JP2006151737A - Method for manufacturing conductive porous ceramic - Google Patents

Method for manufacturing conductive porous ceramic Download PDF

Info

Publication number
JP2006151737A
JP2006151737A JP2004343678A JP2004343678A JP2006151737A JP 2006151737 A JP2006151737 A JP 2006151737A JP 2004343678 A JP2004343678 A JP 2004343678A JP 2004343678 A JP2004343678 A JP 2004343678A JP 2006151737 A JP2006151737 A JP 2006151737A
Authority
JP
Japan
Prior art keywords
porous ceramic
conductive porous
hollow fiber
tisi
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004343678A
Other languages
Japanese (ja)
Other versions
JP4592402B2 (en
JP2006151737A5 (en
Inventor
Kenji Minoshima
建司 簑島
Tomonari Saito
知成 齋藤
Takashi Ota
隆 太田
Naruaki Murata
成亮 村田
Harumichi Nakanishi
治通 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Toyota Motor Corp
Original Assignee
Nok Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp, Toyota Motor Corp filed Critical Nok Corp
Priority to JP2004343678A priority Critical patent/JP4592402B2/en
Publication of JP2006151737A publication Critical patent/JP2006151737A/en
Publication of JP2006151737A5 publication Critical patent/JP2006151737A5/ja
Application granted granted Critical
Publication of JP4592402B2 publication Critical patent/JP4592402B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a conductive porous ceramic, especially a conductive porous ceramic hollow fiber, having a low resistance value and also easy moldability. <P>SOLUTION: The conductive porous ceramic essentially composed of titanium silicide is manufactured by forming a composite film from a film-forming raw material solution obtained by highly filling titanium silicide TiSi<SB>2</SB>powder in an organic solvent solution of a polymer substance and firing the obtained composite film in vacuum or inactive atmosphere in a heating range of ≥400°C. The conductive porous ceramic is preferably formed as a hollow fiber membrane shape. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性多孔質セラミックスの製造法に関する。さらに詳しくは、珪素化チタン系導電性多孔質セラミックスの製造法に関する。   The present invention relates to a method for producing a conductive porous ceramic. More specifically, the present invention relates to a method for producing a siliconized titanium-based conductive porous ceramic.

導電性多孔質セラミックスは、それが導電機能と流体の拡散性とを併せ持つという特徴を有しているため、例えば電池用電極やその表面にガス官能型の薄膜を設けたガスセンサ用の電極としての利用が図られている。また、この表面機能膜を高分子電解質などとすることにより、燃料電池用の電極としての利用も期待できる。   Since conductive porous ceramics have the characteristic of having both a conductive function and fluid diffusivity, for example, as a battery electrode or a gas sensor electrode provided with a gas-functional thin film on its surface. Use is planned. Further, by using this surface functional film as a polymer electrolyte, it can be expected to be used as an electrode for a fuel cell.

しかしながら、従来知られている導電性多孔質セラミックスは、構造体として緻密化を狙ったものが多く、その一方導電性多孔質セラミックスとして知られているものは、その組成配合や成形方法が煩雑であるという問題を有する。後述するように、導電性セラミックスとしては炭化チタンTiC、ホウ素化チタンTiB2等が知られているが、焼結性などの問題からこれらの粉体は他の焼結成分との複合体として用いられており、その焼結温度も高いという問題点を有している。 However, many of the conventionally known conductive porous ceramics are aimed at densification as a structure, while those known as conductive porous ceramics are complicated in composition and forming method. Has the problem of being. As will be described later, titanium carbide TiC, titanium boride TiB 2 and the like are known as conductive ceramics, but these powders are used as a composite with other sintering components due to problems such as sinterability. However, the sintering temperature is also high.

また、導電性多孔質セラミックスは、一般に平板状や大寸法の成形物として成形され、使用されるが、各種電極等に使用する場合外径が数mm以下、例えば1mm程度の中空糸形状とできれば、素子形状のコンパクト化にとって非常に有利となる。   In addition, conductive porous ceramics are generally formed and used as flat or large-sized molded products, but when used for various electrodes, etc., if the outer diameter is a few mm or less, for example, about 1 mm hollow fiber shape This is very advantageous for downsizing the element shape.

多孔質セラミックスは、一般に高分子物質の有機溶媒溶液中にセラミックス粉末を高充填した製膜原液を乾湿式製膜し、得られた複合膜を焼成することによって製造されるが、導電性セラミックスとして知られている前記炭化チタンTiCやホウ素化チタンTiB2等をセラミックス粉末として用いた場合には、後記比較例2〜3の結果を示されるように、中空糸状への焼成がうまく行われなかったり、得られた多孔質セラミックス中空糸の抵抗値が高いなど、所望の導電性多孔質セラミックス中空糸が得られていない。
特公平5−66343号公報
Porous ceramics are generally produced by dry and wet film-forming stock solutions in which ceramic powder is highly filled in an organic solvent solution of a polymer substance, and firing the resulting composite film. When the known titanium carbide TiC, titanium boride TiB 2 or the like is used as a ceramic powder, as shown in the results of Comparative Examples 2 to 3 below, firing into a hollow fiber shape may not be performed successfully. A desired conductive porous ceramic hollow fiber has not been obtained, for example, the resistance value of the obtained porous ceramic hollow fiber is high.
Japanese Patent Publication No. 5-66343

さらに、微小発熱性物質、セラミックス材料および液体キャリヤーを含むスラリーを製造し、このスラリーを所望の幾何学的構造を有する未焼成形状物に乾燥させた後、これを燃焼させて多孔質メンブランを製造することが提案されており、TiSiなどの物質を含んでなる組成を有する多孔質メンブランについても言及されているが、珪素化チタンTiSiを主成分として形成される多孔質メンブランについての具体的な記載はみられない。
特表平9−502131号公報
Furthermore, a slurry containing a micro exothermic substance, a ceramic material and a liquid carrier is manufactured, and the slurry is dried to an unfired shape having a desired geometric structure, and then burned to manufacture a porous membrane. Although a porous membrane having a composition comprising a substance such as TiSi is also mentioned, a specific description of a porous membrane formed mainly from siliconized titanium TiSi Is not seen.
Japanese National Patent Publication No. 9-502131

本発明の目的は、抵抗値が低くしかも成形が容易な導電性多孔質セラミックス、特に導電性多孔質セラミックス中空糸の製造法を提供することにある。   An object of the present invention is to provide a method for producing a conductive porous ceramic, particularly a conductive porous ceramic hollow fiber, which has a low resistance value and can be easily molded.

かかる本発明の目的は、珪素化チタンTiSi2粉末を高分子物質の有機溶媒溶液中に高充填した製膜原液から複合膜を製膜し、得られた複合膜を少くとも400℃以上の加熱温度範囲では真空または不活性雰囲気環境下で焼成することによって、珪素化チタンを主成分として形成される導電性多孔質セラミックスを製造することによって達成される。導電性多孔質セラミックスは、好ましくは中空糸膜状として形成される。 An object of the present invention is to form a composite film from a film-forming stock solution in which titanium silicide TiSi 2 powder is highly filled in an organic solvent solution of a polymer substance, and heat the obtained composite film to at least 400 ° C. In the temperature range, it is achieved by producing a conductive porous ceramic formed mainly of titanium silicide by firing in a vacuum or in an inert atmosphere environment. The conductive porous ceramic is preferably formed as a hollow fiber membrane.

本発明方法により得られる導電性多孔質セラミックス、特に導電性多孔質セラミックス中空糸は、主として珪素化チタンTiSiよりなり、非常に低い抵抗値、すなわち高い導電性とハンドリング強度とを有し、しかもそれの製造を容易に行うことができるという特徴を有する。このような特性を有する本発明の導電性多孔質セラミックス、特にその中空糸は、ガスセンサあるいはその他の機能部品等の多孔質電極として有効に用いることができる。   The conductive porous ceramic obtained by the method of the present invention, particularly the conductive porous ceramic hollow fiber, is mainly made of siliconized titanium TiSi, and has a very low resistance value, that is, high conductivity and handling strength. It can be easily manufactured. The conductive porous ceramic of the present invention having such characteristics, particularly its hollow fiber, can be effectively used as a porous electrode of a gas sensor or other functional parts.

導電性多孔質セラミックスは、珪素化チタンTiSi2粉末を高分子物質の有機溶媒溶液中に高充填した製膜原液から複合膜を製膜し、得られた複合膜を焼成することにより製造される。 The conductive porous ceramic is manufactured by forming a composite film from a film forming stock solution in which silicon silicide TiSi 2 powder is highly filled in an organic solvent solution of a polymer substance, and firing the obtained composite film. .

セラミックス粉末としては、導電性を有する珪素化チタンTiSi2粉末が専ら使用される。導電性多孔質セラミックスとしては、この他一般に炭化チタンTiC、ホウ素化チタンTiB2等が知られており、TiCは焼結性が悪いためアルミナ粉末等と複合化して用いられるが、多孔質セラミックスに成形したときの導電性が低く、またTiB2は高導電性材料であることが知られているが、これ単体で多孔質セラミックス中空糸を焼成した際、この中空糸を焼成炉内に保持するボード部材に固着し、成形物として取り出しができないという問題を有している。 As the ceramic powder, conductive titanium silicide TiSi 2 powder is exclusively used. In addition, titanium carbide TiC, titanium boride TiB 2 and the like are generally known as conductive porous ceramics, and TiC is used in combination with alumina powder because of its poor sinterability. Low electrical conductivity when molded, and TiB 2 is known to be a highly conductive material, but when a porous ceramic hollow fiber is fired alone, this hollow fiber is held in a firing furnace. There is a problem that it adheres to the board member and cannot be taken out as a molded product.

これに対して、本発明方法で用いられるTiSi2粉末は、導電性にすぐれまた中空糸等への成形性にすぐれた多孔質セラミックスを与えることができる。原料として用いられるTiSi2粉末は、その平均粒子径(フィッシャー法)が約0.01〜20μm、好ましくは約0.1〜10μm程度のものが好適に用いられる。平均粒子径は、小さい方が焼結性や焼成後の材料強度などの点ですぐれているが、これ以下の平均粒子径のものでは、凝集性が高いために製膜原液中での分散性に問題を生じ、また焼成後の多孔質体の細孔径が小さくなりすぎて、ガスの拡散性に支障をきたすようになる。一方、これよりも大きい平均粒子径のものを用いると、焼結性に劣り、また材料強度が低いという問題がみられる。このような平均粒子径を有するTiSi2粉末としては、市販品、例えば日本新金属製品等をそのまま用いることができる。 On the other hand, the TiSi 2 powder used in the method of the present invention can provide a porous ceramic having excellent conductivity and excellent formability to a hollow fiber or the like. The TiSi 2 powder used as a raw material preferably has an average particle size (Fischer method) of about 0.01 to 20 μm, preferably about 0.1 to 10 μm. The smaller average particle size is better in terms of sinterability and material strength after firing, etc., but those with an average particle size smaller than this have high agglomeration properties, so dispersibility in the film forming stock solution In addition, the pore size of the porous body after firing becomes too small, which impedes gas diffusibility. On the other hand, when a particle having an average particle size larger than this is used, there are problems that the sinterability is poor and the material strength is low. As the TiSi 2 powder having such an average particle size, commercially available products such as Japan New Metal Products can be used as they are.

なお、TiSi2粉末中には、その導電性を損なわない範囲内、例えば混合粉末中20体積%以下、好ましくは5体積%以下の割合で、アルミナ、ジルコニア等の他のセラミックス粉末やその焼結助剤を添加して、混合粉末として用いることもできる。 In TiSi 2 powders, other ceramic powders such as alumina and zirconia, and sintering thereof within a range that does not impair the conductivity, for example, 20 volume% or less, preferably 5 volume% or less in the mixed powder. An auxiliary agent can be added and used as a mixed powder.

TiSi2粉末またはその混合粉末は、製膜原液中約20〜85重量%、好ましくは約55〜75重量%の割合で高充填して用いられる。これ以下の充填濃度の製膜原液では焼結体が得られず、一方これ以上の充填濃度では相対的に高分子物質の割合が少なくなり、複合膜の形成が困難となる。 TiSi 2 powder or a mixed powder thereof is used by being highly filled in a ratio of about 20 to 85% by weight, preferably about 55 to 75% by weight, in the film forming stock solution. A film-forming stock solution with a filling concentration below this cannot produce a sintered body, while a filling concentration higher than this makes the proportion of the polymer substance relatively small, making it difficult to form a composite membrane.

複合膜の形成に用いられる高分子物質としては、有機溶媒に溶解し、熱分解性のものであれば任意のものを用いることができ、例えばポリスルホン、ポリアミドイミド、ポリエーテルイミド、ポリアクリロニトリル、酢酸セルロース等が、製膜原液中約4〜20重量%、好ましくは約6〜12重量%の割合で用いられる。これ以下の濃度では、膜の形成、特に中空糸膜の紡糸が困難となり、一方これ以上の濃度では、製膜原液の粘度が高くなりすぎ、製膜できなくなる。   As the polymer material used for forming the composite film, any material can be used as long as it is dissolved in an organic solvent and is thermally decomposable, such as polysulfone, polyamideimide, polyetherimide, polyacrylonitrile, acetic acid. Cellulose or the like is used in a proportion of about 4 to 20% by weight, preferably about 6 to 12% by weight, in the film-forming stock solution. If the concentration is lower than this, it is difficult to form a membrane, particularly spinning the hollow fiber membrane. On the other hand, if the concentration is higher than this, the viscosity of the membrane-forming stock solution becomes too high to make the membrane.

これらの高分子物質を溶解させ、製膜原液の残部を形成させる有機溶媒としては、高分子物質を溶解させ、一般に水または水性液が用いられる紡糸浴と親和性を有するものであれば任意のものを用いることができ、例えばジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒が好んで用いられる。   As an organic solvent for dissolving these polymer substances and forming the remainder of the film-forming stock solution, any solvent can be used as long as it dissolves the polymer substance and generally has an affinity for a spinning bath in which water or an aqueous liquid is used. For example, aprotic polar solvents such as dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, N-methyl-2-pyrrolidone and dimethylsulfoxide are preferably used.

製膜原液からの複合膜の形成は、乾湿式製膜法によって行われ、その形状は平膜状でもあり得るが、好ましくは中空糸膜状である。中空糸膜を形成させるための乾湿式紡糸は、圧力容器内に収容した製膜原液に約0.05〜0.5MPa程度の背圧を印加して製膜原液を二重環状ノズルの外周側に供給し、二重環状ノズルの内管側には芯液としての水、水性液、有機溶媒等の凝固液を流し、一定距離空走させた後、凝固浴中に吐出することによって行われ、吐出された製膜原液は凝固浴中でゲル化され、これを巻取り装置で巻取り、回収することにより、所望の高分子物質-TiSi2複合中空糸膜が得られる。また、この製膜原液を、ドクターナイフ法などによって平板状にキャストし、これを凝固浴中に浸漬することにより、複合平膜を製膜することもできる。 Formation of the composite membrane from the membrane forming stock solution is performed by a dry and wet membrane formation method, and the shape thereof may be a flat membrane shape, but is preferably a hollow fiber membrane shape. Dry and wet spinning for forming a hollow fiber membrane applies a back pressure of about 0.05 to 0.5 MPa to the membrane forming stock solution contained in the pressure vessel and supplies the membrane forming stock solution to the outer peripheral side of the double annular nozzle. The coagulating liquid such as water, aqueous liquid, and organic solvent as the core liquid is flowed to the inner tube side of the double annular nozzle, and after running for a certain distance, it is discharged by being discharged into the coagulating bath. The film-forming stock solution is gelled in a coagulation bath, and this is wound up and collected by a winding device to obtain a desired polymer substance-TiSi 2 composite hollow fiber membrane. Moreover, a composite flat film can be formed by casting this film-forming stock solution into a flat plate shape by a doctor knife method or the like and immersing it in a coagulation bath.

導電性多孔質セラミックスは、このようにして調製された複合膜を、真空中(約1Pa以下)もしくは窒素、アルゴル等の不活性雰囲気中で約1300〜1800℃、好ましくは約1350〜1600℃で約0.5〜4時間程度焼成することにより得られ、その際の昇温速度は約3〜10℃/分程度であることが好ましい。この際、原料粉末であるTiSi2の酸化温度以下であっても、200℃以上、少くとも400℃以上の焼成過程においては、焼成炉内を真空もしくは不活性雰囲気という雰囲気環境下にする必要がある。これはTiSi2は大気中で600℃以上に加熱すると酸化して組成変化を起すため、これ以上の温度での加熱、すなわち本焼成は真空中もしくは不活性雰囲気中で行う必要がある。 The conductive porous ceramic is obtained by subjecting the composite membrane thus prepared to about 1300 to 1800 ° C., preferably about 1350 to 1600 ° C. in a vacuum (about 1 Pa or less) or in an inert atmosphere such as nitrogen or argol. It is preferably obtained by firing for about 0.5 to 4 hours, and the rate of temperature rise at that time is preferably about 3 to 10 ° C./minute. At this time, even if the temperature is lower than the oxidation temperature of the raw material TiSi 2 , the firing furnace needs to be in an atmospheric environment such as a vacuum or an inert atmosphere in a firing process of 200 ° C. or more, and at least 400 ° C. is there. This is because TiSi 2 oxidizes and changes in composition when heated to 600 ° C. or higher in the atmosphere, so heating at a temperature higher than this, that is, main firing, must be performed in a vacuum or in an inert atmosphere.

他のセラミックスの焼成においては、仮成形(複合膜形成)に使用される高分子物質を完全に除去する目的で、酸素の存在下に約500〜600℃での仮焼成が一般に行われている。しかしながら、TiSi2を原料粉末として用いた複合膜の場合には、この仮焼成を大気開放下で行い、その後真空中もしくは不活性雰囲気中で本焼成を行った場合には、後記比較例1の結果に示されるように、最終的な多孔質セラミックス成形物を構成する主要なセラミックス成分が焼結性の悪い、脆い化合物(X線回折同定の結果Ti5Si3)に変化し、所望の導電性多孔質セラミックスを得ることができないという結果が示される。 In the firing of other ceramics, a temporary firing at about 500 to 600 ° C. is generally performed in the presence of oxygen for the purpose of completely removing the polymer material used for the temporary forming (composite film formation). . However, in the case of a composite film using TiSi 2 as a raw material powder, this temporary baking is performed in the open air, and then the main baking is performed in a vacuum or in an inert atmosphere. As shown in the results, the main ceramic components that make up the final porous ceramic molding changed to brittle compounds with poor sinterability (Ti 5 Si 3 as a result of X-ray diffraction identification), and the desired conductivity The result is that porous porous ceramics cannot be obtained.

これに対し、200℃以下、少くとも400℃以上の段階で、複合膜を真空中もしくは不活性雰囲気中という環境下に置いて焼成した成形物は、成形物のセラミックス成分をX線回折により同定した結果、その主成分はTiSiであることが確認され、このようなセラミックス成分からなる多孔質セラミックス成形物は、それが中空糸状であっても高いハンドリング強度を示し、またすぐれた導電性を示している。多孔質セラミックス中空糸にあっては、孔径が約0.1〜6μm、好ましくは約0.2〜2μmで、外径が約0.5〜4mm、好ましくは約1〜3mm、膜厚が約0.1〜0.5μm、好ましくは約0.15〜0.3mmの多孔質TiSi中空糸を与える。   On the other hand, when the composite film is fired in a vacuum or inert atmosphere at a temperature of 200 ° C or lower, or at least 400 ° C or higher, the ceramic component of the molded product is identified by X-ray diffraction. As a result, it was confirmed that the main component was TiSi, and the porous ceramic molded article made of such a ceramic component showed high handling strength and excellent conductivity even when it was in the form of a hollow fiber. ing. In the porous ceramic hollow fiber, the pore diameter is about 0.1-6 μm, preferably about 0.2-2 μm, the outer diameter is about 0.5-4 mm, preferably about 1-3 mm, and the film thickness is about 0.1-0.5 μm, preferably Gives a porous TiSi hollow fiber of about 0.15-0.3 mm.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例
珪素化チタンTiSi2粉末(日本新金属製品;平均粒子径2〜5μm)325g、ポリスルホン(UCC社製品P-1700)38gおよびジメチルホルムアミド 180gの混合物からなる製膜原液を、外径1.5mm、内径0.8mm、内管側外径0.5mmの二重環状ノズルを用いて、乾湿式紡糸した。製膜原液のノズルへの供給は、製膜原液を圧力容器内に収容し、これに背圧0.1MPaを印加して行った。このときの製膜原液の吐出流量は10〜13ml/分で、芯液(水)流量10ml/分、ノズル吐出口-凝固浴間距離5cm、凝固浴(水)温度25℃の紡糸条件下で、紡糸速度は製膜原液の吐出流量に応じて適宜調節して(15〜20m/分)乾湿式紡糸し、平均で外径1.24mm、内径0.84mmの複合中空糸膜を得た。
Example Titanium silicide TiSi 2 powder (Japan new metal product; average particle size 2-5 μm) 325 g, polysulfone (UCC product P-1700) 38 g and dimethylformamide 180 g dimethylformamide 180 g outer film forming stock solution 1.5 mm outer diameter Dry and wet spinning was performed using a double annular nozzle having an inner diameter of 0.8 mm and an inner tube side outer diameter of 0.5 mm. The film-forming stock solution was supplied to the nozzle by storing the film-forming stock solution in a pressure vessel and applying a back pressure of 0.1 MPa thereto. At this time, the discharge rate of the film forming solution is 10 to 13 ml / min, the core solution (water) flow rate is 10 ml / min, the distance between the nozzle discharge port and the coagulation bath is 5 cm, and the coagulation bath (water) temperature is 25 ° C. The spinning speed was appropriately adjusted (15 to 20 m / min) according to the discharge flow rate of the membrane forming raw solution, and dry and wet spinning was performed to obtain a composite hollow fiber membrane having an average outer diameter of 1.24 mm and inner diameter of 0.84 mm.

得られた複合中空糸膜を15cmの長さに切断し、これをアルミナ製焼成ボード上に設置した後、真空雰囲気炉中に置いた。炉内は、室温時に真空(0.1Pa以下)とした後、5℃/分の昇温速度で1400℃迄昇温し、この温度で60分間焼成した。その後、炉を自然放冷して、平均で外径1.05mm、内径0.73mmの多孔質セラミックス中空糸(灰色)を得た。   The obtained composite hollow fiber membrane was cut to a length of 15 cm, placed on an alumina fired board, and then placed in a vacuum atmosphere furnace. The inside of the furnace was evacuated at room temperature (0.1 Pa or less), heated to 1400 ° C. at a rate of 5 ° C./min, and fired at this temperature for 60 minutes. Thereafter, the furnace was naturally cooled to obtain a porous ceramic hollow fiber (gray) having an average outer diameter of 1.05 mm and an inner diameter of 0.73 mm.

この多孔質セラミックス中空糸について、SEMによる表面観察を行った結果、約1μmの細孔が形成された多孔質体であることが確認され、それの3点支持法による破断強度は0.7Nであった。図1には中空糸断面、図2には中空糸断面拡大のSEM観察像が示される。なお、この多孔質セラミックス中空糸の25℃における窒素透過速度を測定すると、4.3×10-4モル/m2/秒/Paという値が得られた。 As a result of SEM observation of the surface of this porous ceramic hollow fiber, it was confirmed that the porous ceramic hollow fiber had a pore of about 1 μm, and its breaking strength by the three-point support method was 0.7 N. It was. FIG. 1 shows a hollow fiber cross section, and FIG. 2 shows an enlarged SEM observation image of the hollow fiber cross section. When the nitrogen permeation rate of this porous ceramic hollow fiber at 25 ° C. was measured, a value of 4.3 × 10 −4 mol / m 2 / sec / Pa was obtained.

また、焼成前の原料粉(図3)および焼成した中空糸(図4)を、X線回折装置を用いて同定した結果、焼成した中空糸では主にTiSiの標準ピークと一致し(□で示される)、この他一部原料粉であるTiSi2のピークが確認された(□に×を重ねて示される)。 In addition, the raw powder before firing (Figure 3) and the fired hollow fiber (Figure 4) were identified using an X-ray diffractometer, and as a result, the fired hollow fiber mainly coincided with the standard peak of TiSi ( In addition to this, a peak of TiSi 2 which is a part of the raw material powder was confirmed (indicated by overlaying × on □).

さらに、この中空糸を10mmの長さに切り出し、その両端をテスターに接続して両端面の抵抗値を測定すると、その値(n=5)は0.1〜0.3Ωと非常にすぐれた導電性を示した。   Furthermore, when this hollow fiber is cut into a length of 10 mm, both ends thereof are connected to a tester, and the resistance value of both end faces is measured, the value (n = 5) is 0.1 to 0.3Ω, which is very excellent conductivity. Indicated.

比較例1
実施例において、複合中空糸膜の焼成に際し、大気中で5℃/分の昇温速度で550℃迄昇温させて、その温度で60分間保持した後真空(0.1Pa以下)とし、その後5℃/分の昇温速度で1400℃迄昇温させ、60分間の焼成を行うと、得られた多孔質セラミックス中空糸は、平均で外径1.12mm、内径0.80mmであったが黒色を呈し、ハンドリング強度は非常に低く、強度測定もできない程度であった。また、X線回折によりその成分を同定した結果、Ti5Si3の標準ピークと比較的良い一致を示した(図5)。さらに、10mm試験片の抵抗値を測定すると、10〜50Ωとサンプルによるバラツキがみられた。
Comparative Example 1
In the examples, when firing the composite hollow fiber membrane, the temperature was raised to 550 ° C. at a temperature rising rate of 5 ° C./min in the air, and held at that temperature for 60 minutes, and then vacuum (0.1 Pa or less), and then 5 When the temperature was raised to 1400 ° C. at a rate of temperature increase of 1 ° C./minute and firing was performed for 60 minutes, the resulting porous ceramic hollow fiber had an outer diameter of 1.12 mm and an inner diameter of 0.80 mm on average, but exhibited a black color. The handling strength was very low and the strength could not be measured. As a result of identifying its components by X-ray diffraction, it showed a relatively good agreement with the standard peak of Ti 5 Si 3 (FIG. 5). Furthermore, when the resistance value of the 10 mm test piece was measured, it was found that there was a variation of 10 to 50Ω depending on the sample.

比較例2
実施例において、珪素化チタンTiSi2の代りに同量のホウ素化チタンTiB2(日本新金属製品;平均粒子径1〜2μm)を用い、乾湿式紡糸を行うと紡糸はできたが、それの焼成時に中空糸膜焼成体とアルミナボードとの接触部が部分的に固着し、多孔質セラミックス中空糸として回収することができなかった。強制的に剥離できた短いサンプルについて、その抵抗値を測定したところ約70Ωであった。
Comparative Example 2
In the examples, the same amount of titanium boride TiB 2 (Japan New Metal Products; average particle size of 1 to 2 μm) was used in place of titanium silicide TiSi 2 , and spinning was performed by dry-wet spinning. At the time of firing, the contact portion between the fired hollow fiber membrane and the alumina board was partially fixed, and could not be recovered as a porous ceramic hollow fiber. When the resistance value of the short sample that could be forcibly peeled was measured, it was about 70Ω.

一般に、TiB2の電気伝導性はTiSi2よりも大きいことが知られているが、本発明に係る多孔質TiSi中空糸の電気伝導性はTiB2よりもすぐれていることが分かる。 In general, the electrical conductivity of TiB 2 is known to be greater than that of TiSi 2 , but it can be seen that the electrical conductivity of the porous TiSi hollow fiber according to the present invention is superior to that of TiB 2 .

比較例3
実施例において、珪素化チタンTiSi2の代りにアルミナAl2O3(平均粒子径0.15μm)85gおよび炭化チタンTiC(日本新金属製品;粒子径1〜1.5μm)240gを用い、乾湿式紡糸およびそれの焼成を行うと、平均で外径1.13mm、内径0.85mmの多孔質セラミックス中空糸が得られたが、それの10mm試験片での抵抗値は約4000Ωと非常に導電性の点で劣っていた。
Comparative Example 3
In the examples, 85 g of alumina Al 2 O 3 (average particle size 0.15 μm) and 240 g of titanium carbide TiC (Japan New Metal Products; particle size 1 to 1.5 μm) 240 g were used instead of titanium silicide TiSi 2 , When fired, a porous ceramic hollow fiber with an outer diameter of 1.13 mm and an inner diameter of 0.85 mm was obtained on average, but its resistance value with a 10 mm test piece was about 4000 Ω, which was inferior in terms of conductivity. It was.

本発明の係る珪素化チタンTiSi中空糸断面のSEM観察像であるIt is the SEM observation image of the siliconized titanium TiSi hollow fiber section concerning the present invention. 同中空糸の断面を拡大したSEM観察像であるIt is an SEM observation image with an enlarged cross section of the hollow fiber 珪素化チタンTiSi2粉末原料のX線回折同定結果を示すグラフであるIs a graph showing an X-ray diffraction results of identification silicon titanium TiSi 2 powder material 本発明の係る珪素化チタンTiSi中空糸のX線回折同定結果を示すグラフであるIt is a graph which shows the X-ray-diffraction identification result of the siliconized titanium TiSi hollow fiber which concerns on this invention 比較例1で得られた珪素化チタンTi5Si3中空糸のX線回折同定結果を示すグラフであるFIG. 5 is a graph showing the X-ray diffraction identification result of the siliconized titanium Ti 5 Si 3 hollow fiber obtained in Comparative Example 1.

Claims (4)

珪素化チタンTiSi2粉末を高分子物質の有機溶媒溶液中に高充填した製膜原液から複合膜を製膜し、得られた複合膜を少くとも400℃以上の加熱温度範囲では真空または不活性雰囲気環境下で焼成することを特徴とする導電性多孔質セラミックスの製造法。 A composite film is formed from a film-forming stock solution in which titanium silicide TiSi 2 powder is highly filled in an organic solvent solution of a polymer substance, and the resulting composite film is vacuum or inert at a heating temperature range of at least 400 ° C. A method for producing a conductive porous ceramic, characterized by firing in an atmospheric environment. 導電性多孔質セラミックスが珪素化チタンTiSiを主成分として形成される請求項1記載の導電性多孔質セラミックスの製造法。   The method for producing a conductive porous ceramic according to claim 1, wherein the conductive porous ceramic is formed mainly of siliconized titanium TiSi. 20体積%以下の割合で他のセラミックス粉末または焼結助剤を珪素化チタンTiSi2粉末に添加した混合粉末として製膜に用いられる請求項1または2記載の導電性多孔質セラミックスの製造法。 The method for producing a conductive porous ceramic according to claim 1 or 2, which is used for film formation as a mixed powder obtained by adding another ceramic powder or a sintering aid to titanium silicide TiSi 2 powder at a ratio of 20% by volume or less. 中空糸膜状として形成される請求項1、2または3記載の導電性多孔質セラミックスの製造法。   The method for producing a conductive porous ceramic according to claim 1, 2 or 3 formed as a hollow fiber membrane.
JP2004343678A 2004-11-29 2004-11-29 Method for producing conductive porous ceramic hollow fiber Expired - Fee Related JP4592402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004343678A JP4592402B2 (en) 2004-11-29 2004-11-29 Method for producing conductive porous ceramic hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004343678A JP4592402B2 (en) 2004-11-29 2004-11-29 Method for producing conductive porous ceramic hollow fiber

Publications (3)

Publication Number Publication Date
JP2006151737A true JP2006151737A (en) 2006-06-15
JP2006151737A5 JP2006151737A5 (en) 2006-07-27
JP4592402B2 JP4592402B2 (en) 2010-12-01

Family

ID=36630474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004343678A Expired - Fee Related JP4592402B2 (en) 2004-11-29 2004-11-29 Method for producing conductive porous ceramic hollow fiber

Country Status (1)

Country Link
JP (1) JP4592402B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194205A (en) * 2005-12-22 2007-08-02 Nok Corp Fuel cell module
JP2007194206A (en) * 2005-12-22 2007-08-02 Nok Corp Fuel cell module
JP2009161394A (en) * 2008-01-07 2009-07-23 Nok Corp Porous ceramic membrane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4859543B2 (en) * 2006-06-07 2012-01-25 Nok株式会社 Manufacturing method of hollow fiber membrane-like conductive porous ceramics

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111760A (en) * 1993-10-08 1995-04-25 Hitachi Ltd Commutator using silicide based ceramics
JPH08198690A (en) * 1994-11-17 1996-08-06 Sumitomo Electric Ind Ltd Porous ceramic film and its production
JPH0925184A (en) * 1995-07-14 1997-01-28 Kubota Corp Ceramic porous film and its production
JPH09502131A (en) * 1994-06-24 1997-03-04 マイクロパイレティックス、ヒーターズ、インターナショナル Porous membrane and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111760A (en) * 1993-10-08 1995-04-25 Hitachi Ltd Commutator using silicide based ceramics
JPH09502131A (en) * 1994-06-24 1997-03-04 マイクロパイレティックス、ヒーターズ、インターナショナル Porous membrane and method for producing the same
JPH08198690A (en) * 1994-11-17 1996-08-06 Sumitomo Electric Ind Ltd Porous ceramic film and its production
JPH0925184A (en) * 1995-07-14 1997-01-28 Kubota Corp Ceramic porous film and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007194205A (en) * 2005-12-22 2007-08-02 Nok Corp Fuel cell module
JP2007194206A (en) * 2005-12-22 2007-08-02 Nok Corp Fuel cell module
JP2009161394A (en) * 2008-01-07 2009-07-23 Nok Corp Porous ceramic membrane

Also Published As

Publication number Publication date
JP4592402B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
Nishihora et al. Manufacturing porous ceramic materials by tape casting—A review
Fung et al. Nickel aluminate spinel reinforced ceramic hollow fibre membrane
US8313853B2 (en) Flexible, porous ceramic composite film
CN101905121B (en) Method for preparing aluminum oxide-based ceramic hollow fibrous membrane
CN108201794A (en) Water process ceramic separation film using oxidation-treated silicon carbide and preparation method thereof
CN105032198A (en) Porous nickel flat sheet membrane preparation method and porous nickel flat sheet membrane prepared by using same
JP4592402B2 (en) Method for producing conductive porous ceramic hollow fiber
Sarbatly Effect of kaolin/pesf ratio and sintering temperature on pore size and porosity of the kaolin membrane support
JP2011136328A (en) Inorganic hollow yarn and method of manufacturing the same
JP4859543B2 (en) Manufacturing method of hollow fiber membrane-like conductive porous ceramics
KR100881444B1 (en) A Preparation method of metallic nano porous membranes
KR100748999B1 (en) Preparation method of membrane using oxidized metal and carbon powder
JP4149343B2 (en) Oxygen separation membrane element and manufacturing method thereof
JP4641845B2 (en) Coated porous structure and method for producing coated porous structure
JP5082067B2 (en) Method for producing high-strength macroporous porous ceramic and porous body thereof
JP2003128409A (en) Porous carbon film, catalyst carrier, electrode for fuel battery, material for connecting electrode and fuel battery
CN108970417B (en) Method for preparing metal hollow fiber membrane
KR100819418B1 (en) Membrane using metallic powder and ceramic powder
JP2002253937A (en) Method for manufacturing porous hollow fiber
JP6238896B2 (en) Ceramic composition
KR20080093776A (en) A preparation method of metallic nano porous membranes
JPH11130558A (en) Porous silicon carbide sintered product and its production
JP4174988B2 (en) Method for producing solid oxide porous hollow fiber membrane
Choi et al. Preparation and characterization of ultrathin alumina hollow fiber microfiltration membrane
JP2005246340A (en) Manufacturing method of inorganic filter having one-dimensional through nanopore membrane

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees