JP2006151793A - Electron-conductive glass and spacer for electron beam-excitation type display using the same - Google Patents

Electron-conductive glass and spacer for electron beam-excitation type display using the same Download PDF

Info

Publication number
JP2006151793A
JP2006151793A JP2005300744A JP2005300744A JP2006151793A JP 2006151793 A JP2006151793 A JP 2006151793A JP 2005300744 A JP2005300744 A JP 2005300744A JP 2005300744 A JP2005300744 A JP 2005300744A JP 2006151793 A JP2006151793 A JP 2006151793A
Authority
JP
Japan
Prior art keywords
glass
mol
spacer
electron
conductive glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005300744A
Other languages
Japanese (ja)
Inventor
Toshiyuki Takakusaki
俊之 高草木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamoto Glass Co Ltd
Original Assignee
Okamoto Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Glass Co Ltd filed Critical Okamoto Glass Co Ltd
Priority to JP2005300744A priority Critical patent/JP2006151793A/en
Publication of JP2006151793A publication Critical patent/JP2006151793A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/14Compositions for glass with special properties for electro-conductive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/19Silica-free oxide glass compositions containing phosphorus containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron-conductive glass having electrical characteristics having moderate electric conductivity without the occurrence of electrostatic charge and dielectric breakdown and thermal characteristics not giving rise to deformation and breakage in a heat treating step, and not containing environmental pollutants, and a spacer for electron beam-excitation type display using the same. <P>SOLUTION: The electron-conductive glass contains 30 to 70 mol% P<SB>2</SB>O<SB>5</SB>, 25 to 65 mol% transition metal oxide, ≤25 mol% RO (R is an alkaline earth metal), and ≤15 mol% R'<SB>2</SB>O (R' is an alkali metal). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子伝導性ガラスに関し、特に帯電及び絶縁破壊を効果的に防止することができる電子線励起型ディスプレイ用ガラススペーサに関する。
The present invention relates to an electron conductive glass, and more particularly to a glass spacer for an electron beam excitation display that can effectively prevent charging and dielectric breakdown.

一般的にガラスは絶縁体であり、電気的に非常に高い抵抗率を有している。しかし絶縁体であるガラスの中でも、電子伝導性ガラスにおいては電気的に優れた導電性を保持している。   Generally, glass is an insulator and has an extremely high electrical resistivity. However, among the glass that is an insulator, the electron conductive glass retains electrically excellent conductivity.

電子伝導性ガラスは、従来より広く知られており(ガラス工学ハンドブック、ガラスハンドブック等参照)、ガラス中に含まれる遷移金属元素が2種類以上の異なる原子価を取るときにホッピング伝導により導電性をもつという特徴を有する。   Electronically conductive glass has been widely known (see glass engineering handbooks, glass handbooks, etc.). When the transition metal elements contained in the glass have two or more different valences, they are made conductive by hopping conduction. It has the characteristic of having.

ブラウン管CRT(Cathode Ray Tube)は、従来から一般に普及している映像デバイスであり、非常に重く、奥行きを必要とする。一方、液晶ディスプレイLCD(Liquid
Crystal Display)やプラズマディスプレイパネルPDP(Plasma Display Panel)等の所謂フラットパネルディスプレイ(FPD)は、近年ポストブラウン管として開発され、現在では一般的な映像デバイスとして普及し始めている。
A cathode ray tube (CRT) is a video device that has been widely used in the past, and is very heavy and requires depth. On the other hand, LCD (Liquid
A so-called flat panel display (FPD) such as a crystal display (PDP) or a plasma display panel (PDP) has been developed as a post-CRT tube in recent years, and is now becoming popular as a general video device.

上記フラットパネルディスプレイの中でも、より高画質の映像が得られるディスプレイとして、電界放射型ディスプレイFED(Field Emission Display)に代表される自発光タイプの電子線励起型ディスプレイが注目されており、産学官で盛んに研究開発が進められている。   Among the flat panel displays mentioned above, self-luminous electron beam excitation displays typified by field emission displays (FEDs) are attracting attention as displays that can produce higher quality images. Research and development is actively underway.

平面薄型構造の電子線励起ディスプレイは、内面に蛍光体等の画像形成部材で形成されたガラス基板からなる前面板(Anode基板)と、電子放出素子、ゲート電極、集束電極等で形成されたカソードを搭載したガラス基板からなる背面板(Cathode基板)から構成されている。前面板及び背面板は支持部材を介して組合され、封着部材である低融点フリットにより封着され、真空密閉された気密構造を形成する。   An electron beam excitation display with a flat and thin structure has a front plate (Anode substrate) made of a glass substrate formed of an image forming member such as a phosphor on the inner surface, a cathode formed of an electron-emitting device, a gate electrode, a focusing electrode, and the like. It is composed of a back plate (Cathode substrate) made of a glass substrate on which is mounted. The front plate and the back plate are combined through a support member and sealed by a low melting point frit that is a sealing member to form a vacuum-tight airtight structure.

このような平面薄型構造の電子線励起型ディスプレイは、トンネル効果により発生・放出された電子によって、蛍光体を励起させ画像を形成する。このとき、これらの構成部分内の真空度はカソード構成の種類にもよるが、一般的に1×10-8〜1×10-5Pa程度で保持される。 Such an electron beam excitation display having a flat and thin structure forms an image by exciting phosphors with electrons generated and emitted by the tunnel effect. At this time, the degree of vacuum in these components is generally maintained at about 1 × 10 −8 to 1 × 10 −5 Pa although it depends on the type of cathode configuration.

ディスプレイの表示画面サイズが大きくなるに従い、真空密閉構造の容器内に外部気圧差による大気圧がかかるため、前面板及び背面板が圧力により変形、破損し、容器内の真空状態を維持できなくなる。それを防止し、前面板と背面板の形状、間隔を一定に維持するために、この両者の間にセラミックス製又はガラス製の大気圧支持部材であるスペーサが挿入される。このような電子線励起型ディスプレイの構造は、特開平7−230776号公報等に記述されており、既に公知である。   As the display screen size of the display increases, an atmospheric pressure due to an external atmospheric pressure difference is applied to the vacuum-sealed container, so that the front plate and the rear plate are deformed and damaged by the pressure, and the vacuum state in the container cannot be maintained. In order to prevent this and maintain the shape and interval of the front plate and the back plate constant, a spacer which is an atmospheric pressure support member made of ceramics or glass is inserted between them. The structure of such an electron beam excitation display is described in Japanese Patent Application Laid-Open No. 7-230776 and the like, and is already known.

スペーサは、電子線励起ディスプレイのCathode基板とAnode基板を封着した時に、その間の隔壁(空間)を保持する柱状のものを指す。スペーサに関しては、特表2002−505502や特開2001−335358、等に記述されており公知である。   The spacer refers to a columnar shape that holds a partition (space) between the Cathode substrate and the Anode substrate of the electron beam excitation display. The spacer is publicly known as described in JP-T-2002-505502 and JP-A-2001-335358.

特開平7−230776号Japanese Patent Laid-Open No. 7-230776 特表2002−505502Special table 2002-505502 特開2001−335358JP 2001-335358

スペーサに求められる特性として、高真空状態で破壊が起きない事と、電界放射に伴う電気的変化に対する安定性と、適度な導電率(電気伝導性)を保持する事と、ディスプレイを構成する各部材と同等の熱膨張係数を保持する事等が挙げられる。
The characteristics required for spacers are that no breakdown occurs in a high vacuum state, stability against electric changes caused by electric field radiation, maintaining appropriate electrical conductivity (electric conductivity), For example, maintaining a thermal expansion coefficient equivalent to that of the member.

一般的にガラス及びセラミックスは絶縁体であるため、電子線源から照射された電子の一部がスペーサに衝突すると、その電子を捕らえてスペーサ自体が帯電してしまう。この帯電が繰り返され、スペーサ自体の許容量を超えてしまうと、スペーサに捕捉されていた電子が一気に開放され、ディスプレイ画像に大きな影響を与え、正確に画像を表示できないといった問題点が発生する。   Since glass and ceramics are generally insulators, when a part of the electrons irradiated from the electron beam source collide with the spacer, the electrons are caught and the spacer itself is charged. When this charging is repeated and the allowable amount of the spacer itself is exceeded, the electrons trapped in the spacer are released at a stretch, which has a large effect on the display image and causes a problem that the image cannot be displayed accurately.

また、スペーサに捕捉された電子が帯電し始めると、電子源から放出された電子線がスペーサに引きつけられ直進性を失う。その結果として、電子線が蛍光体面に衝突する事ができなくなり、ディスプレイ画像が正確に表示できなくなるという問題が生じる。   In addition, when the electrons captured by the spacer start to be charged, the electron beam emitted from the electron source is attracted to the spacer and loses straightness. As a result, there is a problem that the electron beam cannot collide with the phosphor surface and the display image cannot be displayed accurately.

また、スペーサ自体の導電率が大きいと、電子線源から放出された電子が真空中ではなく、導電性の高いスペーサ自体を伝導してしまい、蛍光体面に衝突する事ができなくなる問題が生じる。   Further, when the conductivity of the spacer itself is large, electrons emitted from the electron beam source are conducted not in vacuum but through the highly conductive spacer itself, and cannot collide with the phosphor surface.

電子線励起型ディスプレイの真空密閉された気密構造内には高電圧が掛かるため、スペーサ材自体が高電圧により絶縁破壊を起こし、ディスプレイ画像に大きな影響を与え、故障の原因となる。   Since a high voltage is applied in the vacuum-sealed hermetic structure of the electron beam excitation display, the spacer material itself causes dielectric breakdown due to the high voltage, greatly affecting the display image and causing a failure.

このような問題点を改善する手法として、スペーサ表面への導電性被膜の形成(特開平8−180821号公報等)や、電子伝導性物質混合セラミックススペーサ(米国特許5675212号公報等)が公知となっている。しかしながら、このようなスペーサは、生産性や生産コスト、品質等の面で根本的解決には至っておらず、またセラミックス材料には焼結界面が無数に存在するため、絶縁破壊を起しやすいという欠点もある。   As a technique for improving such a problem, formation of a conductive film on the spacer surface (Japanese Patent Laid-Open No. 8-180821, etc.) and a ceramic spacer mixed with an electron conductive substance (US Pat. No. 5,675,212) are known. It has become. However, such spacers have not yet reached a fundamental solution in terms of productivity, production cost, quality, etc., and because ceramic materials have numerous sintered interfaces, dielectric breakdown is likely to occur. There are also drawbacks.

特開平8−180821号Japanese Patent Laid-Open No. 8-180821 米国特許5675212号US Pat. No. 5,675,212

使用部材の種類によって異なるが、スペーサはガラス基板、封着用部材と同等の平均線熱膨張係数を保持する必要がある。電子線励起型ディスプレイは熱処理工程を経るため、スペーサの平均線熱膨張係数がガラス基板、封着用部材と同等でない場合、この熱膨張率の差から歪が生じ破壊の原因となる。   Although it changes with kinds of member to be used, it is necessary for a spacer to hold | maintain the average linear thermal expansion coefficient equivalent to a glass substrate and a sealing member. Since the electron beam excitation display undergoes a heat treatment step, if the average linear thermal expansion coefficient of the spacer is not equivalent to that of the glass substrate or the sealing member, distortion occurs due to the difference in the thermal expansion coefficient, which causes destruction.

加えて、スペーサ自体の耐熱性が低いと、熱処理工程にて軟化変形を生じ、スペーサとしての機能を果たせず、破壊の原因となる。   In addition, if the heat resistance of the spacer itself is low, softening deformation occurs in the heat treatment process, so that the function as the spacer cannot be achieved, which causes destruction.

また、従来使用されてきたガラススペーサは、環境汚染物質であるPbOを多く含んでいる。加えてV、Cd、Cr等の有害物質を含んでいる事も多い。   In addition, conventionally used glass spacers contain a large amount of PbO, which is an environmental pollutant. In addition, it often contains harmful substances such as V, Cd, and Cr.

本発明は以上のような状況に鑑みてなされたものであり、帯電を防止可能な電子線励起型ディスプレイ用電子伝導性ガラススペーサ並びに、当該ガラススペーサに用いられる環境汚染物質を含まない電子伝導性ガラスを提供することを目的とする。
本発明の他の目的は、適度な導電率を有する電子線励起型ディスプレイ用電子伝導性ガラススペーサ並びに、当該ガラススペーサに用いられる環境汚染物質を含まない電子伝導性ガラスを提供することにある。
本発明の更に他の目的は、高絶縁破壊耐性を保持する特性を有する電子線励起型ディスプレイ用電子伝導性ガラススペーサ並びに、当該ガラススペーサに用いられる環境汚染物質を含まない電子伝導性ガラスを提供することにある。
本発明の更に他の目的は、高い耐熱性と広範囲に対応可能な平均線熱膨張係数を保持する特性を有する電子線励起型ディスプレイ用電子伝導性ガラススペーサ並びに、当該ガラススペーサに用いられる環境汚染物質を含まない電子伝導性ガラスを提供することにある。
The present invention has been made in view of the situation as described above, and is capable of preventing the charging of an electron conductive glass spacer for an electron beam excitation display, and an electronic conductivity free from environmental pollutants used for the glass spacer. The object is to provide glass.
Another object of the present invention is to provide an electron conductive glass spacer for an electron beam excitation display having an appropriate electrical conductivity and an electron conductive glass containing no environmental pollutant used for the glass spacer.
Still another object of the present invention is to provide an electron conductive glass spacer for an electron beam excitation display having a characteristic of maintaining a high dielectric breakdown resistance, and an electron conductive glass free from environmental pollutants used for the glass spacer. There is to do.
Still another object of the present invention is to provide an electron conductive glass spacer for an electron beam excitation display having a high heat resistance and a property of maintaining an average linear thermal expansion coefficient that can be used in a wide range, and environmental pollution used in the glass spacer. The object is to provide an electron-conducting glass free of substances.

本発明の第1の態様に係る電子伝導性ガラスは、30〜70モル%のP2O5、25〜65モル%の遷移金属酸化物、25モル%以下のRO(Rはアルカリ土類金属)、15モル%以下のR’2O(R’はアルカリ金属)を含有する。 The electron conductive glass according to the first aspect of the present invention is composed of 30 to 70 mol% P 2 O 5 , 25 to 65 mol% transition metal oxide, 25 mol% or less RO (R is an alkaline earth metal) ), 15 mol% or less of R ′ 2 O (R ′ is an alkali metal).

また、本発明の第2の態様に係る電子伝導性ガラスは、30〜450℃の範囲における平均線熱膨張係数が45×10-7/K〜95×10-7/Kの範囲内であり、且つガラス転移温度が470℃以上である。 The electron conductive glass according to the second aspect of the present invention has an average linear thermal expansion coefficient in the range of 30 to 450 ° C. is in the range of 45 × 10 -7 / K~95 × 10 -7 / K And the glass transition temperature is 470 ° C. or higher.

更に、本発明の第3の態様に係る電子線励起型ディスプレイ用ガラススペーサは、上記の第1の態様又は第2の態様に係るガラスを使用するものである。
Furthermore, the glass spacer for electron beam excitation display according to the third aspect of the present invention uses the glass according to the first aspect or the second aspect.

本発明者は、上記目的を達成するため鋭意研究を行った結果、ガラス基板を備える電子線励起型ディスプレイに用いられるガラススペーサは、P2O5を30〜70モル%、遷移金属酸化物を25〜65モル%、RO(Rはアルカリ土類金属とする)を25モル%以下、R’2O(R’はアルカリ金属とする)を15モル%以下含有するリン酸塩系ガラスで構成すると、電子線源からの電子線放出時に、スペーサに衝突した電子により帯電が発生する現象を防止できる事を見出した。 As a result of intensive studies to achieve the above object, the present inventor has found that the glass spacer used in the electron beam excitation display provided with the glass substrate contains 30 to 70 mol% of P 2 O 5 and a transition metal oxide. Consists of phosphate glass containing 25 to 65 mol%, RO (R is alkaline earth metal) 25 mol% or less, and R ' 2 O (R' is alkali metal) 15 mol% or less As a result, it has been found that the phenomenon of electrification caused by the electrons colliding with the spacer when the electron beam is emitted from the electron beam source can be prevented.

また、前記の従来のスペーサ材料で問題となっていた絶縁破壊に対する絶縁耐力が高い事と、環境汚染物質を含まないという特徴を持つことを見出した。   The present inventors have also found that the dielectric strength, which is a problem with the conventional spacer material, is high and that it does not contain environmental pollutants.

本発明は、上記研究の結果に基づいて成されたものである。   The present invention has been made based on the results of the above research.

まず、本発明について電子線励起型ディスプレイ用ガラススペーサを例に挙げ説明する。尚、スペーサを構成するガラス組成物はガラス基板や帯電防止材等として、エレクトロニクス分野等の他分野に於いても広く使用され得るものであり、本用途に限定されるものではない。   First, the present invention will be described by taking an electron beam excited display glass spacer as an example. The glass composition constituting the spacer can be widely used in other fields such as the electronics field as a glass substrate or an antistatic material, and is not limited to this application.

本発明の電子線励起型ディスプレイ用ガラススペーサを構成するガラス組成物は、P2O5を30〜70モル%、遷移金属酸化物を25〜65モル%、RO(Rはアルカリ土類金属とする)を25モル%以下、R’2O(R’はアルカリ金属とする)を15モル%以下含有するリン酸塩系ガラスからなる。 The glass composition constituting the glass spacer for electron beam excitation display according to the present invention comprises 30 to 70 mol% of P 2 O 5 , 25 to 65 mol% of transition metal oxide, RO (R is an alkaline earth metal, and Is 25 mol% or less and R ′ 2 O (R ′ is an alkali metal) and 15 mol% or less.

P2O5はガラス形成酸化物であり、ガラスの骨格を形成する主成分である。P2O5が30モル%未満ではガラス化し難く、失透しやすくなる。元々リン酸塩ガラスは化学的耐久性が低いが、P2O5含有量が70モル%を超えると、極端に化学的耐久性が低下する。そのため、P2O5含有量は30〜70モル%、好ましくは40〜65モル%とする。 P 2 O 5 is a glass-forming oxide and is a main component that forms a glass skeleton. If P 2 O 5 is less than 30 mol%, it is difficult to vitrify and it tends to devitrify. Although the phosphate glass is originally low in chemical durability, when the P 2 O 5 content exceeds 70 mol%, the chemical durability is extremely lowered. Therefore, the P 2 O 5 content is 30 to 70 mol%, preferably 40 to 65 mol%.

遷移金属酸化物はガラスに電子伝導性を付与させるために必要である。しかし、従来のSiO2系(珪酸塩系)ガラスでは遷移金属酸化物を大量に含有する事が非常に困難であった。またB2O3系(ホウ酸塩系)ガラスでは、遷移金属酸化物が含有できたとしても、化学的耐久性や耐熱性等が非常に低くなるため実用には至らない。 The transition metal oxide is necessary for imparting electronic conductivity to the glass. However, it has been very difficult to contain a large amount of transition metal oxide in the conventional SiO 2 (silicate) glass. In addition, even if transition metal oxides can be contained in B 2 O 3 (borate) glass, chemical durability, heat resistance, and the like are very low, so that they are not practical.

本研究で見出したリン酸塩系ガラスによれば、従来不可能であった遷移金属酸化物を大量に含有させる事が可能となる。   According to the phosphate-based glass found in this study, it becomes possible to contain a large amount of transition metal oxide, which has been impossible in the past.

所望の電気伝導度を得るために、遷移金属酸化物の含有量は25〜65モル%である事が望ましい。他成分導入との兼ね合いもあるため、好ましくは35〜50モル%とする。遷移金属酸化物の含有量が25モル%未満であると、スペーサ上に帯電が生じ、所望の電子伝導性を保持する事ができない。このため、電子線励起型ディスプレイ用ガラススペーサとしての機能を果たせなくなる。また、遷移金属酸化物の含有量が65モル%を超えると、ガラスが失透を生じ、安定なガラスが得られなくなる。   In order to obtain a desired electrical conductivity, the content of the transition metal oxide is preferably 25 to 65 mol%. Since there is a balance with introduction of other components, it is preferably 35 to 50 mol%. When the content of the transition metal oxide is less than 25 mol%, charging occurs on the spacer, and the desired electronic conductivity cannot be maintained. For this reason, the function as a glass spacer for electron beam excitation type displays cannot be performed. On the other hand, when the content of the transition metal oxide exceeds 65 mol%, the glass is devitrified and a stable glass cannot be obtained.

遷移金属イオンは、ガラス中で異なる原子価状態を取る事が可能である。また、ガラス中の遷移金属イオンの価数は、ガラス組成、溶融温度、溶融雰囲気、等に依存して変化する事が一般的に広く知られている。   Transition metal ions can have different valence states in the glass. Further, it is generally well known that the valence of transition metal ions in glass changes depending on the glass composition, melting temperature, melting atmosphere, and the like.

電子伝導性ガラスは、ガラス中に含有される遷移金属イオンが異なる原子価で存在するため、電子の授受が可能になり、導電性を持つ事が知られている。一般的に、ガラス中に含まれる遷移金属元素の含有量が大きいほど、導電率は大きくなる。本発明において、従来のSiO2系やB2O3系ではなく、遷移金属酸化物を多く含有する事の出来るリン酸塩系ガラス組成を見出した事で、非常に良好な導電性を保持させる事が可能になった。 It is known that the electron conductive glass has conductivity because the transition metal ions contained in the glass exist at different valences, so that electrons can be exchanged. In general, the greater the content of the transition metal element contained in the glass, the greater the conductivity. In the present invention, not a conventional SiO 2 type or B 2 O 3 type, but a phosphate type glass composition that can contain a large amount of transition metal oxides has been found, so that a very good conductivity can be maintained. Things became possible.

前記遷移金属酸化物は、W、Fe、Cu、Co、Ni、Mo、Mn、Sn、Ti、の中から選択する事が望ましく、電子線励起型ディスプレイ用スペーサの導電性の要求特性値により使用する遷移金属酸化物、及び含有量を調整することが望ましい。   The transition metal oxide is preferably selected from W, Fe, Cu, Co, Ni, Mo, Mn, Sn, Ti, and is used according to the required characteristic value of the conductivity of the electron beam excited display spacer. It is desirable to adjust the transition metal oxide and content.

各遷移金属元素は、それぞれ電子伝導性に対する活性化エネルギーが異なるため、電子伝導性も異なる。本発明者の検討によると、Fe、Mn、Cuは、ガラス中で適度な活性化エネルギーを保持するので好ましく、特にWが好ましい。   Since each transition metal element has a different activation energy for electron conductivity, the electron conductivity is also different. According to the study of the present inventor, Fe, Mn, and Cu are preferable because they retain an appropriate activation energy in glass, and W is particularly preferable.

アルカリ土類金属酸化物RO(MgO、CaO、SrO、BaO)は、ガラスの平均線熱膨張係数を向上させ、且つガラスの化学的耐久性をも向上させる。ROは1種類もしくは2種類以上が含有され、ガラスの粘性、失透温度を調整するために用いられる。アルカリ土類金属酸化物ROが25モル%を超えると、ガラスの耐熱性が低下し過ぎるため、25モル%以下、好ましくは概ね5〜20モル%程度とする。なお、アルカリ土類金属酸化物ROを全く含まない組成とすることも可能である。   Alkaline earth metal oxides RO (MgO, CaO, SrO, BaO) improve the average linear thermal expansion coefficient of the glass and also improve the chemical durability of the glass. One or more types of RO are contained, and are used for adjusting the viscosity and devitrification temperature of glass. If the alkaline earth metal oxide RO exceeds 25 mol%, the heat resistance of the glass is excessively lowered. It is also possible to have a composition that does not contain any alkaline earth metal oxide RO.

本発明のように、ガラススペーサを形成するガラス中にアルカリ金属酸化物R’2O(Li2O、Na2O、K2O、Rb2O)のような可動イオンが存在すると、バイアス電圧を加える事により、最終的には偏析してしまい、導電率の局所的分布が生じる。これによって絶縁破壊や帯電の問題が発生する。このような現象を避けるため、極力R’2O含有量は少なくする事が望ましい。また、含有させるとしても、できるだけ重元素であるアルカリ金属酸化物を選択する事が望ましい。もしくは、2種以上のR’2Oを含有させ、混合アルカリ効果によるイオンの可動度を下げる事が効果的である。アルカリ金属酸化物R’2Oの含有量は極力少量が好ましいが、平均線熱膨張係数やガラスの溶解性に大きく寄与するため、その点を考慮して設定する。具体的には15モル%以下とする。なお、アルカリ金属酸化物R’Oを全く含まない組成とすることも可能である。 When mobile ions such as alkali metal oxides R ′ 2 O (Li 2 O, Na 2 O, K 2 O, Rb 2 O) are present in the glass forming the glass spacer as in the present invention, the bias voltage In the end, segregation eventually occurs, resulting in local distribution of conductivity. This causes dielectric breakdown and charging problems. In order to avoid such a phenomenon, it is desirable to reduce the R ′ 2 O content as much as possible. Even if contained, it is desirable to select an alkali metal oxide that is a heavy element as much as possible. Alternatively, it is effective to contain two or more types of R ′ 2 O and reduce the mobility of ions due to the mixed alkali effect. The content of the alkali metal oxide R ′ 2 O is preferably as small as possible. However, since it greatly contributes to the average linear thermal expansion coefficient and the solubility of the glass, it is set in consideration of this point. Specifically, the content is 15 mol% or less. It is also possible to have a composition that does not contain any alkali metal oxide R ′ 2 O.

また、化学的耐久性の向上、耐熱性の向上のため、Al2O3、ZnO、Nb2O5、Ta2O5、Bi2O3の何れか1種もしくは2種以上の合計が20モル%以下になるように含有する事が望ましい。 Further, in order to improve chemical durability and heat resistance, the total of one or more of Al 2 O 3 , ZnO, Nb 2 O 5 , Ta 2 O 5 , Bi 2 O 3 is 20 It is desirable to contain it so that it may become less than mol%.

電子線励起型ディスプレイ用のスペーサガラスには、環境汚染物質や毒性の強い化合物は含有することは好ましくない。そのため、本発明のガラス材料はV、Pb、As、Sb、Cr、Cdは含有しない態様を含む。   It is not preferable that the spacer glass for an electron beam excitation display contains an environmental pollutant or a highly toxic compound. Therefore, the glass material of the present invention includes an embodiment that does not contain V, Pb, As, Sb, Cr, and Cd.

電子線励起型ディスプレイは、構造上、ガラススペーサの電気抵抗が低すぎると、電子源から放出された電子の伝導経路になり、電気的な障害となることがある。また、ガラススペーサの電気抵抗が高すぎる場合には、電荷の蓄積が生じ、帯電による処々の問題が発生する。従って、本発明の電子線励起型ディスプレイ用ガラススペーサの抵抗率は、概ね1×106〜1×1012 ohms・cmである事が望ましい。 If the electrical resistance of the glass spacer is too low due to the structure of the electron beam excitation display, it becomes a conduction path for electrons emitted from the electron source, which may be an electrical obstacle. In addition, when the electrical resistance of the glass spacer is too high, charge accumulation occurs, resulting in various problems due to charging. Therefore, it is desirable that the resistivity of the glass spacer for an electron beam excitation display of the present invention is approximately 1 × 10 6 to 1 × 10 12 ohms · cm.

前記した電子線励起型ディスプレイの各ガラス基板や封着用部材と、電子伝導性ガラススペーサの平均線熱膨張係数は一致している事が望ましい。電子線励起型ディスプレイには、プラズマディスプレイパネル用の高歪点ガラス等が基板として使用されるため、ガラススペーサもこれらと同等の熱膨張係数を保持する事が望ましく、その値は概ね45〜95×10-7/K である。 It is desirable that the average linear thermal expansion coefficient of each glass substrate and sealing member of the electron beam excitation display described above and that of the electron conductive glass spacer match. In the electron beam excitation display, since a high strain point glass for a plasma display panel or the like is used as a substrate, it is desirable that the glass spacer also has a thermal expansion coefficient equivalent to these, and its value is approximately 45 to 95. × 10 -7 / K.

加えて、本発明における電子伝導性ガラスは、主成分のP2O5に前述した成分を導入する事によって、熱処理工程を経ても軟化変形が生じない耐熱性を保持させる事が可能になる。その値は、ガラス転移点が概ね470℃以上である。 In addition, by introducing the above-described components into the main component P 2 O 5 , the electron conductive glass in the present invention can maintain heat resistance that does not cause softening deformation even after a heat treatment step. The value is about 470 ° C. or more at the glass transition point.

以下、実施例及び比較例を挙げて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

本発明に係るガラス材料の母材ガラスは、下記のように調整した。P2O5原料として特級試薬であるオルトリン酸、遷移金属酸化物原料として所望の遷移金属酸化物、RO(但し、Rはアルカリ土類金属)原料及びR’2O(但し、R’はアルカリ金属)原料として、各金属元素の炭酸塩を用いた。これらの原料を所定の割合で混合し、バッチ重量は700gとした。この原料混合物をアルミナ製坩堝に入れ、溶融中の原料揮発を抑えるためのアルミナ製蓋をし、1100℃〜1400℃に保持してある電気炉内にて0.5〜1時間溶融した。溶融後、ガラスを表面処理された鋳型に流し出し、500〜650℃の温度にて2時間徐冷を行い、自然放冷を経てガラス試料を得た。得られたガラス試料のガラス化状態と電子伝導性の確認を行った。また、体積抵抗率、平均線熱膨張係数、ガラス転移点についても、所望の特性範囲内にあるかどうかの確認を行った。その結果例を表1及び表2に示す。表1及び表2に記載されているガラス組成の数値は何れもモル%表記である。 The base glass of the glass material according to the present invention was adjusted as follows. Orthophosphoric acid which is a special grade reagent as P 2 O 5 raw material, desired transition metal oxide as transition metal oxide raw material, RO (where R is alkaline earth metal) raw material and R ′ 2 O (where R ′ is alkaline) (Metal) Carbonate of each metal element was used as a raw material. These raw materials were mixed at a predetermined ratio, and the batch weight was 700 g. This raw material mixture was put in an alumina crucible, covered with an alumina lid for suppressing volatilization of the raw material during melting, and melted in an electric furnace maintained at 1100 ° C. to 1400 ° C. for 0.5 to 1 hour. After melting, the glass was poured into a surface-treated mold, slowly cooled at a temperature of 500 to 650 ° C. for 2 hours, and naturally cooled to obtain a glass sample. The vitrification state and electronic conductivity of the obtained glass sample were confirmed. Further, it was confirmed whether the volume resistivity, the average linear thermal expansion coefficient, and the glass transition point were within the desired characteristic range. Examples of the results are shown in Tables 1 and 2. The numerical values of the glass compositions described in Tables 1 and 2 are all expressed in mol%.

尚、表1及び表2において、ガラス化が○とは上記方法による溶融で安定にガラスが得られたものであり、ガラス化が×とは原料混合物が完全に溶解しなかったり、ガラス溶液の冷却過程で結晶が析出したりして、安定なガラスが得られなかったことを意味する。

Figure 2006151793
Figure 2006151793
In Tables 1 and 2, vitrification indicates that the glass is stably obtained by melting by the above method, and vitrification indicates that the raw material mixture does not completely dissolve or the glass solution It means that crystals were precipitated during the cooling process and a stable glass could not be obtained.
Figure 2006151793
Figure 2006151793

ガラスの電子伝導性は、電気抵抗の経時変化で識別できる。通常のイオン伝導性を示す一般的なガラスは、直流電圧の継続印加によりイオンの偏在化(偏析)が起き、結果徐々に電気抵抗が上昇する。しかし、電子伝導性ガラスでは上記のような変化は起きない。これは既に広く知られている(例:J.D.Mackenzie, Modern Aspects of the Vitreous States, Vol.3参照)。本発明では、電気抵抗の測定直後及び4時間後の測定値の変化がない場合、電子伝導性を示すと判断した。なお、表1及び表2において、電子伝導性が○とは、上述したように電気抵抗の測定直後の測定値と4時間後の測定値に変化がないものであり、電子伝導性が×とは両測定値間に変化が認められたことを意味する。   The electronic conductivity of glass can be identified by the change in electrical resistance over time. In general glass exhibiting normal ion conductivity, uneven distribution (segregation) of ions occurs due to continuous application of a DC voltage, and as a result, electric resistance gradually increases. However, the above change does not occur in the electron conductive glass. This is already widely known (see, for example, J.D. Mackenzie, Modern Aspects of the Vitreous States, Vol. 3). In the present invention, when there was no change in the measured value immediately after the measurement of electric resistance and after 4 hours, it was determined that the electron conductivity was exhibited. In Tables 1 and 2, the electron conductivity is ◯, as described above, that there is no change in the measured value immediately after the measurement of the electrical resistance and the measured value after 4 hours, and the electron conductivity is x. Means that there was a change between both measurements.

ガラスの電気抵抗は、約3mm程度の両面研磨した試料を用い、測定方法はJIS-C
2141に準じた。表1及び表2において、体積抵抗率が所望の範囲内(25℃での体積抵抗率が1.0×106〜1.0×1012ohms・cmの範囲)の場合を○、範囲外の場合を×として評価した。
The electrical resistance of the glass is about 3 mm on both sides polished, and the measuring method is JIS-C
According to 2141. In Tables 1 and 2, the volume resistivity is within the desired range (the volume resistivity at 25 ° C. is in the range of 1.0 × 10 6 to 1.0 × 10 12 ohms · cm). As evaluated.

ガラスの平均線熱膨張係数及びガラス転移点の測定方法はJIS-R 3102に準じた。表1及び表2において、平均線熱膨張係数及びガラス転移温度が、所望の範囲内(平均線熱膨張係数が45×10-7/K〜95×10-7/Kの範囲内、ガラス転移温度が470℃以上)の場合を○、範囲外の場合を×として評価した。 The average linear thermal expansion coefficient and the glass transition point of the glass were measured in accordance with JIS-R 3102. In Table 1 and Table 2, average coefficient of linear thermal expansion and the glass transition temperature, within a range within the desired range (average linear thermal expansion coefficient of 45 × 10 -7 / K~95 × 10 -7 / K, the glass transition The case where the temperature was 470 ° C. or higher was evaluated as “◯”, and the case outside the range was evaluated as “X”.

得られたガラス材料は、切断、切削、研磨等の機械加工、または溶着等の延伸を施す事によって様々な形状に加工が可能である。本実施例においては、所定の形状のガラススペーサに加工を施した。これらのスペーサの加工形状は既に公知であり、例えばシート状のものや円柱状のもの等が知られている(例:情報機構主催セミナー,AC040714)。   The obtained glass material can be processed into various shapes by machining such as cutting, cutting and polishing, or stretching such as welding. In this example, a glass spacer having a predetermined shape was processed. The processing shape of these spacers is already known, and for example, a sheet-like shape or a cylindrical shape is known (eg, seminar organized by the Information Organization, AC040714).

スペーサ形状に加工したガラス材料を用い、5inchサイズの電子線励起型ディスプレイを試作し、動作させ異常が起こらない事を確認、評価した。   Using a glass material processed into a spacer shape, we prototyped a 5-inch size electron beam-excited display and operated it to confirm that there was no abnormality.

本発明は、表1及び表2からも明らかなように、本発明の範囲内では、非常に安定且つ特性に優れた電子伝導性ガラスを供給でき、用途の1つとして電子線励起型ディスプレイに適したガラススペーサを供給する事が可能である。   As is apparent from Tables 1 and 2, the present invention can supply an electron conductive glass having excellent stability and characteristics within the scope of the present invention. It is possible to supply a suitable glass spacer.

表3は、比較例のガラス及びその特性を示すものである。表3におけるガラス組成の数字は、何れもモル%であり、各評価項目は実施例の場合と同様である。

Figure 2006151793
Table 3 shows the glass of the comparative example and its characteristics. The numbers of the glass compositions in Table 3 are all mol%, and each evaluation item is the same as in the example.
Figure 2006151793

表3において、比較例1は市販されているガラスの代表例である。非常に安定なガラスが得られるが、電子伝導性は示さず、また非常に高い体積抵抗率を示した。   In Table 3, Comparative Example 1 is a representative example of commercially available glass. Although a very stable glass was obtained, it did not exhibit electronic conductivity and exhibited a very high volume resistivity.

比較例2は、ガラスの網目形成酸化物であるP2O5の含有量が少なく、遷移金属酸化物の含有量が多いため、安定なガラスが得られなかった。 In Comparative Example 2, since the content of P 2 O 5 that is a network-forming oxide of glass was small and the content of transition metal oxide was large, a stable glass could not be obtained.

比較例3は、安定にガラスが得られ、電子伝導性も示すが、ROを25モル%を超えて含有するため、平均線熱膨張係数が95×10-7/Kを超えてしまい、ガラス転移温度も470℃未満となり、スペーサとして使用した時、熱歪みの影響で破損が生じた。 In Comparative Example 3, glass is stably obtained and also exhibits electronic conductivity. However, since RO exceeds 25 mol%, the average linear thermal expansion coefficient exceeds 95 × 10 −7 / K. The transition temperature was also less than 470 ° C., and when used as a spacer, breakage occurred due to the effect of thermal strain.

比較例4は、安定にガラスが得られるが、測定開始直後と4時間後の電気抵抗値に変化が認められたため電子伝導性も良好ではなく(×)、R’2Oを15モル%を超えて含有するため、平均線熱膨張係数が95×10-7/Kを超えてしまい、ガラス転移温度も470℃未満となり、スペーサとして使用した時、熱歪みの影響で破損が生じた。 In Comparative Example 4, a glass can be obtained stably, but since the change in the electric resistance value immediately after the start of measurement and after 4 hours was observed, the electron conductivity was not good (×), and R ′ 2 O was reduced to 15 mol%. As a result, the average linear thermal expansion coefficient exceeded 95 × 10 −7 / K and the glass transition temperature was less than 470 ° C. When used as a spacer, damage was caused by the influence of thermal strain.

比較例5及び6は、安定にガラスが得られるが、遷移金属酸化物の含有量が少ないため十分な電子伝導性を示さなかった。   In Comparative Examples 5 and 6, glass can be obtained stably, but due to the low content of transition metal oxides, sufficient electronic conductivity was not exhibited.

上記内容にて詳細説明したように、本発明による電子伝導性ガラスによれば、30〜70モル%のP2O5、25〜65モル%の遷移金属酸化物、25モル%以下のRO(Rはアルカリ土類金属)、15モル%以下のR’2O(R’はアルカリ金属)を含有するガラス組成から構成されるため、優れた電子伝導性を有し、且つ帯電及び絶縁破壊を効果的に防止できるガラススペーサを供給できる。 As explained in detail above, according to the electron conducting glass according to the present invention, 30 to 70 mol% P 2 O 5 , 25 to 65 mol% transition metal oxide, 25 mol% or less RO ( R is an alkaline earth metal) and is composed of a glass composition containing 15 mol% or less of R ′ 2 O (R ′ is an alkali metal). Glass spacers that can be effectively prevented can be supplied.

また、前記遷移金属酸化物が、W、Fe、Cu、Co、Ni、Mo、Mn、Sn、Tiからなる群の中から選ばれる少なくとも1種類の金属元素の酸化物であるため、広い領域にてガラス化が可能となり、実用的な電子伝導性を有したガラススペーサを得る事ができる。   Further, since the transition metal oxide is an oxide of at least one metal element selected from the group consisting of W, Fe, Cu, Co, Ni, Mo, Mn, Sn, and Ti, Thus, vitrification is possible, and a glass spacer having practical electronic conductivity can be obtained.

また、有害物質と認定されているV、Pb、As、Sb、Cr、Cdを含有しないことを特徴とするため、従来の材料と異なり環境影響及び環境規制に準じたガラススペーサを得る事ができる。   In addition, it is characterized by not containing V, Pb, As, Sb, Cr, and Cd, which are recognized as hazardous substances, so it is possible to obtain glass spacers that comply with environmental impacts and environmental regulations unlike conventional materials. .

また、25℃での体積抵抗率が1.0×106〜1.0×1012ohms・cmの範囲である事を特徴とするため、電子線励起型ディスプレイ用スペーサに必要な導電性を保持するガラススペーサを供給できる。 Further, since the volume resistivity at 25 ° C. is in the range of 1.0 × 10 6 to 1.0 × 10 12 ohms · cm, a glass spacer that retains the conductivity necessary for the electron beam excited display spacer. Can supply.

また、30〜450℃の範囲における平均線熱膨張係数が45×10-7/K〜95×10-7/Kの範囲内であり、且つガラス転移温度が470℃以上であることを特徴とするため、電子線励起型ディスプレイの構成部材との熱処理工程において軟化変形が起きず、また同等の平均線熱膨張係数を保持するため、熱処理工程での熱膨張差起因の変形、破壊を防止可能なガラススペーサを供給する事ができる。 Moreover, said the in the range of average linear thermal expansion coefficient of 45 × 10 -7 / K~95 × 10 -7 / K in the range thirty to four hundred and fifty ° C., and a glass transition temperature of 470 ° C. or higher Therefore, softening deformation does not occur in the heat treatment process with the components of the electron beam excitation display, and since the same average linear thermal expansion coefficient is maintained, it is possible to prevent deformation and destruction due to the thermal expansion difference in the heat treatment process. Glass spacers can be supplied.

また、本発明による電子伝導性ガラスで作製された、電子線励起型ディスプレイ用ガラススペーサによれば、上述した問題点を克服した電子線励起型ディスプレイ用ガラススペーサを供給する事ができる。   Moreover, according to the glass spacer for electron beam excitation type | mold displays produced with the electron conductive glass by this invention, the glass spacer for electron beam excitation type | mold displays which overcome the problem mentioned above can be supplied.

以上、本発明について電子線励起型ディスプレイ用ガラススペーサを例に採って説明したが、本発明は、これらの実施例に限定されるものではなく、その他の種々の用途に適用可能である。例えば、帯電防止材、導電性フリット、導電性素材、半導体向け等の種々のガラス基板等として、エレクトロニクス分野等において広く使用され得る。   As described above, the present invention has been described by taking the glass spacer for electron beam excitation display as an example, but the present invention is not limited to these examples, and can be applied to various other uses. For example, it can be widely used in the electronics field etc. as various glass substrates for antistatic materials, conductive frit, conductive materials, semiconductors and the like.

図1は、本発明に係るガラススペーサが適用可能な電子線励起型ディスプレイの概略構成を示す断面図である。ここではシート状のスペーサを例示した。フラット型の電子線励起型ディスプレイは、内面に画像形成部材が形成されたガラス基板からなる前面板10と、電子線放出素子群を搭載したガラス基板からなる背面板20とを備える。図示しない画像形成部材は、電子放出素子から電子線が照射されて発光する蛍光体を有する。   FIG. 1 is a cross-sectional view showing a schematic configuration of an electron beam excitation display to which a glass spacer according to the present invention can be applied. Here, a sheet-like spacer is illustrated. The flat-type electron beam excitation display includes a front plate 10 made of a glass substrate having an image forming member formed on the inner surface, and a back plate 20 made of a glass substrate on which an electron beam emitting element group is mounted. An image forming member (not shown) has a phosphor that emits light when irradiated with an electron beam from an electron-emitting device.

前面板10及び背面板20を形成するガラス基板は、例えばソーダライムガラスやPDP用高歪点ガラスまたはTFT用アルミノボロシリケートガラスからなり、このガラスの線熱膨張係数は、概ね35〜95×10−7/Kの範囲とする。 The glass substrate forming the front plate 10 and the back plate 20 is made of, for example, soda lime glass, high strain point glass for PDP or aluminoborosilicate glass for TFT, and the linear thermal expansion coefficient of this glass is generally 35 to 95 × 10. The range is -7 / K.

前面板10と背面板20とは、支持枠30を介して気密的に接合されて、支持枠30と共に気密の耐大気圧構造をなす真空容器を形成する。また、前面板10と背面板20との間には、大気圧支持部材としての本発明に係るガラススペーサ40が複数挿入される。ガラススペーサ40の各々は、下端及び/又は上端部が接着部材によって固定される。   The front plate 10 and the back plate 20 are airtightly joined via the support frame 30 to form a vacuum container that forms an airtight atmospheric pressure resistant structure together with the support frame 30. A plurality of glass spacers 40 according to the present invention as an atmospheric pressure support member are inserted between the front plate 10 and the back plate 20. Each glass spacer 40 has a lower end and / or an upper end fixed by an adhesive member.

ガラススペーサ40の厚さは、例えば、0.03〜0.30mmとすることができる。また、高さは、0.7〜5.0mmとすることができる。その他ガラススペーサ40の形状は、ディスプレイの大きさやその製造方法等に応じて最適に設定する。   The thickness of the glass spacer 40 can be set to 0.03 to 0.30 mm, for example. Moreover, height can be 0.7-5.0 mm. In addition, the shape of the glass spacer 40 is optimally set according to the size of the display, its manufacturing method, and the like.

図1は、本発明に係るガラススペーサが適用可能な電子線励起型ディスプレイの概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of an electron beam excitation display to which a glass spacer according to the present invention can be applied.

Claims (13)

30〜70モル%のP2O5、25〜65モル%の遷移金属酸化物、25モル%以下のRO(Rはアルカリ土類金属)、15モル%以下のR’2O(R’はアルカリ金属)を含有する電子伝導性ガラス。 30-70 mol% P 2 O 5 , 25-65 mol% transition metal oxide, 25 mol% or less RO (R is an alkaline earth metal), 15 mol% or less R ′ 2 O (R ′ is Electronically conductive glass containing an alkali metal). 前記遷移金属酸化物が、W、Fe、Cu、Co、Ni、Mo、Mn、Sn、Tiからなる群の中から選ばれる少なくとも1種類の金属元素の酸化物であることを特徴とする、請求項1に記載の電子伝導性ガラス。   The transition metal oxide is an oxide of at least one metal element selected from the group consisting of W, Fe, Cu, Co, Ni, Mo, Mn, Sn, Ti, Item 2. The electron conductive glass according to Item 1. 前記ROが、Mg、Ca、Sr、Baからなる群の中から選ばれる少なくとも1種類のアルカリ土類金属元素の酸化物であることを特徴とする、請求項1に記載の電子伝導性ガラス。   2. The electron conductive glass according to claim 1, wherein the RO is an oxide of at least one alkaline earth metal element selected from the group consisting of Mg, Ca, Sr, and Ba. 前記R’2Oが、Li、Na、K、Rbからなる群の中から選ばれる少なくとも1種類のアルカリ金属元素の酸化物であることを特徴とする、請求項1に記載の電子伝導性ガラス。 2. The electron conductive glass according to claim 1, wherein the R ′ 2 O is an oxide of at least one alkali metal element selected from the group consisting of Li, Na, K, and Rb. . Al2O3、ZnO、NbO5、TaO、BiOのいずれか1種、あるいは2種以上の合計が、全体の20モル%以下になるように含有することを特徴とする、請求項1に記載の電子伝導性ガラス。 Any one of Al 2 O 3 , ZnO, Nb 2 O 5 , Ta 2 O 5 , Bi 2 O 3 , or a total of two or more is contained so that the total is 20 mol% or less. The electron conductive glass according to claim 1. V、Pb、As、Sb、Cr、Cdを含有しないことを特徴とする、請求項1に記載の電子伝導性ガラス。   2. The electron conductive glass according to claim 1, which does not contain V, Pb, As, Sb, Cr, or Cd. 25℃での体積抵抗率が1.0×106〜1.0×1012ohms・cmの範囲であることを特徴とする、請求項1に記載の電子伝導性ガラス。 2. The electron conductive glass according to claim 1, wherein the volume resistivity at 25 ° C. is in the range of 1.0 × 10 6 to 1.0 × 10 12 ohms · cm. 30〜450℃の範囲における平均線熱膨張係数が45×10-7/K〜95×10-7/Kの範囲内であり、且つガラス転移温度が470℃以上であることを特徴とする、請求項1に記載の電子伝導性ガラス。 The average linear thermal expansion coefficient in the range of thirty to four hundred fifty ° C. is in the range of 45 × 10 -7 / K~95 × 10 -7 / K, and wherein the glass transition temperature of 470 ° C. or higher, The electron conductive glass according to claim 1. 30〜450℃の範囲における平均線熱膨張係数が45×10-7/K〜95×10-7/Kの範囲内であり、且つガラス転移温度が470℃以上であることを特徴とする電子伝導性ガラス。 The average linear thermal expansion coefficient in the range of thirty to four hundred fifty ° C. is in the range of 45 × 10 -7 / K~95 × 10 -7 / K, electrons having a glass transition temperature and is characterized in that at 470 ° C. or higher Conductive glass. 30〜70モル%のP2O5、25〜65モル%の遷移金属酸化物、25モル%以下のRO(Rはアルカリ土類金属)、15モル%以下のR’2O(R’はアルカリ金属)を含有し、
25℃での体積抵抗率が1.0×106〜1.0×1012ohms・cmの範囲であり、
30〜450℃の範囲における平均線熱膨張係数が45×10-7/K〜95×10-7/Kの範囲内であり、
ガラス転移温度が470℃以上であることを特徴とする電子伝導性ガラス。
30-70 mol% P 2 O 5 , 25-65 mol% transition metal oxide, 25 mol% or less RO (R is an alkaline earth metal), 15 mol% or less R ′ 2 O (R ′ is Contains alkali metals)
The volume resistivity at 25 ° C. is in the range of 1.0 × 10 6 to 1.0 × 10 12 ohms · cm,
The average linear thermal expansion coefficient in the range of thirty to four hundred fifty ° C. is in the range of 45 × 10 -7 / K~95 × 10 -7 / K,
An electron conductive glass characterized by having a glass transition temperature of 470 ° C. or higher.
請求項1に記載の電子伝導性ガラスで作製されたことを特徴とする、電子線励起型ディスプレイ用ガラススペーサ。   A glass spacer for an electron beam excitation display, which is made of the electron conductive glass according to claim 1. 請求項9に記載の電子伝導性ガラスで作製されたことを特徴とする、電子線励起型ディスプレイ用ガラススペーサ。   A glass spacer for an electron beam excitation display, which is made of the electron conductive glass according to claim 9. 請求項10に記載の電子伝導性ガラスで作製されたことを特徴とする、電子線励起型ディスプレイ用ガラススペーサ。   A glass spacer for an electron beam excitation display, which is made of the electron conductive glass according to claim 10.
JP2005300744A 2004-10-29 2005-10-14 Electron-conductive glass and spacer for electron beam-excitation type display using the same Pending JP2006151793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005300744A JP2006151793A (en) 2004-10-29 2005-10-14 Electron-conductive glass and spacer for electron beam-excitation type display using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004315129 2004-10-29
JP2005300744A JP2006151793A (en) 2004-10-29 2005-10-14 Electron-conductive glass and spacer for electron beam-excitation type display using the same

Publications (1)

Publication Number Publication Date
JP2006151793A true JP2006151793A (en) 2006-06-15

Family

ID=36630524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300744A Pending JP2006151793A (en) 2004-10-29 2005-10-14 Electron-conductive glass and spacer for electron beam-excitation type display using the same

Country Status (1)

Country Link
JP (1) JP2006151793A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184159A (en) * 2006-01-06 2007-07-19 Hitachi Ltd Spacer, and image display panel comprising the same
JP2008016251A (en) * 2006-07-04 2008-01-24 Hitachi Ltd Image display device and spacer
WO2010113838A1 (en) * 2009-03-31 2010-10-07 セントラル硝子株式会社 Colored lead-free glass for sealing
JP2012076987A (en) * 2010-09-06 2012-04-19 Hyogo Prefecture Ionically conductive material and method for producing the same
JP2013237604A (en) * 2012-04-17 2013-11-28 Avanstrate Inc Method for manufacturing glass substrate for display, glass substrate, and panel for display
CN105408267A (en) * 2013-07-25 2016-03-16 纳美仕有限公司 Crystalline silicon solar battery and method for producing same
WO2017029851A1 (en) * 2015-08-20 2017-02-23 アルプス電気株式会社 Inorganic composition, glass electrolyte, and secondary battery
US10703669B2 (en) 2017-04-28 2020-07-07 Schott Ag Filter gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127630A (en) * 1989-10-09 1991-05-30 Hitachi Ltd Denitration catalyst and coating glass for denitration catalyst
JPH09208259A (en) * 1996-02-05 1997-08-12 Asahi Glass Co Ltd Lead-free frit composition
JP2001294443A (en) * 2000-04-11 2001-10-23 Nippon Electric Glass Co Ltd Material for display
JP2004331419A (en) * 2003-04-30 2004-11-25 Nippon Electric Glass Co Ltd Glass paste

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03127630A (en) * 1989-10-09 1991-05-30 Hitachi Ltd Denitration catalyst and coating glass for denitration catalyst
JPH09208259A (en) * 1996-02-05 1997-08-12 Asahi Glass Co Ltd Lead-free frit composition
JP2001294443A (en) * 2000-04-11 2001-10-23 Nippon Electric Glass Co Ltd Material for display
JP2004331419A (en) * 2003-04-30 2004-11-25 Nippon Electric Glass Co Ltd Glass paste

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007184159A (en) * 2006-01-06 2007-07-19 Hitachi Ltd Spacer, and image display panel comprising the same
JP4684894B2 (en) * 2006-01-06 2011-05-18 株式会社日立製作所 Spacer and image display panel configured using the spacer
JP2008016251A (en) * 2006-07-04 2008-01-24 Hitachi Ltd Image display device and spacer
WO2010113838A1 (en) * 2009-03-31 2010-10-07 セントラル硝子株式会社 Colored lead-free glass for sealing
JP2010235408A (en) * 2009-03-31 2010-10-21 Central Glass Co Ltd Colored lead-free glass for sealing
JP2012076987A (en) * 2010-09-06 2012-04-19 Hyogo Prefecture Ionically conductive material and method for producing the same
JP2013237604A (en) * 2012-04-17 2013-11-28 Avanstrate Inc Method for manufacturing glass substrate for display, glass substrate, and panel for display
JP2014169224A (en) * 2012-04-17 2014-09-18 Avanstrate Inc Method for manufacturing glass substrate for display, glass substrate, and panel for display
CN105408267A (en) * 2013-07-25 2016-03-16 纳美仕有限公司 Crystalline silicon solar battery and method for producing same
TWI628804B (en) * 2013-07-25 2018-07-01 日商納美仕有限公司 Method of manufacturing electric conductive paste and crystalline silicon solar cell
WO2017029851A1 (en) * 2015-08-20 2017-02-23 アルプス電気株式会社 Inorganic composition, glass electrolyte, and secondary battery
US10703669B2 (en) 2017-04-28 2020-07-07 Schott Ag Filter gas

Similar Documents

Publication Publication Date Title
JP2006151793A (en) Electron-conductive glass and spacer for electron beam-excitation type display using the same
JP5011481B2 (en) Bonding glass and flat panel display device using the bonding glass
US20060063009A1 (en) Glass member
US7648931B2 (en) Plasma display apparatus and driving method thereof
US20060290261A1 (en) Bonding material
US6500778B1 (en) Glass substrate for a display
US20060119249A1 (en) Flat-panel display
JP4692915B2 (en) Front glass substrate for plasma display devices.
KR100408456B1 (en) Display Panel Glasses
JP2006188406A (en) Vacuum envelope for flat panel display and flat panel display using it
JP4974046B2 (en) Glass spacer for flat display device and spacer using the same
JP3882489B2 (en) Glass spacer for electron beam excited display element and electron beam excited display element
US6940220B2 (en) Glass, method for its production, and FED device
JP2006182637A (en) Crystallized glass spacer for field emission display and its production method and field emission display
JP5299834B2 (en) Support frame forming glass powder, support frame forming material, support frame, and method of manufacturing support frame
JPWO2006106781A1 (en) Glass spacer for electron beam excited display including glass composition containing yttrium and electron beam excited display
JP5519715B2 (en) Lead-free glass for bonding and flat panel display device using the lead-free glass for bonding
JP2006347840A (en) Electroconductive joining member and image display device having spacer joined by using the electroconductive joining member
US7755269B2 (en) Spacer and image display panel using the same
JP4953169B2 (en) Support frame forming material
US20080203894A1 (en) Display device
JP4370801B2 (en) Glass, glass manufacturing method and field emission display device
JP2007001831A (en) Spacer for image display device and image display device
JP5365976B2 (en) Support frame forming glass composition and support frame forming material
US20030230969A1 (en) Glass spacer for electron beam excitation display

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080916

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20111101

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20120228

Free format text: JAPANESE INTERMEDIATE CODE: A02