JP4859543B2 - Manufacturing method of hollow fiber membrane-like conductive porous ceramics - Google Patents

Manufacturing method of hollow fiber membrane-like conductive porous ceramics Download PDF

Info

Publication number
JP4859543B2
JP4859543B2 JP2006158649A JP2006158649A JP4859543B2 JP 4859543 B2 JP4859543 B2 JP 4859543B2 JP 2006158649 A JP2006158649 A JP 2006158649A JP 2006158649 A JP2006158649 A JP 2006158649A JP 4859543 B2 JP4859543 B2 JP 4859543B2
Authority
JP
Japan
Prior art keywords
powder
conductive porous
porous ceramic
tisi
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006158649A
Other languages
Japanese (ja)
Other versions
JP2007326734A (en
JP2007326734A5 (en
Inventor
徹 宇田
孝利 佐藤
建司 簑島
穣 幸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Toyota Motor Corp
Original Assignee
Nok Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp, Toyota Motor Corp filed Critical Nok Corp
Priority to JP2006158649A priority Critical patent/JP4859543B2/en
Publication of JP2007326734A publication Critical patent/JP2007326734A/en
Publication of JP2007326734A5 publication Critical patent/JP2007326734A5/ja
Application granted granted Critical
Publication of JP4859543B2 publication Critical patent/JP4859543B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、導電性多孔質セラミックスの製造法に関する。さらに詳しくは、珪素化チタン系導電性多孔質セラミックスの製造法に関する。   The present invention relates to a method for producing a conductive porous ceramic. More specifically, the present invention relates to a method for producing a siliconized titanium-based conductive porous ceramic.

導電性多孔質セラミックスは、それが導電機能と流体の拡散性とを併せ持つという特徴を有しているため、例えば電池用電極やその表面にガス官能型の薄膜を設けたガスセンサ用の電極としての利用が図られている。また、この表面機能膜を高分子電解質などとすることにより、燃料電池用の電極としての利用も期待できる。   Since conductive porous ceramics have the characteristic of having both a conductive function and fluid diffusivity, for example, as a battery electrode or a gas sensor electrode provided with a gas-functional thin film on its surface. Use is planned. Further, by using this surface functional film as a polymer electrolyte, it can be expected to be used as an electrode for a fuel cell.

しかしながら、従来知られている導電性多孔質セラミックスは、構造体として緻密化を狙ったものが多く、その一方導電性多孔質セラミックスとして知られているものは、その組成配合や成形方法が煩雑であるという問題を有する。後述するように、導電性セラミックスとしては炭化チタンTiC、ホウ素化チタンTiB2等が知られているが、焼結性などの問題からこれらの粉体は他の焼結成分との複合体として用いられており、その焼結温度も高いという問題点を有している。 However, many of the conventionally known conductive porous ceramics are aimed at densification as structures, while those known as conductive porous ceramics are complicated in composition and forming method. Has the problem of being. As will be described later, titanium carbide TiC, titanium boride TiB 2 and the like are known as conductive ceramics, but these powders are used as a composite with other sintering components due to problems such as sinterability. However, the sintering temperature is also high.

また、導電性多孔質セラミックスは、一般に平板状や大寸法の成形物として成形され、使用されるが、各種電極等に使用する場合外径が数mm以下、例えば1mm程度の中空糸形状とできれば、素子形状のコンパクト化にとって非常に有利となる。   In addition, conductive porous ceramics are generally formed and used as flat or large-sized molded products, but when used for various electrodes, etc., if the outer diameter is a few mm or less, for example, about 1 mm hollow fiber shape This is very advantageous for downsizing the element shape.

多孔質セラミックスは、一般に高分子物質の有機溶媒溶液中にセラミックス粉末を高充填した製膜原液を乾湿式製膜し、得られた複合膜を焼成することによって製造されるが、導電性セラミックスとして知られている前記炭化チタンTiCやホウ素化チタンTiB2等をセラミックス粉末として用いた場合には、中空糸状への焼成がうまく行われなかったり、得られた多孔質セラミックス中空糸の抵抗値が高いなど、所望の導電性多孔質セラミックス中空糸が得られていない。
特公平5−66343号公報
Porous ceramics are generally produced by dry and wet film-forming stock solutions in which ceramic powder is highly filled in an organic solvent solution of a polymer substance, and firing the resulting composite film. When the known titanium carbide TiC, titanium boride TiB 2 or the like is used as ceramic powder, firing into a hollow fiber is not performed well, or the resistance value of the obtained porous ceramic hollow fiber is high For example, a desired conductive porous ceramic hollow fiber is not obtained.
Japanese Patent Publication No. 5-66343

さらに、微小発熱性物質、セラミックス材料および液体キャリヤーを含むスラリーを製造し、このスラリーを所望の幾何学的構造を有する未焼成形状物に乾燥させた後、これを燃焼させて多孔質メンブランを製造することが提案されており、TiSiなどの物質を含んでなる組成を有する多孔質メンブランについても言及されているが、珪素化チタンTiSiを主成分として形成される多孔質メンブランについての具体的な記載はみられない。
特表平9−502131号公報
Furthermore, a slurry containing a micro exothermic substance, a ceramic material and a liquid carrier is manufactured, and the slurry is dried to an unfired shape having a desired geometric structure, and then burned to manufacture a porous membrane. Although a porous membrane having a composition comprising a substance such as TiSi is also mentioned, a specific description of a porous membrane formed mainly from siliconized titanium TiSi Is not seen.
Japanese National Patent Publication No. 9-502131

本出願人らは先に、抵抗値が低くしかも成形が容易な導電性多孔質セラミックス、特に中空糸膜状の導電性多孔質セラミックスの製造法として、珪素化チタンTiSi2粉末を高分子物質の有機溶媒溶液中に高充填した製膜原液から複合膜を製膜し、得られた複合膜を焼成し、その際少くとも400℃以上の加熱温度範囲では真空または不活性雰囲気環境下で焼成することによって、珪素化チタンTiSiを主成分として形成される導電性多孔質セラミックスを製造する方法を提案している
特開2006−151737号公報
As a method for producing conductive porous ceramics having a low resistance value and being easy to mold, in particular, hollow fiber membrane-like conductive porous ceramics, the present applicants first used titanium silicide TiSi 2 powder as a polymer material. A composite film is formed from a film-forming stock solution that is highly filled in an organic solvent solution, and the resulting composite film is baked. In this case, the film is baked in a vacuum or in an inert atmosphere environment at a heating temperature range of at least 400 ° C. Thus, a method for producing a conductive porous ceramic formed mainly of siliconized titanium TiSi has been proposed .
JP 2006-151737 A

この提案された方法は、所期の目的を達成させるはするものの、製膜原液中への珪素化チタンTiSi2粉末の分散性が良好ではないため、この珪素化チタン粉末粒子の平均粒子径が大きい場合や製膜原液中へのこの珪素化チタン粉末の充填濃度が高い場合には、製膜原液中の珪素化チタンTiSi2粉末粒子が沈降したり、製膜原液がゲル化してしまうため、複合膜の形成が困難となる。 Although this proposed method achieves the intended purpose, since the dispersibility of the titanium silicide TiSi 2 powder in the film forming stock solution is not good, the average particle size of the titanium silicide powder particles is If it is large or the filling concentration of this titanium silicide powder in the film forming stock solution is high, the titanium silicide TiSi 2 powder particles in the film forming stock solution settle, or the film forming stock solution will gel. Formation of a composite film becomes difficult.

アルミナ等の多孔質酸化物セラミックスの製造法では、製膜原液中のセラミックス粉末の分散性を改善するために、しばしばドデシルベンゼンスルホン酸等のアニオン界面活性剤などが分散剤として添加され、それが有効に作用しているが、導電性多孔質セラミックスを製造するために用いられる製膜原液についてはそれが有効ではない。   In the production method of porous oxide ceramics such as alumina, an anionic surfactant such as dodecylbenzenesulfonic acid is often added as a dispersing agent in order to improve the dispersibility of the ceramic powder in the stock solution. Although it works effectively, it is not effective for the film-forming stock solution used for producing the conductive porous ceramics.

本発明の目的は、上記導電性多孔質セラミックスの製造法において、製膜原液中に添加される珪素化チタンTiSi2粉末粒子の平均粒子径が大きいものが用いられる場合にあってもあるいは珪素化チタンTiSi2粉末の充填濃度が高い場合にあっても、製膜原液中のこの珪素化チタン粉末の分散性が改善され、その結果得られる中空糸膜状の導電性多孔質セラミックスのハンドリング強度をさらに改善せしめる方法を提供することにある。 The object of the present invention is to produce the above-mentioned conductive porous ceramics even when a large average particle diameter of titanium silicide TiSi 2 powder particles added to the film forming stock solution is used. Even when the packing concentration of titanium TiSi 2 powder is high, the dispersibility of this titanium silicide powder in the film forming stock solution is improved, and the handling strength of the resulting hollow fiber membrane-like conductive porous ceramics is improved. It is to provide a method for further improvement.

かかる本発明の目的は、珪素化チタンTiSi2粉末を高分子物質および塩基性高分子型分散剤の有機溶媒溶液中に高充填した製膜原液から二重環状ノズルを用いて複合膜を製膜し、得られた複合膜を焼成し、その際少くとも400℃以上の加熱温度範囲では真空または不活性雰囲気環境下で焼成することによって、珪素化チタンTiSiを主成分として形成される中空糸膜状の導電性多孔質セラミックスを製造することによって達成される。 An object of the present invention is to form a composite film from a film-forming stock solution in which silicon silicide TiSi 2 powder is highly filled in an organic solvent solution of a polymer substance and a basic polymer type dispersant using a double annular nozzle. Then, the resulting composite membrane is fired, and in this case, at a heating temperature range of at least 400 ° C., it is fired in a vacuum or in an inert atmosphere environment to form a hollow fiber membrane formed mainly of titanium silicide TiSi. This is achieved by producing a conductive porous ceramic in the form of a plate .

本発明方法により得られる中空糸膜状導電性多孔質セラミックスは、主として珪素化チタンTiSiよりなり、非常に低い抵抗値、すなわち高い導電性とハンドリング強度とを有し、しかもそれの製造を容易に行うことができるという特徴を有するが、その製造に際し製膜原液中に添加される珪素化チタンTiSi2粉末粒子の平均粒子径が大きいものが用いられる場合にあってもあるいは珪素化チタンTiSi2粉末の充填濃度が高い場合にあっても、製膜原液中のこの珪素化チタン粉末の分散性が改善される結果、ハンドリング強度の点をさらに改善せしめることができる。 The hollow fiber membrane-like conductive porous ceramic obtained by the method of the present invention is mainly composed of siliconized titanium TiSi, has a very low resistance value, that is, high conductivity and handling strength, and can be easily manufactured. Although it has the feature that it can be performed, even when a large average particle diameter of the siliconized TiSi 2 powder particles added to the film-forming stock solution during its production is used, or the siliconized TiSi 2 powder Even when the filling concentration of is high, the dispersibility of the titanium silicide powder in the film-forming stock solution is improved, so that the handling strength can be further improved.

平均粒子径のより大きいものを用いた場合、得られる中空糸膜状導電性セラミックスの表面孔径を大きくすることができ、その表層にセンサの官能層、燃料電池の触媒層および電解質層等の機能層を設ける場合、その機能層の一部が多孔質セラミックス表面に含浸し易くなり、機能層の接合性が向上したり、あるいは触媒を担持させる場合には担持が表層近傍の細孔内まで均質に行い易くなるという効果が得られるようになる。また、多孔質電極として用いる場合には、細孔径の大きい方がガス拡散性にもすぐれるようになる。   When a material having a larger average particle diameter is used, the surface pore diameter of the obtained hollow fiber membrane-like conductive ceramics can be increased, and the surface layer functions as a sensor functional layer, a fuel cell catalyst layer, and an electrolyte layer. When a layer is provided, a part of the functional layer can easily be impregnated on the surface of the porous ceramic, so that the bonding property of the functional layer is improved, or when the catalyst is supported, the support is homogeneous to the pores near the surface layer. The effect that it becomes easy to perform will come to be acquired. Further, when used as a porous electrode, the larger the pore diameter, the better the gas diffusibility.

このような特性を有する本発明の中空糸膜状の導電性多孔質セラミックスは、ガスセンサあるいはその他の機能部品等の多孔質電極として有効に用いることができる。 The hollow fiber membrane-like conductive porous ceramic of the present invention having such characteristics can be effectively used as a porous electrode for a gas sensor or other functional parts.

中空糸膜状の導電性多孔質セラミックスは、珪素化チタンTiSi2粉末を高分子物質および塩基性高分子型分散剤の有機溶媒溶液中に高充填した製膜原液から二重環状ノズルを用いて複合膜を製膜し、得られた複合膜を焼成することにより製造される。 The hollow fiber membrane-like conductive porous ceramic is obtained by using a double annular nozzle from a membrane-forming stock solution in which a titanium silicide TiSi 2 powder is highly filled in an organic solvent solution of a polymer substance and a basic polymer type dispersant. It is manufactured by forming a composite film and firing the obtained composite film.

セラミックス粉末としては、導電性を有する珪素化チタンTiSi2粉末が専ら使用される。導電性セラミックスとしては、この他一般に炭化チタンTiC、ホウ素化チタンTiB2等が知られており、TiCは焼結性が悪いためアルミナ粉末等と複合化して用いられるが、多孔質セラミックスに成形したときの導電性が低く、またTiB2は高導電性材料であることが知られているが、これ単体で多孔質セラミックス中空糸を焼成した際、この中空糸を焼成炉内に保持するボード部材に固着し、成形物として取り出しができないという問題を有している。 As the ceramic powder, conductive titanium silicide TiSi 2 powder is exclusively used. In addition, titanium carbide TiC, titanium boride TiB 2 and the like are generally known as conductive ceramics , and TiC is used in combination with alumina powder because it has poor sinterability, but it was molded into porous ceramics. It is known that TiB 2 is a highly conductive material when it is low in electrical conductivity, but when a porous ceramic hollow fiber is fired alone, this board member holds the hollow fiber in a firing furnace It has a problem that it cannot be taken out as a molded product.

これに対して、本発明方法で用いられるTiSi2粉末は、導電性にすぐれまた中空糸への成形性にすぐれた多孔質セラミックスを与えることができる。原料として用いられるTiSi2粉末は、その平均粒子径(フィッシャー法)が約0.01〜20μm、好ましくは約0.1〜10μm、さらに好ましくは約5〜10μm程度のものが好適に用いられる。平均粒子径は、小さい方が焼結性や焼成後の材料強度などの点ですぐれているが、これ以下の平均粒子径のものでは、凝集性が高いために製膜原液中での分散性に問題を生じ、また焼成後の多孔質体の細孔径が小さくなりすぎて、ガスの拡散性に支障をきたすようになる。一方、平均粒子径が大きい場合には製膜原液がゲル化し易い傾向がみられるばかりではなく、これよりも大きい平均粒子径のものを用いると、焼結性に劣り、また材料強度が低いという問題がみられるようになる。このような平均粒子径を有するTiSi2粉末としては、市販品、例えば日本新金属製品等をそのまま用いることができる。 On the other hand, the TiSi 2 powder used in the method of the present invention can provide a porous ceramic having excellent electrical conductivity and excellent moldability to a hollow fiber. The TiSi 2 powder used as a raw material preferably has an average particle size (Fischer method) of about 0.01 to 20 μm, preferably about 0.1 to 10 μm, more preferably about 5 to 10 μm. The smaller average particle size is better in terms of sinterability and material strength after firing, etc., but those with an average particle size smaller than this have high agglomeration properties, so dispersibility in the film forming stock solution In addition, the pore size of the porous body after firing becomes too small, which impedes gas diffusibility. On the other hand, when the average particle size is large, not only does the film forming stock solution tend to gel easily, but if an average particle size larger than this is used, the sinterability is poor and the material strength is low. Problems begin to appear. As the TiSi 2 powder having such an average particle size, commercially available products such as Japan New Metal Products can be used as they are.

なお、TiSi2粉末中には、その導電性を損なわない範囲内、例えば混合粉末中20体積%以下、好ましくは5体積%以下の割合で、アルミナ、ジルコニア等の他のセラミックス粉末やその焼結助剤を添加して、混合粉末として用いることもできる。 In TiSi 2 powders, other ceramic powders such as alumina and zirconia, and sintering thereof within a range that does not impair the conductivity, for example, 20 volume% or less, preferably 5 volume% or less in the mixed powder. An auxiliary agent can be added and used as a mixed powder.

TiSi2粉末またはその混合粉末は、製膜原液中約20〜85重量%、好ましくは約55〜75重量%の割合で高充填して用いられる。これ以下の充填濃度の製膜原液では焼結体が得られず、一方これ以上の充填濃度では相対的に高分子物質の割合が少なくなり、複合膜の形成が困難となる。 TiSi 2 powder or a mixed powder thereof is used by being highly filled in a ratio of about 20 to 85% by weight, preferably about 55 to 75% by weight, in the film forming stock solution. A film-forming stock solution with a filling concentration below this cannot produce a sintered body, while a filling concentration higher than this makes the proportion of the polymer substance relatively small, making it difficult to form a composite membrane.

複合膜の形成に用いられる高分子物質としては、有機溶媒に溶解し、熱分解性のものであれば任意のものを用いることができ、例えばポリスルホン、ポリアミドイミド、ポリエーテルイミド、ポリアクリロニトリル、酢酸セルロース等が、製膜原液中約4〜20重量%、好ましくは約6〜12重量%の割合で用いられる。これ以下の濃度では、膜の形成、特に中空糸膜の紡糸が困難となり、一方これ以上の濃度では、製膜原液の粘度が高くなりすぎ、製膜できなくなる。   As the polymer material used for forming the composite film, any material can be used as long as it is dissolved in an organic solvent and is thermally decomposable, such as polysulfone, polyamideimide, polyetherimide, polyacrylonitrile, acetic acid. Cellulose or the like is used in a proportion of about 4 to 20% by weight, preferably about 6 to 12% by weight, in the film forming stock solution. If the concentration is lower than this, it is difficult to form a membrane, particularly spinning the hollow fiber membrane. On the other hand, if the concentration is higher than this, the viscosity of the membrane-forming stock solution becomes too high to make the membrane.

塩基性高分子型分散剤としては、分子量が数千〜数万であり、エステルを有する構造のものであれば特に制限なく使用することができ、脂肪酸エステルなど、好ましくはポリエステル酸アマイドアミン塩が用いられる。実際には、市販品、例えば楠本化成製品ディスパロンDA-703-50、DA-705、DA-725、DA-234等が用いられる。この他、ポリエーテルリン酸エステルのアミン塩である同社製品ディスパロンDA-325等も用いられる。これらは、製膜原液中0.1〜20重量%、好ましくは0.5〜2重量%の割合で、炭化水素系溶媒中に添加されて用いられる。この使用割合がこれ以下では、製膜原液中へのTiSi2粉末の分散性が不十分となり、一方これ以上の割合で用いられると、製膜原液の粘度が高くなりすぎ製膜できなくなるか、得られた複合膜の強度が非常に小さくなって、その後の焼結ができなくなり、これらが可能であったとしても形成した薄膜中に塩基性高分子型分散剤が多量に付着することとなり、いずれにしても好ましくない。 As the basic polymer type dispersant, a molecular weight of several thousand to several tens of thousands can be used without particular limitation as long as it has an ester structure, and a fatty acid ester or the like, preferably a polyester acid amide amine salt is used. Used. In practice, commercially available products such as Enomoto Kasei products Disparon DA-703-50, DA-705, DA-725, DA-234 and the like are used. In addition, the company's product Disparon DA-325, which is an amine salt of polyether phosphate, is also used. These are used by being added to the hydrocarbon solvent at a ratio of 0.1 to 20% by weight, preferably 0.5 to 2% by weight in the film-forming stock solution. If this use ratio is less than this, dispersibility of TiSi 2 powder in the film-forming stock solution will be insufficient, while if it is used at a ratio higher than this, the viscosity of the film-forming stock solution will be too high, or film formation will not be possible, The strength of the obtained composite film becomes very small, and subsequent sintering becomes impossible, and even if these are possible, a large amount of the basic polymer type dispersant will adhere to the formed thin film, Anyway, it is not preferable.

これらの高分子物質および塩基性高分子型分散剤を溶解させ、製膜原液の残部を形成させる有機溶媒としては、高分子物質を溶解させ、一般に水または水性液が用いられる紡糸浴と親和性を有するものであれば任意のものを用いることができ、例えばジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、ジエチルアセトアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒が好んで用いられる。   As an organic solvent for dissolving these polymer substances and basic polymer type dispersants and forming the remainder of the film-forming stock solution, the polymer substance is dissolved and is compatible with a spinning bath in which water or an aqueous liquid is generally used. Any aprotic polar solvent such as dimethylformamide, diethylformamide, dimethylacetamide, diethylacetamide, N-methyl-2-pyrrolidone, dimethylsulfoxide is preferably used. .

製膜原液からの複合膜の形成は、乾湿式製膜法によって行われる。中空糸膜を形成させるための乾湿式紡糸は、圧力容器内に収容した製膜原液に約0.05〜0.5MPa程度の背圧を印加して製膜原液を二重環状ノズルの外周側に供給し、二重環状ノズルの内管側には芯液としての水、水性液、有機溶媒等の凝固液を流し、一定距離空走させた後、凝固浴中に吐出することによって行われ、吐出された製膜原液は凝固浴中でゲル化され、これを巻取り装置で巻取り、回収することにより、所望の高分子物質-TiSi2複合中空糸膜が得られる。 Formation of the composite film from the film forming stock solution is performed by a dry and wet film forming method. Dry and wet spinning for forming a hollow fiber membrane applies a back pressure of about 0.05 to 0.5 MPa to the membrane forming stock solution contained in the pressure vessel and supplies the membrane forming stock solution to the outer peripheral side of the double annular nozzle. The coagulating liquid such as water, aqueous liquid, and organic solvent as the core liquid is flowed to the inner tube side of the double annular nozzle, and after running for a certain distance, it is discharged by being discharged into the coagulating bath. The film-forming stock solution is gelled in a coagulation bath, and this is wound up and collected by a winding device to obtain a desired polymer substance-TiSi 2 composite hollow fiber membrane .

導電性多孔質セラミックスは、このようにして調製された複合膜を、真空中(約1Pa以下)もしくは窒素、アルゴル等の不活性雰囲気中で約1300〜1800℃、好ましくは約1350〜1600℃で約0.5〜4時間程度焼成することにより得られ、その際の昇温速度は約3〜10℃/分程度であることが好ましい。この際、原料粉末であるTiSi2の酸化温度以下であっても、200℃以上、少くとも400℃以上の焼成過程においては、焼成炉内を真空もしくは不活性雰囲気という雰囲気環境下にする必要がある。これはTiSi2は大気中で600℃以上に加熱すると酸化して組成変化を起すため、これ以上の温度での加熱、すなわち本焼成は真空中もしくは不活性雰囲気中で行う必要がある。 The conductive porous ceramic is obtained by subjecting the composite membrane thus prepared to about 1300 to 1800 ° C., preferably about 1350 to 1600 ° C. in a vacuum (about 1 Pa or less) or in an inert atmosphere such as nitrogen or argol. It is preferably obtained by firing for about 0.5 to 4 hours, and the rate of temperature rise at that time is preferably about 3 to 10 ° C./minute. At this time, even if the temperature is lower than the oxidation temperature of the raw material TiSi 2 , the firing furnace needs to be in an atmospheric environment such as a vacuum or an inert atmosphere in a firing process of 200 ° C. or more, at least 400 ° C. or more. is there. This is because TiSi 2 oxidizes and changes in composition when heated to 600 ° C. or higher in the atmosphere, so heating at a temperature higher than this, that is, main firing, must be performed in a vacuum or in an inert atmosphere.

他のセラミックスの焼成においては、仮成形(複合膜形成)に使用される高分子物質を完全に除去する目的で、酸素の存在下に約500〜600℃での仮焼成が一般に行われている。しかしながら、TiSi2を原料粉末として用いた複合膜の場合には、この仮焼成を大気開放下で行い、その後真空中もしくは不活性雰囲気中で本焼成を行った場合には、後記比較例1の結果に示されるように、最終的な多孔質セラミックス成形物を構成する主要なセラミックス成分が焼結性の悪い、脆い化合物(X線回折同定の結果Ti5Si3)に変化し、所望の導電性多孔質セラミックスを得ることができないという結果が示される。 In the firing of other ceramics, a temporary firing at about 500 to 600 ° C. is generally performed in the presence of oxygen for the purpose of completely removing the polymer material used for the temporary forming (composite film formation). . However, in the case of a composite film using TiSi 2 as a raw material powder, this temporary baking is performed in the open air, and then the main baking is performed in a vacuum or in an inert atmosphere. As shown in the results, the main ceramic components that make up the final porous ceramic molding changed to brittle compounds with poor sinterability (Ti 5 Si 3 as a result of X-ray diffraction identification), and the desired conductivity The result is that porous porous ceramics cannot be obtained.

これに対し、200℃以上、少くとも400℃以上の段階で、複合膜を真空中もしくは不活性雰囲気中という環境下に置いて焼成した成形物は、成形物のセラミックス成分をX線回折により同定した結果、その主成分はTiSiであることが確認され、このようなセラミックス成分からなる中空糸膜状の多孔質セラミックス成形物は、高いハンドリング強度を示し、またすぐれた導電性を示している。多孔質セラミックス中空糸にあっては、孔径が約0.1〜6μm、好ましくは約0.2〜2μmで、外径が約0.5〜4mm、好ましくは約1〜3mm、膜厚が約0.1〜0.5μm、好ましくは約0.15〜0.3mmの多孔質TiSi中空糸を与える。 On the other hand, when the composite film is fired in a vacuum or inert atmosphere at 200 ° C or higher, at least 400 ° C or higher, the ceramic component of the molded product is identified by X-ray diffraction. As a result, it was confirmed that the main component was TiSi, and the hollow fiber membrane-shaped porous ceramic molded article made of such a ceramic component showed high handling strength and excellent conductivity. In the porous ceramic hollow fiber, the pore diameter is about 0.1-6 μm, preferably about 0.2-2 μm, the outer diameter is about 0.5-4 mm, preferably about 1-3 mm, and the film thickness is about 0.1-0.5 μm, preferably Gives a porous TiSi hollow fiber of about 0.15-0.3 mm.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

実施例
珪素化チタンTiSi2粉末(日本新金属製品;平均粒子径6〜9μm)354g、ポリスルホン(UCC社製品P-1700)38g、ジメチルホルムアミド 153gおよびポリエステル酸アマイドアミン塩(楠本化成製品ディスパロンDA-703-50)9gの混合物からなる製膜原液を、外径1.5mm、内径0.8mm、内管側外径0.5mmの二重環状ノズルを用いて、乾湿式紡糸した。製膜原液のノズルへの供給は、製膜原液を圧力容器内に収容し、これに背圧0.1MPaを印加して行った。このときの製膜原液の吐出流量は10〜13ml/分で、芯液(水)流量10ml/分、ノズル吐出口-凝固浴間距離5cm、凝固浴(水)温度25℃の紡糸条件下で、紡糸速度は製膜原液の吐出流量に応じて適宜調節して(15〜20m/分)乾湿式紡糸し、平均で外径1.2mm、内径0.9mmの複合中空糸膜を得た。
Example Titanium silicide TiSi 2 powder (Japan new metal product; average particle size 6-9 μm) 354 g, polysulfone (UCC product P-1700) 38 g, dimethylformamide 153 g and polyester acid amide amine salt 703-50) A membrane-forming stock solution composed of 9 g of the mixture was subjected to dry and wet spinning using a double annular nozzle having an outer diameter of 1.5 mm, an inner diameter of 0.8 mm, and an inner tube-side outer diameter of 0.5 mm. The film-forming stock solution was supplied to the nozzle by storing the film-forming stock solution in a pressure vessel and applying a back pressure of 0.1 MPa thereto. At this time, the discharge rate of the film forming solution is 10 to 13 ml / min, the core solution (water) flow rate is 10 ml / min, the distance between the nozzle discharge port and the coagulation bath is 5 cm, and the coagulation bath (water) temperature is 25 ° C. The spinning speed was appropriately adjusted according to the discharge flow rate of the membrane forming stock solution (15 to 20 m / min), and dry and wet spinning was performed to obtain a composite hollow fiber membrane having an average outer diameter of 1.2 mm and an inner diameter of 0.9 mm.

得られた複合中空糸膜を15cmの長さに切断し、これをアルミナ製焼成ボード上に設置した後、真空雰囲気炉中に置いた。炉内は、室温時に真空(0.1Pa以下)とした後、5℃/分の昇温速度で1400℃迄昇温し、この温度で60分間焼成した。その後、炉を自然放冷して、平均で外径1.1mm、内径0.8mmの多孔質セラミックス中空糸(灰色)を得た。   The obtained composite hollow fiber membrane was cut to a length of 15 cm, placed on an alumina fired board, and then placed in a vacuum atmosphere furnace. The inside of the furnace was evacuated at room temperature (0.1 Pa or less), heated to 1400 ° C. at a rate of 5 ° C./min, and fired at this temperature for 60 minutes. Thereafter, the furnace was naturally cooled to obtain a porous ceramic hollow fiber (gray) having an average outer diameter of 1.1 mm and an inner diameter of 0.8 mm.

この多孔質セラミックス中空糸について、SEMによる表面観察を行った結果、約1μmの細孔が形成された多孔質体であることが確認され、図1には中空糸断面、図2には中空糸外表面のSEM観察像が示される。   As a result of surface observation of this porous ceramic hollow fiber by SEM, it was confirmed that it was a porous body having pores of about 1 μm formed. FIG. 1 shows a hollow fiber cross section, and FIG. 2 shows a hollow fiber. An SEM observation image of the outer surface is shown.

さらに、この中空糸を10mmの長さに切り出し、その両端をテスターに接続して両端面の抵抗値を測定すると、その値(n=5)は0.1〜0.3Ωと非常にすぐれた導電性を示した。   Furthermore, when this hollow fiber is cut into a length of 10 mm, both ends thereof are connected to a tester, and the resistance value of both end faces is measured, the value (n = 5) is 0.1 to 0.3Ω, which is very excellent conductivity. Indicated.

比較例1
実施例において、ポリエステル酸アマイドアミン塩を用いないと珪素化チタンの分散性が悪く、製膜原液がゲル化した。ただし、珪素化チタン量を325g、ジメチルホルムアミド量を180gに変更して用いた場合には、ポリエステル酸アマイドアミン塩を用いなくとも製膜原液のゲル化は生じなかった。
Comparative Example 1
In Examples, the dispersibility of titanium silicide was poor unless the polyester acid amide amine salt was used, and the film forming stock solution was gelled. However, when the amount of titanium silicide was changed to 325 g and the amount of dimethylformamide was changed to 180 g, gelation of the film forming stock solution did not occur without using the polyester acid amide amine salt.

比較例2
実施例において、ポリエステル酸アマイドアミン塩の代りに同量のドデシルベンゼンスルホン酸を用いると、珪素化チタンの分散性が悪く、製膜原液がゲル化した。
Comparative Example 2
In the examples, when the same amount of dodecylbenzenesulfonic acid was used in place of the polyester acid amide amine salt, the dispersibility of titanium silicide was poor, and the film-forming stock solution gelled.

参考例
実施例において、ポリエステル酸アマイドアミン塩を用いなくとも、平均粒子径が2〜5μmの珪素化チタンTiSi2粉末(日本新金属製品)を用いた場合には、製膜原液のゲル化は生じなかった。
Reference Example In Examples, even when a polyester acid amide amine salt is not used, when a siliconized titanium TiSi 2 powder (Nihon Shin Metal Products) having an average particle size of 2 to 5 μm is used, Did not occur.

本発明の係る珪素化チタンTiSi中空糸断面のSEM観察像であるIt is the SEM observation image of the siliconized titanium TiSi hollow fiber section concerning the present invention. 本発明の係る珪素化チタンTiSi中空糸外表面のSEM観察像であるIt is the SEM observation image of the siliconized titanium TiSi hollow fiber outer surface which concerns on this invention

Claims (7)

珪素化チタンTiSi2粉末を高分子物質および塩基性高分子型分散剤の有機溶媒溶液中に高充填した製膜原液から二重環状ノズルを用いて複合膜を製膜し、得られた複合膜を焼成し、その際少くとも400℃以上の加熱温度範囲では真空または不活性雰囲気環境下で焼成することを特徴とする中空糸膜状の導電性多孔質セラミックスの製造法。 A composite membrane was formed by using a double annular nozzle from a stock solution of titanium silicide TiSi 2 powder highly filled in an organic solvent solution of a polymer substance and a basic polymer type dispersant. A method for producing a hollow fiber membrane-like conductive porous ceramic, characterized in that, in the heating temperature range of at least 400 ° C or higher, firing is performed in a vacuum or in an inert atmosphere environment. 平均粒子径(フィッシャー法)が0.01〜20μmの珪素化チタンTiSi2粉末が用いられる請求項1記載の導電性多孔質セラミックスの製造法。 The method for producing a conductive porous ceramic according to claim 1, wherein a titanium silicide TiSi 2 powder having an average particle size (Fischer method) of 0.01 to 20 µm is used. 平均粒子径(フィッシャー法)が0.1〜10μmの珪素化チタンTiSi2粉末が用いられる請求項1記載の導電性多孔質セラミックスの製造法。 The method for producing a conductive porous ceramic according to claim 1, wherein a siliconized titanium TiSi 2 powder having an average particle size (Fischer method) of 0.1 to 10 µm is used. 平均粒子径(フィッシャー法)が5〜10μmの珪素化チタンTiSi2粉末が用いられる請求項1記載の導電性多孔質セラミックスの製造法。 The method for producing a conductive porous ceramic according to claim 1, wherein a siliconized titanium TiSi 2 powder having an average particle diameter (Fischer method) of 5 to 10 µm is used. 20体積%以下の割合で他のセラミックス粉末または焼結助剤を珪素化チタンTiSi2粉末に添加した混合粉末として製膜に用いられる請求項1記載の導電性多孔質セラミックスの製造法。 The method for producing a conductive porous ceramic according to claim 1, wherein the ceramic porous ceramic is used for film formation as a mixed powder obtained by adding other ceramic powder or sintering aid to titanium silicide TiSi 2 powder in a proportion of 20% by volume or less. 塩基性高分子型分散剤がポリエステル酸アマイドアミン塩である請求項1記載の導電性多孔質セラミックスの製造法。   The method for producing a conductive porous ceramic according to claim 1, wherein the basic polymer type dispersant is a polyester acid amide amine salt. 珪素化チタンTiSiを主成分とする導電性多孔質セラミックスが形成される請求項1記載の導電性多孔質セラミックスの製造法。   The method for producing a conductive porous ceramic according to claim 1, wherein a conductive porous ceramic mainly comprising siliconized titanium TiSi is formed.
JP2006158649A 2006-06-07 2006-06-07 Manufacturing method of hollow fiber membrane-like conductive porous ceramics Expired - Fee Related JP4859543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006158649A JP4859543B2 (en) 2006-06-07 2006-06-07 Manufacturing method of hollow fiber membrane-like conductive porous ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006158649A JP4859543B2 (en) 2006-06-07 2006-06-07 Manufacturing method of hollow fiber membrane-like conductive porous ceramics

Publications (3)

Publication Number Publication Date
JP2007326734A JP2007326734A (en) 2007-12-20
JP2007326734A5 JP2007326734A5 (en) 2009-07-09
JP4859543B2 true JP4859543B2 (en) 2012-01-25

Family

ID=38927474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006158649A Expired - Fee Related JP4859543B2 (en) 2006-06-07 2006-06-07 Manufacturing method of hollow fiber membrane-like conductive porous ceramics

Country Status (1)

Country Link
JP (1) JP4859543B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106337211A (en) * 2016-08-29 2017-01-18 浙江惠侬丝针织内衣有限公司 Processing method of ceramic health-care yarn

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184893A (en) * 2008-02-08 2009-08-20 Nok Corp Porous ceramics capillary, and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07111760A (en) * 1993-10-08 1995-04-25 Hitachi Ltd Commutator using silicide based ceramics
JP3769739B2 (en) * 1994-11-17 2006-04-26 住友電気工業株式会社 Porous ceramic film and manufacturing method thereof
JP3057313B2 (en) * 1995-07-14 2000-06-26 株式会社クボタ Ceramic porous membrane and method for producing the same
JP4592402B2 (en) * 2004-11-29 2010-12-01 Nok株式会社 Method for producing conductive porous ceramic hollow fiber
JP4738163B2 (en) * 2005-12-22 2011-08-03 Nok株式会社 Manufacturing method of inorganic composite hollow tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106337211A (en) * 2016-08-29 2017-01-18 浙江惠侬丝针织内衣有限公司 Processing method of ceramic health-care yarn

Also Published As

Publication number Publication date
JP2007326734A (en) 2007-12-20

Similar Documents

Publication Publication Date Title
Nishihora et al. Manufacturing porous ceramic materials by tape casting—A review
Fung et al. Nickel aluminate spinel reinforced ceramic hollow fibre membrane
Zhang et al. Highly permeable porous YSZ hollow fiber membrane prepared using ethanol as external coagulant
JP2018099678A (en) CERAMIC SEPARATION MEMBRANE FOR WATER TREATMENT USING SiC SUBJECTED TO OXIDATION AND MANUFACTURING METHOD FOR THE SAME
US8871140B2 (en) Inorganic hollow yarns and method of manufacturing the same
JP3971546B2 (en) Porous ceramic laminate and method for producing the same
Brouczek et al. Open‐porous silicon nitride‐based ceramics in tubular geometry obtained by slip‐casting and gelcasting
Nakahira et al. Green fabrication of porous ceramics using an aqueous electrophoretic deposition process
JP4859543B2 (en) Manufacturing method of hollow fiber membrane-like conductive porous ceramics
CN105032198A (en) Porous nickel flat sheet membrane preparation method and porous nickel flat sheet membrane prepared by using same
Sarbatly Effect of kaolin/pesf ratio and sintering temperature on pore size and porosity of the kaolin membrane support
Meng et al. Porous and dense Ni hollow fibre membranes
JP4149343B2 (en) Oxygen separation membrane element and manufacturing method thereof
US20020043735A1 (en) Method for producing a silicon nitride filter
JP5082067B2 (en) Method for producing high-strength macroporous porous ceramic and porous body thereof
JP4592402B2 (en) Method for producing conductive porous ceramic hollow fiber
KR100881444B1 (en) A Preparation method of metallic nano porous membranes
KR100748999B1 (en) Preparation method of membrane using oxidized metal and carbon powder
JP2005081246A (en) Oxygen separation membrane element and production method therefor
JP6238896B2 (en) Ceramic composition
KR100819418B1 (en) Membrane using metallic powder and ceramic powder
KR101811199B1 (en) COMPOSITION FOR SiC SUPPORT LAYER AND SiC MEMBRANE HAVING AN Al2O3 COATING LAYER USING THE SAME AND METHOD FOR MANUFACTURING THE SAME
KR20080093776A (en) A preparation method of metallic nano porous membranes
JP2015193489A (en) Silicon nitride based porous body and method for producing the same
JP4174988B2 (en) Method for producing solid oxide porous hollow fiber membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees