JP2006151891A - Preparation method of cyclic carbonate - Google Patents

Preparation method of cyclic carbonate Download PDF

Info

Publication number
JP2006151891A
JP2006151891A JP2004346383A JP2004346383A JP2006151891A JP 2006151891 A JP2006151891 A JP 2006151891A JP 2004346383 A JP2004346383 A JP 2004346383A JP 2004346383 A JP2004346383 A JP 2004346383A JP 2006151891 A JP2006151891 A JP 2006151891A
Authority
JP
Japan
Prior art keywords
group
based catalyst
substituent
indium
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004346383A
Other languages
Japanese (ja)
Inventor
Akio Baba
章夫 馬場
Ikuko Mitani
育子 三谷
Masaki Hirano
正樹 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2004346383A priority Critical patent/JP2006151891A/en
Publication of JP2006151891A publication Critical patent/JP2006151891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method whereby cyclic carbonate can be prepared in a high yield through a reaction carried out near room temperature. <P>SOLUTION: In the method for preparing the cyclic carbonate through the reaction between an epoxy compound and carbon dioxide, the reaction is carried out in the presence of an indium or tin catalyst. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、新規な環状カーボネートの製造方法に関する。   The present invention relates to a novel method for producing a cyclic carbonate.

エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等をはじめとする環状カーボネート(環状炭酸エステル)は、リチウムイオン二次電池の電解液等として広く利用されている。   Cyclic carbonates (cyclic carbonates) including ethylene carbonate, propylene carbonate, butylene carbonate and the like are widely used as electrolytes for lithium ion secondary batteries.

従来より、環状カーボネートの合成方法は種々提案されている。例えば、アルキレンカーボネートを製造する方法において、3−八面体型スメクタイト及び/又はアルカリ金属包含3−八面体型スメクタイトの少なくとも一種を触媒として用いることを特徴とするアルキレンカーボネートの製造方法が知られている(特許文献1)。
特開2003−96074号公報
Conventionally, various methods for synthesizing cyclic carbonates have been proposed. For example, in a method for producing alkylene carbonate, a method for producing alkylene carbonate is known, wherein at least one of 3-octahedral smectite and / or alkali metal-containing 3-octahedral smectite is used as a catalyst. (Patent Document 1).
JP 2003-96074 A

しかしながら、これらの従来技術では、基本的に高温で反応させることを必要としており、室温で反応させるという点ではさらなる改良の余地がある。   However, these conventional techniques basically require reaction at a high temperature, and there is room for further improvement in terms of reaction at room temperature.

従って、本発明の主な目的は、室温付近の反応でも環状カーボネートを高収率で製造できる方法を提供することにある。   Therefore, the main object of the present invention is to provide a method capable of producing a cyclic carbonate in a high yield even by a reaction near room temperature.

本発明者は、従来技術の問題に鑑みて研究を重ねた結果、特定の組合せで触媒を採用することによって上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of repeated studies in view of the problems of the prior art, the present inventor has found that the above object can be achieved by employing a catalyst in a specific combination, and has completed the present invention.

すなわち、本発明は、下記に示す環状カーボネートの製造方法に係る。   That is, this invention concerns on the manufacturing method of the cyclic carbonate shown below.

1. エポキシ化合物と二酸化炭素との反応により環状カーボネートを製造する方法であって、前記反応をインジウム系触媒及びスズ系触媒の存在下で行うことを特徴とする環状カーボネートの製造方法。   1. A method for producing a cyclic carbonate by reacting an epoxy compound and carbon dioxide, wherein the reaction is carried out in the presence of an indium-based catalyst and a tin-based catalyst.

2. 前記インジウム系触媒が、ハロゲン化インジウムInX3(ただし、Xはハロゲン原子を示す。)の少なくとも1種である、前記項1記載の製造方法。 2. Item 2. The production method according to Item 1, wherein the indium-based catalyst is at least one of indium halide InX 3 (where X represents a halogen atom).

3. 前記スズ系触媒が、一般式R4-aSnX'a(ただし、Rはアルキル基又は芳香族炭化水素基であって、置換基を有していても良いものを示す。X’はハロゲン原子又は置換基を有していても良いアルコキシ基を示す。aは1、2又は3を示す。)で示される化合物の少なくとも1種である、前記項1記載の製造方法。 3. The tin-based catalyst is represented by the general formula R 4-a SnX ′ a (wherein R is an alkyl group or an aromatic hydrocarbon group and may have a substituent. X ′ is a halogen atom. Or an alkoxy group which may have a substituent, wherein a represents 1, 2 or 3).

4. 1)前記インジウム系触媒が、ハロゲン化インジウムInX3(ただし、Xはハロゲン原子を示す。)の少なくとも1種であり、2)前記スズ系触媒が、一般式R2SnX'2(ただし、Rはアルキル基又は芳香族炭化水素基であって、置換基を有していても良いものを示す。X’はハロゲン原子又は置換基を有していても良いアルコキシ基を示す。)で示される化合物の少なくとも1種であり、3)前記X及びX'の少なくとも一方がヨウ素である、前記項1記載の製造方法。 4). 1) The indium-based catalyst is at least one of indium halide InX 3 (where X represents a halogen atom), and 2) the tin-based catalyst is represented by the general formula R 2 SnX ′ 2 (where R Represents an alkyl group or an aromatic hydrocarbon group which may have a substituent, and X ′ represents a halogen atom or an alkoxy group which may have a substituent. Item 3. The method according to Item 1, wherein the compound is at least one compound, and 3) at least one of X and X ′ is iodine.

5. 前記エポキシ化合物が下記式(1);   5. The epoxy compound is represented by the following formula (1);

Figure 2006151891
Figure 2006151891

(ただし、R1〜R4は、互いに同一又は異なって、水素原子又はアルキル基若しくは芳香族炭化水素基であって置換基を有していても良いものを示す。)
で示される化合物であって、
前記環状カーボネートが下記式(2);
(However, R 1 to R 4 are the same as or different from each other, and each represents a hydrogen atom, an alkyl group, or an aromatic hydrocarbon group that may have a substituent.)
A compound represented by
The cyclic carbonate is represented by the following formula (2);

Figure 2006151891
Figure 2006151891

(ただし、R1〜R4は、互いに同一又は異なって、水素原子又はアルキル基若しくは芳香族炭化水素基であって置換基を有していても良いものを示す。)
で示される化合物である、前記項1記載の製造方法。
(However, R 1 to R 4 are the same as or different from each other, and each represents a hydrogen atom, an alkyl group, or an aromatic hydrocarbon group that may have a substituent.)
The manufacturing method of said claim | item 1 which is a compound shown by these.

6. 前記反応を100℃以下の温度下で行う、前記項1記載の製造方法。   6). Item 2. The method according to Item 1, wherein the reaction is performed at a temperature of 100 ° C or lower.

7. 前記反応を30℃以下の温度下で行う、前記項1記載の製造方法。   7. Item 2. The method according to Item 1, wherein the reaction is performed at a temperature of 30 ° C or lower.

本発明の製造方法によれば、触媒としてインジウム系触媒及びスズ系触媒を併用することにより、より穏和な条件でエポキシ化合物から環状カーボネートを高収率で合成することができる。   According to the production method of the present invention, a cyclic carbonate can be synthesized from an epoxy compound in a high yield under milder conditions by using an indium catalyst and a tin catalyst in combination.

本発明の製造方法は、エポキシ化合物と二酸化炭素との反応により環状カーボネートを製造する方法であって、前記反応をインジウム系触媒及びスズ系触媒の存在下で行うことを特徴とする。   The production method of the present invention is a method for producing a cyclic carbonate by a reaction between an epoxy compound and carbon dioxide, wherein the reaction is performed in the presence of an indium-based catalyst and a tin-based catalyst.

出発原料としては、置換基を有していても良いエポキシ化合物及び二酸化炭素を用いる。   As a starting material, an epoxy compound which may have a substituent and carbon dioxide are used.

エポキシ化合物は、より具体的には、下記式(1)   More specifically, the epoxy compound is represented by the following formula (1).

Figure 2006151891
Figure 2006151891

(ただし、R1〜R4は、互いに同一又は異なって、水素原子又はアルキル基若しくは芳香族炭化水素基であって置換基を有していても良いものを示す。)
で示される化合物を好適に用いることができる。
(However, R 1 to R 4 are the same as or different from each other, and each represents a hydrogen atom, an alkyl group, or an aromatic hydrocarbon group that may have a substituent.)
The compound shown by can be used suitably.

アルキル基としては、特に限定されないが、例えばメチル基、エチル基、プロピル基、ブチル基等の炭素数1〜10程度のアルキル基が特に好ましい。より好ましくは、炭素数4〜8のアルキル基(ブチル基からオクチル基)である。   Although it does not specifically limit as an alkyl group, For example, C1-C10 alkyl groups, such as a methyl group, an ethyl group, a propyl group, a butyl group, are especially preferable. More preferably, it is a C4-C8 alkyl group (from a butyl group to an octyl group).

前記アルキル基は、置換基を有していても良い。置換基としては、例えばメチル基、エチル基、フェニル基、エーテル基、ニトロ基、スルホ基、アミド基、アミノ基、カルボキシル基、ハロゲン基、ヒドロキシ基、エステル基等の各種の置換基が挙げられる。   The alkyl group may have a substituent. Examples of the substituent include various substituents such as methyl group, ethyl group, phenyl group, ether group, nitro group, sulfo group, amide group, amino group, carboxyl group, halogen group, hydroxy group, and ester group. .

芳香族炭化水素基としては、例えばフェニル基、トリル基、キシリル基、メチシル基等が挙げられる。   Examples of the aromatic hydrocarbon group include a phenyl group, a tolyl group, a xylyl group, and a methicyl group.

芳香族炭化水素基は、置換基を有していても良い。置換基としては、前記で挙げた各種の置換基を例示できる。   The aromatic hydrocarbon group may have a substituent. Examples of the substituent include the various substituents mentioned above.

本発明では、前記R1〜R4に応じ、それに対応する環状カーボネートが得られる。すなわち、下記式(2); In the present invention, a cyclic carbonate corresponding to R 1 to R 4 is obtained. That is, the following formula (2);

Figure 2006151891
Figure 2006151891

(ただし、R1〜R4は、互いに同一又は異なって、水素原子又はアルキル基若しくは芳香族炭化水素基であって置換基を有していても良いものを示す。)
で示される化合物を得ることができる。従って、出発原料であるエポキシ化合物の前記R1〜R4は、目的とする環状カーボネートの種類に応じて適宜選択すれば良い。特に、本発明では、R1〜R4は、そのうち少なくとも1〜2個は水素原子であることが好ましい。
(However, R 1 to R 4 are the same as or different from each other, and each represents a hydrogen atom, an alkyl group, or an aromatic hydrocarbon group that may have a substituent.)
Can be obtained. Therefore, the R 1 to R 4 of the epoxy compound that is the starting material may be appropriately selected according to the type of the target cyclic carbonate. In particular, in the present invention, it is preferable that at least one of R 1 to R 4 is a hydrogen atom.

二酸化炭素は、用いるエポキシ化合物と反応する当量又はそれ以上を使用すれば良い。一般的には反応系内に二酸化炭素分圧が1〜60atm、好ましくは10〜50atmとなるように、二酸化炭素(炭酸ガス)を導入すれば良い。   Carbon dioxide may be used in an equivalent amount or more that reacts with the epoxy compound used. Generally, carbon dioxide (carbon dioxide) may be introduced into the reaction system so that the partial pressure of carbon dioxide is 1 to 60 atm, preferably 10 to 50 atm.

本発明の製造方法では、インジウム系触媒及びスズ系触媒の存在下で行う。すなわち、両触媒の混合系の条件下で反応させる。これによって、室温付近の温度条件下による反応であっても、環状カーボネートを高収率で得ることが可能になる。両者のうちスズ系触媒が欠けると、エポキシ化合物の開環が起こり、ひいては重合反応による重合物が生成する。また、インジウム系触媒が欠けると反応が進まなくなる。従って、いずれか一方が欠ける場合には、目的生成物を得ることができなくなる。   The production method of the present invention is carried out in the presence of an indium catalyst and a tin catalyst. That is, the reaction is performed under conditions of a mixed system of both catalysts. This makes it possible to obtain a cyclic carbonate in a high yield even in a reaction under temperature conditions near room temperature. If both of them lack a tin-based catalyst, ring opening of the epoxy compound occurs, and as a result, a polymerized product is formed by a polymerization reaction. Further, when the indium catalyst is missing, the reaction does not proceed. Therefore, when either one is missing, the target product cannot be obtained.

インジウム系触媒は、インジウム金属又はインジウム化合物の中から適宜選択できる。本発明では、特にハロゲン化インジウムInX3(ただし、Xはハロゲン原子を示す。)の少なくとも1種を用いることが望ましい。このなかでもInCl3、InI3及びInBr3の少なくとも1種がより好ましく、最も好ましくはInCl3である。 The indium-based catalyst can be appropriately selected from indium metal or an indium compound. In the present invention, it is particularly desirable to use at least one of indium halide InX 3 (where X represents a halogen atom). Among these, at least one of InCl 3 , InI 3 and InBr 3 is more preferable, and InCl 3 is most preferable.

インジウム系触媒の形態は限定的でないが、一般的には粒状(粉末状)の形態で使用することができる。この場合の粒度は特に制限されないが、一般的には平均粒径10〜200μm程度の範囲内で適宜設定すれば良い。また、必要に応じてアルミナ、シリカ、ジルコニア、活性炭等の公知の担体に適宜担持して用いることもできる。   The form of the indium-based catalyst is not limited, but can be generally used in the form of particles (powder). The particle size in this case is not particularly limited, but in general, it may be appropriately set within a range of an average particle size of about 10 to 200 μm. Further, if necessary, it can be appropriately supported on a known carrier such as alumina, silica, zirconia, activated carbon and the like.

インジウム系触媒の使用量は、用いるインジウム系触媒の種類、用いるエポキシ化合物の種類等に応じて適宜設定することができるが、一般的にはエポキシ化合物に対して0.01〜10モル%程度とし、特に0.1〜5モル%とすることが望ましい。   The amount of the indium-based catalyst used can be appropriately set according to the type of indium-based catalyst used, the type of epoxy compound used, etc., but is generally about 0.01 to 10 mol% with respect to the epoxy compound. In particular, 0.1 to 5 mol% is desirable.

スズ系触媒は、限定的ではないが、特に一般式R4-aSnX'a(ただし、Rはアルキル基又は芳香族炭化水素基であって、置換基を有していても良いものを示す。X’はハロゲン原子又は置換基を有していても良いアルコキシ基を示す。aは1、2又は3を示す。)で示される化合物の少なくとも1種を用いることが望ましい。
アルキル基は限定的でないが、例えばメチル基、エチル基、プロピル基、ブチル基等の炭素数1〜10程度のアルキル基が特に好ましい。より好ましくは、炭素数4〜8のアルキル基(ブチル基からオクチル基)である。
The tin-based catalyst is not particularly limited, but is particularly represented by the general formula R 4-a SnX ′ a (wherein R is an alkyl group or an aromatic hydrocarbon group and may have a substituent) X ′ represents a halogen atom or an optionally substituted alkoxy group, a represents 1, 2 or 3. It is desirable to use at least one compound represented by the following formula:
The alkyl group is not limited, but an alkyl group having about 1 to 10 carbon atoms such as a methyl group, an ethyl group, a propyl group, and a butyl group is particularly preferable. More preferably, it is a C4-C8 alkyl group (from a butyl group to an octyl group).

前記アルキル基は置換基を有していても良い。置換基としては、前記で挙げたような各種の置換基を例示できる。   The alkyl group may have a substituent. Examples of the substituent include various substituents as mentioned above.

アルコキシル基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、フェノキシ基等の炭素数1〜8のアルコキシル基が好ましい。   As an alkoxyl group, C1-C8 alkoxyl groups, such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a phenoxy group, are preferable, for example.

前記アルコキシ基は置換基を有していても良い。置換基としては、前記で挙げたような各種の置換基を例示できる。   The alkoxy group may have a substituent. Examples of the substituent include various substituents as mentioned above.

芳香族炭化水素基としては、例えばフェニル基、トリル基、キシリル基、メチシル基等が挙げられる。   Examples of the aromatic hydrocarbon group include a phenyl group, a tolyl group, a xylyl group, and a methicyl group.

芳香族炭化水素基は置換基を有していても良い。置換基としては、前記で挙げたような各種の置換基を例示できる。   The aromatic hydrocarbon group may have a substituent. Examples of the substituent include various substituents as mentioned above.

前記ハロゲン原子としては、例えばI、Cl、Br等を好適に採用することができる。この場合、前記インジウム系触媒との関係で、X及びX'の少なくとも一方がヨウ素となるようにすることが好ましい。従って、例えば前記インジウム系触媒としてInCl3を用いる場合、スズ系触媒としてはR4-aSnIaを用いることが望ましい。 As the halogen atom, for example, I, Cl, Br and the like can be preferably employed. In this case, it is preferable that at least one of X and X ′ is iodine in relation to the indium catalyst. Therefore, for example, when InCl 3 is used as the indium-based catalyst, R 4-a SnI a is preferably used as the tin-based catalyst.

スズ系触媒として、より具体的には、Bu2SnI2(Bu:ブチル基を示す。以下同じ。)、Bu2SnBr2、Bu2SnCl2、Oct2SnI2(Oct:オクチル基を示す。以下同じ。)、Ph2SnI2等を用いることができる。本発明では、特にBu2SnI2を好適に用いることができる。 More specifically, the tin-based catalyst is Bu 2 SnI 2 (Bu: represents a butyl group; the same shall apply hereinafter), Bu 2 SnBr 2 , Bu 2 SnCl 2 , Oct 2 SnI 2 (Oct: represents an octyl group). The same shall apply hereinafter), Ph 2 SnI 2 or the like. In the present invention, Bu 2 SnI 2 can be particularly preferably used.

スズ系触媒の形態は限定的でないが、通常は液体や粒状(粉末状)の形態で使用することができる。この場合の粒度は特に制限されない。また、必要に応じてアルミナ、シリカ、ジルコニア、活性炭等の公知の担体に適宜担持して用いることもできる。   Although the form of the tin-based catalyst is not limited, it can usually be used in a liquid or granular (powdered) form. The particle size in this case is not particularly limited. Further, if necessary, it can be appropriately supported on a known carrier such as alumina, silica, zirconia, activated carbon and the like.

スズ系触媒の使用量は、用いるスズ系触媒の種類、用いるエポキシ化合物の種類等に応じて適宜設定することができるが、一般的にはエポキシ化合物に対して通常0.02〜20モル%、特に0.2〜10モル%とすることが望ましい。   Although the usage-amount of a tin-type catalyst can be suitably set according to the kind of tin-type catalyst to be used, the kind of epoxy compound to be used, etc., generally 0.02-20 mol% normally with respect to an epoxy compound, In particular, the content is desirably 0.2 to 10 mol%.

また、インジウム系触媒とスズ系触媒との使用割合も特に限定されないが、一般的にはモル比でインジウム系触媒:スズ系触媒=1:1〜3程度とすることが好ましい。   Further, the use ratio of the indium-based catalyst and the tin-based catalyst is not particularly limited, but in general, the molar ratio of indium-based catalyst: tin-based catalyst is preferably about 1: 1 to 3.

反応相は、液相反応、気相反応、液相−気相等のいずれであっても良い。一般的には、本発明の製造方法は、出発原料のうち二酸化炭素は気相であり、その他が液相又は固相であるので、2相系又は3相系の反応である。   The reaction phase may be any of a liquid phase reaction, a gas phase reaction, a liquid phase-gas phase, and the like. Generally, the production method of the present invention is a two-phase or three-phase reaction because carbon dioxide is a gas phase among the starting materials and the others are a liquid phase or a solid phase.

また、本発明では、二酸化炭素以外の原料(特にエポキシ化合物及び触媒)を溶媒に溶解又は分散させることができる。溶媒としては、用いるエポキシ化合物の種類等に応じて適宜決定することができる。特に、本発明では、例えばジメチルスルホキシド(DMSO)、N,N−ジメチルホルムアミド(DMF)、アセトニトル、テトラヒドロフラン等の極性溶媒(特に非プロトン性極性溶媒)を好適に用いることができる。溶媒を使用する場合、エポキシ化合物等の濃度は適宜調節することができる。   In the present invention, raw materials other than carbon dioxide (especially epoxy compounds and catalysts) can be dissolved or dispersed in a solvent. As a solvent, it can determine suitably according to the kind etc. of epoxy compound to be used. In particular, in the present invention, for example, polar solvents (particularly aprotic polar solvents) such as dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), acetonitol, tetrahydrofuran and the like can be suitably used. When using a solvent, the concentration of the epoxy compound or the like can be adjusted as appropriate.

反応形式は、例えば連続式、回分式、半回分式等の公知の反応形式から適宜選択することができる。また、触媒の接触方式も限定されず、例えば固定床、流動床、懸濁床等のいずれも採用することができる。   The reaction format can be appropriately selected from known reaction formats such as continuous, batch, and semi-batch. Further, the catalyst contact method is not limited, and any of a fixed bed, a fluidized bed, a suspension bed and the like can be employed.

反応条件に関し、反応温度は限定的でないが、通常は100℃以下の範囲内で適宜調整することができる。特に、本発明では、30℃以下でも所望の収率で環状カーボネートを製造することができる。反応温度の下限値は、通常は0℃以上の範囲内で適宜定めれば良い。反応雰囲気は、二酸化炭素(炭酸ガス)含有雰囲気中とし、前記圧力の範囲内に二酸化炭素分圧を設定することが望ましい。反応時間は、反応温度等により適宜変わり得るが、室温であれば通常は5〜12時間程度である。   Regarding the reaction conditions, the reaction temperature is not limited, but it can usually be appropriately adjusted within a range of 100 ° C. or less. In particular, in the present invention, a cyclic carbonate can be produced in a desired yield even at 30 ° C. or lower. The lower limit of the reaction temperature may be appropriately determined usually within a range of 0 ° C. or higher. The reaction atmosphere is preferably a carbon dioxide (carbon dioxide) -containing atmosphere, and the carbon dioxide partial pressure is preferably set within the pressure range. The reaction time can vary depending on the reaction temperature and the like, but is usually about 5 to 12 hours at room temperature.

反応が終了した後は、必要に応じて反応生成物を公知の方法により精製(抽出、蒸留等)、分離(遠心分離、ろ過等)等を行った上で目的とする環状カーボネートを回収すれば良い。   After completion of the reaction, if necessary, the reaction product is purified (extraction, distillation, etc.), separated (centrifugation, filtration, etc.) by a known method and then the target cyclic carbonate is recovered. good.

以下に実施例を示し、本発明の特徴とするところをより具体的に説明する。ただし、本発明の範囲は、実施例の範囲に限定されるものではない。   Examples will be described below, and the features of the present invention will be described more specifically. However, the scope of the present invention is not limited to the scope of the examples.

実施例1
1,2−ブチレンオキシドと二酸化炭素とを反応させることにより環状カーボネートの合成を行った。
Example 1
Cyclic carbonates were synthesized by reacting 1,2-butylene oxide and carbon dioxide.

磁気回転子を入れたオートクレーブ(SUS32製、容量50cm3)にアセトニトリル3mL、1,2−ブチレンオキシド0.72g(10mmol)、Bu2SnI2 0.49g (1mmol)、InCl3 0.11g(0.5mmol)を入れ、40気圧の二酸化炭素ガスを充填し、12時間室温(20℃)で攪拌反応させた。 In an autoclave (made of SUS32, capacity 50 cm 3 ) containing a magnetic rotor, acetonitrile 3 mL, 1,2-butylene oxide 0.72 g (10 mmol), Bu 2 SnI 2 0.49 g (1 mmol), InCl 3 0.11 g (0 0.5 mmol), carbon dioxide gas of 40 atm was charged, and the mixture was stirred at room temperature (20 ° C.) for 12 hours.

その後、オートクレーブの内容物をジエチルエーテルと水を加えて取り出し、さらに水とジエチルエーテルを加えてエーテル抽出した。エーテル相を硫酸マグネシウムで乾燥させた後に濃縮して得られた成分をシリカゲルカラムクロマトグラフィーで処理し、酢酸エチルで目的物を得た。酢酸エチルを減圧留去した後、1H−NMRにより主生成物の収率を求めた。さらに、蒸留によって生成物を単離精製した。目的生成物の同定は、1H−NMR、13C−NMR及びIRにより行った。その結果、4−エチル−1,3−ジオキソラン−2−オンが0.99g(収率:85%)生成していることを確認した。 Thereafter, the contents of the autoclave were taken out by adding diethyl ether and water, and further etherified by adding water and diethyl ether. The component obtained by drying the ether phase with magnesium sulfate and then concentrating was treated by silica gel column chromatography to obtain the desired product with ethyl acetate. After the ethyl acetate was distilled off under reduced pressure, the yield of the main product was determined by 1 H-NMR. Furthermore, the product was isolated and purified by distillation. The target product was identified by 1 H-NMR, 13 C-NMR and IR. As a result, it was confirmed that 0.99 g (yield: 85%) of 4-ethyl-1,3-dioxolan-2-one was produced.

実施例2〜7
エポキシ化合物として、表1に示すものを使用したほかは、実施例1と同様にして環状カーボーネートを合成した。その生成物及び収率を表2に示す。
Examples 2-7
A cyclic carbonate was synthesized in the same manner as in Example 1 except that the epoxy compound shown in Table 1 was used. The product and yield are shown in Table 2.

Figure 2006151891
Figure 2006151891

Figure 2006151891
Figure 2006151891

実施例8〜9
溶媒としてアセトニトリルに代えてDMSO(実施例8)又はDMF(実施例9)を用いたほかは、実施例2と同様にして環状カーボネートを合成した。その結果、いずれもプロピレンカーボネートが得られた。収率は、実施例8では92%、実施例9では84%であった。
Examples 8-9
A cyclic carbonate was synthesized in the same manner as in Example 2 except that DMSO (Example 8) or DMF (Example 9) was used instead of acetonitrile as a solvent. As a result, propylene carbonate was obtained in all cases. The yield was 92% in Example 8 and 84% in Example 9.

実施例10
スズ系触媒としてBu2SnI2に代えてBu3SnIを0.5mmol用いたほかは、実施例4と同様にして環状カーボネートを合成した。その結果、実施例4と同じものが得られた。収率は77%であった。
Example 10
A cyclic carbonate was synthesized in the same manner as in Example 4 except that 0.5 mmol of Bu 3 SnI was used instead of Bu 2 SnI 2 as a tin-based catalyst. As a result, the same product as in Example 4 was obtained. The yield was 77%.

実施例11
スズ系触媒としてBu2SnI2に代えてBu2SnCl2を0.5mmol用いたほかは、実施例4と同様にして環状カーボネートを合成した。その結果、実施例4と同じものが得られた。収率は60%であった。

Example 11
A cyclic carbonate was synthesized in the same manner as in Example 4 except that 0.5 mmol of Bu 2 SnCl 2 was used instead of Bu 2 SnI 2 as a tin-based catalyst. As a result, the same product as in Example 4 was obtained. The yield was 60%.

Claims (7)

エポキシ化合物と二酸化炭素との反応により環状カーボネートを製造する方法であって、前記反応をインジウム系触媒及びスズ系触媒の存在下で行うことを特徴とする環状カーボネートの製造方法。 A method for producing a cyclic carbonate by reacting an epoxy compound and carbon dioxide, wherein the reaction is carried out in the presence of an indium-based catalyst and a tin-based catalyst. 前記インジウム系触媒が、ハロゲン化インジウムInX3(ただし、Xはハロゲン原子を示す。)の少なくとも1種である、請求項1記載の製造方法。 The production method according to claim 1, wherein the indium-based catalyst is at least one of indium halide InX 3 (where X represents a halogen atom). 前記スズ系触媒が、一般式R4-aSnX'a(ただし、Rはアルキル基又は芳香族炭化水素基であって、置換基を有していても良いものを示す。X’はハロゲン原子又は置換基を有していても良いアルコキシ基を示す。aは1、2又は3を示す。)で示される化合物の少なくとも1種である、請求項1記載の製造方法。 The tin-based catalyst is represented by the general formula R 4-a SnX ′ a (wherein R is an alkyl group or an aromatic hydrocarbon group and may have a substituent. X ′ is a halogen atom. Or an alkoxy group which may have a substituent, wherein a represents 1, 2 or 3). 1)前記インジウム系触媒が、ハロゲン化インジウムInX3(ただし、Xはハロゲン原子を示す。)の少なくとも1種であり、2)前記スズ系触媒が、一般式R2SnX'2(ただし、Rはアルキル基又は芳香族炭化水素基であって、置換基を有していても良いものを示す。X’はハロゲン原子又は置換基を有していても良いアルコキシ基を示す。)で示される化合物の少なくとも1種であり、3)前記X及びX'の少なくとも一方がヨウ素である、請求項1記載の製造方法。 1) The indium-based catalyst is at least one of indium halide InX 3 (where X represents a halogen atom), and 2) the tin-based catalyst is represented by the general formula R 2 SnX ′ 2 (where R Represents an alkyl group or an aromatic hydrocarbon group which may have a substituent, and X ′ represents a halogen atom or an alkoxy group which may have a substituent. The production method according to claim 1, wherein the compound is at least one kind of compound, and 3) at least one of the X and X ′ is iodine. 前記エポキシ化合物が下記式(1);
Figure 2006151891
(ただし、R1〜R4は、互いに同一又は異なって、水素原子又はアルキル基若しくは芳香族炭化水素基であって置換基を有していても良いものを示す。)
で示される化合物であって、
前記環状カーボネートが下記式(2);
Figure 2006151891
(ただし、R1〜R4は、互いに同一又は異なって、水素原子又はアルキル基若しくは芳香族炭化水素基であって置換基を有していても良いものを示す。)
で示される化合物である、請求項1記載の製造方法。
The epoxy compound is represented by the following formula (1);
Figure 2006151891
(However, R 1 to R 4 are the same as or different from each other, and each represents a hydrogen atom, an alkyl group, or an aromatic hydrocarbon group that may have a substituent.)
A compound represented by
The cyclic carbonate is represented by the following formula (2);
Figure 2006151891
(However, R 1 to R 4 are the same as or different from each other, and each represents a hydrogen atom, an alkyl group, or an aromatic hydrocarbon group that may have a substituent.)
The manufacturing method of Claim 1 which is a compound shown by these.
前記反応を100℃以下の温度下で行う、請求項1記載の製造方法。 The manufacturing method of Claim 1 which performs the said reaction under the temperature of 100 degrees C or less. 前記反応を30℃以下の温度下で行う、請求項1記載の製造方法。 The manufacturing method of Claim 1 which performs the said reaction under the temperature of 30 degrees C or less.
JP2004346383A 2004-11-30 2004-11-30 Preparation method of cyclic carbonate Pending JP2006151891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004346383A JP2006151891A (en) 2004-11-30 2004-11-30 Preparation method of cyclic carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004346383A JP2006151891A (en) 2004-11-30 2004-11-30 Preparation method of cyclic carbonate

Publications (1)

Publication Number Publication Date
JP2006151891A true JP2006151891A (en) 2006-06-15

Family

ID=36630604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004346383A Pending JP2006151891A (en) 2004-11-30 2004-11-30 Preparation method of cyclic carbonate

Country Status (1)

Country Link
JP (1) JP2006151891A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008189608A (en) * 2007-02-06 2008-08-21 National Institute Of Advanced Industrial & Technology Bismuth compound, antimony compound and catalyst for producing cyclic carbonate
KR100856569B1 (en) 2006-08-18 2008-09-04 부산대학교 산학협력단 Process for the preparation of polycarbonates from epoxides and carbon dioxide using microwave
JP2011102006A (en) * 2009-11-11 2011-05-26 Dainichiseika Color & Chem Mfg Co Ltd Thermoplastic polyolefin resin skin material
US9260405B2 (en) 2013-10-24 2016-02-16 Industrial Technology Research Institute Cayalyst system and manufacturing method of cyclic carbonate by the same
US9839906B1 (en) 2016-12-07 2017-12-12 Industrial Technology Research Institute Catalyst and method for synthesizing cyclic carbonate by the same
KR20200020441A (en) 2018-08-17 2020-02-26 충남대학교산학협력단 process for preparing cyclic carbonate using hyper crosslinked polymers and hyper crosslinked polymers for selective formation of cyclic carbonates
KR20200020395A (en) 2018-08-17 2020-02-26 충남대학교산학협력단 Metal complex catalysts for selective formation of cyclic carbonates and process for preparing cyclic carbonate using the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113720A (en) * 1974-07-25 1976-02-03 Nisso Petrochemical Ind Co Ltd
JPS57183784A (en) * 1981-05-01 1982-11-12 Mitsubishi Petrochem Co Ltd Preparation of organic carbonate
US6156909A (en) * 1999-07-26 2000-12-05 Korea Institute Of Science & Technology Preparation of alkylene carbonate using indium halides and mixtures of same with lead halides as catalyst
US20020013477A1 (en) * 2000-02-11 2002-01-31 Korea Institute Of Science And Technology Synthesis of alkylene carbonates using a catalyst system comprising metal halide and pyridine or pyridine derivative

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5113720A (en) * 1974-07-25 1976-02-03 Nisso Petrochemical Ind Co Ltd
JPS57183784A (en) * 1981-05-01 1982-11-12 Mitsubishi Petrochem Co Ltd Preparation of organic carbonate
US6156909A (en) * 1999-07-26 2000-12-05 Korea Institute Of Science & Technology Preparation of alkylene carbonate using indium halides and mixtures of same with lead halides as catalyst
US20020013477A1 (en) * 2000-02-11 2002-01-31 Korea Institute Of Science And Technology Synthesis of alkylene carbonates using a catalyst system comprising metal halide and pyridine or pyridine derivative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010057082, 馬場章夫 他, 日本化学会誌, 1987, vol.7, 1189−1193 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100856569B1 (en) 2006-08-18 2008-09-04 부산대학교 산학협력단 Process for the preparation of polycarbonates from epoxides and carbon dioxide using microwave
JP2008189608A (en) * 2007-02-06 2008-08-21 National Institute Of Advanced Industrial & Technology Bismuth compound, antimony compound and catalyst for producing cyclic carbonate
JP2011102006A (en) * 2009-11-11 2011-05-26 Dainichiseika Color & Chem Mfg Co Ltd Thermoplastic polyolefin resin skin material
US9260405B2 (en) 2013-10-24 2016-02-16 Industrial Technology Research Institute Cayalyst system and manufacturing method of cyclic carbonate by the same
US9839906B1 (en) 2016-12-07 2017-12-12 Industrial Technology Research Institute Catalyst and method for synthesizing cyclic carbonate by the same
KR20200020441A (en) 2018-08-17 2020-02-26 충남대학교산학협력단 process for preparing cyclic carbonate using hyper crosslinked polymers and hyper crosslinked polymers for selective formation of cyclic carbonates
KR20200020395A (en) 2018-08-17 2020-02-26 충남대학교산학협력단 Metal complex catalysts for selective formation of cyclic carbonates and process for preparing cyclic carbonate using the same

Similar Documents

Publication Publication Date Title
JP2010001443A (en) Stereoselective alternating copolymerization of epoxide and carbon dioxide
JPH11106380A (en) Biphenyl derivative having oxetane ring
JP2006151891A (en) Preparation method of cyclic carbonate
JP2011032222A (en) Process for producing cyclic carbonate
JP3254619B2 (en) Synthetic method of phosphorus-based latent catalyst
CN1411434A (en) Process for aromatic carbonate
JPH11246540A (en) Oxetane group-containing calix(4)resorcin arene derivative and its production
JP4090993B2 (en) Production method of polysulfide monoorganooxysilane
JP2863321B2 (en) Method for producing dialkyl zinc
JP2873484B2 (en) Method for producing 1,3-bis (2-hydroxyethoxy) benzene
JP2021138661A (en) Method for producing cyclic carbonates
JPH11228558A (en) Calixarene derivative containing oxetane group and production thereof
CN109761954A (en) The preparation method of two thio cyclic carbonate ester class compounds
CN110229180B (en) Method for selectively preparing alkenyl silane
CN114213298B (en) Method for preparing thiosulfonate compound by directly oxidizing thiophenol
CN115745825B (en) Method for catalyzing amide alkylation reaction by using tridentate NNO nickel complex
JP4193631B2 (en) Process for producing β-diketonato copper complex
JP2018008899A (en) Magnetic nanoparticle-immobilized hydrogencarbonate imidazolium
JP2011098949A (en) Process for producing carbonate ester
JP5364307B2 (en) Process for producing ionic compounds
JP2007112788A (en) Oxetane compound
CN108473431B (en) Method for producing benzyl 2-aminonicotinate derivative
JPS63135393A (en) Production of alkylsilyl cyanide
CN116813513A (en) Quantum dot surface organic ligand composition and preparation method thereof
JPH08245499A (en) Production of ether-carboxylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110222