JP6478223B2 - Yttrium-containing oxyapatite-type lanthanum / germanate ceramics - Google Patents

Yttrium-containing oxyapatite-type lanthanum / germanate ceramics Download PDF

Info

Publication number
JP6478223B2
JP6478223B2 JP2015111702A JP2015111702A JP6478223B2 JP 6478223 B2 JP6478223 B2 JP 6478223B2 JP 2015111702 A JP2015111702 A JP 2015111702A JP 2015111702 A JP2015111702 A JP 2015111702A JP 6478223 B2 JP6478223 B2 JP 6478223B2
Authority
JP
Japan
Prior art keywords
yttrium
germanate
lanthanum
oxyapatite
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015111702A
Other languages
Japanese (ja)
Other versions
JP2016222506A (en
Inventor
小林 清
清 小林
之人 五十嵐
之人 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2015111702A priority Critical patent/JP6478223B2/en
Publication of JP2016222506A publication Critical patent/JP2016222506A/en
Application granted granted Critical
Publication of JP6478223B2 publication Critical patent/JP6478223B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、オキシアパタイト型ランタン・ゲルマネートセラミックスに関し、詳細には、イットリウムを含み、比較的低温においても高い酸素イオン伝導性を示す、オキシアパタイト型ランタン・ゲルマネートセラミックスに関する。   The present invention relates to an oxyapatite type lanthanum / germanate ceramic, and more particularly to an oxyapatite type lanthanum / germanate ceramic that contains yttrium and exhibits high oxygen ion conductivity even at a relatively low temperature.

オキシアパタイト型ランタン・ゲルマネートは、式La9.33+x’ GeO2+3x’/(0.48>x’>0.07)で表される。この物質は高い酸素イオン伝導性を有することから、その焼結体(セラミックス)には固体酸化物燃料電池、及び酸素濃度検出センサー等への応用が期待されている。
The oxyapatite- type lanthanum germanate is represented by the formula La 9.33 + x ′ ( GeO 4 ) 6 O 2 + 3 x ′ / 2 (0.48> x ′> 0.07). Since this substance has high oxygen ion conductivity, its sintered body (ceramics) is expected to be applied to solid oxide fuel cells, oxygen concentration detection sensors, and the like.

しかし、該酸素イオン伝導性は、図1の破線で示すように800℃〜700℃の温度で急激に低下することが報告されている(非特許文献1)。これはランタン・ゲルマネートが上記温度範囲において、六方晶型から三斜晶型へと相変化するためである。   However, it has been reported that the oxygen ion conductivity rapidly decreases at a temperature of 800 ° C. to 700 ° C. as shown by the broken line in FIG. 1 (Non-patent Document 1). This is because lanthanum germanate undergoes a phase change from the hexagonal type to the triclinic type in the above temperature range.

ランタンの一部を、ランタンと等原子価のイットリウムで置換することによって、該相変化が抑制されて酸素イオン伝導性が高くなることが報告されている(非特許文献2)。同報告においてランタン・ゲルマネートは固相反応により、1100℃で24時間加熱して調製される。その後、約1時間粉砕され、8000kg/cmの圧力でプレスされた後、1300℃で2時間焼結されてランタン・ゲルマネートセラミックスが得られる。 It has been reported that by replacing part of lanthanum with lanthanum and valence yttrium, the phase change is suppressed and oxygen ion conductivity is increased (Non-patent Document 2). In the same report, lanthanum germanate is prepared by heating at 1100 ° C. for 24 hours by solid phase reaction. Thereafter, it is pulverized for about 1 hour, pressed at a pressure of 8000 kg / cm 2 , and then sintered at 1300 ° C. for 2 hours to obtain a lanthanum / germanate ceramic.

ところで、本発明者らはランタン・ゲルマネートの製造方法として、水溶液を用いた錯体重合法(又はゾル‐ゲル法)を開発した(特許文献1)。該方法は固相反応に比べて、簡易であるのみならず、700℃程度の低温で行うことができるという利点を有する。   By the way, the present inventors have developed a complex polymerization method (or sol-gel method) using an aqueous solution as a method for producing lanthanum germanate (Patent Document 1). This method has an advantage that it can be carried out at a low temperature of about 700 ° C. as well as simpler than solid phase reaction.

特開2013−147365号公報JP 2013-147365 A

Hiroshi Arikawa et al., Solid State Ionics, 136-137 (2000) 31-37Hiroshi Arikawa et al., Solid State Ionics, 136-137 (2000) 31-37 E. Kendrick, P.R. Slater, Mater. Res. Bull., 43 (2008) 2509-2513E. Kendrick, P.R.Slater, Mater. Res. Bull., 43 (2008) 2509-2513

上記ランタンの一部をイットリウムで置換したランタン・ゲルマネートも、より低温で調製することができれば、産業上好ましい。   A lanthanum germanate obtained by substituting a part of the lanthanum with yttrium is industrially preferable if it can be prepared at a lower temperature.

そこで本発明者らは、上記錯体重合法を応用したところ、驚くことに、非特許文献2で報告されているものよりも顕著に高い酸素イオン伝導性が達成されることを見出した。即ち、本発明は、下記式(1):

La(GeO (1)

(式(1)において、7.5≦x<8.8、1≦y≦2、2.2≦z≦2.7である)で表され、600℃における酸素イオン伝導度が2.3×10−3[S/cm] 以上である、イットリウム含有オキシアパタイト型ランタン・ゲルマネートセラミックスである。
また、本発明は上記イットリウム含有オキシアパタイト型ランタン・ゲルマネートセラミックスを含む固体酸化物燃料電池用の固体電解質及び酸素センサーである。
Therefore, the present inventors have found that, when the complex polymerization method is applied, oxygen ion conductivity significantly higher than that reported in Non-Patent Document 2 is achieved. That is, the present invention provides the following formula (1):

La x Y y (GeO 4 ) 6 O z (1)

(In formula (1), 7.5 ≦ x <8.8, 1 ≦ y ≦ 2, 2.2 ≦ z ≦ 2.7), and the oxygen ion conductivity at 600 ° C. is 2.3. It is an yttrium-containing oxyapatite-type lanthanum / germanate ceramic that is at least 10 −3 [S / cm].
The present invention also provides a solid electrolyte and an oxygen sensor for a solid oxide fuel cell comprising the yttrium-containing oxyapatite-type lanthanum germanate ceramics.

本発明のイットリウム含有ランタン・ゲルマネートセラミックスは、非特許文献2記載のほぼ同等の組成のセラミックスに比べて高い酸素イオン伝導性を示す。この理由は、但し本発明を限定する趣旨ではないが、上記錯体重合法により、固相反応に比べてより均一で微細なセラミックス前駆体が得られ、90%以上の高い相対密度を有するセラミックスがもたらされるからであると考えられる。   The yttrium-containing lanthanum / germanate ceramics of the present invention exhibit higher oxygen ion conductivity than ceramics having substantially the same composition as described in Non-Patent Document 2. This reason is not intended to limit the present invention, but the above complex polymerization method provides a more uniform and fine ceramic precursor than solid phase reaction, and a ceramic having a high relative density of 90% or more is obtained. It is thought that it is brought about.

図1は、本発明のイットリウム含有ランタン・ゲルマネート(○:実施例4、□:実施例2)、非特許文献1記載のLa10(GeO463(破線)、非特許文献2記載のLa7.82(GeO462.8(一点破線)の温度773K(実施例4については673K)〜1273Kにおける酸素イオン伝導度を比較して示すグラフである。FIG. 1 shows yttrium-containing lanthanum germanate of the present invention (◯: Example 4, □: Example 2), La 10 (GeO 4 ) 6 O 3 (broken line) described in Non-Patent Document 1, Non-Patent Document 2 La 7.8 Y 2 (GeO 4) 6 O 2.8 temperature 773K of (dashed line) according (for example 4 673 K) is a graph comparing the oxygen ion conductivity at ~1273K. 図2は、ランタン・ゲルマネート(第1、2段)、参考例2のイットリウム含有ランタン・ゲルマネート(第3段)、及び実施例1、2、4のイットリウム含有ランタン・ゲルマネート(第6〜4段)、の室温における粉末X線回折である。第5及び6段は、六方晶型ランタン・ゲルマネート及び三斜晶型のランタン・ゲルマネートの粉末X線回折をデジタルパターンで示したものである。FIG. 2 shows lanthanum germanate (first and second stages), yttrium-containing lanthanum germanate of Reference Example 2 (third stage), and yttrium-containing lanthanum germanates of Examples 1, 2, and 4 (sixth stage). (4th stage) of powder X-ray diffraction at room temperature. The fifth and sixth stages show X-ray powder diffraction patterns of hexagonal lanthanum germanate and triclinic lanthanum germanate in a digital pattern. 図3は、参考例2のイットリウム含有ランタン・ゲルマネート(第1段)、実施例3、4のイットリウム含有ランタン・ゲルマネート(第3及び2段)、参考例1のイットリウム含有ランタン・ゲルマネート(第4段)の粉末X線回折である。第5及び6段は、図2のそれらと同様である。FIG. 3 shows the yttrium-containing lanthanum germanate of Reference Example 2 (first stage), the yttrium-containing lanthanum germanate of Examples 3 and 4 (third and second stages), and the yttrium-containing lanthanum germanate of Reference Example 1. (Fourth stage) Powder X-ray diffraction. The fifth and sixth stages are the same as those in FIG. 図4は、本発明のイットリウム含有ランタン・ゲルマネート(実施例4)と、イットリウムを含まない三斜晶型のLa9.8(GeO462.7の粉末X線回折を比較して示す。FIG. 4 shows a comparison of powder X-ray diffraction of yttrium-containing lanthanum germanate of the present invention (Example 4) and triclinic La 9.8 (GeO 4 ) 6 O 2.7 containing no yttrium.

本発明のイットリウム含有オキシアパタイト型ランタン・ゲルマネートセラミックス(以下、「セラミックス」と略する場合がある)は、下記式(1)で表される。

La(GeO (1)

式(1)において、7.5≦x<8.8、1≦y≦2、2.2≦z≦2.7であり、好ましくは7.7≦x≦8.7、1≦y≦2、2.3≦z≦2.7である。各パラメータが上記範囲内のセラミックスは、Yを含まないランタン・ゲルマネートに見られる、800℃〜700℃における急激な酸素イオン伝導度の低下が見られず、且つ、600℃において、既知の酸素イオン伝導度のうち最も高い値である2.2×10−3[S/cm]より高い酸素イオン伝導度を有する。
The yttrium-containing oxyapatite-type lanthanum-germanate ceramics of the present invention (hereinafter sometimes abbreviated as “ceramics”) is represented by the following formula (1).

La x Y y (GeO 4 ) 6 O z (1)

In formula (1), 7.5 ≦ x <8.8, 1 ≦ y ≦ 2, 2.2 ≦ z ≦ 2.7, preferably 7.7 ≦ x ≦ 8.7, 1 ≦ y ≦ 2, 2.3 ≦ z ≦ 2.7. Ceramics in which each parameter is within the above range does not show a sudden decrease in oxygen ion conductivity at 800 ° C. to 700 ° C., which is found in lanthanum germanate not containing Y, and is known oxygen at 600 ° C. It has an oxygen ion conductivity higher than 2.2 × 10 −3 [S / cm], which is the highest value among the ion conductivities.

図1は、後述する実施例で調製した本発明のセラミックス(○:実施例4、□:実施例2)、非特許文献1記載のLa10(GeO4)O3(破線)、及び非特許文献2記載のLa7.82(GeO4)O2.8(一点破線)の、773K(実施例4については673K)〜1273Kにおける酸素イオン伝導度を比較して示すグラフである。同図において、縦軸は酸素イオン伝導度(σ[S/cm]と温度(K)の積の対数、上側横軸は温度(K)、下側横軸は温度の逆数[10−3/K]である。非特許文献2記載のLa7.82(GeO4)O2.8の600℃における酸素イオン伝導度は2.2×10−3[S/cm]である。これに対して、本発明のLa8.71(GeO4)O2.6及びLa7.82(GeO4)O2.7は、夫々、6.1×10−3、4.9×10−3[S/cm]であり、顕著に高い。 FIG. 1 shows ceramics of the present invention prepared in the examples described later (◯: Example 4, □: Example 2), La 10 (GeO 4 ) O 3 (broken line) described in Non-Patent Document 1, and non-patents. of Reference 2 of La 7.8 Y 2 (GeO 4) O 2.8 ( dashed line), (for example 4 673 K) 773 K is a graph comparing the oxygen ion conductivity at ~1273K. In the figure, the vertical axis represents the logarithm of the product of oxygen ion conductivity (σ [S / cm] and temperature (K), the upper horizontal axis represents temperature (K), and the lower horizontal axis represents the reciprocal of temperature [10 −3 / The oxygen ion conductivity of La 7.8 Y 2 (GeO 4 ) O 2.8 described in Non-Patent Document 2 at 600 ° C. is 2.2 × 10 −3 [S / cm]. La 8.7 Y 1 (GeO 4 ) O 2.6 and La 7.8 Y 2 (GeO 4 ) O 2.7 of the present invention are 6.1 × 10 −3 and 4.9 × 10 −3 [S / cm], respectively. Remarkably high.

好ましくは、本発明のセラミックスは600℃において4.5×10−3 [S/cm]以上の酸素イオン伝導度を示す。酸素イオン伝導度の上限値については、特に制限はないが、実際上6.5×10−3[S/cm]程度であると概算される。該酸素イオン伝導度の測定方法の詳細は後述する。 Preferably, the ceramic of the present invention exhibits an oxygen ion conductivity of 4.5 × 10 −3 [S / cm] or more at 600 ° C. Although there is no restriction | limiting in particular about the upper limit of oxygen ion conductivity, It is estimated that it is about 6.5 * 10 < -3 > [S / cm] actually. Details of the method for measuring the oxygen ion conductivity will be described later.

上記高い酸素イオン伝導度は、結晶構造に基づく。図2は、特許文献1記載の方法で合成した粉末を1350℃で焼結した、Yを含まないランタン・ゲルマネート(第1、2段)、後述する参考例2のセラミックス(第3段)、及び実施例1、2、4のセラミックス(第6〜4段)の室温における粉末X線回折を、Laが多い順に比較して示すものである。なお、縦軸は任意スケールの強度である。同図、第5及び6段は、六方晶型ランタン・ゲルマネート及び三斜晶型のランタン・ゲルマネートの粉末X線回折をデジタルパターンで示したものである。三斜晶型は、六方晶型に比べてピークが多く、ピーク自体がブロードになる。図2において、Yを含まないランタン・ゲルマネートは、第6段に示す三斜晶型の回折パターンと一致する。これに対して、実施例1、2及び4の回折は第5段に示す六方晶型の回折パターンと良い一致を示し、高い酸素イオン伝導度につながっている。   The high oxygen ion conductivity is based on the crystal structure. FIG. 2 shows a powder synthesized by the method described in Patent Document 1, sintered at 1350 ° C., lanthanum germanate containing no Y (first and second stages), and ceramics of Reference Example 2 described later (third stage). And X-ray powder diffraction at room temperature of the ceramics of Examples 1, 2, and 4 (6th to 4th stages) are compared in the order of increasing La. The vertical axis represents the intensity of an arbitrary scale. In FIG. 5, the fifth and sixth stages show the digital X-ray diffraction patterns of hexagonal lanthanum germanate and triclinic lanthanum germanate. The triclinic type has more peaks than the hexagonal type, and the peaks themselves are broad. In FIG. 2, lanthanum germanate containing no Y matches the triclinic diffraction pattern shown in the sixth stage. On the other hand, the diffraction in Examples 1, 2, and 4 is in good agreement with the hexagonal diffraction pattern shown in the fifth stage, leading to high oxygen ion conductivity.

図4は、六方晶型と三斜晶型のX線回折における差をより明確に示すために、図2の第1段目のLa9.8(GeO462.7と、同図第4段の実施例4のセラミックスのX線回折を抜き出したものである。矢印で示す2θ(度)において、両者に差があることが分かる。 FIG. 4 shows La 9.8 (GeO 4 ) 6 O 2.7 in the first stage in FIG. 2 and the fourth stage in the figure in order to more clearly show the difference in X-ray diffraction between the hexagonal type and the triclinic type. The X-ray diffraction of the ceramic of Example 4 is extracted. It can be seen that there is a difference between the two at 2θ (degrees) indicated by the arrow.

本発明のY含有ランタン・ゲルマネートセラミックスは、以下の工程(1)〜(4)を含む錯体重合法で作ることができる。
(1)ランタン源、イットリウム源、ゲルマニウム源を夫々含む水溶液を調製する工程、
(2)工程(1)で得られる3つの水溶液を所定の比で混合してpHを調整することによって、粘性ゲルを生成する工程、
(3)工程(2)で得られる粘性ゲルを加熱して、粉体状ゲルを得る工程、
(4)工程(3)で得られる粉体状ゲルを焼結する工程。
The Y-containing lanthanum / germanate ceramics of the present invention can be produced by a complex polymerization method including the following steps (1) to (4).
(1) preparing an aqueous solution containing a lanthanum source, an yttrium source, and a germanium source,
(2) A step of producing a viscous gel by mixing the three aqueous solutions obtained in step (1) at a predetermined ratio and adjusting the pH,
(3) A step of heating the viscous gel obtained in step (2) to obtain a powdery gel,
(4) A step of sintering the powdered gel obtained in step (3).

工程(1)において、ランタン源としては例えば硝酸ランタン6水和物を用い、これを0.1〜2モル%、好ましくは1〜2モル%の濃度で水に溶解する。イットリウム源としては例えば硝酸イットリウム6水和物を用い、これを0.1〜2モル%、好ましくは1〜2モル%の濃度で水に溶解する。ゲルマニウム源としては例えば二酸化ゲルマニウムを用い、これを0.005〜0.5モル%、好ましくは0.01〜0.1モル%の濃度で、pH9〜10の希アンモニア水等の塩基性溶液に溶解する。水としては、蒸留水、脱イオン水、超純水等を用いることができる。   In step (1), for example, lanthanum nitrate hexahydrate is used as the lanthanum source, and this is dissolved in water at a concentration of 0.1 to 2 mol%, preferably 1 to 2 mol%. As the yttrium source, for example, yttrium nitrate hexahydrate is used and dissolved in water at a concentration of 0.1 to 2 mol%, preferably 1 to 2 mol%. For example, germanium dioxide is used as a germanium source, and this is added to a basic solution such as dilute ammonia water having a pH of 9 to 10 at a concentration of 0.005 to 0.5 mol%, preferably 0.01 to 0.1 mol%. Dissolve. As water, distilled water, deionized water, ultrapure water, or the like can be used.

工程(2)において、工程(1)で得られた各水溶液を、目的とする組成に応じた量比で混合する。混合の順番は任意でよい。次いで、混合液のpHを1〜1.8、好ましくは1.3〜1.8に調整する。調整に用いる酸としてはクエン酸等の有機酸が好ましく、より好ましくは該有機酸当量:(ゲルマニウム、イットリウム及びランタンの合計当量又は価数)が1:1〜1:2、好ましくは1:1.5〜1:1.7である。本工程において、粘性ゲルが得られる。   In step (2), each aqueous solution obtained in step (1) is mixed in a quantitative ratio according to the target composition. The order of mixing may be arbitrary. Next, the pH of the mixed solution is adjusted to 1 to 1.8, preferably 1.3 to 1.8. The acid used for the adjustment is preferably an organic acid such as citric acid, more preferably the organic acid equivalent: (the total equivalent or valence of germanium, yttrium and lanthanum) is 1: 1 to 1: 2, preferably 1: 1. .5 to 1: 1.7. In this step, a viscous gel is obtained.

工程(3)において、上記ゲルを、加熱マントルを用いて300〜600℃、好ましくは300〜500℃で加熱する。1〜3時間程度の加熱で、灰状の生成物が得られる。該生成物を粉砕し、好ましくは残留炭素を除去するために700〜800℃で加熱する。このように、固相反応に比べて顕著に低い温度の加熱によって、本発明のセラミックスの前駆体であるY含有ランタン・ゲルマネートを粉体状ゲルの形態で得ることができる。   In the step (3), the gel is heated at 300 to 600 ° C., preferably 300 to 500 ° C., using a heating mantle. An ash-like product is obtained by heating for about 1 to 3 hours. The product is ground and preferably heated at 700-800 ° C. to remove residual carbon. Thus, Y-containing lanthanum germanate, which is a precursor of the ceramic of the present invention, can be obtained in the form of a powdered gel by heating at a temperature significantly lower than that of the solid phase reaction.

工程(4)において、得られた粉体状ゲルを、空気下で1330〜1400℃で5〜7時間焼結することによって、本発明のセラミックスを得ることができる。   In the step (4), the obtained powdered gel is sintered under air at 1330 to 1400 ° C. for 5 to 7 hours to obtain the ceramic of the present invention.

得られたセラミックスは、上述のとおり600℃程度の低温においても、優れた酸素イオン伝導度を示し、酸素センサーとして有用であるだけでなく、固体酸化物燃料電池用の固体電解質としても好適である。現在のところ、固体酸化物燃料電池には、イットリア安定化ジルコニア(YSZ)等の固体酸化物電解質が用いられ、700〜1,000℃の高温で運転される。本発明のセラミックスを用いれば電池の運転温度を600℃程度に低下することができるので、エネルギー効率を顕著に向上することができる。   The obtained ceramic exhibits excellent oxygen ion conductivity even at a low temperature of about 600 ° C. as described above, and is not only useful as an oxygen sensor but also suitable as a solid electrolyte for a solid oxide fuel cell. . Currently, solid oxide fuel cells use a solid oxide electrolyte such as yttria stabilized zirconia (YSZ) and operate at a high temperature of 700-1,000 ° C. If the ceramic of the present invention is used, the operating temperature of the battery can be lowered to about 600 ° C., so that the energy efficiency can be remarkably improved.

以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
<実施例1〜4、参考例1、2>
下記手順により、表1に示す組成のランタン・ゲルマネートセラミックスを調製した。
(1)硝酸ランタン6水和物を1.9モル%の濃度で、硝酸イットリウム6水和物を1.0モル%の濃度で、夫々、蒸留水に溶解した。二酸化ゲルマニウムをpH9.5の希アンモニア水溶液に0.01モル%の濃度で溶解した。
(2)上記3つの水溶液を、表1に示す各組成になるような量で混合したところ、白色の沈殿が生じた。該沈殿を、硝酸を加えることによって溶解し、得られた反応液に、クエン酸と希アンモニア水を、pHが約1.8になるように添加した。クエン酸当量:(ゲルマニウム、イットリウム及びランタンの合計当量)は約1:1であった。
(3)生成された粘性ゲルを、加熱マントルを用いて673K(400℃)で加熱した。得られた灰状の生成物を粉砕し、残留炭素を除去するために1003K(730℃)で加熱した。
(4)得られた粉体を、空気下で、1623K(1350℃)で6時間焼結した。得られたセラミックスの相安定性は、873Kで12時間加熱することにより確認した。
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these.
<Examples 1-4, Reference Examples 1 and 2>
Lanthanum germanate ceramics having the composition shown in Table 1 were prepared by the following procedure.
(1) Lanthanum nitrate hexahydrate was dissolved in distilled water at a concentration of 1.9 mol% and yttrium nitrate hexahydrate at a concentration of 1.0 mol%, respectively. Germanium dioxide was dissolved in a dilute aqueous ammonia solution at pH 9.5 at a concentration of 0.01 mol%.
(2) When the three aqueous solutions were mixed in such amounts as to have the respective compositions shown in Table 1, a white precipitate was formed. The precipitate was dissolved by adding nitric acid, and citric acid and dilute aqueous ammonia were added to the resulting reaction solution so that the pH was about 1.8. Citric acid equivalent: (total equivalent of germanium, yttrium and lanthanum) was about 1: 1.
(3) The produced viscous gel was heated at 673 K (400 ° C.) using a heating mantle. The resulting ash-like product was ground and heated at 1003 K (730 ° C.) to remove residual carbon.
(4) The obtained powder was sintered at 1623 K (1350 ° C.) for 6 hours under air. The phase stability of the obtained ceramic was confirmed by heating at 873 K for 12 hours.

<比較例1>
比較例1として、非特許文献1記載のLa10(GeO463のデータを示す。
<Comparative Example 1>
As Comparative Example 1, data of La 10 (GeO 4 ) 6 O 3 described in Non-Patent Document 1 is shown.

<比較例2>
比較例2として、非特許文献2記載のLa7.82(GeO462.8のデータを示す。
<Comparative example 2>
As Comparative Example 2, data of La 7.8 Y 2 (GeO 4 ) 6 O 2.8 described in Non-Patent Document 2 is shown.

<粉末X線測定>
上記工程(3)で得られた粉体について、室温でリガク社製RINT-2500装置を用い(測定条件:CuKα線、12kW(管球電圧40kV、管球300mA))、粉末X線測定を行った。
<Powder X-ray measurement>
The powder obtained in the above step (3) was measured at room temperature using a RINT-2500 device manufactured by Rigaku Corporation (measurement conditions: CuKα ray, 12 kW (tube voltage 40 kV, tube 300 mA)). It was.

<酸素イオン伝導度測定>
実施例2〜4、参考例2について、下記手順で酸素イオン伝導度を測定した。
直径約16mm、厚み約1mmになるよう1623Kで6時間焼結した試料の両面に白金ペーストを用いて電極を取り付けた。イオン伝導度はプリンストンアプライドリサーチ社製VersaStat 3により交流インピーダンス法で測定した。試料を測定セルに取り付けた後、電気炉温度を1000℃まで1分間に10℃の速度で昇温した。測定温度に達した後、30分から1時間該温度で保持した後にインピーダンス測定を開始した。インピーダンス測定後、50℃おきに降温、温度保持したのちに測定する操作を4000℃まで繰り返した。結果を表1に示す。
<Oxygen ion conductivity measurement>
For Examples 2 to 4 and Reference Example 2, oxygen ion conductivity was measured by the following procedure.
Electrodes were attached to both surfaces of a sample sintered at 1623K for 6 hours to have a diameter of about 16 mm and a thickness of about 1 mm using platinum paste. The ionic conductivity was measured by the AC impedance method using VersaStat 3 manufactured by Princeton Applied Research. After attaching the sample to the measurement cell, the electric furnace temperature was raised to 1000 ° C. at a rate of 10 ° C. per minute. After reaching the measurement temperature, the impedance measurement was started after the temperature was maintained for 30 minutes to 1 hour. After the impedance measurement, the temperature was lowered every 50 ° C. and the temperature was kept, and the measurement was repeated up to 4000 ° C. The results are shown in Table 1.

<セラミックスの相対密度>
実施例2、3、4、参考例2のセラミックスの相対密度をアルキメデス法によって測定した。結果を表1に示す。
<Relative density of ceramics>
The relative densities of the ceramics of Examples 2, 3, 4 and Reference Example 2 were measured by the Archimedes method. The results are shown in Table 1.


図2及び4に関して上述したとおり、実施例1〜4の粉末X線回折は、六方晶型を有し、酸素イオン伝導度が高く、相対密度も90%以上である。比較例2の相対密度に関し、非特許文献2には「理論密度に対する相対密度>85%」とあるのみで、実測値は示されていないが、その酸素イオン伝導度から考えると本発明の実施例には及ばない。参考例1は(図3、第4段)、X線回折においてLaGeのピークが検出され(図中●で示す)、2相含まれていることが分かった。また、参考例2(図3、第1段)は三斜晶型となっていた。 As described above with reference to FIGS. 2 and 4, the powder X-ray diffraction of Examples 1-4 has a hexagonal type, high oxygen ion conductivity, and a relative density of 90% or more. Regarding the relative density of Comparative Example 2, Non-Patent Document 2 only states that “relative density with respect to theoretical density> 85%”, and the actual measurement value is not shown, but considering the oxygen ion conductivity, the implementation of the present invention. There is no example. In Reference Example 1 (FIG. 3, 4th stage), a peak of La 2 Ge 2 O 7 was detected by X-ray diffraction (indicated by ● in the figure), and it was found that two phases were contained. Reference Example 2 (FIG. 3, first stage) was a triclinic crystal type.

本発明のイットリウム含有ランタン・ゲルマネートセラミックスは600℃程度の低い温度においても酸素イオン伝導性が高い。また、同セラミックスの前駆体は、有機酸を用いた錯体重合法により、固相反応に比べてより低い温度で調製することができる。該イットリウム含有ランタン・ゲルマネートセラミックスは酸素センサー、固体酸化物燃料電池用の固体電解質用途に好適である。   The yttrium-containing lanthanum germanate ceramic of the present invention has high oxygen ion conductivity even at a low temperature of about 600 ° C. Moreover, the precursor of the ceramic can be prepared at a lower temperature than a solid phase reaction by a complex polymerization method using an organic acid. The yttrium-containing lanthanum / germanate ceramics are suitable for solid electrolyte applications for oxygen sensors and solid oxide fuel cells.

Claims (9)

下記式(1):
La(GeO (1)
(式(1)において、9.4<x+y<9.81、7.7≦x≦8.7、1≦y≦2、2.3≦z≦2.7である)で表され、六方晶型の結晶構造を有する焼結体であり、
前記焼結体は、90%以上の相対密度を有し、
600℃における酸素イオン伝導度が2.3×10−3[S/cm]以上である、イットリウム含有オキシアパタイト型ランタン・ゲルマネートセラミックス。
Following formula (1):
La x Y y (GeO 4 ) 6 O z (1)
Is represented by (formula (1), which is 9.4 <x + y <9.81,7.7 ≦ x ≦ 8.7,1 ≦ y ≦ 2,2.3 ≦ z ≦ 2.7), A sintered body having a hexagonal crystal structure,
The sintered body has a relative density of 90% or more,
Yttrium-containing oxyapatite-type lanthanum / germanate ceramics having an oxygen ion conductivity at 600 ° C. of 2.3 × 10 −3 [S / cm] or more.
600℃における酸素イオン伝導度が4.5×10−3〜6.5×10−3[S/cm]である、請求項1記載のイットリウム含有オキシアパタイト型ランタン・ゲルマネートセラミックス。 The yttrium-containing oxyapatite-type lanthanum / germanate ceramics according to claim 1, wherein the oxygen ion conductivity at 600 ° C. is 4.5 × 10 −3 to 6.5 × 10 −3 [S / cm]. 式(1)において、7.8≦x≦8.7、1≦y≦2、2.3≦z≦2.7である、請求項1又は2記載のイットリウム含有オキシアパタイト型ランタン・ゲルマネートセラミックス。 In the formula (1), 7 . 8 ≦ x 8.7,1 is ≦ y ≦ 2,2.3 ≦ z ≦ 2.7 , according to claim 1 or 2, wherein the yttrium-containing oxy apatite type lanthanum germanate ceramics. 前記焼結体は、90%以上92%以下の範囲の相対密度を有する、請求項1〜3のいずれか1項に記載のイットリウム含有オキシアパタイト型ランタン・ゲルマネートセラミックス。The yttrium-containing oxyapatite-type lanthanum-germanate ceramic according to any one of claims 1 to 3, wherein the sintered body has a relative density in a range of 90% to 92%. 請求項1〜4のいずれか1項記載のイットリウム含有オキシアパタイト型ランタン・ゲルマネートセラミックスを含む、固体酸化物燃料電池用の固体電解質。   A solid electrolyte for a solid oxide fuel cell, comprising the yttrium-containing oxyapatite-type lanthanum / germanate ceramics according to claim 1. 請求項1〜4のいずれか1項記載のイットリウム含有オキシアパタイト型ランタン・ゲルマネートセラミックスを含む、酸素センサー。 An oxygen sensor comprising the yttrium-containing oxyapatite-type lanthanum-germanate ceramics according to any one of claims 1 to 4 . LaLa x Y y (GeO(GeO 4 ) 6 O z (ここで、9.4<x+y<9.81、7.7≦x≦8.7、1≦y≦2、2.3≦z≦2.7である)を満たすように、ランタン源、イットリウム源、ゲルマニウム源をそれぞれ含有する水溶液を調製する工程と、(Where 9.4 <x + y <9.81, 7.7 ≦ x ≦ 8.7, 1 ≦ y ≦ 2, 2.3 ≦ z ≦ 2.7), Preparing an aqueous solution containing an yttrium source and a germanium source,
前記水溶液を混合し、有機酸を用いてpHを調整することによって、粘性ゲルを生成する工程であって、前記有機酸は、前記有機酸の当量:ゲルマニウム、イットリウム及びランタンの合計当量が1:1〜1:2を満たし、前記pHは1〜1.8を満たす、生成する工程と、A step of producing a viscous gel by mixing the aqueous solution and adjusting the pH using an organic acid, wherein the organic acid has an equivalent of the organic acid: a total equivalent of germanium, yttrium and lanthanum is 1: A step of satisfying 1-1: 2 and the pH satisfying 1-1.8,
前記粘性ゲルを300℃〜600℃で加熱して、粉体状ゲルを得る工程と、Heating the viscous gel at 300 ° C. to 600 ° C. to obtain a powdered gel;
前記粉体状ゲルを1330℃〜1400℃で5〜7時間焼結する工程とSintering the powdered gel at 1330 ° C. to 1400 ° C. for 5 to 7 hours;
を包含する、請求項1〜4のいずれか1項に記載のイットリウム含有オキシアパタイト型ランタン・ゲルマネートセラミックスを製造する方法。A method for producing an yttrium-containing oxyapatite-type lanthanum-germanate ceramic according to any one of claims 1 to 4.
前記粘性ゲルを生成する工程は、前記pHを1.8に調整する、請求項7に記載の方法。The method of claim 7, wherein the step of producing the viscous gel adjusts the pH to 1.8. 前記粉体状ゲルを得る工程は、前記粘性ゲルの加熱に続いて、700℃〜800℃でさらに加熱する、請求項7または8に記載の方法。The method according to claim 7 or 8, wherein the step of obtaining the powdered gel further heats at 700 ° C to 800 ° C following the heating of the viscous gel.
JP2015111702A 2015-06-01 2015-06-01 Yttrium-containing oxyapatite-type lanthanum / germanate ceramics Active JP6478223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015111702A JP6478223B2 (en) 2015-06-01 2015-06-01 Yttrium-containing oxyapatite-type lanthanum / germanate ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015111702A JP6478223B2 (en) 2015-06-01 2015-06-01 Yttrium-containing oxyapatite-type lanthanum / germanate ceramics

Publications (2)

Publication Number Publication Date
JP2016222506A JP2016222506A (en) 2016-12-28
JP6478223B2 true JP6478223B2 (en) 2019-03-06

Family

ID=57747189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111702A Active JP6478223B2 (en) 2015-06-01 2015-06-01 Yttrium-containing oxyapatite-type lanthanum / germanate ceramics

Country Status (1)

Country Link
JP (1) JP6478223B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7300439B2 (en) * 2018-02-14 2023-06-29 三井金属鉱業株式会社 Oriented apatite-type oxide ion conductor and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5900882B2 (en) * 2012-01-18 2016-04-06 国立研究開発法人物質・材料研究機構 Method for synthesizing apatite type Ge-La oxide
JP6412957B2 (en) * 2015-01-07 2018-10-24 三井金属鉱業株式会社 Oriented apatite-type oxide ion conductor and method for producing the same

Also Published As

Publication number Publication date
JP2016222506A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
Shi et al. Samarium and yttrium codoped BaCeO3 proton conductor with improved sinterability and higher electrical conductivity
Li et al. Reactive Ce0. 8RE0. 2O1. 9 (RE= La, Nd, Sm, Gd, Dy, Y, Ho, Er, and Yb) powders via carbonate coprecipitation. 1. Synthesis and characterization
Dapčević et al. A new electrolyte based on Tm3+-doped δ-Bi2O3-type phase with enhanced conductivity
JP2008305804A (en) High ion-conductivity solid electrolyte material and its manufacturing method, sintered body, and solid electrolyte fuel cell
Cheng et al. Synthesis and electrical properties of scheelite Ca1− xSmxMoO4+ δ solid electrolyte ceramics
JP6864323B2 (en) Method for producing lithium-containing zirconium phosphate and its calcined powder and sintered body
Stojmenović et al. Electrical properties of multidoped ceria
Bucevac et al. Effect of preparation route on the microstructure and electrical conductivity of co-doped ceria
JP6478223B2 (en) Yttrium-containing oxyapatite-type lanthanum / germanate ceramics
Liu et al. Improvement of electrical conductivity of trivalent rare‐earth cation‐doped neodymium zirconate by co‐doping gadolinium and ytterbium
TWI667841B (en) Doped scandia stabilized zirconia electrolyte compositions
Huang et al. Preparation and conductive properties of single phase Ba1–xKxCe0. 8Y0. 2O3–δ perovskite oxides
Li et al. Ionic conductivity across the disorder–order phase transition in the NdO1. 5–CeO2 system
Singh et al. Effect of partial substitution of Sn4+ by M4+ (M= Si, Ti, and Ce) on sinterability and ionic conductivity of SnP2O7
Cheng et al. Effects of Mg2+ addition on structure and electrical properties of gadolinium doped ceria electrolyte ceramics
Tikhonov et al. Preparation and properties of ceramic composites with oxygen ionic conductivity in the ZrO 2-CeO 2-Al 2 O 3 and ZrO 2-Sc 2 O 3-Al 2 O 3 systems
JP2012056810A (en) Perovskite-type conductive oxide material, and electrode using the same
Ravindranath et al. Preparation and characterization zirconium and samarium co-doped ceria solid electrolytes for IT-SOFC applications
JP4581077B2 (en) Oxide ion conductor and method for producing the same
Lakhanlal et al. Shrinkage Behavior, Thermal Expansion Behavior, and Electrical Conductivity Study of Samarium Doped Ceria Electrolytes
JP6818411B2 (en) Scandia-stabilized zirconia powder for solid oxide fuel cells and its manufacturing method, Scandia-stabilized zirconia sintered body for solid oxide fuel cells and its production
Yang et al. Yb Doping Effects on Structure and Performance of BaCo0. 7Fe0. 3-xYbxO3-δ Perovskite
Gao et al. Comparative study of Ce0. 85Sm0. 075Nd0. 075O2− δ electrolyte synthesized by different routes
Kulkarni et al. Nanocrystalline Gadolinium doped Ceria (Ce 0.8 Gd 0.2 O 3-δ) for oxygen sensor and solid oxide fuel cell applications
JP4788867B2 (en) Oxide ion conductive material comprising powder of bismuth / erbium / tungsten oxide solid solution and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190129

R150 Certificate of patent or registration of utility model

Ref document number: 6478223

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250