JP2006151716A - Oxide ion conductive material comprising bismuth-erbium-tungsten oxide solid solution and its manufacturing method - Google Patents

Oxide ion conductive material comprising bismuth-erbium-tungsten oxide solid solution and its manufacturing method Download PDF

Info

Publication number
JP2006151716A
JP2006151716A JP2004341998A JP2004341998A JP2006151716A JP 2006151716 A JP2006151716 A JP 2006151716A JP 2004341998 A JP2004341998 A JP 2004341998A JP 2004341998 A JP2004341998 A JP 2004341998A JP 2006151716 A JP2006151716 A JP 2006151716A
Authority
JP
Japan
Prior art keywords
oxide
bismuth
erbium
solid solution
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004341998A
Other languages
Japanese (ja)
Other versions
JP4788867B2 (en
Inventor
Akiteru Watanabe
昭輝 渡辺
Masami Sekida
正實 関田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2004341998A priority Critical patent/JP4788867B2/en
Publication of JP2006151716A publication Critical patent/JP2006151716A/en
Application granted granted Critical
Publication of JP4788867B2 publication Critical patent/JP4788867B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxide ion conductive material stable without decomposing or phase transition even in a low temperature zone and exhibiting high oxide ion conduction. <P>SOLUTION: The oxide ion conductive material comprises a bismuth-erbium-tungsten oxide solid solution having a face-centered cubic crystal system structure and expressed by a general formula, (Bi<SB>2</SB>O<SB>3</SB>)<SB>x</SB>(Er<SB>2</SB>O<SB>3</SB>)<SB>y</SB>(WO<SB>3</SB>)<SB>z</SB>(0.695<x<0.745, 0.20<y<0.255 and 0.035<z<0.065, where x+y+z=1). The oxide ion conductive material is stable without decomposing or phase transition even in a low temperature ranging from ≤600°C to ≥500°C and exhibits the high oxide ion conduction of ≥10<SP>-2</SP>S cm<SP>-1</SP>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、面心立方晶系の構造を有する一般式(Bi2O3)x(Er2O3)y(WO3)z(0.695<x
<0.745、0.20<y<0.255、0.035<z<0.065、但し、x+y+z=1)で示されるビス
マス・エルビウム・タングステン酸化物固溶体からなる酸化物イオン伝導材料及びその製
造方法に関する。
The present invention relates to a general formula (Bi 2 O 3 ) x (Er 2 O 3 ) y (WO 3 ) z (0.695 <x
<0.745, 0.20 <y <0.255, 0.035 <z <0.065, where x + y + z = 1) and relates to an oxide ion conductive material made of a bismuth-erbium-tungsten oxide solid solution and a method for producing the same.

従来、酸化ビスマスの高温安定相(δ-Bi2O3と命名されている)は酸素が25at%欠
損した蛍石型の面心立方晶系の構造をもち、優れた酸化物イオン伝導体であることが知ら
れているが、その安定温度領域が730〜825℃と狭く、かつ還元され易い等の欠点を
有するために、他の酸化物を添加することにより、安定温度領域を室温付近まで低下させ
る安定化の試みがなされた(例えば、非特許文献1)。
Conventionally, the high-temperature stable phase of bismuth oxide (named as δ-Bi 2 O 3 ) has a fluorite-type face-centered cubic structure in which oxygen is deficient by 25 at%, and is an excellent oxide ion conductor. Although it is known that the stable temperature range is as narrow as 730 to 825 ° C. and has the disadvantages of being easily reduced, the addition of other oxides brings the stable temperature range to near room temperature. Attempts have been made to stabilize it (for example, Non-Patent Document 1).

特に、希土類酸化物(Ln2O3)を添加したBi2O3-Ln2O3の二成分系が広く検討された。そ
の結果、得られた酸素が25at%欠損した蛍石型構造をもつ面心立方晶の相は高い酸化
物イオン伝導を示すことが認められた。しかしながら、これらの面心立方晶の相は600
〜700℃より低温領域では準安定であるため、これら低温領域に保持されると分解ある
いは相転移のため、そのイオン伝導性は急激に低下し、実用には供しない材料であった(
例えば、非特許文献1)。既往の酸化物イオン伝導体として有名な安定化ジルコニアも酸素
欠損した蛍石型の面心立方晶系構造を有しており、隙間の多い蛍石型の面心立方構造と酸
化物イオン伝導の関連性もまた種々検討されてきた。
In particular, a binary system of Bi 2 O 3 -Ln 2 O 3 added with rare earth oxide (Ln 2 O 3 ) has been widely studied. As a result, it was confirmed that the obtained face-centered cubic phase having a fluorite-type structure in which 25 at% oxygen was lost exhibited high oxide ion conduction. However, these face-centered cubic phases are 600
Since it is metastable at a temperature lower than ˜700 ° C., it is a material not practically used because its ionic conductivity rapidly decreases due to decomposition or phase transition when kept in these low temperature regions (
For example, Non-Patent Document 1). Stabilized zirconia, which is well-known as an oxide ion conductor, has a fluorite-type face-centered cubic structure with oxygen deficiency. Various relationships have also been investigated.

N. Jiang and E. D. Wachsman,J. Am. Ceram. Soc., 82, 3057 (1999).N. Jiang and E. D. Wachsman, J. Am. Ceram. Soc., 82, 3057 (1999).

本発明は、低温領域でも分解や相転移することなく安定であり、高い酸化物イオン伝導
を呈する酸化物イオン伝導体を提供することを課題とする。
An object of the present invention is to provide an oxide ion conductor that is stable without decomposition or phase transition even in a low temperature region and exhibits high oxide ion conduction.

本発明者は、酸化ビスマス(Bi2O3)を基本とする酸化物イオン伝導体を探索する目的
で、添加酸化物として酸化エルビウム(Er2O3)と酸化タングステン(WO3)を用いた三成
分系について検討した。その結果、一般式(Bi2O3)x(Er2O3)y(WO3)z(0.695<x<0.74
5、0.20<y<0.255、0.035<z<0.065、但し、x+y+z=1)で示されるビスマス・
エルビウム・タングステン酸化物は面心立方晶系の構造を有する固溶体を形成するが、意
外にも、従来の面心立方晶系に属するビスマス複酸化物と異なって、600℃以下500
℃までの低温領域でも分解や相転移することなく安定であり、10-2S cm-1以上の高い酸化
物イオン伝導を呈することを発見した。
The present inventor used erbium oxide (Er 2 O 3 ) and tungsten oxide (WO 3 ) as additive oxides for the purpose of searching for an oxide ion conductor based on bismuth oxide (Bi 2 O 3 ). A ternary system was studied. As a result, the general formula (Bi 2 O 3 ) x (Er 2 O 3 ) y (WO 3 ) z (0.695 <x <0.74
5, 0.20 <y <0.255, 0.035 <z <0.065, where x + y + z = 1)
Erbium / tungsten oxide forms a solid solution having a face-centered cubic structure, but surprisingly, unlike the conventional bismuth double oxide belonging to the face-centered cubic system, the temperature is 600 ° C. or less.
It has been found that it is stable without decomposition or phase transition even at low temperatures up to ℃, and exhibits high oxide ion conductivity of 10 -2 S cm -1 or higher.

すなわち、本発明は、一般式(Bi2O3)x(Er2O3)y(WO3)z(0.695<x<0.745、0.20<
y<0.255、0.035<z<0.065、但し、x+y+z=1)で示される面心立方晶系の構造を
有するビスマス・エルビウム・タングステン酸化物固溶体からなることを特徴とする酸化
物イオン伝導材料である。
That is, the present invention relates to the general formula (Bi 2 O 3 ) x (Er 2 O 3 ) y (WO 3 ) z (0.695 <x <0.745, 0.20 <
An oxide ion conductive material comprising a bismuth-erbium-tungsten oxide solid solution having a face-centered cubic structure represented by y <0.255, 0.035 <z <0.065, x + y + z = 1) .

また、本発明は、酸化ビスマス(Bi2O3)もしくは加熱されることにより酸化ビスマスに
分解される化合物と、酸化エルビウム(Er2O3)もしくは加熱されることにより酸化エルビ
ウムに分解される化合物と、さらに、酸化タングステン(WO3)もしくは加熱されることに
より酸化タングステンに分解される化合物とを、その割合がモル比でBi2O3:Er2O3:WO3
x:y:z(ここで、0.695<x<0.745、0.20<y<0.255、0.035<z<0.065、但し、
x+y+z=1)となるように秤量・混合した出発原料を空気中或いは酸化雰囲気下で7
00℃以上の温度で加熱することにより、一般式(Bi2O3)x(Er2O3)y(WO3)z(0.695<x
<0.745、0.20<y<0.255、0.035<z<0.065、但し、x+y+z=1)で示される面心
立方晶系の構造を有する酸化物イオン伝導性ビスマス・エルビウム・タングステン酸化物
固溶体を製造する方法である。
The present invention also relates to bismuth oxide (Bi 2 O 3 ) or a compound that decomposes into bismuth oxide when heated, and erbium oxide (Er 2 O 3 ) or a compound that decomposes into erbium oxide when heated. Further, tungsten oxide (WO 3 ) or a compound that is decomposed into tungsten oxide by heating, Bi 2 O 3 : Er 2 O 3 : WO 3 in a molar ratio is x: y: z (Where 0.695 <x <0.745, 0.20 <y <0.255, 0.035 <z <0.065, where
The starting material weighed and mixed so that x + y + z = 1) was obtained in air or in an oxidizing atmosphere.
By heating at a temperature of 00 ° C. or higher, the general formula (Bi 2 O 3 ) x (Er 2 O 3 ) y (WO 3 ) z (0.695 <x
<0.745, 0.20 <y <0.255, 0.035 <z <0.065, where x + y + z = 1) A method for producing an oxide ion conductive bismuth-erbium-tungsten oxide solid solution having a face-centered cubic structure It is.

本発明のビスマス・エルビウム・タングステン酸化物固溶体からなる酸化物イオン伝導
材料は、従来の面心立方晶系に属するビスマス複酸化物とは異なり、600℃以下500
℃までの低温領域でも分解や相転移することなく安定であり、10-2S cm-1以上の高い酸化
物イオン伝導を呈する。例えば、図2に示されるように、x=0.735、y=0.21、z=0.055の組
成では550℃における電気伝導度が10-1.30S cm-1、活性化エネルギーは0.9eVで
あり、また、図4に示されるように、同温度での酸化物イオンの輸率は0.94である。
したがって、良好な酸化物イオン伝導体である。
The oxide ion conductive material comprising the bismuth-erbium-tungsten oxide solid solution of the present invention is different from the conventional bismuth double oxide belonging to the face-centered cubic system, and is 600 ° C. or less 500
It is stable without decomposition or phase transition even at low temperatures up to ℃, and exhibits high oxide ion conductivity of 10 -2 S cm -1 or higher. For example, as shown in FIG. 2, x = 0.735, y = 0.21, electric conductivity 10- 1.30 S cm- 1 at 550 ° C. in the composition of z = 0.055, activation energy is 0.9 eV, also As shown in FIG. 4, the transport number of oxide ions at the same temperature is 0.94.
Therefore, it is a good oxide ion conductor.

本発明のビスマス・エルビウム・タングステン酸化物固溶体からなる酸化物イオン伝導
材料は、以下の手順で製造することができる。すなわち、酸化ビスマス(Bi2O3)もしくは
加熱されることにより酸化ビスマスに分解される化合物と、酸化エルビウム(Er2O3)もし
くは加熱されることにより酸化エルビウムに分解される化合物と、さらに、酸化タングス
テン(WO3)もしくは加熱されることにより酸化タングステンに分解される化合物とを、そ
の割合がモル比でBi2O3:Tb2O3:WO3がx:y:z(ここで、0.695<x<0.745、0.20<y
<0.255、0.035<z<0.065、但し、x+y+z=1)となるように秤量・混合した出発
原料を空気中或いは酸化雰囲気下で700℃以上1000℃未満の温度で加熱し、固相反
応させることにより得られる。
The oxide ion conductive material comprising the bismuth / erbium / tungsten oxide solid solution of the present invention can be produced by the following procedure. That is, bismuth oxide (Bi 2 O 3 ) or a compound that decomposes into bismuth oxide when heated, erbium oxide (Er 2 O 3 ) or a compound that decomposes into erbium oxide when heated, and Tungsten oxide (WO 3 ) or a compound that is decomposed into tungsten oxide by heating, the ratio of Bi 2 O 3 : Tb 2 O 3 : WO 3 is x: y: z (where, 0.695 <x <0.745, 0.20 <y
<0.255, 0.035 <z <0.065, where x + y + z = 1) The starting materials weighed and mixed are heated in air or in an oxidizing atmosphere at a temperature of 700 ° C. or higher and lower than 1000 ° C. to cause a solid phase reaction. Is obtained.

700℃未満の温度では固相反応が進まず、1000℃を越えると試料の溶融が始まり
蒸発が生じる恐れがある。望ましくは800〜900℃の温度である。加熱されることに
より酸化ビスマスに分解される化合物としては、例えば、硝酸ビスマス(Bi(NO3)3)が挙
げられる。加熱されることにより酸化エルビウムに分解される化合物としては、例えば、
硝酸エルビウム(Er(NO)が挙げられる。加熱されることにより酸化タングステンに
分解される化合物としては、例えば、タングステン酸アンモニウム((NH4)10W12O41)が挙
げられる。
If the temperature is lower than 700 ° C., the solid phase reaction does not proceed. If the temperature exceeds 1000 ° C., the sample starts to melt and may evaporate. The temperature is desirably 800 to 900 ° C. Examples of the compound that is decomposed into bismuth oxide by heating include bismuth nitrate (Bi (NO 3 ) 3 ). As a compound that is decomposed into erbium oxide when heated, for example,
And erbium nitrate (Er (NO 3 ) 3 ). Examples of the compound that is decomposed into tungsten oxide by heating include ammonium tungstate ((NH 4 ) 10 W 12 O 41 ).

次に本発明の実施例を示す。純度がいずれも、99.9%以上の酸化ビスマス(Bi2O3)
、酸化エルビウム(Er2O3)、酸化タングステン(WO3)の粉末を、Bi2O3:Er2O3:WO3がモル
比で73.5:21:5.5(試料1)及び72:22:6(試料2)となるように秤量
し、組成の異なる2個の試料を準備した。精秤した各試料をメノウ乳鉢中で十分に混合し
た。この混合物を白金ルツボに充填し、電気炉を用い空気中で室温から加熱し始め825
℃で34時間保った後、ルツボを電気炉から取り出した。
Next, examples of the present invention will be described. Bismuth oxide (Bi 2 O 3 ) with a purity of 99.9% or higher
, Erbium oxide (Er 2 O 3 ), tungsten oxide (WO 3 ) powder, Bi 2 O 3 : Er 2 O 3 : WO 3 in a molar ratio of 73.5: 21: 5.5 (sample 1) and Two samples having different compositions were prepared by weighing to 72: 22: 6 (sample 2). Each precisely weighed sample was thoroughly mixed in an agate mortar. The mixture is filled in a platinum crucible, and is heated from room temperature in air using an electric furnace.
After maintaining at 34 ° C. for 34 hours, the crucible was removed from the electric furnace.

図1に示すように、生成物の粉末X線回折パターンは試料1、試料2ともに、面心立方
晶系の酸化物固溶体の構造を示した。電気伝導度測定用試料として、合成された試料1、
試料2の粉末を直径4.5mmの金型を使用して長さ7mmの圧粉円柱体を作製し、その
圧粉体をさらに200MPaの静水圧で等方的に圧縮した後、電気炉中で850℃で40
時間加熱焼結した。
As shown in FIG. 1, the powder X-ray diffraction pattern of the product showed a structure of a face-centered cubic oxide solid solution for both Sample 1 and Sample 2. As a sample for electrical conductivity measurement, synthesized sample 1,
A powder cylinder of 7 mm in length was produced from the powder of sample 2 using a mold having a diameter of 4.5 mm, and the green compact was further isotropically compressed with a hydrostatic pressure of 200 MPa, and then in an electric furnace. 40 at 850 ° C
Sintered for hours.

この焼結体の両面に金ペーストを塗布して電極とし、交流インピーダンス法の電気伝導
度測定用試料とした。電気炉中に設置した試料の電気抵抗を150℃から710℃まで2
0℃の温度間隔で昇温と降温過程で測定した。その結果は図2に示すように良好な電気伝
導を示した。
A gold paste was applied to both surfaces of the sintered body to form an electrode, and a sample for measuring electrical conductivity by the AC impedance method was used. The electrical resistance of the sample installed in the electric furnace is 2 from 150 ° C to 710 ° C.
The measurement was performed during the temperature increase and decrease process at a temperature interval of 0 ° C. The results showed good electrical conduction as shown in FIG.

次に、円柱体の試料2に関して、600℃に保持された状態で830時間までの、測定
開始時の電気伝導度に対する相対電気伝導度の変化を調べた結果を図3に示す。830時
間後でも相対電気伝導度は98.9%であり、材料としての大きな劣化は認められない。
換言すれば、本発明の固溶体は酸化ビスマスの高温安定相(δ-Bi2O3)を低温領域まで真
に安定化したものである。
Next, FIG. 3 shows the result of examining the change in relative electrical conductivity with respect to the electrical conductivity at the start of measurement for the sample 2 of the cylindrical body up to 830 hours while being held at 600 ° C. Even after 830 hours, the relative electrical conductivity is 98.9%, and no major deterioration as a material is observed.
In other words, the solid solution of the present invention is obtained by truly stabilizing the high-temperature stable phase (δ-Bi 2 O 3 ) of bismuth oxide to a low temperature region.

酸化物イオンの輸率測定用試料として、試料2の粉末を直径18mmの金型を使用して
厚さ3mmの圧粉円盤体を作製し、その圧粉体をさらに200MPaの静水圧で等方的に
圧縮した後、電気炉中で850℃で20時間加熱焼結した。この焼結体を介して純酸素と
空気から成る酸素濃淡電池を構成して、昇温・降温過程で起電力を測定することにより、
輸率を見積もった。結果を図4に示す。図4に示されるように、輸率は540℃〜800
℃で約0.94であった。本固溶体は良好な酸化物イオン伝導体である。
As a sample for measuring the transport number of oxide ions, a powder disc of sample 2 was used to produce a compact disc body having a thickness of 3 mm using a mold having a diameter of 18 mm, and the green compact was further isostatically at a hydrostatic pressure of 200 MPa. After compression, it was heated and sintered at 850 ° C. for 20 hours in an electric furnace. By configuring an oxygen concentration cell consisting of pure oxygen and air through this sintered body, and measuring the electromotive force during the temperature rise and fall process,
Estimated transportation rates. The results are shown in FIG. As shown in FIG. 4, the transport number is 540 ° C to 800 ° C.
It was about 0.94 at ° C. This solid solution is a good oxide ion conductor.

試料1の粉末の熱的特性を検討する目的で、示差熱分析を行った。図5に室温から12
50℃までの昇温・降温過程の結果を示す。1015℃に溶融による吸熱の幅広なピーク
のみが認められ、相転移や分解は認められなかった。したがって、本固溶体は室温から1
015℃まで安定な面心立方晶を保っていることがわかる。
In order to examine the thermal characteristics of the powder of Sample 1, differential thermal analysis was performed. In FIG.
The result of the temperature rise / fall process up to 50 ° C is shown. Only a broad peak of endotherm due to melting at 1015 ° C. was observed, and no phase transition or decomposition was observed. Therefore, this solid solution is from room temperature to 1
It can be seen that a stable face-centered cubic crystal is maintained up to 015 ° C.

本発明のビスマス・エルビウム・タングステン酸化物固溶体からなる酸化物イオン伝導
材料は、500℃以上で良好なイオン伝導性を示すことから、酸素ポンプ、燃料電池、電
極、センサー、触媒等の材料としての用途を有する。
Since the oxide ion conductive material comprising the bismuth / erbium / tungsten oxide solid solution of the present invention exhibits good ion conductivity at 500 ° C. or higher, it can be used as a material for oxygen pumps, fuel cells, electrodes, sensors, catalysts, etc. Has use.

本発明の酸化物イオン伝導材料としてのビスマス・エルビウム・タングステン酸化物固溶体の一組成である73.5Bi2O3・21Er2O3・5.5WO3の粉末X線回折結果を示すグラフ。入射X線はCuKα線である。Graph showing an composition of bismuth erbium tungsten oxide solid solution is 73.5Bi 2 O 3 · 21Er 2 O 3 · 5.5WO powder X-ray diffraction results of 3 as an oxide ion-conductive material of the present invention. Incident X-rays are CuKα rays. 本発明の酸化物イオン伝導材料としてのビスマス・エルビウム・タングステン酸化物固溶体の一組成である73.5Bi2O3・21Er2O3・5.5WO3及び72Bi2O3・22Er2O3・6WO3の電気伝導度の温度変化を示すグラフ。73.5Bi 2 O 3 · 21Er 2 O 3 · 5.5 WO 3 and 72Bi 2 O 3 · 22Er 2 O 3 · which is one composition of bismuth / erbium / tungsten oxide solid solution as the oxide ion conductive material of the present invention graph showing temperature changes in the electrical conductivity of 6WO 3. 本発明の酸化物イオン伝導材料としてのビスマス・エルビウム・タングステン酸化物固溶体の一組成である72Bi2O3・22Er2O3・6WO3の600℃での相対電気伝導度の時間変化を示すグラフ。Graph showing oxide ion time variation of the relative electrical conductivity at 600 ° C. of 72Bi 2 O 3 · 22Er 2 O 3 · 6WO 3 is an composition of bismuth erbium tungsten oxide solid solution as conductive material of the present invention . 本発明の酸化物イオン伝導材料としてのビスマス・エルビウム・タングステン酸化物固溶体の一組成である72Bi2O3・22Er2O3・6WO3の酸化物イオン輸率の温度変化を示すグラフ。Graph showing the oxide temperature change of the oxide ion transport number of 72Bi 2 O 3 · 22Er 2 O 3 · 6WO 3 is an composition of bismuth erbium tungsten oxide solid solution as an ion-conductive material of the present invention. 本発明の酸化物イオン伝導材料としてのビスマス・エルビウム・タングステン酸化物固溶体の一組成である73.5Bi2O3・21Er2O3・5.5WO3の示差熱分析曲線を示すグラフ。Graph showing oxide ion 73.5Bi 2 O 3 · differential thermal analysis curve of 21Er 2 O 3 · 5.5WO 3 is an composition of bismuth erbium tungsten oxide solid solution as conductive material of the present invention.

Claims (2)

面心立方晶系の構造を有する一般式(Bi2O3)x(Er2O3)y(WO3)z(0.695<x<0.745、0.2
0<y<0.255、0.035<z<0.065、但し、x+y+z=1)で示されるビスマス・エルビ
ウム・タングステン酸化物固溶体からなる酸化物イオン伝導材料。
General formula (Bi 2 O 3 ) x (Er 2 O 3 ) y (WO 3 ) z (0.695 <x <0.745, 0.2) having a face-centered cubic structure
An oxide ion conductive material comprising a bismuth-erbium-tungsten oxide solid solution represented by 0 <y <0.255, 0.035 <z <0.065, where x + y + z = 1).
酸化ビスマス(Bi2O3)もしくは加熱されることにより酸化ビスマスに分解される化合物と
、酸化エルビウム(Er2O3)もしくは加熱されることにより酸化エルビウムに分解される化
合物と、さらに、酸化タングステン(WO3)もしくは加熱されることにより酸化タングステ
ンに分解される化合物とを、その割合がモル比でBi2O3:Er2O3:WO3がx:y:z(ここで
、0.695<x<0.745、0.20<y<0.255、0.035<z<0.065、但し、x+y+z=1)と
なるように秤量・混合した出発原料を空気中或いは酸化雰囲気下で700℃以上の温度で
加熱することにより、一般式(Bi2O3)x(Er2O3)y(WO3)z(0.695<x<0.745、0.20<y
<0.255、0.035<z<0.065、但し、x+y+z=1)で示される面心立方晶系の構造を有
する酸化物イオン伝導性ビスマス・エルビウム・タングステン酸化物固溶体を製造する方
法。
Bismuth oxide (Bi 2 O 3 ) or a compound that decomposes into bismuth oxide when heated, erbium oxide (Er 2 O 3 ) or a compound that decomposes into erbium oxide when heated, and tungsten oxide (WO 3 ) or a compound that is decomposed into tungsten oxide by heating, the ratio of Bi 2 O 3 : Er 2 O 3 : WO 3 is x: y: z (where 0.695 < By heating the starting material weighed and mixed so that x <0.745, 0.20 <y <0.255, 0.035 <z <0.065, x + y + z = 1) at a temperature of 700 ° C. or higher in air or in an oxidizing atmosphere. , General formula (Bi 2 O 3 ) x (Er 2 O 3 ) y (WO 3 ) z (0.695 <x <0.745, 0.20 <y
<0.255, 0.035 <z <0.065, where x + y + z = 1) A method for producing an oxide ion conductive bismuth-erbium-tungsten oxide solid solution having a face-centered cubic structure.
JP2004341998A 2004-11-26 2004-11-26 Oxide ion conductive material comprising powder of bismuth / erbium / tungsten oxide solid solution and method for producing the same Expired - Fee Related JP4788867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004341998A JP4788867B2 (en) 2004-11-26 2004-11-26 Oxide ion conductive material comprising powder of bismuth / erbium / tungsten oxide solid solution and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004341998A JP4788867B2 (en) 2004-11-26 2004-11-26 Oxide ion conductive material comprising powder of bismuth / erbium / tungsten oxide solid solution and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006151716A true JP2006151716A (en) 2006-06-15
JP4788867B2 JP4788867B2 (en) 2011-10-05

Family

ID=36630455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004341998A Expired - Fee Related JP4788867B2 (en) 2004-11-26 2004-11-26 Oxide ion conductive material comprising powder of bismuth / erbium / tungsten oxide solid solution and method for producing the same

Country Status (1)

Country Link
JP (1) JP4788867B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197259A (en) * 2006-01-26 2007-08-09 National Institute For Materials Science Oxide ion conductive material comprising bismuth-erbium-molybdenum oxide solid solution and its manufacturing method
KR20200050201A (en) * 2018-11-01 2020-05-11 재단법인대구경북과학기술원 triple doped Stabilized Bismuth Oxide based electrolyte and the manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109713348A (en) * 2018-12-26 2019-05-03 合肥学院 It is a kind of to prepare bismuth oxide base electrolyte material Bi using the combustion-supporting method of microwave1-xAxO1.5-δMethod

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815067A (en) * 1981-07-13 1983-01-28 セントラル硝子株式会社 Bi2o3 composition of mainly delta phase at ordinary temperature, specific use, manufacture and manufacturing apparatus
JPH08239217A (en) * 1995-03-03 1996-09-17 Natl Inst For Res In Inorg Mater Bismuth rare earth element oxide solid solution of trigonal system structure and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5815067A (en) * 1981-07-13 1983-01-28 セントラル硝子株式会社 Bi2o3 composition of mainly delta phase at ordinary temperature, specific use, manufacture and manufacturing apparatus
JPH08239217A (en) * 1995-03-03 1996-09-17 Natl Inst For Res In Inorg Mater Bismuth rare earth element oxide solid solution of trigonal system structure and its production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6010074755, WATANABE, Akiteru, "SYNTHESIS AND LATTICE PARAMETERS OF RARE EARTH BISMUTH TUNGSTATE, BiLnWO6 AND THEIR SOLID SOLUTIONS", Materials Research Bulletin, 1980, Vol.15, pp.1473−1477, US, Pergamon Press, Ltd *
JPN6010074756, WATANABE, Akiteru, "New monoclinic compounds, Bi3.24Ln2W0.76O10.14, having a pseudo−orthohexagonal cell based on a pseud", Journal of Solid State Chemistry, 2002, Vol.169, pp.60−65, NL, Elsevier;Amsterdam *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007197259A (en) * 2006-01-26 2007-08-09 National Institute For Materials Science Oxide ion conductive material comprising bismuth-erbium-molybdenum oxide solid solution and its manufacturing method
KR20200050201A (en) * 2018-11-01 2020-05-11 재단법인대구경북과학기술원 triple doped Stabilized Bismuth Oxide based electrolyte and the manufacturing method thereof
KR102105056B1 (en) 2018-11-01 2020-05-28 재단법인대구경북과학기술원 triple doped Stabilized Bismuth Oxide based electrolyte and the manufacturing method thereof

Also Published As

Publication number Publication date
JP4788867B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP2882104B2 (en) Proton conductor and method for producing the same
Pikalova et al. The effect of co-dopant addition on the properties of Ln0. 2Ce0. 8O2− δ (Ln= Gd, Sm, La) solid-state electrolyte
RU2689155C2 (en) Perovskite structure, method for production thereof, electrode for fuel cell comprising perovskite structure, and fuel cell stack containing perovskite structure
Watanabe et al. Stabilized δ-Bi2O3 phase in the system Bi2O3–Er2O3–WO3 and its oxide-ion conduction
JP3934750B2 (en) Oxide ion conductive ceramics and method for producing the same
JP3997365B2 (en) Oxide ion conductive single crystal and method for producing the same
Dasgupta et al. Crystal structure and thermal and electrical properties of the perovskite solid solution Nd1− xSrxFeO3− δ (0≤ x≤ 0.4)
Aruna et al. Studies on combustion synthesized LaMnO3–LaCoO3 solid solutions
FR2613118A1 (en) CONDUCTIVE OXYAZOTE PEROVSKITES, THEIR PREPARATION AND THEIR USE ESPECIALLY AS ELECTRODE MATERIAL
Scarlat et al. Enhanced properties of Tin (IV) oxide based materials by field‐activated sintering
JP4788867B2 (en) Oxide ion conductive material comprising powder of bismuth / erbium / tungsten oxide solid solution and method for producing the same
JPH06231611A (en) Mixed ion conductor
JP4604247B2 (en) Electrically conductive material comprising terbium, bismuth, tungsten oxide solid solution and method for producing the same
JP4574628B2 (en) Mixed ion conductor
TW200417517A (en) Manufacturing method to improve oxygen ion conductivity
JP4925034B2 (en) Oxide ion conductive material comprising bismuth / erbium / molybdenum oxide solid solution and method for producing the same
JP4635254B2 (en) Oxide ion conductive material comprising bismuth / erbium / niobium oxide solid solution and method for producing the same
Schmutzler et al. Fabrication of Dense, Shaped Barium Cerate by the Oxidation of Solid Metal‐Bearing Precursors
JP4649588B2 (en) Electrically conductive material comprising bismuth / terbium / tungsten oxide solid solution and method for producing the same
JP2951887B2 (en) Mixed ionic conductor
RU2554952C2 (en) COMPOSITE SOLID ELECTROLYTE BASED ON PHASES CRYSTALLISABLE IN Bi2O3-BaO-Fe2O3 SYSTEM AND METHOD FOR PRODUCTION THEREOF (VERSIONS)
JP6478223B2 (en) Yttrium-containing oxyapatite-type lanthanum / germanate ceramics
Lee et al. Ionic conductivity of fluorite-structured solid solution Y0. 8Nb0. 2O1. 7
EP4361619A1 (en) Carbon monoxide gas sensor
JP2002075405A (en) Gallate complex oxide solid electrolyte material and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees