it exceeds, the ratio of hypochlorite ion (OCl ) that is inferior in sterilizing power increases, and the algaecidal sterilizing effect decreases, which is not preferable. Therefore, it is preferable to set the pH within a range of 3 to 5 where the generation of harmful gas can be prevented and the ratio of hypochlorous acid (HOCl) having a high sterilizing and algicidal effect is high.
In addition, the oxidation-reduction potential (ORP) of the electrolyte used for laver treatment should be characterized by the occurrence of free effective chlorine concentration (ACC) of 1 ppm or more in an oxidized state of 1140 mV or more in terms of hydrogen electrode. The redox potential (ORP) is preferred. 1150 mv or more is desirable, more preferably 1150 to 1220 mv, and the effective chlorine concentration (ACC) is 3 ppm or more, more preferably 3 to 15 ppm.

本発明では、有効な海苔処理に好適な上記範囲の電気分解液のpH、酸化還元電位(OPR)状態を保つためには、好ましくは、海苔処理実施中も新たな酸を溶解した酸溶液の補給と電解のための印加(通電)は継続し続けることが望ましい。酸溶液はpHメーターに連動させた給液ポンプによりpHを指標にして補給することが好ましく、印加の継続は残留塩素計に連動させた電源装置により、遊離有効塩素濃度を指標に印加を行うか、または、酸化還元電位計に連動させた電源装置により、酸化還元電位を指標に印加を行うことが好ましい。   In the present invention, in order to maintain the pH and oxidation-reduction potential (OPR) state of the electrolysis solution in the above-mentioned range suitable for effective laver treatment, it is preferable that an acid solution in which new acid is dissolved even during laver treatment. It is desirable to continue application (energization) for replenishment and electrolysis. The acid solution is preferably replenished by using a feed pump linked to the pH meter as an index, and whether to continue the application by using the power supply device linked to the residual chlorine meter as an index of the free effective chlorine concentration. Alternatively, it is preferable to apply the oxidation-reduction potential as an index by a power supply device linked to the oxidation-reduction potentiometer.

本発明において、処理槽で用いる海苔処理剤(液)は、上記条件となるように調製した電気分解液からなるものである。この電気分解液が収容される処理槽で、養殖海苔を浸漬処理するか(浸漬法、浸漬処理)、または、該電気分解液を養殖海苔に散布すること(散布法、散布処理)により、海苔の処理が行われる。
これらの海苔処理では、電気分解液と海苔が接触する時間、つまり、処理時間は、調製された電解液の性状及び、対象とする雑藻、病原菌により異なるが、1秒〜1分の間であることが好ましく、更に好ましくは、5秒〜30秒であることが望ましい。
上記処理槽で処理した後、海苔網は直ちに海水中に戻し通常の養殖が継続される。
In the present invention, the laver treatment agent (liquid) used in the treatment tank is composed of an electrolysis solution prepared so as to satisfy the above conditions. By immersing the cultured laver in the treatment tank containing the electrolyzed liquid (immersion method, immersion process) or by spraying the electrolyzed solution on the cultured laver (spraying method, spraying process) Is performed.
In these laver treatments, the time during which the electrolysis solution and the laver are in contact, that is, the treatment time varies depending on the properties of the prepared electrolyte, the target algae and pathogens, but between 1 second and 1 minute. It is preferable that it is preferably 5 seconds to 30 seconds.
After the treatment in the treatment tank, the laver net is immediately returned to seawater and normal aquaculture is continued.

本発明において、上記有機酸の海水溶液の電気分解は、海苔作業船上に設置された電気分解槽で行い、調製された電解液は循環ポンプを用いて、同様に海苔作業船上に設置された処理槽に供給し、当該処理槽で海苔の処理を行う。電解槽と処理槽の間は、循環ポンプを用い、運転中は常時電解液の循環を行う。電解槽と処理槽は隣接して一体化した構造でも、作業船上の別々の位置に設置し、循環ポンプ、循環パイプで接続するいずれの構造を用いてもよい。
本発明に用いる電気分解槽に用いる電極は、陽極にカーボン、白金、パラジウム、イリジウム等が用いられるが、電解効率等の面から白金又は白金被覆電極を使用することが好ましい。陰極には、鉄、ステンレス、又はチタン等が用いられるが、防食性等の点から、ステンレス又はチタンを用いることが好ましい。
In the present invention, the electrolysis of the organic acid seawater solution is performed in an electrolysis tank installed on a seaweed work boat, and the prepared electrolyte is treated similarly on the seaweed work boat using a circulation pump. It supplies to a tank and processes a laver in the said processing tank. A circulation pump is used between the electrolytic bath and the treatment bath, and the electrolytic solution is constantly circulated during operation. The electrolytic bath and the processing bath may be adjacent to each other or may be installed at different positions on the work boat and connected by a circulation pump or a circulation pipe.
As the electrode used in the electrolysis tank used in the present invention, carbon, platinum, palladium, iridium or the like is used for the anode, but platinum or a platinum-coated electrode is preferably used from the viewpoint of electrolytic efficiency. For the cathode, iron, stainless steel, titanium, or the like is used, but it is preferable to use stainless steel or titanium from the viewpoint of corrosion resistance and the like.

本発明において、連続的に海苔処理を行うための具体的な装置としては、例えば、図1に示す海苔処理船10に搭載した海苔処理装置20を用いることができる。
図中、21は処理槽、22は電解液貯槽、23は電気分解槽、24は電解用酸原液貯槽、25はpH制御器、26は遊離塩素濃度制御機又はORP制御機、27は電解液補給配管、28は電解液回収配管、29は海苔網である。
In the present invention, as a specific device for continuously performing the laver treatment, for example, a laver treatment device 20 mounted on the laver treatment vessel 10 shown in FIG. 1 can be used.
In the figure, 21 is a processing tank, 22 is an electrolytic solution storage tank, 23 is an electrolysis tank, 24 is an electrolytic acid stock solution storage tank, 25 is a pH controller, 26 is a free chlorine concentration controller or ORP controller, and 27 is an electrolytic solution. A replenishment pipe, 28 is an electrolyte recovery pipe, and 29 is a laver net.

処理槽21で使用する上記電解液は、酸解離指数(pKa)4以上の有機酸の少なくとも1種からなる有機酸の海水溶液を電気分解して得られる電解液であるので、タベラリア等のケイ藻類に対する駆除効果、及び針状細菌などの病害菌類に対する駆除効果は高く、これらの雑藻類、病害菌類は電解液に5秒〜20秒間程度接触するだけで、ほぼ100%の駆除効果が得られる。
本実施形態では、養殖海苔の雑藻駆除及び病害菌防除を短時間で連続的に行うことができる。すなわち、図1に示したシステムの構造の処理船が、例えば、約10〜20m/分の速度で前方へ移動するものであれば、処理槽21で処理された海苔網29は、5秒から30秒で海苔処理が行われる。
The electrolyte used in the treatment tank 21 is an electrolyte obtained by electrolyzing a seawater solution of an organic acid composed of at least one organic acid having an acid dissociation index (pKa) of 4 or higher. The algae control effect and the control effect against diseased fungi such as needle-shaped bacteria are high, and these miscellaneous algae and disease fungi can obtain a control effect of almost 100% just by contacting the electrolyte for about 5 to 20 seconds. .
In this embodiment, it is possible to continuously carry out algae control and pest control of cultured seaweed in a short time. That is, if the processing ship having the structure of the system shown in FIG. 1 moves forward at a speed of about 10 to 20 m / min, the laver net 29 processed in the processing tank 21 starts from 5 seconds. Nori processing is performed in 30 seconds.

本発明において、図1に示すように、処理槽21で使用する電解液の調製は、海苔作業船10上に設置された電気分解槽23で行い、設定された遊離有効塩素濃度又は還元電位(ORP)を維持するようにモニターの遊離塩素濃度計又は酸化還元電位計(遊離塩素濃度制御機又はORP制御機26)に連動させて電気分解を継続する。また、電解液のpHは、pHメーター(pH制御機25)に連動させた給液ポンプにより電解用酸原液貯槽24より酸原液を供給して設定pH値に常時調整することが望ましい。
なお、電解液の少しくらいのpH値変動は、殺藻効果、殺菌効果に影響を与えないが、pHに影響を与える上述の有機酸の濃度は電解液の酸化還元電位に大きな影響を与え、ひいては、殺藻効果、殺菌効果に影響するため、運転中は常時pHを調整することが望ましい。
In the present invention, as shown in FIG. 1, the electrolytic solution used in the treatment tank 21 is prepared in an electrolysis tank 23 installed on the laver work vessel 10, and the set free effective chlorine concentration or reduction potential ( The electrolysis is continued in conjunction with the monitor's free chlorine concentration meter or oxidation-reduction potentiometer (free chlorine concentration controller or ORP controller 26) so as to maintain ORP. Further, it is desirable that the pH of the electrolytic solution is constantly adjusted to the set pH value by supplying the acid stock solution from the acid stock solution storage tank 24 for electrolysis by a feed pump linked to a pH meter (pH controller 25).
In addition, although the pH value fluctuation of the electrolyte solution does not affect the algicidal effect and the bactericidal effect, the concentration of the above-mentioned organic acid that affects the pH greatly affects the oxidation-reduction potential of the electrolyte solution, As a result, it affects the algicidal effect and the bactericidal effect, so it is desirable to adjust the pH constantly during operation.

本発明における海苔処理作業は、例えば、図1に示すように、海苔処理船10により、海苔網29の下を潜りながら行うことができる。海苔処理船10の推進移動により処理槽21に導入された海苔網29は電解液に浸漬された後、海苔網29は処理船10の進行にしたがって後方に空中を移動し、処理船10の後方で海面に戻される。この間、処理船の進行速度が10〜20m/分前後で、処理槽21の縦軸方向の長さが2〜4mであれば、処理槽21での浸液処理時間は6〜24秒の短時間となる。なお、海苔処理船上の処理槽は縦軸方向の寸法が約2〜4mである。
本発明では、処理槽21には、上述の条件で調製した電気分解液を連続的に供給して、浸漬処理又は散布処理で海苔処理することができることとなる。
For example, as shown in FIG. 1, the laver treatment work in the present invention can be performed while diving under a laver net 29 by a laver treatment ship 10. After the laver net 29 introduced into the processing tank 21 by the propulsion movement of the laver processing vessel 10 is immersed in the electrolytic solution, the laver net 29 moves in the air as the processing vessel 10 advances, and the rear of the processing vessel 10 It is returned to the sea level. During this time, if the traveling speed of the processing vessel is around 10 to 20 m / min and the length of the processing tank 21 in the vertical axis direction is 2 to 4 m, the immersion treatment time in the processing tank 21 is as short as 6 to 24 seconds. It will be time. In addition, the dimension of the vertical axis | shaft direction of the processing tank on a laver processing ship is about 2-4 m.
In the present invention, the electrolysis solution prepared under the above-described conditions is continuously supplied to the treatment tank 21, and the seaweed treatment can be performed by the immersion treatment or the spraying treatment.

このように構成される本発明では、酸解離指数(pKa)4以上の有機酸の少なくとも1種からなる有機酸の海水溶液を電気分解して得られる電気分解液を用いて海苔の雑藻駆除及び海苔の病害駆除を行うものであり、電解中は速やかな酸化還元電位(ORP)と遊離有効塩素濃度(ACC)の上昇が見られ、pHの変動は小さく安定した電解液が得られると共に、印加中止後、24時間経過したものであっても電解液は優れた安定性を有するものとなるため、従来の処理剤では駆除が困難であった付着ケイ藻のタベラリア等が効果的に駆除でき、かつ、スミノリ症をはじめとする病害菌類を短時間に、効率的に、かつ、連続的に防除でき、健全な養殖海苔を育成できる海苔処理方法、海苔処理剤が得られることとなる。   In the present invention configured as described above, weeds are removed from seaweed using an electrolysis solution obtained by electrolyzing a seawater solution of an organic acid composed of at least one organic acid having an acid dissociation index (pKa) of 4 or more. And laver disease control, rapid oxidation-reduction potential (ORP) and free effective chlorine concentration (ACC) increase during electrolysis, stable pH is obtained, and stable electrolyte is obtained. Even if 24 hours have passed since the application was stopped, the electrolyte solution has excellent stability, so it is possible to effectively remove the attached diatom tabellaria, which was difficult to remove with conventional treatment agents. In addition, a laver treatment method and a laver treatment agent capable of efficiently and continuously controlling pathogenic fungi such as sminoriosis in a short time and cultivating a healthy cultured laver can be obtained.

次に、試験例となる実施例により本発明を更に詳細に説明する。   Next, the present invention will be described in more detail with reference to test examples.

下記試験例1〜3は、図2に示す、処理槽1(総容量4リットル)と電気分解処理装置となる電気分解槽(総容量1リットル)2とを有する海苔処理装置を使用した。電気分解に使用する直流電流は、ケンウッドテイー・エム・アイ社製の直流定電圧・定電流電源PR36−3Aにより供給した。電解方式は、無隔膜式とし、電解電極は、下記試験例1〜3に示す電極を使用した。循環ポンプ3には、腐蝕を防ぐため液接部分には金属を使用しないケミカルポンプを使用し、3分間で全液量が1回転する循環量とした。
ORP及びpHの測定は、東興化学社製パーソナルpH/ORPメータで測定、有効塩素(ACC)は関東化学(株)製「残留塩素測定用ラピッドDPD試薬」で検出した。
In the following Test Examples 1 to 3, a laver treatment apparatus having a treatment tank 1 (total capacity 4 liters) and an electrolysis tank (total capacity 1 liter) 2 serving as an electrolysis treatment apparatus shown in FIG. 2 was used. The DC current used for the electrolysis was supplied by a DC constant voltage / constant current power supply PR36-3A manufactured by Kenwood TMI. The electrolysis method was a diaphragm type, and the electrodes shown in Test Examples 1 to 3 below were used as the electrolysis electrodes. In order to prevent corrosion, the circulation pump 3 was a chemical pump that does not use metal in the liquid contact portion, and the circulation amount was such that the total amount of liquid was rotated once in 3 minutes.
ORP and pH were measured with a personal pH / ORP meter manufactured by Toko Chemical Co., and effective chlorine (ACC) was detected with "Rapid DPD reagent for residual chlorine measurement" manufactured by Kanto Chemical Co., Inc.

(試験例1)
塩酸、コハク酸、酢酸及びプロピオン酸のそれぞれにつき数段階のpHの海水溶液(被電解液)を調製し、それぞれにつき電気分解を行い、それぞれの電解液の性状を印加時間の経過と共にその経時変化を評価した。
また、印加開始30分経過後の電解液を用い、海苔の付着ケイ藻であるタベラリア及びリクモフォーラの殺藻試験、針状細菌の殺菌試験及び海苔葉体細胞に対する傷害性試験を行った。
電気分解は、陽極にカーボン、陰極に鉄を使用し、電解電力は6V×0.35Aとした。電解液の調製及び海苔葉体処理の温度は、11℃であった。
これらの試験結果を下記表1〜表4に示す。
(Test Example 1)
Prepare several levels of seawater solution (electrolyte) for each of hydrochloric acid, succinic acid, acetic acid and propionic acid, electrolyze each, and change the properties of each electrolyte over time Evaluated.
In addition, using the electrolyte solution after 30 minutes from the start of application, an algae killing test of tabellaria and liquophora, which are adherent diatoms of seaweed, a bactericidal test of needle-shaped bacteria, and a toxicity test on laver leaf cell.
For the electrolysis, carbon was used for the anode, iron was used for the cathode, and the electrolysis power was 6 V × 0.35 A. The temperature of the electrolytic solution preparation and the laver leaf body treatment was 11 ° C.
These test results are shown in Tables 1 to 4 below.

Figure 2006151925
Figure 2006151925

Figure 2006151925
Figure 2006151925

Figure 2006151925
Figure 2006151925

Figure 2006151925
Figure 2006151925

上記表1の結果を見ると、塩酸添加海水では、電解前のpHが3.00の場合は、電気分解によりpHにさほど大きな変化は見られず、有利有効塩素(ACC)もよく発生し、ケイ藻類の殺藻効果も高いことが判った。しかし、pH4以上の被電解液ではpH上昇が大きく、ACCの発生濃度も低く、ケイ藻殺藻効果及び殺菌は著しく劣ることが判った。これは、塩酸も電気分解を受け、かつ、塩酸の緩衝作用が弱いためpH変動が大きく現れ、そのためケイ藻殺藻作用も弱くなったものと考えられる。
これに対して、上記表2〜4の結果から明らかなように、コハク酸電解液、酢酸電解液及びプロピオン酸電解液では、pH3〜5のいずれも電解液中のpH変化は軽微で、かつ、ACCの発生状況も良好であった。このため、ケイ藻類殺藻及び殺菌効果も高く性能の安定した電解液が生成されることが判明した。
Looking at the results in Table 1 above, in hydrochloric acid-added seawater, when the pH before electrolysis is 3.00, there is no significant change in pH due to electrolysis, and advantageous effective chlorine (ACC) is often generated, It was found that the algaecidal effect of diatoms is high. However, it was found that an electrolyzed solution having a pH of 4 or higher has a large pH increase and a low concentration of ACC, and the diatom algicidal effect and sterilization are remarkably inferior. This is probably because hydrochloric acid is also electrolyzed and the buffering action of hydrochloric acid is weak, resulting in a large pH fluctuation, and hence the diatom algae killing action is also weakened.
On the other hand, as is clear from the results of Tables 2 to 4, in the succinic acid electrolytic solution, the acetic acid electrolytic solution, and the propionic acid electrolytic solution, any of pH 3 to 5 has a slight pH change in the electrolytic solution, and The occurrence of ACC was also good. For this reason, it became clear that an electrolytic solution with high diatom algae killing effect and stable performance was produced.

(試験例2)
コハク酸0.05重量%及び酢酸0.05重量%を添加した海水溶液と、塩酸0.007重量%添加した海水溶液、コハク酸0.05重量%及びプロピオン酸0.05重量%を添加した海水溶液、コハク酸0.05重量%と、酢酸0.025重量%とプロピオン酸0.025重量%を添加した海水溶液からなる被電解液を電気分解し、印加中及び印加中止後の電解液性状の経時変化を評価した。電気分解には、実施例1で使用した電解槽を使用したが、電気分解は、陽極に白金を、陰極にステンレスを使用し、電解電力は6V×0.5Aとした。また、印加開始30分経過後の電解液を用い、海苔の付着ケイ藻であるタベラリア及びリクモフォーラの殺藻試験、針状細菌の殺菌試験及び海苔葉体細胞に対する傷害性試験を行った。
電解液の調製及び海苔葉体処理の温度は、11℃であった。
これらの試験結果を下記表5及び表6に示す。
(Test Example 2)
A seawater solution added with 0.05% by weight succinic acid and 0.05% by weight acetic acid, a seawater solution added with 0.007% by weight hydrochloric acid, 0.05% by weight succinic acid and 0.05% by weight propionic acid were added. Electrolyte solution to be electrolyzed consisting of seawater solution, 0.05% by weight of succinic acid, 0.025% by weight of acetic acid and 0.025% by weight of propionic acid. Changes in properties over time were evaluated. For the electrolysis, the electrolytic cell used in Example 1 was used. For the electrolysis, platinum was used for the anode, stainless steel was used for the cathode, and the electrolysis power was 6 V × 0.5 A. In addition, using the electrolyte solution after 30 minutes from the start of application, an algae killing test of tabellaria and liquophora, which are adherent diatoms of seaweed, a bactericidal test of needle-shaped bacteria, and a toxicity test on laver leaf cell.
The temperature of the electrolytic solution preparation and the laver leaf body treatment was 11 ° C.
These test results are shown in Tables 5 and 6 below.

Figure 2006151925
Figure 2006151925

Figure 2006151925
Figure 2006151925

上記表5及び表6の結果を見ると、コハク酸0.05重量%及び酢酸0.05重量%を添加した被電解液、コハク酸0.05重量%及びプロピオン酸0.05重量%を添加した海水溶液、コハク酸0.05重量%と、酢酸0.025重量%とプロピオン酸0.025重量%を添加した海水溶液は、印加後速やかな酸化還元電位(ORP)と遊離有効塩素濃度(ACC)の上昇が見られ、pHの変動は小さく安定した電解液が得られた。この電解液の安定性は、印加中止後24時間経過しても保たれていた。このため、ケイ藻類殺藻及び殺菌効果も高く性能の安定した電解液が生成されることが判明した。
これに対して、塩酸を添加した被電解液は、印加後、ORP及びACCの上昇に時間がかかり、電解液が酸化力を示すようになるのに、20分間の印加時間を要した。また、ORPが高くなった時間頃からpHの上昇が起こり、印加30分後には1.0以上のpH上昇が見られた。このpH上昇は、印加中止後にも続き、24時間後には更に0.5以上のpH上昇が見られ、この試験においても塩酸よりはコハク酸、酢酸を添加した方が安定した性能の電解液が生成された。
Looking at the results in Tables 5 and 6 above, the electrolyte to which 0.05% by weight of succinic acid and 0.05% by weight of acetic acid were added, 0.05% by weight of succinic acid and 0.05% by weight of propionic acid were added. A seawater solution containing 0.05% by weight of succinic acid, 0.025% by weight of acetic acid and 0.025% by weight of propionic acid has a rapid redox potential (ORP) and free effective chlorine concentration ( An increase in ACC) was observed, and a stable electrolyte solution with a small pH fluctuation was obtained. The stability of the electrolytic solution was maintained even after 24 hours had elapsed after the application was stopped. For this reason, it became clear that an electrolytic solution with high diatom algae killing effect and stable performance was produced.
On the other hand, the electrolytic solution to which hydrochloric acid was added took a long time to increase ORP and ACC after application, and it took 20 minutes for the electrolytic solution to exhibit oxidizing power. Further, the pH increased from the time when the ORP became high, and a pH increase of 1.0 or more was observed 30 minutes after the application. This increase in pH continues even after the application is stopped, and after 24 hours, a further increase in pH of 0.5 or more is observed. In this test, an electrolyte solution with more stable performance can be obtained by adding succinic acid and acetic acid than hydrochloric acid. Generated.

(試験例3)
モノカルボン酸であるプロピオン酸、酢酸、乳酸、ジカルボン酸であるコハク酸、リンゴ酸、酒石酸、フマル酸、トリカルボン酸であるクエン酸の海水溶液を電気分解し、印加中及び印加中止後の電解液性状の経時変化を測定した。
各有機酸の濃度は、0.1%、0.2%及び0.4%とし、電気分解は試験例1及び2で使用した実験装置を使用して実施した。電解電極は、陽極にカーボン、陰極にチタンを使用し、電解電力は6V×0.2Aとした。電解温度は11℃であった。
これらの試験結果を下記表7〜9に示す。
(Test Example 3)
Electrolytic solution of seawater solution of monocarboxylic acid propionic acid, acetic acid, lactic acid, dicarboxylic acid succinic acid, malic acid, tartaric acid, fumaric acid, tricarboxylic acid citric acid, during application and after application stop Changes in properties over time were measured.
The concentration of each organic acid was 0.1%, 0.2%, and 0.4%, and electrolysis was performed using the experimental apparatus used in Test Examples 1 and 2. The electrolytic electrode used carbon for the anode and titanium for the cathode, and the electrolysis power was 6 V × 0.2 A. The electrolysis temperature was 11 ° C.
These test results are shown in Tables 7 to 9 below.

Figure 2006151925
Figure 2006151925

Figure 2006151925
Figure 2006151925

Figure 2006151925
Figure 2006151925

上記表7〜9の結果を見ると、印加開始後、酸化還元電位(ORP)と遊離有効塩素濃度(ACC)が最も速やかに上昇し、かつ、高濃度酸溶液でもこれら有利有効塩素等の酸化物質が生成され、安定的に維持されるのはプロピオン酸とコハク酸であった。同様の性質を示してこれにつぐものは酢酸であったが、酢酸の場合は高濃度になるとORPの上昇及びACCの発生までに時間を要した。
これらプロピオン酸、コハク酸及び酢酸の酸解離指数(pKa)は、それぞれ4.87、4.21及び4.76であり、pKaはすべて4以上の酸である。
これに対して、乳酸、リンゴ酸及び酒石酸の低濃度電解液では、ORPのある程度の上昇、及び低濃度ではあるがACCの発生も認められる。しかしながら、印加時間が長くなると、ORPは逆に低下する傾向が見られマイナス電位を示すようになる。また、印加を中止してもこの変化は継続又は促進された。更に、これら有機酸の高濃度液では、ORPは上がることなく、印加時間と共に低下した。これらの酸の酸解離指数(pKa)は、それぞれ3.86、3.40、3.06であった。
また、フマル酸及びクエン酸では、遊離有効塩素の生成は、最も少なく、特にフマル酸では全く発生が認められなかった。塩素の生成が少ないため、ORPの上昇も低く、1000mv以上に達したのは、低濃度クエン酸区の一時期のみであった。これらの酸の解離指数(pKa)はフマル酸が3.02、クエン酸が3.16であった。
From the results shown in Tables 7 to 9, the oxidation-reduction potential (ORP) and free effective chlorine concentration (ACC) rise most rapidly after the start of application, and oxidation of these advantageous effective chlorine and the like is possible even in a high concentration acid solution. It was propionic acid and succinic acid that the material was produced and stably maintained. The acetic acid that showed similar properties was acetic acid, but in the case of acetic acid, it took time until the ORP increased and the ACC occurred when the concentration was high.
The acid dissociation indices (pKa) of propionic acid, succinic acid and acetic acid are 4.87, 4.21 and 4.76, respectively, and pKa is an acid of 4 or more.
On the other hand, in the low concentration electrolytes of lactic acid, malic acid, and tartaric acid, a certain increase in ORP and the occurrence of ACC are observed although the concentration is low. However, as the application time becomes longer, the ORP tends to decrease and shows a negative potential. In addition, this change continued or accelerated even when the application was stopped. Furthermore, ORP did not increase in these high-concentration liquids of organic acids, but decreased with application time. The acid dissociation indices (pKa) of these acids were 3.86, 3.40, and 3.06, respectively.
In addition, in fumaric acid and citric acid, the production of free effective chlorine was the least, and in particular, fumaric acid was not observed at all. Since there was little production of chlorine, the increase in ORP was low, and it reached only 1000 mV or more only in one period of the low concentration citric acid section. The dissociation index (pKa) of these acids was 3.02 for fumaric acid and 3.16 for citric acid.

以上の結果を総合すると、酸解離指数(pKa)4以上のコハク酸、酢酸、プロピオン酸から選ばれる有機酸の少なくとも1種からなる有機酸の海水溶液を電気分解して得られる海苔処理剤は、電解中は速やかな酸化還元電位(ORP)と遊離有効塩素濃度(ACC)の上昇が見られ、pHの変動は小さく安定した電解液が得られると共に、印加中止後、24時間経過したものであっても電解液は優れた安定性を有するものとなるため、従来の処理剤では駆除が困難であった付着ケイ藻のタベラリア等が効果的に駆除でき、かつ、スミノリ症をはじめとする病害菌類を短時間に、効率的に、かつ、連続的に防除でき、健全な養殖海苔を育成できる海苔処理方法、海苔処理剤が得られることが判った。   Summing up the above results, a nori treatment agent obtained by electrolyzing a seawater solution of an organic acid comprising at least one organic acid selected from succinic acid, acetic acid and propionic acid having an acid dissociation index (pKa) of 4 or higher is During electrolysis, a rapid increase in oxidation-reduction potential (ORP) and free effective chlorine concentration (ACC) was observed, and a stable electrolyte with a small pH fluctuation was obtained. Even so, the electrolyte solution has excellent stability, so it is possible to effectively remove the attached diatom tabellaria, which was difficult to remove with conventional treatment agents, and to treat diseases such as Sminori disease. It was found that a laver treatment method and a laver treatment agent that can control fungi efficiently and continuously in a short time and that can grow a healthy cultured laver are obtained.

本発明の実施形態の一例であり、海苔処理方法に用いる海苔処理装置を搭載した海苔処理船を示すシステムの概略図面である。It is an example of an embodiment of the present invention, and is a schematic diagram of a system showing a laver processing ship equipped with a laver processing apparatus used for a laver processing method. 海苔処理方法に用いる電気分解生成装置の一例を示す平面図である。It is a top view which shows an example of the electrolysis production | generation apparatus used for a laver processing method.

符号の説明Explanation of symbols

10 海苔処理船
21 処理槽
10 Nori treatment vessel 21 Treatment tank

Claims (8)

有機酸の海水溶液を電気分解して得られる電気分解液を用いて行う海苔の雑藻駆除及び海苔の病害駆除のための海苔処理方法であって、上記有機酸が、酸解離指数(pKa)4以上の有機酸の少なくとも1種からなることを特徴とする海苔処理方法。   A laver treatment method for controlling laver weeds and nori disease using an electrolysis solution obtained by electrolyzing a seawater solution of an organic acid, wherein the organic acid has an acid dissociation index (pKa) A laver treatment method comprising at least one of four or more organic acids. 有機酸がプロピオン酸、酢酸、コハク酸から選ばれる少なくとも1種である請求項1記載の海苔処理方法。   The method for treating laver according to claim 1, wherein the organic acid is at least one selected from propionic acid, acetic acid, and succinic acid. 有機酸の海水溶液のpHが2〜5の範囲である請求項1又は2に記載の海苔処理方法。   The seaweed treatment method according to claim 1 or 2, wherein the pH of the organic acid seawater solution is in the range of 2 to 5. 電気分解の方式が、陽極、陰極の間に隔膜を設けない無隔膜式とする請求項1〜3の何れか一つに記載の海苔処理方法。   The laver treatment method according to any one of claims 1 to 3, wherein the electrolysis method is a non-diaphragm type in which no diaphragm is provided between the anode and the cathode. 電気分解液のpHが3〜5の範囲であり、かつ、酸化還元電位が1140mv以上で、遊離有効塩素濃度が1ppm以上である請求項1〜4の何れか一つに記載の海苔処理方法。   The nori treatment method according to any one of claims 1 to 4, wherein the pH of the electrolysis solution is in the range of 3 to 5, the oxidation-reduction potential is 1140 mV or more, and the free effective chlorine concentration is 1 ppm or more. 請求項1〜5の何れか一つに記載の条件で調製した電気分解液を用いて、海苔網を浸漬処理又は散布処理で処理する海苔処理方法。   A laver treatment method of treating a laver net by dipping or spraying using the electrolysis solution prepared under the conditions according to any one of claims 1 to 5. 電気分解液の調製は、海苔作業船上に設置された電気分解槽で行うと共に、海苔作業船上に設置された処理槽内で海苔網の処理を行い、かつ、電気分解槽と処理槽とはポンプを用いて電気分解液の循環を行い、海苔処理中は請求項5に記載した処理液の性状を保持すべく電気分解が行われることを特徴とする海苔処理方法。   The electrolysis solution is prepared in an electrolysis tank installed on the seaweed work boat, and the laver net is processed in the treatment tank installed on the seaweed work boat. The electrolysis tank and the treatment tank are pumps. The laver treatment method is characterized in that the electrolysis solution is circulated by using lye and electrolysis is performed to maintain the properties of the treatment solution according to claim 5 during the laver treatment. 請求項1〜5の何れか一つに記載の条件で調製した電気分解液からなることを特徴とする海苔処理剤。   It consists of an electrolysis solution prepared on the conditions as described in any one of Claims 1-5, The laver processing agent characterized by the above-mentioned.
JP2004348713A 2004-12-01 2004-12-01 Nori treatment method and nori treatment agent for controlling noriweed and disease control of nori Expired - Fee Related JP4717424B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004348713A JP4717424B2 (en) 2004-12-01 2004-12-01 Nori treatment method and nori treatment agent for controlling noriweed and disease control of nori
KR1020050115949A KR20060061253A (en) 2004-12-01 2005-11-30 Laver treating method and agent for exterminating seaweeds and preventing diseases of laver
CNA2005101291005A CN1781355A (en) 2004-12-01 2005-12-01 Sea sedge treating method for removing hetoro alga of sea sedge and preventing and curing pest and sea sedge treating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004348713A JP4717424B2 (en) 2004-12-01 2004-12-01 Nori treatment method and nori treatment agent for controlling noriweed and disease control of nori

Publications (2)

Publication Number Publication Date
JP2006151925A true JP2006151925A (en) 2006-06-15
JP4717424B2 JP4717424B2 (en) 2011-07-06

Family

ID=36630637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004348713A Expired - Fee Related JP4717424B2 (en) 2004-12-01 2004-12-01 Nori treatment method and nori treatment agent for controlling noriweed and disease control of nori

Country Status (3)

Country Link
JP (1) JP4717424B2 (en)
KR (1) KR20060061253A (en)
CN (1) CN1781355A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009045000A (en) * 2007-08-20 2009-03-05 Saga Univ Anti-suminori disease bacteriophage and method for preventing suminori disease of cultured laver
JP7429470B1 (en) 2023-04-05 2024-02-08 株式会社山田鉄工 Seaweed net processing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102549525B1 (en) * 2020-01-29 2023-06-30 공주대학교 산학협력단 Active Treatment Agent Composition for Simultaneous Control of Olpidiopsis blight and Red-Rot Disease
CN111533241B (en) * 2020-05-08 2022-08-02 江苏省农业科学院 Chlorella treatment method based on subacid electrolyzed water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201180A (en) * 1996-01-26 1997-08-05 Fuso Kagaku Kogyo Kk Treatment of laver and treatment liquid therefor
JPH11169000A (en) * 1997-12-08 1999-06-29 Fuso Chemical Co Ltd Culture of laver
JP2001151610A (en) * 1999-11-24 2001-06-05 Daiichi Seimou Co Ltd Method for repelling alga/bacterium for the purpose of laver culture
JP2004344102A (en) * 2003-05-23 2004-12-09 Daiichi Seimou Co Ltd Laver-treating method for extermination of miscellaneous algae around laver and control of harmful microorganism of laver
JP2005287387A (en) * 2004-03-31 2005-10-20 Daiichi Seimou Co Ltd Method for processing laver for extermination of miscellaneous algae of laver and disease injury control, and laver processing agent

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201180A (en) * 1996-01-26 1997-08-05 Fuso Kagaku Kogyo Kk Treatment of laver and treatment liquid therefor
JPH11169000A (en) * 1997-12-08 1999-06-29 Fuso Chemical Co Ltd Culture of laver
JP2001151610A (en) * 1999-11-24 2001-06-05 Daiichi Seimou Co Ltd Method for repelling alga/bacterium for the purpose of laver culture
JP2004344102A (en) * 2003-05-23 2004-12-09 Daiichi Seimou Co Ltd Laver-treating method for extermination of miscellaneous algae around laver and control of harmful microorganism of laver
JP2005287387A (en) * 2004-03-31 2005-10-20 Daiichi Seimou Co Ltd Method for processing laver for extermination of miscellaneous algae of laver and disease injury control, and laver processing agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009045000A (en) * 2007-08-20 2009-03-05 Saga Univ Anti-suminori disease bacteriophage and method for preventing suminori disease of cultured laver
JP7429470B1 (en) 2023-04-05 2024-02-08 株式会社山田鉄工 Seaweed net processing method

Also Published As

Publication number Publication date
JP4717424B2 (en) 2011-07-06
KR20060061253A (en) 2006-06-07
CN1781355A (en) 2006-06-07

Similar Documents

Publication Publication Date Title
RU2469537C2 (en) Electrochemical device for biocidal treatments in agricultural use
US6761827B2 (en) Method and apparatus for purifying water
JP6131342B2 (en) Method for producing sterilized cultured water and method for culturing flowing water-sterilized water fish using the same
JP5135600B2 (en) Ship ballast water treatment method
EP2893812B1 (en) Method for post-harvest treating citrus fruit
JP2002104908A (en) Disinfectant agricultural electrolytic water and production unit therefor
CN113215596B (en) System suitable for hypochlorous acid sterilizing water in industrial production
JP4717424B2 (en) Nori treatment method and nori treatment agent for controlling noriweed and disease control of nori
JP4098617B2 (en) Sterilization method
KR101054233B1 (en) Marine life attachment prevention device and seawater supply device using the same
JP4340472B2 (en) Seaweed treatment method for controlling seaweeds and controlling nobacterial fungi
JP4344273B2 (en) Seaweed treatment method for controlling seaweeds and disease control of seaweed
KR101065278B1 (en) Method and device of sterilizing seawater
JP2013046892A (en) Treatment method of ship ballast water
JP2012152695A (en) Electrolytic salt water sterilization method and electrolytic salt water sterilization device
CN210065943U (en) High oxidation water generating equipment
KR20130059376A (en) Surface-active acid drug for laver farming
JP3962601B2 (en) Method and apparatus for producing disease control liquid for agricultural products
JP2013046897A (en) Treatment method of ship ballast water
JP3962671B2 (en) How to eliminate miscellaneous algae in laver nets
JP4846298B2 (en) Seawater disinfection method
JP3671293B2 (en) Method and apparatus for sterilizing seaweed
JPH11253958A (en) Apparatus and method for electrolytic sterilization
Whangchai et al. Use of Electrolyzed Oxidizing Water to Control Postharvest Disease During Storage of Tangerine Cv.'Sai Nam Pung'
CN112142169A (en) Method for disinfecting and sterilizing wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees